noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (228) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
  17. noshot-0.1.8.dist-info/RECORD +24 -0
  18. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  19. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  20. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  21. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  22. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  23. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  24. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  25. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  26. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  27. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  28. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  29. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  30. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  31. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  32. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  33. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  34. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  35. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  36. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  37. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  38. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  39. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  40. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  41. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  42. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  43. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  44. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  45. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  46. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  47. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  48. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  49. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  50. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  51. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  52. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  53. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  54. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  55. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  56. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  57. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  58. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  59. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  60. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  61. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  62. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  63. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  64. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  65. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  66. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  67. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  68. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  69. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  70. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  71. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  72. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  73. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  74. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  77. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  78. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  79. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  80. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  81. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  82. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  83. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  84. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  85. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  86. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  87. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  88. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  89. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  90. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  91. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  92. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  93. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  94. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  95. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  96. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  97. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  98. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  99. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  100. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  101. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  103. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  104. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  105. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  106. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  107. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  108. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  109. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  110. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  111. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  112. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  113. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  114. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  115. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  116. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  117. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  118. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  119. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  120. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  121. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  122. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  123. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  124. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  125. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  126. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  127. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  128. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  129. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  130. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  131. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  132. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  133. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  134. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  135. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  136. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  137. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  138. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  139. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  140. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  141. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  142. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  143. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  144. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  145. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  162. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  163. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  164. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  165. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  166. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  167. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  168. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  169. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  170. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  171. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  172. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  173. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  174. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  175. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  176. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  177. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  178. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  179. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  180. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  181. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  182. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  183. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  184. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  185. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  186. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  187. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  188. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  189. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  190. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  191. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  192. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  193. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  194. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  195. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  196. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  197. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  198. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  199. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  200. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  201. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  202. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  203. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  204. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  205. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  206. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  207. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  208. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  209. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  210. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  211. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  213. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  214. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  215. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  216. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  217. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  218. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  219. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  220. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  221. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  222. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  223. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  224. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  225. noshot-0.1.7.dist-info/RECORD +0 -216
