onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (305) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6508 -0
  4. onnxruntime/__init__.py +78 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +174 -0
  7. onnxruntime/backend/backend_rep.py +53 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  13. onnxruntime/capi/onnxruntime.dll +0 -0
  14. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  15. onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
  16. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  17. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  18. onnxruntime/capi/onnxruntime_validation.py +150 -0
  19. onnxruntime/capi/version_info.py +2 -0
  20. onnxruntime/datasets/__init__.py +17 -0
  21. onnxruntime/datasets/logreg_iris.onnx +0 -0
  22. onnxruntime/datasets/mul_1.onnx +0 -0
  23. onnxruntime/datasets/sigmoid.onnx +13 -0
  24. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  27. onnxruntime/quantization/__init__.py +16 -0
  28. onnxruntime/quantization/base_quantizer.py +532 -0
  29. onnxruntime/quantization/calibrate.py +1245 -0
  30. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  31. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  32. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  33. onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
  34. onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
  35. onnxruntime/quantization/fusions/__init__.py +3 -0
  36. onnxruntime/quantization/fusions/fusion.py +311 -0
  37. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  38. onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
  39. onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
  40. onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
  41. onnxruntime/quantization/onnx_model.py +580 -0
  42. onnxruntime/quantization/onnx_quantizer.py +1008 -0
  43. onnxruntime/quantization/operators/__init__.py +2 -0
  44. onnxruntime/quantization/operators/activation.py +119 -0
  45. onnxruntime/quantization/operators/argmax.py +18 -0
  46. onnxruntime/quantization/operators/attention.py +73 -0
  47. onnxruntime/quantization/operators/base_operator.py +26 -0
  48. onnxruntime/quantization/operators/binary_op.py +72 -0
  49. onnxruntime/quantization/operators/concat.py +62 -0
  50. onnxruntime/quantization/operators/conv.py +258 -0
  51. onnxruntime/quantization/operators/direct_q8.py +78 -0
  52. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  53. onnxruntime/quantization/operators/gather.py +64 -0
  54. onnxruntime/quantization/operators/gavgpool.py +62 -0
  55. onnxruntime/quantization/operators/gemm.py +166 -0
  56. onnxruntime/quantization/operators/lstm.py +117 -0
  57. onnxruntime/quantization/operators/matmul.py +231 -0
  58. onnxruntime/quantization/operators/maxpool.py +34 -0
  59. onnxruntime/quantization/operators/norm.py +40 -0
  60. onnxruntime/quantization/operators/pad.py +100 -0
  61. onnxruntime/quantization/operators/pooling.py +67 -0
  62. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  63. onnxruntime/quantization/operators/resize.py +34 -0
  64. onnxruntime/quantization/operators/softmax.py +74 -0
  65. onnxruntime/quantization/operators/split.py +63 -0
  66. onnxruntime/quantization/operators/where.py +87 -0
  67. onnxruntime/quantization/preprocess.py +141 -0
  68. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  69. onnxruntime/quantization/qdq_quantizer.py +1187 -0
  70. onnxruntime/quantization/quant_utils.py +891 -0
  71. onnxruntime/quantization/quantize.py +748 -0
  72. onnxruntime/quantization/registry.py +106 -0
  73. onnxruntime/quantization/shape_inference.py +187 -0
  74. onnxruntime/quantization/tensor_quant_overrides.py +516 -0
  75. onnxruntime/tools/__init__.py +10 -0
  76. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  77. onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
  78. onnxruntime/tools/file_utils.py +46 -0
  79. onnxruntime/tools/logger.py +11 -0
  80. onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
  81. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  82. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
  83. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  84. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  85. onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
  86. onnxruntime/tools/offline_tuning.py +169 -0
  87. onnxruntime/tools/onnx_model_utils.py +413 -0
  88. onnxruntime/tools/onnx_randomizer.py +85 -0
  89. onnxruntime/tools/onnxruntime_test.py +164 -0
  90. onnxruntime/tools/optimize_onnx_model.py +55 -0
  91. onnxruntime/tools/ort_format_model/__init__.py +25 -0
  92. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
  93. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  94. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  95. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  96. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  97. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  98. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  99. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  100. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  140. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  141. onnxruntime/tools/ort_format_model/types.py +84 -0
  142. onnxruntime/tools/ort_format_model/utils.py +62 -0
  143. onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
  144. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  145. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  146. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  147. onnxruntime/tools/reduced_build_config_parser.py +202 -0
  148. onnxruntime/tools/symbolic_shape_infer.py +3016 -0
  149. onnxruntime/tools/update_onnx_opset.py +31 -0
  150. onnxruntime/transformers/__init__.py +8 -0
  151. onnxruntime/transformers/affinity_helper.py +40 -0
  152. onnxruntime/transformers/benchmark.py +944 -0
  153. onnxruntime/transformers/benchmark_helper.py +646 -0
  154. onnxruntime/transformers/bert_perf_test.py +634 -0
  155. onnxruntime/transformers/bert_test_data.py +642 -0
  156. onnxruntime/transformers/compare_bert_results.py +246 -0
  157. onnxruntime/transformers/constants.py +47 -0
  158. onnxruntime/transformers/convert_generation.py +3124 -0
  159. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  160. onnxruntime/transformers/convert_to_packing_mode.py +387 -0
  161. onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
  162. onnxruntime/transformers/float16.py +501 -0
  163. onnxruntime/transformers/fusion_attention.py +1235 -0
  164. onnxruntime/transformers/fusion_attention_clip.py +257 -0
  165. onnxruntime/transformers/fusion_attention_sam2.py +534 -0
  166. onnxruntime/transformers/fusion_attention_unet.py +1304 -0
  167. onnxruntime/transformers/fusion_attention_vae.py +301 -0
  168. onnxruntime/transformers/fusion_bart_attention.py +640 -0
  169. onnxruntime/transformers/fusion_base.py +137 -0
  170. onnxruntime/transformers/fusion_bias_add.py +58 -0
  171. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  172. onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
  173. onnxruntime/transformers/fusion_conformer_attention.py +143 -0
  174. onnxruntime/transformers/fusion_embedlayer.py +811 -0
  175. onnxruntime/transformers/fusion_fastgelu.py +360 -0
  176. onnxruntime/transformers/fusion_gelu.py +259 -0
  177. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  178. onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
  179. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  180. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  181. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  182. onnxruntime/transformers/fusion_group_norm.py +179 -0
  183. onnxruntime/transformers/fusion_layernorm.py +465 -0
  184. onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
  185. onnxruntime/transformers/fusion_options.py +340 -0
  186. onnxruntime/transformers/fusion_qordered_attention.py +421 -0
  187. onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
  188. onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
  189. onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
  190. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  191. onnxruntime/transformers/fusion_reshape.py +173 -0
  192. onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
  193. onnxruntime/transformers/fusion_shape.py +110 -0
