noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (228) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
  17. noshot-0.1.8.dist-info/RECORD +24 -0
  18. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  19. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  20. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  21. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  22. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  23. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  24. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  25. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  26. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  27. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  28. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  29. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  30. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  31. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  32. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  33. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  34. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  35. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  36. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  37. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  38. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  39. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  40. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  41. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  42. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  43. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  44. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  45. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  46. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  47. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  48. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  49. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  50. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  51. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  52. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  53. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  54. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  55. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  56. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  57. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  58. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  59. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  60. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  61. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  62. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  63. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  64. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  65. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  66. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  67. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  68. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  69. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  70. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  71. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  72. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  73. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  74. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  77. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  78. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  79. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  80. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  81. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  82. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  83. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  84. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  85. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  86. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  87. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  88. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  89. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  90. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  91. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  92. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  93. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  94. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  95. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  96. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  97. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  98. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  99. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  100. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  101. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  103. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  104. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  105. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  106. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  107. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  108. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  109. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  110. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  111. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  112. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  113. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  114. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  115. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  116. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  117. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  118. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  119. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  120. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  121. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  122. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  123. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  124. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  125. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  126. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  127. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  128. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  129. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  130. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  131. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  132. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  133. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  134. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  135. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  136. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  137. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  138. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  139. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  140. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  141. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  142. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  143. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  144. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  145. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  162. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  163. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  164. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  165. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  166. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  167. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  168. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  169. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  170. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  171. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  172. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  173. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  174. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  175. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  176. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  177. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  178. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  179. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  180. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  181. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  182. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  183. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  184. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  185. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  186. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  187. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  188. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  189. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  190. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  191. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  192. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  193. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  194. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  195. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  196. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  197. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  198. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  199. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  200. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  201. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  202. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  203. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  204. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  205. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  206. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  207. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  208. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  209. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  210. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  211. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  213. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  214. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  215. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  216. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  217. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  218. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  219. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  220. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  221. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  222. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  223. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  224. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  225. noshot-0.1.7.dist-info/RECORD +0 -216
  226. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
  227. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
  228. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,670 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "4ceaf650",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import string"
12
- ]
13
- },
14
- {
15
- "cell_type": "code",
16
- "execution_count": 2,
17
- "id": "a62e40d9",
18
- "metadata": {},
19
- "outputs": [],
20
- "source": [
21
- "df = pd.read_csv('final_all_names_code.csv')"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": 9,
27
- "id": "8966cbf3",
28
- "metadata": {},
29
- "outputs": [
30
- {
31
- "data": {
32
- "text/plain": [
33
- "(404062, 3)"
34
- ]
35
- },
36
- "execution_count": 9,
37
- "metadata": {},
38
- "output_type": "execute_result"
39
- }
40
- ],
41
- "source": [
42
- "df.shape"
43
- ]
44
- },
45
- {
46
- "cell_type": "code",
47
- "execution_count": 4,
48
- "id": "735515ae",
49
- "metadata": {},
50
- "outputs": [
51
- {
52
- "data": {
53
- "text/plain": [
54
- "78"
55
- ]
56
- },
57
- "execution_count": 4,
58
- "metadata": {},
59
- "output_type": "execute_result"
60
- }
61
- ],
62
- "source": [
63
- "len(df['Country_code'].unique())"
64
- ]
65
- },
66
- {
67
- "cell_type": "code",
68
- "execution_count": 5,
69
- "id": "dbe1031b",
70
- "metadata": {},
71
- "outputs": [],
72
- "source": [
73
- "columns=list(string.ascii_lowercase) + ['Country_code', 'Country']\n",
74
- "newdf = pd.DataFrame(columns=columns)"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": 6,
80
- "id": "086a56f0",
81
- "metadata": {},
82
- "outputs": [
83
- {
84
- "data": {
85
- "text/html": [
86
- "<div>\n",
87
- "<style scoped>\n",
88
- " .dataframe tbody tr th:only-of-type {\n",
89
- " vertical-align: middle;\n",
90
- " }\n",
91
- "\n",
92
- " .dataframe tbody tr th {\n",
93
- " vertical-align: top;\n",
94
- " }\n",
95
- "\n",
96
- " .dataframe thead th {\n",
97
- " text-align: right;\n",
98
- " }\n",
99
- "</style>\n",
100
- "<table border=\"1\" class=\"dataframe\">\n",
101
- " <thead>\n",
102
- " <tr style=\"text-align: right;\">\n",
103
- " <th></th>\n",
104
- " <th>a</th>\n",
105
- " <th>b</th>\n",
106
- " <th>c</th>\n",
107
- " <th>d</th>\n",
108
- " <th>e</th>\n",
109
- " <th>f</th>\n",
110
- " <th>g</th>\n",
111
- " <th>h</th>\n",
112
- " <th>i</th>\n",
113
- " <th>j</th>\n",
114
- " <th>...</th>\n",
115
- " <th>s</th>\n",
116
- " <th>t</th>\n",
117
- " <th>u</th>\n",
118
- " <th>v</th>\n",
119
- " <th>w</th>\n",
120
- " <th>x</th>\n",
121
- " <th>y</th>\n",
122
- " <th>z</th>\n",
123
- " <th>Country_code</th>\n",
124
- " <th>Country</th>\n",
125
- " </tr>\n",
126
- " </thead>\n",
127
- " <tbody>\n",
128
- " <tr>\n",
129
- " <th>0</th>\n",
130
- " <td>0</td>\n",
131
- " <td>0</td>\n",
132
- " <td>0</td>\n",
133
- " <td>0</td>\n",