  226. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
  227. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
  228. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,480 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 2,
6
- "id": "ab178016",
7
- "metadata": {
8
- "id": "ab178016"
9
- },
10
- "outputs": [
11
- {
12
- "name": "stderr",
13
- "output_type": "stream",
14
- "text": [
15
- "2023-11-01 13:49:31.029384: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
16
- "2023-11-01 13:49:33.145555: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
17
- "2023-11-01 13:49:33.145680: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
18
- "2023-11-01 13:49:33.151894: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
19
- "2023-11-01 13:49:34.451107: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
20
- "2023-11-01 13:49:34.453035: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
21
- "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
22
- "2023-11-01 13:49:39.145697: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
23
- ]
24
- }
25
- ],
26
- "source": [
27
- "# keras module for building LSTM\n",
28
- "from keras_preprocessing.sequence import pad_sequences\n",
29
- "from keras.layers import Embedding, LSTM, Dense, Dropout\n",
30
- "from keras.preprocessing.text import Tokenizer\n",
31
- "from keras.callbacks import EarlyStopping\n",
32
- "from keras.models import Sequential\n",
33
- "import keras.utils as ku\n",
34
- "\n",
35
- "# set seeds for reproducability\n",
36
- "import tensorflow\n",
37
- "tensorflow.random.set_seed(2)\n",
38
- "\n",
39
- "import pandas as pd\n",
40
- "import numpy as np\n",
41
- "import string, os\n",
42
- "\n",
43
- "import warnings\n",
44
- "warnings.filterwarnings(\"ignore\")\n",
45
- "warnings.simplefilter(action='ignore', category=FutureWarning)"
46
- ]
47
- },
48
- {
49
- "cell_type": "code",
50
- "execution_count": 3,
51
- "id": "c1475d1b",
52
- "metadata": {
53
- "id": "c1475d1b",
54
- "outputId": "6b1e36ce-a1e5-45a9-e117-31e18b86c6d7"
55
- },
56
- "outputs": [
57
- {
58
- "data": {
59
- "text/plain": [
60
- "831"
61
- ]
62
- },
63
- "execution_count": 3,
64
- "metadata": {},
65
- "output_type": "execute_result"
66
- }
67
- ],
68
- "source": [
69
- "\n",
70
- "all_headlines = []\n",
71
- "article_df = pd.read_csv('ArticlesApril2017.csv')\n",
72
- "all_headlines.extend(list(article_df.headline.values))\n",
73
- "all_headlines = [h for h in all_headlines if h != \"Unknown\"]\n",
74
- "len(all_headlines)\n"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": 4,
80
- "id": "d272dc69",
81
- "metadata": {
82
- "id": "d272dc69",
83
- "outputId": "288dee58-7dcc-4ea4-b0aa-c71438b485be"
84
- },
85
- "outputs": [
86
- {
87
- "data": {
88
- "text/plain": [
89
- "['finding an expansive view of a forgotten people in niger',\n",
90
- " 'and now the dreaded trump curse',\n",
91
- " 'venezuelas descent into dictatorship',\n",
92
- " 'stain permeates basketball blue blood',\n",
93
- " 'taking things for granted',\n",
94
- " 'the caged beast awakens',\n",
95
- " 'an everunfolding story',\n",
96
- " 'oreilly thrives as settlements add up',\n",
97
- " 'mouse infestation',\n",
98
- " 'divide in gop now threatens trump tax plan']"
99
- ]
100
- },
101
- "execution_count": 4,
102
- "metadata": {},
103
- "output_type": "execute_result"
104
- }
105
- ],
106
- "source": [
107
- "def clean_text(txt):\n",
108
- " txt = \"\".join(v for v in txt if v not in string.punctuation).lower()\n",
109
- " txt = txt.encode(\"utf8\").decode(\"ascii\",'ignore')\n",
110
- " return txt\n",
111
- "\n",
112
- "corpus = [clean_text(x) for x in all_headlines]\n",
113
- "corpus[:10]\n"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": 5,
119
- "id": "d5f40739",
120
- "metadata": {
121
- "id": "d5f40739",
122
- "outputId": "336a5531-034e-47c9-885e-70bf9998a915"
123
- },
124
- "outputs": [
125
- {
126
- "data": {
127
- "text/plain": [
128
- "[[169, 17],\n",
129
- " [169, 17, 665],\n",
130
- " [169, 17, 665, 367],\n",
131
- " [169, 17, 665, 367, 4],\n",
132
- " [169, 17, 665, 367, 4, 2],\n",
133
- " [169, 17, 665, 367, 4, 2, 666],\n",
134
- " [169, 17, 665, 367, 4, 2, 666, 170],\n",
135
- " [169, 17, 665, 367, 4, 2, 666, 170, 5],\n",
136
- " [169, 17, 665, 367, 4, 2, 666, 170, 5, 667],\n",
137
- " [6, 80]]"
138
- ]
139
- },
140
- "execution_count": 5,
141
- "metadata": {},
142
- "output_type": "execute_result"
143
- }
144
- ],
145
- "source": [
146
- "tokenizer = Tokenizer()\n",
147
- "\n",
148
- "def get_sequence_of_tokens(corpus):\n",
149