  194. onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
  195. onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
  196. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  197. onnxruntime/transformers/fusion_transpose.py +168 -0
  198. onnxruntime/transformers/fusion_utils.py +307 -0
  199. onnxruntime/transformers/huggingface_models.py +167 -0
  200. onnxruntime/transformers/import_utils.py +20 -0
  201. onnxruntime/transformers/io_binding_helper.py +442 -0
  202. onnxruntime/transformers/large_model_exporter.py +395 -0
  203. onnxruntime/transformers/machine_info.py +221 -0
  204. onnxruntime/transformers/metrics.py +164 -0
  205. onnxruntime/transformers/models/bart/__init__.py +12 -0
  206. onnxruntime/transformers/models/bart/export.py +98 -0
  207. onnxruntime/transformers/models/bert/__init__.py +12 -0
  208. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  209. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  210. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  211. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
  212. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
  213. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  214. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  215. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  216. onnxruntime/transformers/models/llama/__init__.py +12 -0
  217. onnxruntime/transformers/models/llama/benchmark.py +703 -0
  218. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  219. onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
  220. onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
  221. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  222. onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
  223. onnxruntime/transformers/models/llama/llama_parity.py +309 -0
  224. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  225. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  226. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  227. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  228. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  229. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  230. onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
  231. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  232. onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
  233. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  234. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  235. onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
  236. onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
  237. onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
  238. onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
  239. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  240. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  241. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  242. onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
  243. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
  244. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  245. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  246. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
  247. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  248. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
  249. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
  250. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  251. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
  252. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
  253. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
  254. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
  255. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  256. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  257. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  258. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
  259. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  260. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  261. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  262. onnxruntime/transformers/models/t5/__init__.py +12 -0
  263. onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
  264. onnxruntime/transformers/models/t5/past_helper.py +150 -0
  265. onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
  266. onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
  267. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
  268. onnxruntime/transformers/models/t5/t5_helper.py +272 -0
  269. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  270. onnxruntime/transformers/models/whisper/benchmark.py +610 -0
  271. onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
  272. onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
  273. onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
  274. onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
  275. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  276. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
  277. onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
  278. onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
  279. onnxruntime/transformers/onnx_exporter.py +717 -0
  280. onnxruntime/transformers/onnx_model.py +1569 -0
  281. onnxruntime/transformers/onnx_model_bart.py +142 -0
  282. onnxruntime/transformers/onnx_model_bert.py +481 -0
  283. onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
  284. onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
  285. onnxruntime/transformers/onnx_model_clip.py +40 -0
  286. onnxruntime/transformers/onnx_model_conformer.py +33 -0
  287. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  288. onnxruntime/transformers/onnx_model_phi.py +930 -0
  289. onnxruntime/transformers/onnx_model_sam2.py +138 -0
  290. onnxruntime/transformers/onnx_model_t5.py +791 -0
  291. onnxruntime/transformers/onnx_model_tnlr.py +227 -0
  292. onnxruntime/transformers/onnx_model_unet.py +259 -0
  293. onnxruntime/transformers/onnx_model_vae.py +43 -0
  294. onnxruntime/transformers/onnx_utils.py +55 -0
  295. onnxruntime/transformers/optimizer.py +612 -0
  296. onnxruntime/transformers/profiler.py +725 -0
  297. onnxruntime/transformers/quantize_helper.py +76 -0
  298. onnxruntime/transformers/shape_infer_helper.py +122 -0
  299. onnxruntime/transformers/shape_optimizer.py +401 -0
  300. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  301. onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
  302. onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
  303. onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
  304. onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
  305. onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,748 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License. See License.txt in the project root for
4
+ # license information.
5
+ # --------------------------------------------------------------------------
6
+ import logging
7
+ import tempfile
8
+ from pathlib import Path
9
+ from typing import Union
10
+
11
+ import onnx
12
+
13
+ from .calibrate import CalibrationDataReader, CalibrationMethod, TensorsData, create_calibrator
14
+ from .onnx_quantizer import ONNXQuantizer
15
+ from .qdq_quantizer import QDQQuantizer
16
+ from .quant_utils import (
17
+ QuantFormat,
18
+ QuantizationMode,
19
+ QuantType,
20
+ load_model_with_shape_infer,
21
+ model_has_pre_process_metadata,
22
+ save_and_reload_model_with_shape_infer,
23
+ )
24
+ from .registry import IntegerOpsRegistry, QDQRegistry, QLinearOpsRegistry
25
+
26
+
27
+ class QuantConfig:
28
+ def __init__(
29
+ self,
30
+ activation_type=QuantType.QUInt8,
31
+ weight_type=QuantType.QInt8,
32
+ op_types_to_quantize=None,
33
+ nodes_to_quantize=None,
34
+ nodes_to_exclude=None,
35
+ per_channel=False,
36
+ reduce_range=False,
37
+ use_external_data_format=False,
38
+ ):
39
+ """
40
+ This is the Base class for both Static and Dynamic Quantize Configuration
41
+ Args:
42
+ activation_type:
43
+ quantization data type of activation. Please refer to
44
+ https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
45
+ weight_type:
46
+ quantization data type of weight. Please refer to
47
+ https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
48
+ op_types_to_quantize:
49
+ specify the types of operators to quantize, like ['Conv'] to quantize Conv only.
