noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,149 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "d0c4e603-f344-4cc6-bed7-870a28b98725",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"states = ['cp', 'ip']\n",
|
11
|
-
"ip = [1.0, 0.0]\n",
|
12
|
-
"stp = [[0.7, 0.3], [0.5, 0.5]]\n",
|
13
|
-
"op = ['lem', 'ice', 'cola']\n",
|
14
|
-
"opp = [[0.3, 0.1, 0.6], [0.2, 0.7, 0.1]]"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": 2,
|
20
|
-
"id": "674dac88-a26e-4af4-93cf-d8467f98a872",
|
21
|
-
"metadata": {},
|
22
|
-
"outputs": [],
|
23
|
-
"source": [
|
24
|
-
"def forward_alg():\n",
|
25
|
-
" alpha = []\n",
|
26
|
-
" for _ in range(len(op)+1):\n",
|
27
|
-
" alpha.append([0,0])\n",
|
28
|
-
"\n",
|
29
|
-
" '''alpha[0][0] = 1.0\n",
|
30
|
-
" alpha[0][1] = 0.0\n",
|
31
|
-
" #print(alpha)'''\n",
|
32
|
-
" \n",
|
33
|
-
" for i in range(len(alpha)):\n",
|
34
|
-
" if i == 0:\n",
|
35
|
-
" alpha[i][0] = ip[0]\n",
|
36
|
-
" alpha[i][1] = ip[1]\n",
|
37
|
-
" continue\n",
|
38
|
-
" \n",
|
39
|
-
" alpha[i][0] = float(float(stp[0][0]*opp[0][i-1]*alpha[i-1][0]) + float(stp[1][0]*opp[1][i-1]*alpha[i-1][1]))\n",
|
40
|
-
"\n",
|
41
|
-
" alpha[i][1] = float(float(stp[1][1]*opp[1][i-1]*alpha[i-1][1]) + float(stp[0][1]*opp[0][i-1]*alpha[i-1][0]))\n",
|
42
|
-
"\n",
|
43
|
-
" return alpha"
|
44
|
-
]
|
45
|
-
},
|
46
|
-
{
|
47
|
-
"cell_type": "code",
|
48
|
-
"execution_count": 3,
|
49
|
-
"id": "da4ffe33-f516-40ae-a721-0afee9db9f31",
|
50
|
-
"metadata": {},
|
51
|
-
"outputs": [
|
52
|
-
{
|
53
|
-
"name": "stdout",
|
54
|
-
"output_type": "stream",
|
55
|
-
"text": [
|
56
|
-
"[1.0, 0.0]\n",
|
57
|
-
"[0.21, 0.09]\n",
|
58
|
-
"[0.0462, 0.0378]\n",
|
59
|
-
"[0.021293999999999997, 0.010206]\n",
|
60
|
-
"\n",
|
61
|
-
"Probability of whole sequence : 0.0315\n"
|
62
|
-
]
|
63
|
-
}
|
64
|
-
],
|
65
|
-
"source": [
|
66
|
-
"alpha = forward_alg()\n",
|
67
|
-
"pos_alpha = 0.0\n",
|
68
|
-
"for i in alpha:\n",
|
69
|
-
" pos_alpha = sum(i)\n",
|
70
|
-
" print(i)\n",
|
71
|
-
" \n",
|
72
|
-
"print(\"\\nProbability of whole sequence : \",pos_alpha)"
|
73
|
-
]
|
74
|
-
},
|
75
|
-
{
|
76
|
-
"cell_type": "code",
|
77
|
-
"execution_count": 4,
|
78
|
-
"id": "81593ceb-34b6-4dff-82f3-d04dd379d8a5",
|
79
|
-
"metadata": {},
|
80
|
-
"outputs": [],
|
81
|
-
"source": [
|
82
|
-
"def backward_alg():\n",
|
83
|
-
" beta = []\n",
|
84
|
-
" for _ in range(len(op)+1):\n",
|
85
|
-
" beta.append([0.0,0.0])\n",
|
86
|
-
"\n",