- " ## tokenization\n",
150
- " tokenizer.fit_on_texts(corpus)\n",
151
- " total_words = len(tokenizer.word_index) + 1\n",
152
- "\n",
153
- " ## convert data to sequence of tokens\n",
154
- " input_sequences = []\n",
155
- " for line in corpus:\n",
156
- " token_list = tokenizer.texts_to_sequences([line])[0]\n",
157
- " for i in range(1, len(token_list)):\n",
158
- " n_gram_sequence = token_list[:i+1]\n",
159
- " input_sequences.append(n_gram_sequence)\n",
160
- " return input_sequences, total_words\n",
161
- "\n",
162
- "inp_sequences, total_words = get_sequence_of_tokens(corpus)\n",
163
- "inp_sequences[:10]\n"
164
- ]
165
- },
166
- {
167
- "cell_type": "code",
168
- "execution_count": 6,
169
- "id": "c4c05b1d",
170
- "metadata": {
171
- "id": "c4c05b1d"
172
- },
173
- "outputs": [],
174
- "source": [
175
- "def generate_padded_sequences(input_sequences):\n",
176
- " max_sequence_len = max([len(x) for x in input_sequences])\n",
177
- " input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))\n",
178
- "\n",
179
- " predictors, label = input_sequences[:,:-1],input_sequences[:,-1]\n",
180
- " label = ku.to_categorical(label, num_classes=total_words)\n",
181
- " return predictors, label, max_sequence_len\n",
182
- "\n",
183
- "predictors, label, max_sequence_len = generate_padded_sequences(inp_sequences)\n"
184
- ]
185
- },
186
- {
187
- "cell_type": "code",
188
- "execution_count": 7,
189
- "id": "f8ad0539",
190
- "metadata": {
191
- "id": "f8ad0539",
192
- "outputId": "42efafee-02b8-46e6-ef00-91a7629ceebe"
193
- },
194
- "outputs": [
195
- {
196
- "name": "stdout",
197
- "output_type": "stream",
198
- "text": [
199
- "Model: \"sequential\"\n",
200
- "_________________________________________________________________\n",
201
- " Layer (type) Output Shape Param # \n",
202
- "=================================================================\n",
203
- " embedding (Embedding) (None, 18, 10) 24220 \n",
204
- " \n",
205
- " lstm (LSTM) (None, 100) 44400 \n",
206
- " \n",
207
- " dropout (Dropout) (None, 100) 0 \n",
208
- " \n",
209
- " dense (Dense) (None, 2422) 244622 \n",
210
- " \n",
211
- "=================================================================\n",
212
- "Total params: 313242 (1.19 MB)\n",
213
- "Trainable params: 313242 (1.19 MB)\n",
214
- "Non-trainable params: 0 (0.00 Byte)\n",
215
- "_________________________________________________________________\n"
216
- ]
217
- }
218
- ],
219
- "source": [
220
- "def create_model(max_sequence_len, total_words):\n",
221
- " input_len = max_sequence_len - 1\n",
222
- " model = Sequential()\n",
223
- "\n",
224
- " # Add Input Embedding Layer\n",
225
- " model.add(Embedding(total_words, 10, input_length=input_len))\n",
226
- "\n",
227
- " # Add Hidden Layer 1 - LSTM Layer\n",
228
- " model.add(LSTM(100))\n",
229
- " model.add(Dropout(0.1))\n",
230
- "\n",
231
- " # Add Output Layer\n",
232
- " model.add(Dense(total_words, activation='softmax'))\n",
233
- "\n",
234
- " model.compile(loss='categorical_crossentropy', optimizer='adam')\n",
235
- "\n",
236
- " return model\n",
237
- "\n",
238
- "model = create_model(max_sequence_len, total_words)\n",
239
- "model.summary()\n"
240
- ]
241
- },
242
- {
243
- "cell_type": "code",
244
- "execution_count": 8,
245
- "id": "a1fe10c4",
246
- "metadata": {
247
- "id": "a1fe10c4",
248
- "outputId": "01dab848-fc9a-43f6-ba9f-019187b12b96"
249
- },
250
- "outputs": [
251
- {
252
- "name": "stdout",
253
- "output_type": "stream",
254
- "text": [
255
- "Epoch 1/100\n",
256
- "Epoch 2/100\n",
257
- "Epoch 3/100\n",
258
- "Epoch 4/100\n",
259
- "Epoch 5/100\n",
260
- "Epoch 6/100\n",
261
- "Epoch 7/100\n",
262
- "Epoch 8/100\n",
263
- "Epoch 9/100\n",
264
- "Epoch 10/100\n",
265
- "Epoch 11/100\n",
266
- "Epoch 12/100\n",
267
- "Epoch 13/100\n",
268
- "Epoch 14/100\n",
269
- "Epoch 15/100\n",
270
- "Epoch 16/100\n",
271
- "Epoch 17/100\n",
272
- "Epoch 18/100\n",
273
- "Epoch 19/100\n",
274
- "Epoch 20/100\n",
275
- "Epoch 21/100\n",
276
- "Epoch 22/100\n",
277
- "Epoch 23/100\n",
278
- "Epoch 24/100\n",
279
- "Epoch 25/100\n",
280
- "Epoch 26/100\n",
281
- "Epoch 27/100\n",
282
- "Epoch 28/100\n",
283
- "Epoch 29/100\n",
284
- "Epoch 30/100\n",
285
- "Epoch 31/100\n",
286
- "Epoch 32/100\n",
287
- "Epoch 33/100\n",
288
- "Epoch 34/100\n",
289
- "Epoch 35/100\n",
290
- "Epoch 36/100\n",
291
- "Epoch 37/100\n",
292
- "Epoch 38/100\n",
293
- "Epoch 39/100\n",
294
- "Epoch 40/100\n",
295
- "Epoch 41/100\n",
296
- "Epoch 42/100\n",
297
- "Epoch 43/100\n",
298
- "Epoch 44/100\n",
299
- "Epoch 45/100\n",
300
- "Epoch 46/100\n",
301
- "Epoch 47/100\n",
302
- "Epoch 48/100\n",
303
- "Epoch 49/100\n",
304
- "Epoch 50/100\n",
305
- "Epoch 51/100\n",
306
- "Epoch 52/100\n",
307
- "Epoch 53/100\n",
308
- "Epoch 54/100\n",
309
- "Epoch 55/100\n",
310
- "Epoch 56/100\n",
311
- "Epoch 57/100\n",
312
- "Epoch 58/100\n",
313
- "Epoch 59/100\n",
314
- "Epoch 60/100\n",
315
- "Epoch 61/100\n",
316
- "Epoch 62/100\n",
317
- "Epoch 63/100\n",
318
- "Epoch 64/100\n",
319
- "Epoch 65/100\n",
320
- "Epoch 66/100\n",
321
- "Epoch 67/100\n",
322
- "Epoch 68/100\n",
323
- "Epoch 69/100\n",
324
- "Epoch 70/100\n",
325
- "Epoch 71/100\n",
326
- "Epoch 72/100\n",
327
- "Epoch 73/100\n",
328
