noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,868 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"metadata": {},
|
7
|
-
"outputs": [],
|
8
|
-
"source": [
|
9
|
-
"import warnings\n",
|
10
|
-
"warnings.filterwarnings('ignore')"
|
11
|
-
]
|
12
|
-
},
|
13
|
-
{
|
14
|
-
"cell_type": "code",
|
15
|
-
"execution_count": 2,
|
16
|
-
"metadata": {
|
17
|
-
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
|
18
|
-
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5"
|
19
|
-
},
|
20
|
-
"outputs": [],
|
21
|
-
"source": [
|
22
|
-
"import tensorflow as tf\n",
|
23
|
-
"import numpy as np\n",
|
24
|
-
"import pandas as pd"
|
25
|
-
]
|
26
|
-
},
|
27
|
-
{
|
28
|
-
"cell_type": "code",
|
29
|
-
"execution_count": 3,
|
30
|
-
"metadata": {},
|
31
|
-
"outputs": [
|
32
|
-
{
|
33
|
-
"data": {
|
34
|
-
"text/html": [
|
35
|
-
"<div>\n",
|
36
|
-
"<style scoped>\n",
|
37
|
-
" .dataframe tbody tr th:only-of-type {\n",
|
38
|
-
" vertical-align: middle;\n",
|
39
|
-
" }\n",
|
40
|
-
"\n",
|
41
|
-
" .dataframe tbody tr th {\n",
|
42
|
-
" vertical-align: top;\n",
|
43
|
-
" }\n",
|
44
|
-
"\n",
|
45
|
-
" .dataframe thead th {\n",
|
46
|
-
" text-align: right;\n",
|
47
|
-
" }\n",
|
48
|
-
"</style>\n",
|
49
|
-
"<table border=\"1\" class=\"dataframe\">\n",
|
50
|
-
" <thead>\n",
|
51
|
-
" <tr style=\"text-align: right;\">\n",
|
52
|
-
" <th></th>\n",
|
53
|
-
" <th>english</th>\n",
|
54
|
-
" <th>spanish</th>\n",
|
55
|
-
" </tr>\n",
|
56
|
-
" </thead>\n",
|
57
|
-
" <tbody>\n",
|
58
|
-
" <tr>\n",
|
59
|
-
" <th>0</th>\n",
|
60
|
-
" <td>Go.</td>\n",
|
61
|
-
" <td>Ve.</td>\n",
|
62
|
-
" </tr>\n",
|
63
|
-
" <tr>\n",
|
64
|
-
" <th>1</th>\n",
|
65
|
-
" <td>Go.</td>\n",
|
66
|
-
" <td>Vete.</td>\n",
|
67
|
-
" </tr>\n",
|
68
|
-
" <tr>\n",
|
69
|
-
" <th>2</th>\n",
|
70
|
-
" <td>Go.</td>\n",
|
71
|
-
" <td>Vaya.</td>\n",
|
72
|
-
" </tr>\n",
|
73
|
-
" <tr>\n",
|
74
|
-
" <th>3</th>\n",
|
75
|
-
" <td>Go.</td>\n",
|
76
|
-
" <td>Váyase.</td>\n",
|
77
|
-
" </tr>\n",
|
78
|
-
" <tr>\n",
|
79
|
-
" <th>4</th>\n",
|
80
|
-
" <td>Hi.</td>\n",
|
81
|
-
" <td>Hola.</td>\n",
|
82
|
-
" </tr>\n",
|
83
|
-
" <tr>\n",
|
84
|
-
" <th>5</th>\n",
|
85
|
-
" <td>Run!</td>\n",
|
86
|
-
" <td>¡Corre!</td>\n",
|
87
|
-
" </tr>\n",
|
88
|
-
" <tr>\n",
|
89
|
-
" <th>6</th>\n",
|
90
|
-
" <td>Run.</td>\n",
|
91
|
-
" <td>Corred.</td>\n",
|
92
|
-
" </tr>\n",
|
93
|
-
" <tr>\n",
|
94
|
-
" <th>7</th>\n",
|
95
|
-
" <td>Who?</td>\n",
|
96
|
-
" <td>¿Quién?</td>\n",
|
97
|
-
" </tr>\n",
|
98
|
-
" <tr>\n",
|
99
|
-
" <th>8</th>\n",
|
100
|
-
" <td>Fire!</td>\n",
|
101
|
-
" <td>¡Fuego!</td>\n",
|
102
|
-
" </tr>\n",
|
103
|
-
" <tr>\n",
|
104
|
-
" <th>9</th>\n",
|
105
|
-
" <td>Fire!</td>\n",
|
106
|
-
" <td>¡Incendio!</td>\n",
|
107
|
-
" </tr>\n",
|
108
|
-
" </tbody>\n",
|
109
|
-
"</table>\n",
|
110
|
-
"</div>"
|
111
|
-
],
|
112
|
-
"text/plain": [
|
113
|
-
" english spanish\n",
|
114
|
-
"0 Go. Ve.\n",
|
115
|
-
"1 Go. Vete.\n",
|
116
|
-
"2 Go. Vaya.\n",
|
117
|
-
"3 Go. Váyase.\n",
|
118
|
-
"4 Hi. Hola.\n",
|
119
|
-
"5 Run! ¡Corre!\n",
|
120
|
-
"6 Run. Corred.\n",
|
121
|
-
"7 Who? ¿Quién?\n",
|
122
|
-
"8 Fire! ¡Fuego!\n",
|
123
|
-
"9 Fire! ¡Incendio!"