50
+ It quantizes all supported operators by default.
51
+ nodes_to_quantize:
52
+ List of nodes names to quantize. When this list is not None only the nodes in this list
53
+ are quantized.
54
+ example:
55
+ [
56
+ 'Conv__224',
57
+ 'Conv__252'
58
+ ]
59
+ nodes_to_exclude:
60
+ List of nodes names to exclude. The nodes in this list will be excluded from quantization
61
+ when it is not None.
62
+ per_channel: quantize weights per channel
63
+ reduce_range:
64
+ quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine,
65
+ especially for per-channel mode
66
+ use_external_data_format: option used for large size (>2GB) model. Set to False by default.
67
+ """
68
+
69
+ nodes_to_exclude = nodes_to_exclude or []
70
+ nodes_to_quantize = nodes_to_quantize or []
71
+ op_types_to_quantize = op_types_to_quantize or []
72
+ self.op_types_to_quantize = op_types_to_quantize
73
+ self.per_channel = per_channel
74
+ self.reduce_range = reduce_range
75
+ self.weight_type = weight_type
76
+ self.activation_type = activation_type
77
+ self.nodes_to_quantize = nodes_to_quantize
78
+ self.nodes_to_exclude = nodes_to_exclude
79
+ self.use_external_data_format = use_external_data_format
80
+
81
+
82
+ class StaticQuantConfig(QuantConfig):
83
+ def __init__(
84
+ self,
85
+ calibration_data_reader: CalibrationDataReader,
86
+ calibrate_method=CalibrationMethod.MinMax,
87
+ quant_format=QuantFormat.QDQ,
88
+ activation_type=QuantType.QInt8,
89
+ weight_type=QuantType.QInt8,
90
+ op_types_to_quantize=None,
91
+ nodes_to_quantize=None,
92
+ nodes_to_exclude=None,
93
+ per_channel=False,
94
+ reduce_range=False,
95
+ use_external_data_format=False,
96
+ extra_options=None,
97
+ ):
98
+ """
99
+ This is the derived class for static Quantize Configuration
100
+
101
+ Args:
102
+ calibration_data_reader:
103
+ a calibration data reader. It enumerates calibration data and generates inputs for the original model.
104
+ calibrate_method:
105
+ Current calibration methods supported are MinMax, Entropy and Percentile.
106
+ quant_format: QuantFormat{QOperator, QDQ}.
107
+ QOperator format quantizes the model with quantized operators directly.
108
+ QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
109
+ extra_options:
110
+ key value pair dictionary for various options in different case. Current used:
111
+ extra.Sigmoid.nnapi = True/False (Default is False)
112
+ ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
113
+ WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
114
+ EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized.
115
+ Dyanmic mode currently is supported. Will support more in future.
116
+ ForceQuantizeNoInputCheck = True/False :
117
+ By default, some latent operators like maxpool, transpose, do not quantize if their input is not
118
+ quantized already. Setting to True to force such operator always quantize input and so generate
119
+ quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude.
120
+ MatMulConstBOnly = True/False:
121
+ Default is False for static mode. If enabled, only MatMul with const B will be quantized.
122
+ AddQDQPairToWeight = True/False :
123
+ Default is False which quantizes floating-point weight and feeds it to solely inserted
124
+ DeQuantizeLinear node. If True, it remains floating-point weight and inserts both
125
+ QuantizeLinear/DeQuantizeLinear nodes to weight.
126
+ OpTypesToExcludeOutputQuantization = list of op type :
127
+ Default is []. If any op type is specified, it won't quantize the output of ops with this
128
+ specific op types.
129
+ DedicatedQDQPair = True/False :
130
+ Default is False. When inserting QDQ pair, multiple nodes can share a single QDQ pair as their
131
+ inputs. If True, it will create identical and dedicated QDQ pair for each node.
132
+ QDQOpTypePerChannelSupportToAxis = dictionary :
133
+ Default is {}. Set channel axis for specific op type, for example: {'MatMul': 1}, and it's
134
+ effective only when per channel quantization is supported and per_channel is True. If specific
135
+ op type supports per channel quantization but not explicitly specified with channel axis,
136
+ default channel axis will be used.
137
+ CalibTensorRangeSymmetric = True/False :
138
+ Default is False. If enabled, the final range of tensor during calibration will be explicitly
139
+ set to symmetric to central point "0".
140
+ CalibMovingAverage = True/False :
141
+ Default is False. If enabled, the moving average of the minimum and maximum values will be
142
+ computed when the calibration method selected is MinMax.
143
+ CalibMovingAverageConstant = float :
144
+ Default is 0.01. Constant smoothing factor to use when computing the moving average of the
145
+ minimum and maximum values. Effective only when the calibration method selected is MinMax and
146
+ when CalibMovingAverage is set to True.
147
+ QuantizeBias = True/False :
148
+ Default is True which quantizes floating-point biases and it solely inserts
149
+ a DeQuantizeLinear node. If False, it remains floating-point bias and does not insert
150
+ any quantization nodes associated with biases.
151
+ This extra option is only effective when quant_format is QuantFormat.QDQ.
152
+ SmoothQuant = True/False :
153
+ Default is False. If enabled, SmoothQuant algorithm will be applied before quantization to do
154
+ fake input channel quantization.
155
+ SmoothQuantAlpha = float :
156
+ Default is 0.5. It only works if SmoothQuant is True. It controls the difficulty of weight
157
+ and activation quantization. A larger alpha value could be used on models with more significant
158
+ activation outliers to migrate more quantization difficulty to weights.