|
87
|
-
" beta[len(op)][0] = 1.0\n",
|
88
|
-
" beta[len(op)][1] = 1.0\n",
|
89
|
-
" #print(beta)\n",
|
90
|
-
"\n",
|
91
|
-
" for i in range(len(op)-1,-1,-1):\n",
|
92
|
-
" \n",
|
93
|
-
" beta[i][0] = float(float(stp[0][0]*opp[0][i]*beta[i+1][0]) + float(stp[0][1]*opp[0][i]*beta[i+1][1]))\n",
|
94
|
-
"\n",
|
95
|
-
" beta[i][1] = float(float(stp[1][1]*opp[1][i]*beta[i+1][1]) + float(stp[1][0]*opp[1][i]*beta[i+1][0]))\n",
|
96
|
-
"\n",
|
97
|
-
" return beta"
|
98
|
-
]
|
99
|
-
},
|
100
|
-
{
|
101
|
-
"cell_type": "code",
|
102
|
-
"execution_count": 5,
|
103
|
-
"id": "d982baed-e8e7-4abf-935c-f2f50ac3e4bc",
|
104
|
-
"metadata": {},
|
105
|
-
"outputs": [
|
106
|
-
{
|
107
|
-
"name": "stdout",
|
108
|
-
"output_type": "stream",
|
109
|
-
"text": [
|
110
|
-
"[0.0315, 0.029]\n",
|
111
|
-
"[0.045, 0.245]\n",
|
112
|
-
"[0.6, 0.1]\n",
|
113
|
-
"[1.0, 1.0]\n",
|
114
|
-
"\n",
|
115
|
-
"Probability of whole sequence : 0.0315\n"
|
116
|
-
]
|
117
|
-
}
|
118
|
-
],
|
119
|
-
"source": [
|
120
|
-
"beta = backward_alg()\n",
|
121
|
-
"for i in beta:\n",
|
122
|
-
" print(i)\n",
|
123
|
-
"pos_beta = beta[0][0]*ip[0] + beta[0][1]*ip[1]\n",
|
124
|
-
"print(\"\\nProbability of whole sequence : \",pos_beta)"
|
125
|
-
]
|
126
|
-
}
|
127
|
-
],
|
128
|
-
"metadata": {
|
129
|
-
"kernelspec": {
|
130
|
-
"display_name": "Python 3 (ipykernel)",
|
131
|
-
"language": "python",
|
132
|
-
"name": "python3"
|
133
|
-
},
|
134
|
-
"language_info": {
|
135
|
-
"codemirror_mode": {
|
136
|
-
"name": "ipython",
|
137
|
-
"version": 3
|
138
|
-
},
|
139
|
-
"file_extension": ".py",
|
140
|
-
"mimetype": "text/x-python",
|
141
|
-
"name": "python",
|
142
|
-
"nbconvert_exporter": "python",
|
143
|
-
"pygments_lexer": "ipython3",
|
144
|
-
"version": "3.12.4"
|
145
|
-
}
|
146
|
-
},
|
147
|
-
"nbformat": 4,
|
148
|
-
"nbformat_minor": 5
|
149
|
-
}
|
@@ -1,111 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "054ed639-31cd-489c-87d7-6f910bdff677",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"states = ['cp', 'ip']\n",
|
11
|
-
"ip = [1.0, 0.0]\n",
|
12
|
-
"stp = [[0.7, 0.3], [0.5, 0.5]]\n",
|
13
|
-
"op = ['lem', 'ice', 'cola']\n",
|
14
|
-
"opp = [[0.3, 0.1, 0.6], [0.2, 0.7, 0.1]]"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": 2,
|
20
|
-
"id": "11e5e731-7595-450d-866e-cdd0f488d20f",
|
21
|
-
"metadata": {},
|
22
|
-
"outputs": [],
|
23
|
-
"source": [
|
24
|
-
"def viterbi_algorithm(op):\n",
|
25
|
-
" delta = []\n",
|
26
|