|
124
|
-
]
|
125
|
-
},
|
126
|
-
"execution_count": 3,
|
127
|
-
"metadata": {},
|
128
|
-
"output_type": "execute_result"
|
129
|
-
}
|
130
|
-
],
|
131
|
-
"source": [
|
132
|
-
"df = pd.read_csv('data.csv')\n",
|
133
|
-
"df.head(10)"
|
134
|
-
]
|
135
|
-
},
|
136
|
-
{
|
137
|
-
"cell_type": "code",
|
138
|
-
"execution_count": 4,
|
139
|
-
"metadata": {},
|
140
|
-
"outputs": [
|
141
|
-
{
|
142
|
-
"data": {
|
143
|
-
"text/plain": [
|
144
|
-
"Index(['english', 'spanish'], dtype='object')"
|
145
|
-
]
|
146
|
-
},
|
147
|
-
"execution_count": 4,
|
148
|
-
"metadata": {},
|
149
|
-
"output_type": "execute_result"
|
150
|
-
}
|
151
|
-
],
|
152
|
-
"source": [
|
153
|
-
"df.columns"
|
154
|
-
]
|
155
|
-
},
|
156
|
-
{
|
157
|
-
"cell_type": "code",
|
158
|
-
"execution_count": 5,
|
159
|
-
"metadata": {},
|
160
|
-
"outputs": [],
|
161
|
-
"source": [
|
162
|
-
"source_vocab = set(' '.join(df['english'][25:125]))\n",
|
163
|
-
"target_vocab = set(' '.join(df['spanish'][25:125]))\n",
|
164
|
-
"source_vocab_size = len(source_vocab)\n",
|
165
|
-
"target_vocab_size = len(target_vocab)"
|
166
|
-
]
|
167
|
-
},
|
168
|
-
{
|
169
|
-
"cell_type": "code",
|
170
|
-
"execution_count": 6,
|
171
|
-
"metadata": {},
|
172
|
-
"outputs": [
|
173
|
-
{
|
174
|
-
"name": "stdout",
|
175
|
-
"output_type": "stream",
|
176
|
-
"text": [
|
177
|
-
"{'u', 'q', 'H', 'D', 'O', ' ', 'N', 'n', 'A', 'C', 'B', 'S', 'g', 'L', 'r', 'p', 'f', \"'\", 'c', '1', 't', '9', 'W', 'l', 'a', 's', 'x', 'i', 'I', 'y', 'w', 'G', 'e', 'b', 'k', 'h', 'T', '.', 'm', 'o', '?', 'd', 'R', '!'}\n",
|
178
|
-
"{'q', 'u', 'H', 'D', 'O', 'j', 'U', ' ', 'N', 'V', 'n', 'C', 'A', 'E', 'É', 'B', 'S', 'g', 'é', 'L', 'r', 'ú', ',', 'p', 'f', 'c', 'Y', '¿', 't', 'R', 'í', 'M', '!', 'z', 'l', 's', 'i', 'á', 'I', 'y', 'v', 'Ó', 'G', 'e', 'b', 'ó', 'h', 'T', '¡', '.', 'P', 'Á', 'm', 'o', '?', 'a', 'd'}\n"
|
179
|
-
]
|
180
|
-
}
|
181
|
-
],
|
182
|
-
"source": [
|
183
|
-
"print(source_vocab)\n",
|
184
|
-
"print(target_vocab)"
|
185
|
-
]
|
186
|
-
},
|
187
|
-
{
|
188
|
-
"cell_type": "code",
|
189
|
-
"execution_count": 7,
|
190
|
-
"metadata": {},
|
191
|
-
"outputs": [],
|
192
|
-
"source": [
|
193
|
-
"source_char_to_int = {char: idx for idx, char in enumerate(source_vocab)}\n",
|
194
|
-
"target_char_to_int = {char: idx for idx, char in enumerate(target_vocab)}\n",
|
195
|
-
"source_int_to_char = {idx: char for char, idx in source_char_to_int.items()}\n",
|
196
|
-
"target_int_to_char = {idx: char for char, idx in target_char_to_int.items()}"
|
197
|
-
]
|
198
|
-
},
|
199
|
-
{
|
200
|
-
"cell_type": "code",
|
201
|
-
"execution_count": 8,
|
202
|
-
"metadata": {},
|
203
|
-
"outputs": [],
|
204
|
-
"source": [
|
205
|
-
"# Convert text sequences to integer sequences\n",
|
206
|
-
"source_sequences = [[source_char_to_int[char] for char in text] for text in df['english'][25:125]]\n",
|
207
|
-
"target_sequences = [[target_char_to_int[char] for char in text] for text in df['spanish'][25:125]]"
|
208
|
-
]
|
209
|
-
},
|
210
|
-
{
|
211
|
-
"cell_type": "code",
|
212
|
-
"execution_count": 9,
|
213
|
-
"metadata": {},
|
214
|
-
"outputs": [],
|
215
|
-
"source": [
|
216
|
-
"# Pad sequences to the same length\n",
|
217
|
-
"max_sequence_length = max(len(seq) for seq in source_sequences)\n",
|
218
|
-