134
- " <td>0</td>\n",
135
- " <td>0</td>\n",
136
- " <td>0</td>\n",
137
- " <td>1</td>\n",
138
- " <td>0</td>\n",
139
- " <td>1</td>\n",
140
- " <td>...</td>\n",
141
- " <td>1</td>\n",
142
- " <td>0</td>\n",
143
- " <td>0</td>\n",
144
- " <td>0</td>\n",
145
- " <td>0</td>\n",
146
- " <td>0</td>\n",
147
- " <td>0</td>\n",
148
- " <td>0</td>\n",
149
- " <td>ar_AE</td>\n",
150
- " <td>AE</td>\n",
151
- " </tr>\n",
152
- " </tbody>\n",
153
- "</table>\n",
154
- "<p>1 rows × 28 columns</p>\n",
155
- "</div>"
156
- ],
157
- "text/plain": [
158
- " a b c d e f g h i j ... s t u v w x y z Country_code \\\n",
159
- "0 0 0 0 0 0 0 0 1 0 1 ... 1 0 0 0 0 0 0 0 ar_AE \n",
160
- "\n",
161
- " Country \n",
162
- "0 AE \n",
163
- "\n",
164
- "[1 rows x 28 columns]"
165
- ]
166
- },
167
- "execution_count": 6,
168
- "metadata": {},
169
- "output_type": "execute_result"
170
- }
171
- ],
172
- "source": [
173
- "ind = 0\n",
174
- "name = df['Name'][ind]\n",
175
- "nameLst = str(name).split(' ')\n",
176
- "lastName = nameLst[-1].lower()\n",
177
- "chars = dict.fromkeys(columns, 0)\n",
178
- "for i in lastName:\n",
179
- " chars[i] = 1\n",
180
- "chars['Country_code'] = df['Country_code'][ind]\n",
181
- "chars['Country'] = df['Country'][ind]\n",
182
- "newdf = newdf.append(chars, ignore_index=True)\n",
183
- "newdf.head()"
184
- ]
185
- },
186
- {
187
- "cell_type": "code",
188
- "execution_count": 13,
189
- "id": "0123b2ef",
190
- "metadata": {},
191
- "outputs": [],
192
- "source": [
193
- "for ind in range(1000):\n",
194
- " name = df['Name'][ind]\n",
195
- " nameLst = str(name).split(' ')\n",
196
- " lastName = nameLst[-1].lower()\n",
197
- " chars = dict.fromkeys(columns, 0)\n",
198
- " for i in lastName:\n",
199
- " chars[i] = 1\n",
200
- " chars['Country_code'] = df['Country_code'][ind]\n",
201
- " chars['Country'] = df['Country'][ind]\n",
202
- " newdf = newdf.append(chars, ignore_index=True)\n",
203
- " "
204
- ]
205
- },
206
- {
207
- "cell_type": "code",
208
- "execution_count": 42,
209
- "id": "0eecfb59",
210
- "metadata": {},
211
- "outputs": [
212
- {
213
- "data": {
214
- "text/plain": [
215
- "0 AE\n",
216
- "1 AE\n",
217
- "2 AE\n",
218
- "3 AE\n",
219
- "4 AE\n",
220
- " ..\n",
221
- "10404 AE\n",
222
- "10405 AE\n",
223
- "10406 AE\n",
224
- "10407 AE\n",
225
- "10408 AE\n",
226
- "Name: Country, Length: 10409, dtype: object"
227
- ]
228
- },
229
- "execution_count": 42,
230
- "metadata": {},
231
- "output_type": "execute_result"
232
- }
233
- ],
234
- "source": [
235
- "newdf['Country']"
236
- ]
237
- },
238
- {
239
- "cell_type": "code",
240
- "execution_count": 14,
241
- "id": "48f9c747",
242
- "metadata": {},
243
- "outputs": [
244
- {
245
- "data": {
246
- "text/html": [
247
- "<div>\n",
248
- "<style scoped>\n",
249
- " .dataframe tbody tr th:only-of-type {\n",
250
- " vertical-align: middle;\n",
251
- " }\n",
252
- "\n",
253
- " .dataframe tbody tr th {\n",
254
- " vertical-align: top;\n",
255
- " }\n",
256
- "\n",
257
- " .dataframe thead th {\n",
258
- " text-align: right;\n",
259
- " }\n",
260
- "</style>\n",
261
- "<table border=\"1\" class=\"dataframe\">\n",
262
- " <thead>\n",
263
- " <tr style=\"text-align: right;\">\n",
264
- " <th></th>\n",
265
- " <th>a</th>\n",
266
- " <th>b</th>\n",
267
- " <th>c</th>\n",
268
- " <th>d</th>\n",
269
- " <th>e</th>\n",
270
- " <th>f</th>\n",
271
- " <th>g</th>\n",
272
- " <th>h</th>\n",
273
- " <th>i</th>\n",
274
- " <th>j</th>\n",
275
- " <th>...</th>\n",
276
- " <th>t</th>\n",
277
- " <th>u</th>\n",
278
- " <th>v</th>\n",
279
- " <th>w</th>\n",
280
- " <th>x</th>\n",
281
- " <th>y</th>\n",
282
- " <th>z</th>\n",
283
- " <th>Country_code</th>\n",
284
- " <th>Country</th>\n",
285
- " <th>.</th>\n",
286
- " </tr>\n",
287
- " </thead>\n",
288
- " <tbody>\n",
289
- " <tr>\n",
290
- " <th>0</th>\n",
291
- " <td>0</td>\n",
292
- " <td>0</td>\n",
293
- " <td>0</td>\n",
294
- " <td>0</td>\n",
295
- " <td>0</td>\n",
296
- " <td>0</td>\n",
297
- " <td>0</td>\n",
298
- " <td>1</td>\n",
299
- " <td>0</td>\n",
300
- " <td>1</td>\n",
301
- " <td>...</td>\n",
302
- " <td>0</td>\n",
303
- " <td>0</td>\n",
304
- " <td>0</td>\n",
305
- " <td>0</td>\n",
306
- " <td>0</td>\n",
307
- " <td>0</td>\n",
308
- " <td>0</td>\n",
309
- " <td>ar_AE</td>\n",
310
- " <td>AE</td>\n",
311
- " <td>NaN</td>\n",
312
- " </tr>\n",
313
- " <tr>\n",
314
- " <th>1</th>\n",
315
- " <td>0</td>\n",
316
- " <td>0</td>\n",
317
- " <td>0</td>\n",
318
- " <td>0</td>\n",
319
- " <td>0</td>\n",
320
- " <td>0</td>\n",
321
- " <td>0</td>\n",
322
- " <td>1</td>\n",
323
- " <td>0</td>\n",
324
- " <td>1</td>\n",
325
- " <td>...</td>\n",
326
- " <td>0</td>\n",
327