159
+ SmoothQuantFolding = True/False :
160
+ Default is True. It only works if SmoothQuant is True. If enabled, inserted Mul ops during
161
+ SmoothQuant will be folded into the previous op if the previous op is foldable.
162
+ UseQDQContribOps = True/False :
163
+ Default is False. If enabled, the inserted QuantizeLinear and DequantizeLinear ops will have the
164
+ `com.microsoft` domain, which forces use of ONNX Runtime's QuantizeLinear and DequantizeLinear
165
+ contrib op implementations. The contrib op implementations may support features not standardized
166
+ into the ONNX specification (e.g., 16-bit quantization types).
167
+ MinimumRealRange = float|None :
168
+ Default is None. If set to a floating-point value, the calculation of the quantization parameters
169
+ (i.e., scale and zero point) will enforce a minimum range between rmin and rmax. If (rmax-rmin)
170
+ is less than the specified minimum range, rmax will be set to rmin + MinimumRealRange. This is
171
+ necessary for EPs like QNN that require a minimum floating-point range when determining
172
+ quantization parameters.
173
+ TensorQuantOverrides = dictionary :
174
+ Default is {}. Set tensor quantization overrides. The key is a tensor name and the value is a
175
+ list of dictionaries. For per-tensor quantization, the list contains a single dictionary. For
176
+ per-channel quantization, the list contains a dictionary for each channel in the tensor.
177
+ Each dictionary contains optional overrides with the following keys and values.
178
+ 'quant_type' = QuantType : The tensor's quantization data type.
179
+ 'scale' = Float : The scale value to use. Must also specify `zero_point` if set.
180
+ 'zero_point' = Int : The zero-point value to use. Must also specify `scale` is set.
181
+ 'symmetric' = Bool : If the tensor should use symmetric quantization. Invalid if also
182
+ set `scale` or `zero_point`.
183
+ 'reduce_range' = Bool : If the quantization range should be reduced. Invalid if also
184
+ set `scale` or `zero_point`.
185
+ 'rmax' = Float : Override the maximum real tensor value in calibration data.
186
+ Invalid if also set `scale` or `zero_point`.
187
+ 'rmin' = Float : Override the minimum real tensor value in calibration data.
188
+ Invalid if also set `scale` or `zero_point`.
189
+ QDQKeepRemovableActivations = True/False:
190
+ Default is False. If true, "removable" activations (e.g., Clip or Relu) will not be removed, and
191
+ will be explicitly represented in the QDQ model. If false, these activations are automatically
192
+ removed if activations are asymmetrically quantized. Keeping these activations is necessary if
193
+ optimizations or EP transformations will later remove QuantizeLinear/DequantizeLinear
194
+ operators from the model.
195
+ execution_provider : A enum indicates the Execution Provider such as: CPU, TRT, NNAPI, SNE, etc.
196
+ Raises:
197
+ ValueError: Raise ValueError if execution provider is unknown
198
+ """
199
+
200
+ super().__init__(
201
+ activation_type=activation_type,
202
+ weight_type=weight_type,
203
+ op_types_to_quantize=op_types_to_quantize,
204
+ nodes_to_quantize=nodes_to_quantize,
205
+ nodes_to_exclude=nodes_to_exclude,
206
+ per_channel=per_channel,
207
+ reduce_range=reduce_range,
208
+ use_external_data_format=use_external_data_format,
209
+ )
210
+ self.calibration_data_reader = calibration_data_reader
211
+ self.calibrate_method = calibrate_method
212
+ self.quant_format = quant_format
213
+ self.extra_options = extra_options or {}
214
+
215
+
216
+ class DynamicQuantConfig(QuantConfig):
217
+ def __init__(
218
+ self,
219
+ weight_type=QuantType.QInt8,
220
+ op_types_to_quantize=None,
221
+ nodes_to_quantize=None,
222
+ nodes_to_exclude=None,
223
+ per_channel=False,
224
+ reduce_range=False,
225
+ use_external_data_format=False,
226
+ extra_options=None,
227
+ ):
228
+ """
229
+ This is a class for dynamic Quant Configuration
230
+
231
+ Args:
232
+ extra_options: key value pair dictionary for various options in different case. Current used:
233
+ extra.Sigmoid.nnapi = True/False (Default is False)
234
+ ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
235
+ WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
236
+ EnableSubgraph = True/False :
237
+ Default is False. If enabled, subgraph will be quantized. Dynamic mode currently is supported. Will
238
+ support more in the future.
239
+ ForceQuantizeNoInputCheck = True/False :
240
+ By default, some latent operators like maxpool, transpose, do not quantize if their input is not
241
+ quantized already. Setting to True to force such operator always quantize input and so generate
242
+ quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude.
243
+ MatMulConstBOnly = True/False:
244
+ Default is True for dynamic mode. If enabled, only MatMul with const B will be quantized.
245
+ execution_provider : A enum indicates the Execution Provider such as: CPU, TRT, NNAPI, SNE, etc.
246
+
247
+ Raises:
248
+ ValueError: Raise ValueError if execution provider is unknown
249
+ """
250
+ super().__init__(
251
+ op_types_to_quantize=op_types_to_quantize,
252
+ per_channel=per_channel,
253
+ reduce_range=reduce_range,
254
+ weight_type=weight_type,
255
+ nodes_to_quantize=nodes_to_quantize,
256
+ nodes_to_exclude=nodes_to_exclude,
257
+ use_external_data_format=use_external_data_format,
258
+ )
259
+ self.extra_options = extra_options or {}
260
+
261
+
262
+ def check_static_quant_arguments(quant_format: QuantFormat, activation_type: QuantType, weight_type: QuantType):
263
+ if activation_type == QuantType.QInt8 and weight_type == QuantType.QUInt8:
264
+ raise ValueError(
265
+ "ONNXRuntime quantization doesn't support data format:"
266
+ "activation_type=QuantType.QInt8, weight_type=QuantType.QUInt8"
267
+ )
268
+ if activation_type != QuantType.QFLOAT8E4M3FN and weight_type == QuantType.QFLOAT8E4M3FN:
269
+ raise ValueError(
270
+ f"ONNXRuntime quantization doesn't support data format: activation_type={activation_type} "
271
+ f"!=QuantType.QFLOAT8E4M3FN, weight_type=QuantType.QFLOAT8E4M3FN."