"source_sequences = tf.keras.preprocessing.sequence.pad_sequences(source_sequences, maxlen=max_sequence_length, padding='post')\n",
|
219
|
-
"target_sequences = tf.keras.preprocessing.sequence.pad_sequences(target_sequences, maxlen=max_sequence_length, padding='post')"
|
220
|
-
]
|
221
|
-
},
|
222
|
-
{
|
223
|
-
"cell_type": "code",
|
224
|
-
"execution_count": 10,
|
225
|
-
"metadata": {},
|
226
|
-
"outputs": [],
|
227
|
-
"source": [
|
228
|
-
"# Build the model\n",
|
229
|
-
"input_shape = (max_sequence_length, source_vocab_size)\n",
|
230
|
-
"output_shape = (max_sequence_length, target_vocab_size)\n",
|
231
|
-
"\n",
|
232
|
-
"model = tf.keras.models.Sequential([\n",
|
233
|
-
" # Embedding layer with a larger dimension for richer word representations\n",
|
234
|
-
" tf.keras.layers.Embedding(source_vocab_size, 512, input_length=max_sequence_length),\n",
|
235
|
-
"\n",
|
236
|
-
" # First Bidirectional RNN layer with dropout and L2 regularization\n",
|
237
|
-
" tf.keras.layers.Bidirectional(tf.keras.layers.SimpleRNN(512, return_sequences=True, \n",
|
238
|
-
" kernel_regularizer=tf.keras.regularizers.l2(0.001))),\n",
|
239
|
-
" tf.keras.layers.Dropout(0.4),\n",
|
240
|
-
"\n",
|
241
|
-
" # Second RNN layer with higher units and dropout\n",
|
242
|
-
" tf.keras.layers.SimpleRNN(512, return_sequences=True),\n",
|
243
|
-
" tf.keras.layers.Dropout(0.4),\n",
|
244
|
-
"\n",
|
245
|
-
" # Third RNN layer for more complex patterns\n",
|
246
|
-
" tf.keras.layers.SimpleRNN(256, return_sequences=True),\n",
|
247
|
-
" tf.keras.layers.Dropout(0.3),\n",
|
248
|
-
"\n",
|
249
|
-
" # Dense layer for more feature learning\n",
|
250
|
-
" tf.keras.layers.Dense(512, activation='relu'),\n",
|
251
|
-
"\n",
|
252
|
-
" # Output layer to map to the target vocabulary\n",
|
253
|
-
" tf.keras.layers.Dense(target_vocab_size, activation='softmax')\n",
|
254
|
-
"])\n",
|
255
|
-
"\n",
|
256
|
-
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
|
257
|
-
]
|
258
|
-
},
|
259
|
-
{
|
260
|
-
"cell_type": "code",
|
261
|
-
"execution_count": 11,
|
262
|
-
"metadata": {},
|
263
|
-
"outputs": [],
|
264
|
-
"source": [
|
265
|
-
"# One-hot encode the target sequences\n",
|
266
|
-
"target_sequences_one_hot = np.array([tf.keras.utils.to_categorical(seq, num_classes=target_vocab_size) for seq in target_sequences])"
|
267
|
-
]
|
268
|
-
},
|
269
|
-
{
|
270
|
-
"cell_type": "code",
|
271
|
-
"execution_count": 12,
|
272
|
-
"metadata": {},
|
273
|
-
"outputs": [
|
274
|
-
{
|
275
|
-
"name": "stdout",
|
276
|
-
"output_type": "stream",
|
277
|
-
"text": [
|
278
|
-
"Epoch 1/250\n",
|
279
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 73ms/step - accuracy: 0.0383 - loss: 5.0589\n",
|
280
|
-
"Epoch 2/250\n",
|
281
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.1816 - loss: 4.4064\n",
|
282
|
-
"Epoch 3/250\n",
|
283
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.2055 - loss: 4.0004\n",
|
284
|
-
"Epoch 4/250\n",
|
285
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.2451 - loss: 3.7294\n",
|
286
|
-
"Epoch 5/250\n",
|
287
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - accuracy: 0.2933 - loss: 3.5840\n",
|
288
|
-
"Epoch 6/250\n",
|
289
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.3071 - loss: 3.4270\n",
|
290
|
-
"Epoch 7/250\n",
|
291