- " <td>0</td>\n",
328
- " <td>0</td>\n",
329
- " <td>0</td>\n",
330
- " <td>0</td>\n",
331
- " <td>0</td>\n",
332
- " <td>0</td>\n",
333
- " <td>ar_AE</td>\n",
334
- " <td>AE</td>\n",
335
- " <td>NaN</td>\n",
336
- " </tr>\n",
337
- " <tr>\n",
338
- " <th>2</th>\n",
339
- " <td>0</td>\n",
340
- " <td>0</td>\n",
341
- " <td>0</td>\n",
342
- " <td>0</td>\n",
343
- " <td>0</td>\n",
344
- " <td>0</td>\n",
345
- " <td>1</td>\n",
346
- " <td>1</td>\n",
347
- " <td>1</td>\n",
348
- " <td>0</td>\n",
349
- " <td>...</td>\n",
350
- " <td>1</td>\n",
351
- " <td>0</td>\n",
352
- " <td>0</td>\n",
353
- " <td>1</td>\n",
354
- " <td>0</td>\n",
355
- " <td>0</td>\n",
356
- " <td>0</td>\n",
357
- " <td>ar_AE</td>\n",
358
- " <td>AE</td>\n",
359
- " <td>NaN</td>\n",
360
- " </tr>\n",
361
- " <tr>\n",
362
- " <th>3</th>\n",
363
- " <td>0</td>\n",
364
- " <td>0</td>\n",
365
- " <td>0</td>\n",
366
- " <td>1</td>\n",
367
- " <td>0</td>\n",
368
- " <td>0</td>\n",
369
- " <td>0</td>\n",
370
- " <td>0</td>\n",
371
- " <td>0</td>\n",
372
- " <td>0</td>\n",
373
- " <td>...</td>\n",
374
- " <td>0</td>\n",
375
- " <td>0</td>\n",
376
- " <td>0</td>\n",
377
- " <td>0</td>\n",
378
- " <td>0</td>\n",
379
- " <td>0</td>\n",
380
- " <td>0</td>\n",
381
- " <td>ar_AE</td>\n",
382
- " <td>AE</td>\n",
383
- " <td>NaN</td>\n",
384
- " </tr>\n",
385
- " <tr>\n",
386
- " <th>4</th>\n",
387
- " <td>0</td>\n",
388
- " <td>1</td>\n",
389
- " <td>0</td>\n",
390
- " <td>0</td>\n",
391
- " <td>0</td>\n",
392
- " <td>0</td>\n",
393
- " <td>0</td>\n",
394
- " <td>0</td>\n",
395
- " <td>1</td>\n",
396
- " <td>0</td>\n",
397
- " <td>...</td>\n",
398
- " <td>0</td>\n",
399
- " <td>0</td>\n",
400
- " <td>0</td>\n",
401
- " <td>0</td>\n",
402
- " <td>0</td>\n",
403
- " <td>0</td>\n",
404
- " <td>0</td>\n",
405
- " <td>ar_AE</td>\n",
406
- " <td>AE</td>\n",
407
- " <td>NaN</td>\n",
408
- " </tr>\n",
409
- " </tbody>\n",
410
- "</table>\n",
411
- "<p>5 rows × 29 columns</p>\n",
412
- "</div>"
413
- ],
414
- "text/plain": [
415
- " a b c d e f g h i j ... t u v w x y z Country_code \\\n",
416
- "0 0 0 0 0 0 0 0 1 0 1 ... 0 0 0 0 0 0 0 ar_AE \n",
417
- "1 0 0 0 0 0 0 0 1 0 1 ... 0 0 0 0 0 0 0 ar_AE \n",
418
- "2 0 0 0 0 0 0 1 1 1 0 ... 1 0 0 1 0 0 0 ar_AE \n",
419
- "3 0 0 0 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 ar_AE \n",
420
- "4 0 1 0 0 0 0 0 0 1 0 ... 0 0 0 0 0 0 0 ar_AE \n",
421
- "\n",
422
- " Country . \n",
423
- "0 AE NaN \n",
424
- "1 AE NaN \n",
425
- "2 AE NaN \n",
426
- "3 AE NaN \n",
427
- "4 AE NaN \n",
428
- "\n",
429
- "[5 rows x 29 columns]"
430
- ]
431
- },
432
- "execution_count": 14,
433
- "metadata": {},
434
- "output_type": "execute_result"
435
- }
436
- ],
437
- "source": [
438
- "newdf.head()"
439
- ]
440
- },
441
- {
442
- "cell_type": "code",
443
- "execution_count": 15,
444
- "id": "730860b3",
445
- "metadata": {},
446
- "outputs": [],
447
- "source": [
448
- "from sklearn.preprocessing import LabelEncoder"
449
- ]
450
- },
451
- {
452
- "cell_type": "code",
453
- "execution_count": 16,
454
- "id": "465e5213",
455
- "metadata": {},
456
- "outputs": [],
457
- "source": [
458
- "le = LabelEncoder()\n",
459
- "df['Name'] = le.fit_transform(df['Name'])"
460
- ]
461
- },
462
- {
463
- "cell_type": "code",
464
- "execution_count": 33,
465
- "id": "9637d8ce",
466
- "metadata": {},
467
- "outputs": [],
468
- "source": [
469
- "# X = pd.factorize(df['Name'])[0].reshape(-1,1)\n",
470
- "# Y = pd.factorize(df['Country'])[0].reshape(-1,1)"
471
- ]
472
- },
473
- {
474
- "cell_type": "code",
475
- "execution_count": 51,
476
- "id": "06b72dff",
477
- "metadata": {},
478
- "outputs": [],
479
- "source": [
480
- "X = newdf[list(string.ascii_lowercase)]\n",
481
- "Y = newdf['Country']"
482
- ]
483
- },
484
- {
485
- "cell_type": "code",
486
- "execution_count": 52,
487
- "id": "74556760",
488
- "metadata": {},
489
- "outputs": [
490
- {
491
- "data": {
492
- "text/plain": [
493
- "(10409, 26)"
494
- ]
495
- },
496
- "execution_count": 52,
497
- "metadata": {},
498
- "output_type": "execute_result"
499
- }
500
- ],
501
- "source": [
502
- "X.shape"
503
- ]
504
- },
505
- {
506
- "cell_type": "code",
507
- "execution_count": 53,
508
- "id": "63ddabf0",
509
- "metadata": {},
510
- "outputs": [],
511
- "source": [
512
- "from sklearn.model_selection import train_test_split\n",
513
- "X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, random_state=0)"
514
- ]
515
- },
516
- {
517
- "cell_type": "code",
518
- "execution_count": 55,
519
- "id": "779a90d2",
520
- "metadata": {},
521
- "outputs": [
522
- {
523
- "name": "stdout",
524
- "output_type": "stream",
525
- "text": [
526
- "Iteration 1, loss = 0.61870553\n",