272
+ )
273
+
274
+ if activation_type == QuantType.QFLOAT8E4M3FN and weight_type != QuantType.QFLOAT8E4M3FN:
275
+ raise ValueError(
276
+ "ONNXRuntime quantization doesn't support data format: activation_type=QuantType.QFLOAT8E4M3FN, "
277
+ f"weight_type={weight_type}!=QuantType.QFLOAT8E4M3FN"
278
+ )
279
+
280
+ q16_types = [QuantType.QInt16, QuantType.QUInt16]
281
+
282
+ if (activation_type in q16_types or weight_type in q16_types) and quant_format != QuantFormat.QDQ:
283
+ raise ValueError("Only QuantFormat.QDQ supports 16-bit quantization types.")
284
+
285
+ if activation_type == QuantType.QInt8 and weight_type == QuantType.QInt8 and quant_format != QuantFormat.QDQ:
286
+ logging.warning(
287
+ "Please use QuantFormat.QDQ for activation type QInt8 and weight type QInt8. "
288
+ "Or it will lead to bad performance on x64."
289
+ )
290
+
291
+
292
+ def quantize_static(
293
+ model_input: Union[str, Path, onnx.ModelProto],
294
+ model_output: Union[str, Path],
295
+ calibration_data_reader: CalibrationDataReader,
296
+ quant_format=QuantFormat.QDQ,
297
+ op_types_to_quantize=None,
298
+ per_channel=False,
299
+ reduce_range=False,
300
+ activation_type=QuantType.QInt8,
301
+ weight_type=QuantType.QInt8,
302
+ nodes_to_quantize=None,
303
+ nodes_to_exclude=None,
304
+ use_external_data_format=False,
305
+ calibrate_method=CalibrationMethod.MinMax,
306
+ extra_options=None,
307
+ ):
308
+ """
309
+ Given an onnx model and calibration data reader, create a quantized onnx model and save it into a file
310
+ It is recommended to use QuantFormat.QDQ format from 1.11 with activation_type = QuantType.QInt8 and weight_type
311
+ = QuantType.QInt8. If model is targeted to GPU/TRT, symmetric activation and weight are required. If model is
312
+ targeted to CPU, asymmetric activation and symmetric weight are recommended for balance of performance and
313
+ accuracy.
314
+
315
+ Args:
316
+
317
+ model_input: file path of model or ModelProto to quantize
318
+ model_output: file path of quantized model
319
+ calibration_data_reader: a calibration data reader. It
320
+ enumerates calibration data and generates inputs for the
321
+ original model.
322
+ quant_format: QuantFormat{QOperator, QDQ}.
323
+ QOperator format quantizes the model with quantized operators directly.
324
+ QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
325
+ activation_type:
326
+ quantization data type of activation. Please refer to
327
+ https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
328
+ calibrate_method:
329
+ Current calibration methods supported are MinMax and Entropy.
330
+ Please use CalibrationMethod.MinMax or CalibrationMethod.Entropy as options.
331
+ op_types_to_quantize:
332
+ specify the types of operators to quantize, like ['Conv'] to quantize Conv only.
333
+ It quantizes all supported operators by default.
334
+ per_channel: quantize weights per channel
335
+ reduce_range:
336
+ quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine,
337
+ especially for per-channel mode
338
+ weight_type:
339
+ quantization data type of weight. Please refer to
340
+ https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
341
+ nodes_to_quantize:
342
+ List of nodes names to quantize. When this list is not None only the nodes in this list
343
+ are quantized.
344
+ example:
345
+ [
346
+ 'Conv__224',
347
+ 'Conv__252'
348
+ ]
349
+ nodes_to_exclude:
350
+ List of nodes names to exclude. The nodes in this list will be excluded from quantization
351
+ when it is not None.
352
+ use_external_data_format: option used for large size (>2GB) model. Set to False by default.
353
+ extra_options:
354
+ key value pair dictionary for various options in different case. Current used:
355
+ extra.Sigmoid.nnapi = True/False (Default is False)
356
+ ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
357
+ WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
358
+ EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized.
359
+ Dyanmic mode currently is supported. Will support more in the future.
360
+ ForceQuantizeNoInputCheck = True/False :
361
+ By default, some latent operators like maxpool, transpose, do not quantize if their input is not
362
+ quantized already. Setting to True to force such operator always quantize input and so generate
363
+ quantized output. Also, the True behavior could be disabled per node using the nodes_to_exclude.
364
+ MatMulConstBOnly = True/False:
365
+ Default is False for static mode. If enabled, only MatMul with const B will be quantized.
366
+ AddQDQPairToWeight = True/False :
367
+ Default is False which quantizes floating-point weight and feeds it to solely inserted
368
+ DeQuantizeLinear node. If True, it remains floating-point weight and inserts both
369
+ QuantizeLinear/DeQuantizeLinear nodes to weight.
370
+ OpTypesToExcludeOutputQuantization = list of op type :
371
+ Default is []. If any op type is specified, it won't quantize the output of ops with this
372
+ specific op types.
373
+ DedicatedQDQPair = True/False :
374
+ Default is False. When inserting QDQ pair, multiple nodes can share a single QDQ pair as their
375
+ inputs. If True, it will create identical and dedicated QDQ pair for each node.
376
+ QDQOpTypePerChannelSupportToAxis = dictionary :
377
+ Default is {}. Set channel axis for specific op type, for example: {'MatMul': 1}, and it's
378
+ effective only when per channel quantization is supported and per_channel is True. If specific
379
+ op type supports per channel quantization but not explicitly specified with channel axis,
380
+ default channel axis will be used.