-
" psi = []\n",
|
27
|
-
"\n",
|
28
|
-
" # Initialize the delta and psi matrices\n",
|
29
|
-
" for _ in range(len(op)):\n",
|
30
|
-
" delta.append([0.0, 0.0])\n",
|
31
|
-
" psi.append([0, 0])\n",
|
32
|
-
"\n",
|
33
|
-
" # Initialization step\n",
|
34
|
-
" for i in range(len(states)):\n",
|
35
|
-
" delta[0][i] = ip[i] * opp[i][0]\n",
|
36
|
-
"\n",
|
37
|
-
" # Recursion step\n",
|
38
|
-
" for t in range(1, len(op)):\n",
|
39
|
-
" for j in range(len(states)):\n",
|
40
|
-
" max_prob = 0.0\n",
|
41
|
-
" max_state = 0\n",
|
42
|
-
"\n",
|
43
|
-
" for i in range(len(states)):\n",
|
44
|
-
" prob = delta[t - 1][i] * stp[i][j] * opp[j][t]\n",
|
45
|
-
" if prob > max_prob:\n",
|
46
|
-
" max_prob = prob\n",
|
47
|
-
" max_state = i\n",
|
48
|
-
"\n",
|
49
|
-
" delta[t][j] = max_prob\n",
|
50
|
-
" psi[t][j] = max_state\n",
|
51
|
-
"\n",
|
52
|
-
" # Termination step\n",
|
53
|
-
" best_path_prob = max(delta[-1])\n",
|
54
|
-
" best_last_state = delta[-1].index(best_path_prob)\n",
|
55
|
-
"\n",
|
56
|
-
" # Backtrack to find the best tag sequence\n",
|
57
|
-
" best_path = [best_last_state]\n",
|
58
|
-
" for t in range(len(op) - 1, 0, -1):\n",
|
59
|
-
" best_last_state = psi[t][best_last_state]\n",
|
60
|
-
" best_path.insert(0, best_last_state)\n",
|
61
|
-
"\n",
|
62
|
-
" return best_path, best_path_prob"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": 3,
|
68
|
-
"id": "9a2c4fc4-ba8e-4d4f-9f58-8f225919508b",
|
69
|
-
"metadata": {},
|
70
|
-
"outputs": [
|
71
|
-
{
|
72
|
-
"name": "stdout",
|
73
|
-
"output_type": "stream",
|
74
|
-
"text": [
|
75
|
-
"Best Tag Sequence: ['cp', 'ip', 'cp']\n",
|
76
|
-
"Probability of the Best Tag Sequence: 0.0189\n"
|
77
|
-
]
|
78
|
-
}
|
79
|
-
],
|
80
|
-
"source": [
|
81
|
-
"# Call the Viterbi algorithm\n",
|
82
|
-
"best_tag_sequence, probability = viterbi_algorithm(op)\n",
|
83
|
-
"\n",
|
84
|
-
"# Print the best tag sequence and its probability\n",
|
85
|
-
"print(\"Best Tag Sequence:\", [states[i] for i in best_tag_sequence])\n",
|
86
|
-
"print(\"Probability of the Best Tag Sequence:\", probability)"
|
87
|
-
]
|
88
|
-
}
|
89
|
-
],
|
90
|
-
"metadata": {
|
91
|
-
"kernelspec": {
|
92
|
-
"display_name": "Python 3 (ipykernel)",
|
93
|
-
"language": "python",
|
94
|
-
"name": "python3"
|
95
|
-
},
|
96
|
-
"language_info": {
|
97
|
-
"codemirror_mode": {
|
98
|
-
"name": "ipython",
|
99
|
-
"version": 3
|
100
|
-
},
|
101
|
-
"file_extension": ".py",
|
102
|
-