- "Epoch 74/100\n",
329
- "Epoch 75/100\n",
330
- "Epoch 76/100\n",
331
- "Epoch 77/100\n",
332
- "Epoch 78/100\n",
333
- "Epoch 79/100\n",
334
- "Epoch 80/100\n",
335
- "Epoch 81/100\n",
336
- "Epoch 82/100\n",
337
- "Epoch 83/100\n",
338
- "Epoch 84/100\n",
339
- "Epoch 85/100\n",
340
- "Epoch 86/100\n",
341
- "Epoch 87/100\n",
342
- "Epoch 88/100\n",
343
- "Epoch 89/100\n",
344
- "Epoch 90/100\n",
345
- "Epoch 91/100\n",
346
- "Epoch 92/100\n",
347
- "Epoch 93/100\n",
348
- "Epoch 94/100\n",
349
- "Epoch 95/100\n",
350
- "Epoch 96/100\n",
351
- "Epoch 97/100\n",
352
- "Epoch 98/100\n",
353
- "Epoch 99/100\n",
354
- "Epoch 100/100\n"
355
- ]
356
- },
357
- {
358
- "data": {
359
- "text/plain": [
360
- "<keras.src.callbacks.History at 0x7f26142dd480>"
361
- ]
362
- },
363
- "execution_count": 8,
364
- "metadata": {},
365
- "output_type": "execute_result"
366
- }
367
- ],
368
- "source": [
369
- "model.fit(predictors, label, epochs=100, verbose=5)"
370
- ]
371
- },
372
- {
373
- "cell_type": "code",
374
- "execution_count": 9,
375
- "id": "a76a078d",
376
- "metadata": {
377
- "id": "a76a078d"
378
- },
379
- "outputs": [],
380
- "source": [
381
- "def generate_text(seed_text, next_words, model, max_sequence_len):\n",
382
- " for _ in range(next_words):\n",
383
- " token_list = tokenizer.texts_to_sequences([seed_text])[0]\n",
384
- " token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')\n",
385
- "# predicted = model.predict_classes(token_list, verbose=0)\n",
386
- " predict_x=model.predict(token_list)\n",
387
- " classes_x=np.argmax(predict_x,axis=1)\n",
388
- "\n",
389
- " output_word = \"\"\n",
390
- " for word,index in tokenizer.word_index.items():\n",
391
- " if index == classes_x:\n",
392
- " output_word = word\n",
393
- " break\n",
394
- " seed_text += \" \"+output_word\n",
395
- " return seed_text.title()\n"
396
- ]
397
- },
398
- {
399
- "cell_type": "code",
400
- "execution_count": 10,
401
- "id": "d1c3679e",
402
- "metadata": {
403
- "id": "d1c3679e",
404
- "outputId": "4814b0be-d18c-40bc-e827-6f3d119b2ea8"
405
- },
406
- "outputs": [
407
- {
408
- "name": "stdout",
409
- "output_type": "stream",
410
- "text": [
411
- "1/1 [==============================] - 0s 380ms/step\n",
412
- "1/1 [==============================] - 0s 15ms/step\n",
413
- "1/1 [==============================] - 0s 14ms/step\n",
414
- "1/1 [==============================] - 0s 14ms/step\n",
415
- "1/1 [==============================] - 0s 14ms/step\n",
416
- "United States Erode Shorelines Tasmania Shows What\n",
417
- "1/1 [==============================] - 0s 14ms/step\n",
418
- "1/1 [==============================] - 0s 15ms/step\n",
419
- "1/1 [==============================] - 0s 15ms/step\n",
420
- "1/1 [==============================] - 0s 14ms/step\n",
421
- "Preident Trump Is Wimping Out On\n",
422
- "1/1 [==============================] - 0s 14ms/step\n",
423
- "1/1 [==============================] - 0s 14ms/step\n",
424
- "1/1 [==============================] - 0s 14ms/step\n",
425
- "1/1 [==============================] - 0s 15ms/step\n",
426
- "Donald Trump Is May So Contagious\n",
427
- "1/1 [==============================] - 0s 16ms/step\n",
428
- "1/1 [==============================] - 0s 16ms/step\n",
429
- "1/1 [==============================] - 0s 15ms/step\n",
430
- "1/1 [==============================] - 0s 14ms/step\n",
431
- "India And China Station Rail Mishap Spurs\n",
432
- "1/1 [==============================] - 0s 15ms/step\n",
433
- "1/1 [==============================] - 0s 15ms/step\n",
434
- "1/1 [==============================] - 0s 16ms/step\n",
435
- "1/1 [==============================] - 0s 15ms/step\n",
436
- "New York Today A Holocaust Survivors\n",
437
- "1/1 [==============================] - 0s 15ms/step\n",
438
- "1/1 [==============================] - 0s 14ms/step\n",
439
- "1/1 [==============================] - 0s 14ms/step\n",
440
- "1/1 [==============================] - 0s 15ms/step\n",
441
- "1/1 [==============================] - 0s 15ms/step\n",
442
- "Science And Technology Knocking In The Original News\n"
443
- ]
444
- }
445
- ],
446
- "source": [
447
- "print (generate_text(\"united states\", 5, model, max_sequence_len))\n",
448
- "print (generate_text(\"preident trump\", 4, model, max_sequence_len))\n",
449
- "print (generate_text(\"donald trump\", 4, model, max_sequence_len))\n",
450
- "print (generate_text(\"india and china\", 4, model, max_sequence_len))\n",
451
- "print (generate_text(\"new york\", 4, model, max_sequence_len))\n",
452
- "print (generate_text(\"science and technology\", 5, model, max_sequence_len))"
453
- ]
454
- }
455
- ],
456
- "metadata": {
457
- "colab": {
458
- "provenance": []
459
- },
460
- "kernelspec": {
461
- "display_name": "Python 3 (ipykernel)",
462
- "language": "python",
463
- "name": "python3"
464
- },
465
- "language_info": {
466
- "codemirror_mode": {
467
- "name": "ipython",
468
- "version": 3
469
- },
470
- "file_extension": ".py",
471
- "mimetype": "text/x-python",
472
- "name": "python",
473
- "nbconvert_exporter": "python",
474
- "pygments_lexer": "ipython3",
475
- "version": "3.10.12"
476
- }
477
- },
478
- "nbformat": 4,
479
- "nbformat_minor": 5
480
- }