381
+ CalibTensorRangeSymmetric = True/False :
382
+ Default is False. If enabled, the final range of tensor during calibration will be explicitly
383
+ set to symmetric to central point "0".
384
+ CalibStridedMinMax = Optional[int] :
385
+ Default is None. If set to an integer, during calculation of the min-max, only stride amount of
386
+ data will be used and then all results will be merged in the end.
387
+ CalibMovingAverage = True/False :
388
+ Default is False. If enabled, the moving average of the minimum and maximum values will be
389
+ computed when the calibration method selected is MinMax.
390
+ CalibMovingAverageConstant = float :
391
+ Default is 0.01. Constant smoothing factor to use when computing the moving average of the
392
+ minimum and maximum values. Effective only when the calibration method selected is MinMax and
393
+ when CalibMovingAverage is set to True.
394
+ CalibMaxIntermediateOutputs = Optional[int] :
395
+ Default is None. If set to an integer, during calculation of the min-max range of the tensors
396
+ it will load at max value number of outputs before computing and merging the range. This will
397
+ produce the same result as all computing with None, but is more memory efficient.
398
+ SmoothQuant = True/False :
399
+ Default is False. If enabled, SmoothQuant algorithm will be applied before quantization to do
400
+ fake input channel quantization.
401
+ SmoothQuantAlpha = float :
402
+ Default is 0.5. It only works if SmoothQuant is True. It controls the difficulty of weight
403
+ and activation quantization. A larger alpha value could be used on models with more significant
404
+ activation outliers to migrate more quantization difficulty to weights.
405
+ SmoothQuantFolding = True/False :
406
+ Default is True. It only works if SmoothQuant is True. If enabled, inserted Mul ops during
407
+ SmoothQuant will be folded into the previous op if the previous op is foldable.
408
+ UseQDQContribOps = True/False :
409
+ Default is False. If enabled, the inserted QuantizeLinear and DequantizeLinear ops will have the
410
+ `com.microsoft` domain, which forces use of ONNX Runtime's QuantizeLinear and DequantizeLinear
411
+ contrib op implementations. The contrib op implementations may support features not standardized
412
+ into the ONNX specification (e.g., 16-bit quantization types).
413
+ MinimumRealRange = float|None :
414
+ Default is None. If set to a floating-point value, the calculation of the quantization parameters
415
+ (i.e., scale and zero point) will enforce a minimum range between rmin and rmax. If (rmax - rmin)
416
+ is less than the specified minimum range, rmax will be set to rmin + MinimumRealRange. This is
417
+ necessary for EPs like QNN that require a minimum floating-point range when determining
418
+ quantization parameters.
419
+ TensorQuantOverrides = dictionary :
420
+ Default is {}. Set tensor quantization overrides. The key is a tensor name and the value is a
421
+ list of dictionaries. For per-tensor quantization, the list contains a single dictionary. For
422
+ per-channel quantization, the list contains a dictionary for each channel in the tensor.
423
+ Each dictionary contains optional overrides with the following keys and values.
424
+ 'quant_type' = QuantType : The tensor's quantization data type.
425
+ 'scale' = Float : The scale value to use. Must also specify `zero_point` if set.
426
+ 'zero_point' = Int : The zero-point value to use. Must also specify `scale` is set.
427
+ 'symmetric' = Bool : If the tensor should use symmetric quantization. Invalid if also
428
+ set `scale` or `zero_point`.
429
+ 'reduce_range' = Bool : If the quantization range should be reduced. Invalid if also
430
+ set `scale` or `zero_point`.
431
+ 'rmax' = Float : Override the maximum real tensor value in calibration data.
432
+ Invalid if also set `scale` or `zero_point`.
433
+ 'rmin' = Float : Override the minimum real tensor value in calibration data.
434
+ Invalid if also set `scale` or `zero_point`.
435
+ QDQKeepRemovableActivations = True/False:
436
+ Default is False. If true, "removable" activations (e.g., Clip or Relu) will not be removed, and
437
+ will be explicitly represented in the QDQ model. If false, these activations are automatically
438
+ removed if activations are asymmetrically quantized. Keeping these activations is necessary if
439
+ optimizations or EP transformations will later remove QuantizeLinear/DequantizeLinear
440
+ operators from the model.
441
+ """
442
+ if activation_type == QuantType.QFLOAT8E4M3FN or weight_type == QuantType.QFLOAT8E4M3FN:
443
+ if calibrate_method != CalibrationMethod.Distribution:
444
+ raise ValueError("Only Distribution calibration method is supported for float quantization.")
445
+
446
+ extra_options = extra_options or {}
447
+ nodes_to_exclude = nodes_to_exclude or []
448
+ nodes_to_quantize = nodes_to_quantize or []
449
+ op_types_to_quantize = op_types_to_quantize or []
450
+ mode = QuantizationMode.QLinearOps
451
+
452
+ if not op_types_to_quantize or len(op_types_to_quantize) == 0:
453
+ q_linear_ops = list(QLinearOpsRegistry.keys())
454
+ qdq_ops = list(QDQRegistry.keys())
455
+ op_types_to_quantize = list(set(q_linear_ops + qdq_ops))
456
+
457
+ model = (
458
+ save_and_reload_model_with_shape_infer(model_input)
459
+ if isinstance(model_input, onnx.ModelProto)
460
+ else load_model_with_shape_infer(Path(model_input))
461
+ )
462
+
463
+ pre_processed: bool = model_has_pre_process_metadata(model)
464
+ if not pre_processed:
465
+ logging.warning(
466
+ "Please consider to run pre-processing before quantization. Refer to example: "
467
+ "https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification"
468
+ "/cpu/ReadMe.md "
469
+ )
470
+
471
+ calib_extra_options_keys = [
472
+ ("CalibTensorRangeSymmetric", "symmetric"),
473
+ ("CalibMovingAverage", "moving_average"),
474
+ ("CalibMovingAverageConstant", "averaging_constant"),
475
+ ("CalibMaxIntermediateOutputs", "max_intermediate_outputs"),
476
+ ]
477
+ calib_extra_options = {
478
+ key: extra_options.get(name) for (name, key) in calib_extra_options_keys if name in extra_options
479
+ }
480
+
481
+ if extra_options.get("SmoothQuant", False):
482
+ import importlib
483
+
484
+ try:
485
+ importlib.import_module("neural_compressor.adaptor.ox_utils.smooth_quant")
486
+ except Exception as e:
487
+ logging.error(f"{e}.")