"mimetype": "text/x-python",
|
103
|
-
"name": "python",
|
104
|
-
"nbconvert_exporter": "python",
|
105
|
-
"pygments_lexer": "ipython3",
|
106
|
-
"version": "3.12.4"
|
107
|
-
}
|
108
|
-
},
|
109
|
-
"nbformat": 4,
|
110
|
-
"nbformat_minor": 5
|
111
|
-
}
|
@@ -1,134 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"metadata": {},
|
6
|
-
"source": [
|
7
|
-
"LHS `->` RHS \n",
|
8
|
-
"Element1 `|` Element2 `|` Element3 \n",
|
9
|
-
"`NP PP [0.4]` -- non-terminal symbol \n",
|
10
|
-
"`'he' [0.6]` -- terminal symbol "
|
11
|
-
]
|
12
|
-
},
|
13
|
-
{
|
14
|
-
"cell_type": "code",
|
15
|
-
"execution_count": 1,
|
16
|
-
"metadata": {},
|
17
|
-
"outputs": [],
|
18
|
-
"source": [
|
19
|
-
"grammarstring = \"\"\"\n",
|
20
|
-
"S -> NP VP [1.0]\n",
|
21
|
-
"NP -> NP PP [0.4] | 'he' [0.1] | 'dessert' [0.3] | 'lunch' [0.1] | 'saw' [0.1]\n",
|
22
|
-
"PP -> Pre NP [1.0]\n",
|
23
|
-
"VP -> Verb NP [0.3] | VP PP [0.7]\n",
|
24
|
-
"Pre -> 'with' [0.6] | 'in' [0.4]\n",
|
25
|
-
"Verb -> 'ate' [0.7] | 'saw' [0.3]\n",
|
26
|
-
"\"\"\""
|
27
|
-
]
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"cell_type": "code",
|
31
|
-
"execution_count": 2,
|
32
|
-
"metadata": {},
|
33
|
-
"outputs": [],
|
34
|
-
"source": [
|
35
|
-
"from nltk import PCFG, InsideChartParser \n",
|
36
|
-
"# Remember InsideChartParser\n",
|
37
|
-
"\n",
|
38
|
-
"grammar = PCFG.fromstring(grammarstring)\n",
|
39
|
-
"\n",
|
40
|
-
"parser = InsideChartParser(grammar=grammar)"
|
41
|
-
]
|
42
|
-
},
|
43
|
-
{
|
44
|
-
"cell_type": "code",
|
45
|
-
"execution_count": 3,
|
46
|
-
"metadata": {},
|
47
|
-
"outputs": [
|
48
|
-
{
|
49
|
-
"data": {
|
50
|
-
"text/plain": [
|
51
|
-
"['he', 'saw', 'lunch', 'with', 'dessert']"
|
52
|
-
]
|
53
|
-
},
|
54
|
-
"execution_count": 3,
|
55
|
-
"metadata": {},
|
56
|
-
"output_type": "execute_result"
|
57
|
-
}
|
58
|
-
],
|
59
|
-
"source": [
|
60
|
-
"from nltk.tokenize import word_tokenize\n",
|
61
|
-
"\n",
|
62
|
-
"sentence = \"he saw lunch with dessert\"\n",
|
63
|
-
"\n",
|
64
|
-
"tokens = word_tokenize(sentence)\n",
|
65
|
-
"tokens"
|
66
|
-
]
|
67
|
-
},
|
68
|
-
{
|
69
|
-
"cell_type": "code",
|
70
|
-
"execution_count": 4,
|
71
|
-
"metadata": {},
|
72
|
-
"outputs": [
|
73
|
-
{
|
74
|
-
"name": "stdout",
|
75
|
-
"output_type": "stream",
|
76
|
-
"text": [
|
77
|
-
" S \n",
|
78
|
-
" _____________|____ \n",
|
79
|
-
" | VP \n",
|
80
|
-
" | _________|________ \n",
|
81
|
-
" | VP PP \n",
|
82
|
-
" | ____|____ ____|_____ \n",