527
- "Iteration 2, loss = 0.61414579\n",
528
- "Iteration 3, loss = 0.61337488\n",
529
- "Iteration 4, loss = 0.61172227\n",
530
- "Iteration 5, loss = 0.61135576\n",
531
- "Iteration 6, loss = 0.61056831\n",
532
- "Iteration 7, loss = 0.60952742\n",
533
- "Iteration 8, loss = 0.60972004\n",
534
- "Iteration 9, loss = 0.60878205\n",
535
- "Iteration 10, loss = 0.60874295\n",
536
- "Iteration 11, loss = 0.60902916\n",
537
- "Iteration 12, loss = 0.60804079\n",
538
- "Iteration 13, loss = 0.60786734\n",
539
- "Iteration 14, loss = 0.60755309\n",
540
- "Iteration 15, loss = 0.60719918\n",
541
- "Iteration 16, loss = 0.60863441\n",
542
- "Iteration 17, loss = 0.60752479\n",
543
- "Iteration 18, loss = 0.60705796\n",
544
- "Iteration 19, loss = 0.60791483\n",
545
- "Iteration 20, loss = 0.60842593\n",
546
- "Iteration 21, loss = 0.60655986\n",
547
- "Iteration 22, loss = 0.60565789\n",
548
- "Iteration 23, loss = 0.60539939\n",
549
- "Iteration 24, loss = 0.60649128\n",
550
- "Iteration 25, loss = 0.60583964\n",
551
- "Iteration 26, loss = 0.60555888\n",
552
- "Iteration 27, loss = 0.60548889\n",
553
- "Iteration 28, loss = 0.60527387\n",
554
- "Iteration 29, loss = 0.60598688\n",
555
- "Iteration 30, loss = 0.60518383\n",
556
- "Iteration 31, loss = 0.60477972\n",
557
- "Iteration 32, loss = 0.60453700\n",
558
- "Iteration 33, loss = 0.60491897\n",
559
- "Iteration 34, loss = 0.60476366\n",
560
- "Iteration 35, loss = 0.60429963\n",
561
- "Iteration 36, loss = 0.60434233\n",
562
- "Iteration 37, loss = 0.60396974\n",
563
- "Iteration 38, loss = 0.60381930\n",
564
- "Iteration 39, loss = 0.60372379\n",
565
- "Iteration 40, loss = 0.60458396\n",
566
- "Iteration 41, loss = 0.60366756\n",
567
- "Iteration 42, loss = 0.60346354\n",
568
- "Iteration 43, loss = 0.60363257\n",
569
- "Iteration 44, loss = 0.60365863\n",
570
- "Iteration 45, loss = 0.60314015\n",
571
- "Iteration 46, loss = 0.60403392\n",
572
- "Iteration 47, loss = 0.60298309\n",
573
- "Iteration 48, loss = 0.60324196\n",
574
- "Iteration 49, loss = 0.60370857\n",
575
- "Iteration 50, loss = 0.60324461\n",
576
- "Iteration 51, loss = 0.60248548\n",
577
- "Iteration 52, loss = 0.60339082\n",
578
- "Iteration 53, loss = 0.60297300\n",
579
- "Iteration 54, loss = 0.60342077\n",
580
- "Iteration 55, loss = 0.60309616\n",
581
- "Iteration 56, loss = 0.60223223\n",
582
- "Iteration 57, loss = 0.60260851\n",
583
- "Iteration 58, loss = 0.60292578\n",
584
- "Iteration 59, loss = 0.60237197\n",
585
- "Iteration 60, loss = 0.60241951\n",
586
- "Iteration 61, loss = 0.60304916\n",
587
- "Iteration 62, loss = 0.60284411\n",
588
- "Iteration 63, loss = 0.60278383\n",
589
- "Iteration 64, loss = 0.60218386\n",
590
- "Iteration 65, loss = 0.60231279\n",
591
- "Iteration 66, loss = 0.60208652\n",
592
- "Iteration 67, loss = 0.60248264\n",
593
- "Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. Stopping.\n"
594
- ]
595
- },
596
- {
597
- "data": {
598
- "text/plain": [
599
- "MLPClassifier(hidden_layer_sizes=(6, 5), learning_rate_init=0.01,\n",
600
- " random_state=0, verbose=True)"
601
- ]
602
- },
603
- "execution_count": 55,
604
- "metadata": {},
605
- "output_type": "execute_result"
606
- }
607
- ],
608
- "source": [
609
- "from sklearn.neural_network import MLPClassifier\n",
610
- "clf = MLPClassifier(hidden_layer_sizes=(6,5),\n",
611
- " random_state=0,\n",
612
- " verbose=True,\n",
613
- " learning_rate_init=0.01)\n",
614
- "clf.fit(X_train, Y_train)"
615
- ]
616
- },
617
- {
618
- "cell_type": "code",
619
- "execution_count": 56,
620
- "id": "0db36b8c",
621
- "metadata": {},
622
- "outputs": [
623
- {
624
- "data": {
625
- "text/plain": [
626
- "0.686359269932757"
627
- ]
628
- },
629
- "execution_count": 56,
630
- "metadata": {},
631
- "output_type": "execute_result"
632
- }
633
- ],
634
- "source": [
635
- "Y_pred = clf.predict(X_test)\n",
636
- "from sklearn.metrics import accuracy_score\n",
637
- "accuracy_score(Y_test, Y_pred)"
638
- ]
639
- },
640
- {
641
- "cell_type": "code",
642
- "execution_count": null,
643
- "id": "7d589a4a",
644
- "metadata": {},
645
- "outputs": [],
646
- "source": []
647
- }
648
- ],
649
- "metadata": {
650
- "kernelspec": {
651
- "display_name": "Python 3",
652
- "language": "python",
653
- "name": "python3"
654
- },
655
- "language_info": {
656
- "codemirror_mode": {
657
- "name": "ipython",
658
- "version": 3
659
- },
660
- "file_extension": ".py",
661
- "mimetype": "text/x-python",
662
- "name": "python",
663
- "nbconvert_exporter": "python",
664
- "pygments_lexer": "ipython3",
665
- "version": "3.8.8"
666
- }
667
- },
668
- "nbformat": 4,
669
- "nbformat_minor": 5
670
- }