488
+ raise RuntimeError("neural-compressor is not correctly installed. Please check your environment.") from e
489
+
490
+ import copy
491
+
492
+ from neural_compressor.adaptor.ox_utils.smooth_quant import ORTSmoothQuant
493
+
494
+ def inc_dataloader():
495
+ data_reader = copy.deepcopy(calibration_data_reader)
496
+ for data in data_reader:
497
+ yield data, None
498
+
499
+ orig_nodes = [i.name for i in model.graph.node]
500
+ dataloader = inc_dataloader()
501
+ sq = ORTSmoothQuant(model_input, dataloader, reduce_range)
502
+ del dataloader
503
+ model = sq.transform(extra_options.get("SmoothQuantAlpha", 0.5), extra_options.get("SmoothQuantFolding", True))
504
+ sq_path = tempfile.TemporaryDirectory(prefix="ort.quant.")
505
+ model_input = Path(sq_path.name).joinpath("sq_model.onnx").as_posix()
506
+ model.save(model_input)
507
+ nodes_to_exclude.extend([i.name for i in model.model.graph.node if i.name not in orig_nodes])
508
+ model = load_model_with_shape_infer(Path(model_input)) # use smooth quant model for calibration
509
+
510
+ with tempfile.TemporaryDirectory(prefix="ort.quant.") as quant_tmp_dir:
511
+ if isinstance(model_input, onnx.ModelProto):
512
+ output_path = str(Path(quant_tmp_dir) / "model_input.onnx")
513
+ onnx.save_model(
514
+ model_input,
515
+ output_path,
516
+ save_as_external_data=True,
517
+ )
518
+ model_input = output_path
519
+
520
+ calibrator = create_calibrator(
521
+ Path(model_input),
522
+ op_types_to_quantize,
523
+ augmented_model_path=Path(quant_tmp_dir).joinpath("augmented_model.onnx").as_posix(),
524
+ calibrate_method=calibrate_method,
525
+ use_external_data_format=use_external_data_format,
526
+ extra_options=calib_extra_options,
527
+ )
528
+
529
+ stride = extra_options.get("CalibStridedMinMax", None)
530
+ if stride:
531
+ total_data_size = len(calibration_data_reader)
532
+ if total_data_size % stride != 0:
533
+ raise ValueError(f"Total data size ({total_data_size}) is not divisible by stride size ({stride}).")
534
+
535
+ for start in range(0, total_data_size, stride):
536
+ end_index = start + stride
537
+ calibration_data_reader.set_range(start_index=start, end_index=end_index)
538
+ calibrator.collect_data(calibration_data_reader)
539
+ else:
540
+ calibrator.collect_data(calibration_data_reader)
541
+ tensors_range = calibrator.compute_data()
542
+ if not isinstance(tensors_range, TensorsData):
543
+ raise TypeError(
544
+ f"Unexpected type {type(tensors_range)} for tensors_range and calibrator={type(calibrator)}."
545
+ )
546
+ del calibrator
547
+
548
+ check_static_quant_arguments(quant_format, activation_type, weight_type)
549
+
550
+ if quant_format is QuantFormat.QOperator:
551
+ quantizer = ONNXQuantizer(
552
+ model,
553
+ per_channel,
554
+ reduce_range,
555
+ mode,
556
+ True, # static
557
+ weight_type,
558
+ activation_type,
559
+ tensors_range,
560
+ nodes_to_quantize,
561
+ nodes_to_exclude,
562
+ op_types_to_quantize,
563
+ extra_options,
564
+ )
565
+ else:
566
+ quantizer = QDQQuantizer(
567
+ model,
568
+ per_channel,
569
+ reduce_range,
570
+ weight_type,
571
+ activation_type,
572
+ tensors_range,
573
+ nodes_to_quantize,
574
+ nodes_to_exclude,
575
+ op_types_to_quantize,
576
+ extra_options,
577
+ )
578
+
579
+ quantizer.quantize_model()
580
+ quantizer.model.save_model_to_file(model_output, use_external_data_format)
581
+ if not pre_processed:
582
+ logging.warning(
583
+ "Please consider pre-processing before quantization. See "
584
+ "https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification"
585
+ "/cpu/ReadMe.md "
586
+ )
587
+
588
+ if extra_options.get("SmoothQuant", False):
589
+ sq_path.cleanup()
590
+
591
+
592
+ def quantize_dynamic(
593
+ model_input: Union[str, Path, onnx.ModelProto],
594
+ model_output: Union[str, Path],
595
+ op_types_to_quantize=None,
596
+ per_channel=False,
597
+ reduce_range=False,
598
+ weight_type=QuantType.QInt8,
599
+ nodes_to_quantize=None,
600
+ nodes_to_exclude=None,
601
+ use_external_data_format=False,
602
+ extra_options=None,
603
+ ):
604
+ """Given an onnx model, create a quantized onnx model and save it into a file
605
+
606
+ Args:
607
+ model_input: file path of model or ModelProto to quantize
608
+ model_output: file path of quantized model
609
+ op_types_to_quantize:
610
+ specify the types of operators to quantize, like ['Conv'] to quantize Conv only.
611
+ It quantizes all supported operators by default.
612
+ per_channel: quantize weights per channel
613
+ reduce_range:
614
+ quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine,
615
+ especially for per-channel mode
616
+ weight_type:
617
+ quantization data type of weight. Please refer to
618
+ https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection
619
+ nodes_to_quantize:
620
+ List of nodes names to quantize. When this list is not None only the nodes in this list
621
+ are quantized.