|
83
|
-
" NP Verb NP Pre NP \n",
|
84
|
-
" | | | | | \n",
|
85
|
-
" he saw lunch with dessert\n",
|
86
|
-
"\n",
|
87
|
-
"Prob: 0.00011339999999999999\n",
|
88
|
-
" S \n",
|
89
|
-
" _________|____ \n",
|
90
|
-
" | VP \n",
|
91
|
-
" | __________|___ \n",
|
92
|
-
" | | NP \n",
|
93
|
-
" | | ________|____ \n",
|
94
|
-
" | | | PP \n",
|
95
|
-
" | | | ____|_____ \n",
|
96
|
-
" NP Verb NP Pre NP \n",
|
97
|
-
" | | | | | \n",
|
98
|
-
" he saw lunch with dessert\n",
|
99
|
-
"\n",
|
100
|
-
"Prob: 6.480000000000002e-05\n"
|
101
|
-
]
|
102
|
-
}
|
103
|
-
],
|
104
|
-
"source": [
|
105
|
-
"trees = parser.parse(tokens)\n",
|
106
|
-
"\n",
|
107
|
-
"for tree in trees:\n",
|
108
|
-
" tree.pretty_print() # Remember this\n",
|
109
|
-
" print(\"Prob: \", tree.prob())# .prob"
|
110
|
-
]
|
111
|
-
}
|
112
|
-
],
|
113
|
-
"metadata": {
|
114
|
-
"kernelspec": {
|
115
|
-
"display_name": "Python 3 (ipykernel)",
|
116
|
-
"language": "python",
|
117
|
-
"name": "python3"
|
118
|
-
},
|
119
|
-
"language_info": {
|
120
|
-
"codemirror_mode": {
|
121
|
-
"name": "ipython",
|
122
|
-
"version": 3
|
123
|
-
},
|
124
|
-
"file_extension": ".py",
|
125
|
-
"mimetype": "text/x-python",
|
126
|
-
"name": "python",
|
127
|
-
"nbconvert_exporter": "python",
|
128
|
-
"pygments_lexer": "ipython3",
|
129
|
-
"version": "3.12.4"
|
130
|
-
}
|
131
|
-
},
|
132
|
-
"nbformat": 4,
|
133
|
-
"nbformat_minor": 4
|
134
|
-
}
|
@@ -1,101 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "fcbaa054-0d06-4ac6-86f6-817121de6640",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"name": "stdout",
|
11
|
-
"output_type": "stream",
|
12
|
-
"text": [
|
13
|
-
"Inside probability of S: 21.400000000000002\n",
|
14
|
-
"Inside probability of NP: 18.479999999999997\n",
|
15
|
-
"Inside probability of VP: 17.120000000000005\n",
|
16
|
-
"Inside probability of Det: 0.0\n",
|
17
|
-
"Inside probability of N: 0.0\n",
|
18
|
-
"Inside probability of V: 0.0\n",
|
19
|
-
"Total inside probability: 21.400000000000002\n"
|
20
|
-
]
|
21
|
-
}
|
22
|
-
],
|
23
|
-
"source": [
|
24
|
-
"from collections import defaultdict\n",
|
25
|
-
"from itertools import product\n",
|
26
|
-
"\n",
|
27
|
-
"def cyk_algorithm(words, pcfg_rules):\n",
|
28
|
-
" n = len(words)\n",
|
29
|
-
" table = [[defaultdict(float) for _ in range(n)] for _ in range(n)]\n",
|
30
|
-
"\n",
|
31
|
-
" # Initialization\n",
|
32
|
-
" for i, word in enumerate(words):\n",
|
33
|
-
" for nt, (prob, terminals) in pcfg_rules.items():\n",
|
34
|
-
" if word in terminals:\n",
|
35
|
-
" table[i][i][nt] = prob\n",
|
36
|
-
"\n",
|
37
|
-
" # CYK Algorithm\n",
|
38
|
-
" for length in range(2, n + 1):\n",
|
39
|
-
" for i in range(n - length + 1):\n",
|
40
|
-
" j = i + length - 1\n",
|
41
|
-
" for k in range(i, j):\n",
|
42
|
-
" for A, (prob_A, _) in pcfg_rules.items():\n",
|
43
|
-
" for B, (prob_B, _) in pcfg_rules.items():\n",
|
44
|
-
" for C in table[i][k]:\n",
|
45
|
-
" for D in table[k + 1][j]:\n",
|
46
|
-
" prob = prob_A * prob_B * pcfg_rules[A][1].count(C) * pcfg_rules[B][1].count(D)\n",
|
47
|
-
" table[i][j][A] += prob\n",
|
48
|
-
"\n",
|
49
|
-
" return table\n",
|
50
|
-
"\n",
|
51
|
-
"# Example PCFG rules (non-terminal -> (probability, [productions]))\n",
|
52
|
-
"pcfg_rules = {\n",
|
53
|
-
" 'S': (1.0, ['NP', 'VP']),\n",
|
54
|
-
" 'NP': (0.7, ['Det', 'N']),\n",
|
55
|
-
" 'VP': (0.8, ['V', 'NP']),\n",
|
56
|
-
" 'Det': (1.0, ['the']),\n",
|
57
|
-
" 'N': (0.6, ['cat', 'dog']),\n",
|
58
|
-
" 'V': (0.9, ['chased'])\n",
|
59
|
-
"}\n",
|
60
|
-
"\n",
|
61
|
-
"# Example input sentence\n",
|
62
|
-
"words = ['the', 'cat', 'chased', 'the', 'dog']\n",
|
63
|
-
"\n",
|
64
|
-
"# Call CYK algorithm to get inside probabilities\n",
|
65
|
-
"table = cyk_algorithm(words, pcfg_rules)\n",
|
66
|
-
"\n",
|
67
|
-
"# Inside probabilities for non-terminals in the top cell of the table\n",
|
68
|
-
"inside_probabilities = table[0][-1]\n",
|
69
|
-
"\n",
|
70
|
-
"# Print inside probabilities\n",
|
71
|
-
"for nt, prob in inside_probabilities.items():\n",
|
72
|
-
" print(f'Inside probability of {nt}: {prob}')\n",
|
73
|
-
"\n",
|
74
|
-
"# Total inside probability (probability of the whole sentence)\n",
|
75
|
-
"total_probability = inside_probabilities['S']\n",
|
76
|
-
"print(f'Total inside probability: {total_probability}')"
|
77
|
-
]
|
78
|
-
}
|
79
|
-
],
|
80
|
-
"metadata": {
|
81
|
-
"kernelspec": {
|
82
|
-
"display_name": "Python 3 (ipykernel)",
|
83
|
-
"language": "python",
|
84
|
-
"name": "python3"
|
85
|
-
},
|
86
|
-
"language_info": {
|
87
|
-
"codemirror_mode": {
|
88
|
-
"name": "ipython",
|
89
|
-
"version": 3
|
90
|
-
},
|
91
|
-
"file_extension": ".py",
|
92
|
-
"mimetype": "text/x-python",
|
93
|
-
"name": "python",
|
94
|
-
"nbconvert_exporter": "python",
|
95
|
-
"pygments_lexer": "ipython3",
|
96
|
-
"version": "3.12.4"
|
97
|
-
}
|
98
|
-
},
|
99
|
-
"nbformat": 4,
|
100
|
-
"nbformat_minor": 5
|
101
|
-
}
|