622
+ example:
623
+ [
624
+ 'Conv__224',
625
+ 'Conv__252'
626
+ ]
627
+ nodes_to_exclude:
628
+ List of nodes names to exclude. The nodes in this list will be excluded from quantization
629
+ when it is not None.
630
+ use_external_data_format: option used for large size (>2GB) model. Set to False by default.
631
+ extra_options:
632
+ key value pair dictionary for various options in different case. Current used:
633
+ extra.Sigmoid.nnapi = True/False (Default is False)
634
+ ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False).
635
+ WeightSymmetric = True/False: symmetrize calibration data for weights (default is True).
636
+ EnableSubgraph = True/False :
637
+ Default is False. If enabled, subgraph will be quantized. Dynamic mode currently is supported. Will
638
+ support more in the future.
639
+ ForceQuantizeNoInputCheck = True/False :
640
+ By default, some latent operators like maxpool, transpose, do not quantize if their input is not
641
+ quantized already. Setting to True to force such operator always quantize input and so generate
642
+ quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude.
643
+ MatMulConstBOnly = True/False:
644
+ Default is True for dynamic mode. If enabled, only MatMul with const B will be quantized.
645
+ """
646
+ extra_options = extra_options or {}
647
+ nodes_to_exclude = nodes_to_exclude or []
648
+ nodes_to_quantize = nodes_to_quantize or []
649
+ op_types_to_quantize = op_types_to_quantize or []
650
+
651
+ mode = QuantizationMode.IntegerOps
652
+
653
+ if not op_types_to_quantize or len(op_types_to_quantize) == 0:
654
+ op_types_to_quantize = list(IntegerOpsRegistry.keys())
655
+
656
+ model = (
657
+ save_and_reload_model_with_shape_infer(model_input)
658
+ if isinstance(model_input, onnx.ModelProto)
659
+ else load_model_with_shape_infer(Path(model_input))
660
+ )
661
+
662
+ pre_processed: bool = model_has_pre_process_metadata(model)
663
+ if not pre_processed:
664
+ logging.warning(
665
+ "Please consider to run pre-processing before quantization. Refer to example: "
666
+ "https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification"
667
+ "/cpu/ReadMe.md "
668
+ )
669
+
670
+ if "MatMulConstBOnly" not in extra_options:
671
+ extra_options["MatMulConstBOnly"] = True
672
+
673
+ quantizer = ONNXQuantizer(
674
+ model,
675
+ per_channel,
676
+ reduce_range,
677
+ mode,
678
+ False, # static
679
+ weight_type,
680
+ QuantType.QUInt8, # dynamic activation only supports uint8
681
+ None,
682
+ nodes_to_quantize,
683
+ nodes_to_exclude,
684
+ op_types_to_quantize,
685
+ extra_options,
686
+ )
687
+
688
+ quantizer.quantize_model()
689
+ quantizer.model.save_model_to_file(model_output, use_external_data_format)
690
+
691
+
692
+ def quantize(
693
+ model_input: Union[str, Path, onnx.ModelProto],
694
+ model_output: Union[str, Path],
695
+ quant_config: QuantConfig,
696
+ ):
697
+ """Quantize a model with QuantConfig.
698
+
699
+ Args:
700
+ model_input (str | Path | ModelProto): Path to the model or ModelProto to quantize.
701
+ model_output (str | Path): Path to save the quantized model.
702
+ quant_config (QuantConfig | WeightOnlyQuantConfig): Quantization Configuration.
703
+ """
704
+ if isinstance(quant_config, StaticQuantConfig):
705
+ quantize_static(
706
+ model_input,
707
+ model_output,
708
+ quant_config.calibration_data_reader,
709
+ calibrate_method=quant_config.calibrate_method,
710
+ quant_format=quant_config.quant_format,
711
+ activation_type=quant_config.activation_type,
712
+ weight_type=quant_config.weight_type,
713
+ op_types_to_quantize=quant_config.op_types_to_quantize,
714
+ nodes_to_quantize=quant_config.nodes_to_quantize,
715
+ nodes_to_exclude=quant_config.nodes_to_exclude,
716
+ per_channel=quant_config.per_channel,
717
+ reduce_range=quant_config.reduce_range,
718
+ use_external_data_format=quant_config.use_external_data_format,
719
+ extra_options=quant_config.extra_options,
720
+ )
721
+
722
+ elif isinstance(quant_config, DynamicQuantConfig):
723
+ quantize_dynamic(
724
+ model_input,
725
+ model_output,
726
+ weight_type=quant_config.weight_type,
727
+ op_types_to_quantize=quant_config.op_types_to_quantize,
728
+ nodes_to_quantize=quant_config.nodes_to_quantize,
729
+ nodes_to_exclude=quant_config.nodes_to_exclude,
730
+ per_channel=quant_config.per_channel,
731
+ reduce_range=quant_config.reduce_range,
732
+ use_external_data_format=quant_config.use_external_data_format,
733
+ extra_options=quant_config.extra_options,
734
+ )
735
+ else:
736
+ # training package doesn't has quantize_matmul_4bits, avoid global import
737
+ from .matmul_4bits_quantizer import MatMul4BitsQuantizer, WeightOnlyQuantConfig
738
+
739
+ if isinstance(quant_config, WeightOnlyQuantConfig):
740
+ model = model_input if isinstance(model_input, onnx.ModelProto) else onnx.load(model_input)
741
+ quant = MatMul4BitsQuantizer(model, algo_config=quant_config)
742
+ quant.process()
743
+ quant.model.save_model_to_file(model_output, True)
744
+ else:
745
+ raise TypeError(
746
+ "Invalid quantization config type, it must be either StaticQuantConfig, "
747
+ "DynamicQuantConfig, or WeightOnlyQuantConfig."
748
+ )