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - accuracy: 0.3330 - loss: 3.2929\n",
|
292
|
-
"Epoch 8/250\n",
|
293
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.3658 - loss: 3.1366\n",
|
294
|
-
"Epoch 9/250\n",
|
295
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - accuracy: 0.3885 - loss: 3.0769\n",
|
296
|
-
"Epoch 10/250\n",
|
297
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 0.3884 - loss: 2.9481\n",
|
298
|
-
"Epoch 11/250\n",
|
299
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.4352 - loss: 2.8165\n",
|
300
|
-
"Epoch 12/250\n",
|
301
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.4594 - loss: 2.6767\n",
|
302
|
-
"Epoch 13/250\n",
|
303
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.4886 - loss: 2.6054\n",
|
304
|
-
"Epoch 14/250\n",
|
305
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.4595 - loss: 2.5226\n",
|
306
|
-
"Epoch 15/250\n",
|
307
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.4907 - loss: 2.4308\n",
|
308
|
-
"Epoch 16/250\n",
|
309
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.5010 - loss: 2.3419\n",
|
310
|
-
"Epoch 17/250\n",
|
311
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.5705 - loss: 2.2170\n",
|
312
|
-
"Epoch 18/250\n",
|
313
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.5697 - loss: 2.1596\n",
|
314
|
-
"Epoch 19/250\n",
|
315
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.5695 - loss: 2.0619\n",
|
316
|
-
"Epoch 20/250\n",
|
317
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.5808 - loss: 2.0323\n",
|
318
|
-
"Epoch 21/250\n",
|
319
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.6052 - loss: 1.9811\n",
|
320
|
-
"Epoch 22/250\n",
|
321
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.5973 - loss: 1.9575\n",
|
322
|
-
"Epoch 23/250\n",
|
323
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.6225 - loss: 1.8432\n",
|
324
|
-
"Epoch 24/250\n",
|
325
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.6213 - loss: 1.7922\n",
|
326
|
-
"Epoch 25/250\n",
|
327
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6102 - loss: 1.7951\n",
|
328
|
-
"Epoch 26/250\n",
|
329
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6453 - loss: 1.7020\n",
|
330
|
-
"Epoch 27/250\n",
|
331
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.6447 - loss: 1.6611\n",
|
332
|
-
"Epoch 28/250\n",
|
333
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.6669 - loss: 1.6527\n",
|
334
|
-
"Epoch 29/250\n",
|
335
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6567 - loss: 1.6107\n",
|
336
|
-
"Epoch 30/250\n",
|
337
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6562 - loss: 1.5859\n",
|
338
|
-
"Epoch 31/250\n",
|
339
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6768 - loss: 1.5303\n",
|
340
|
-
"Epoch 32/250\n",
|
341
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6676 - loss: 1.5063\n",
|
342
|
-
"Epoch 33/250\n",
|
343
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6758 - loss: 1.5048\n",
|
344
|
-
"Epoch 34/250\n",
|
345
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6856 - loss: 1.4455\n",
|
346
|
-
"Epoch 35/250\n",
|
347
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.6933 - loss: 1.4395\n",
|
348
|
-
"Epoch 36/250\n",
|
349
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6828 - loss: 1.4123\n",
|
350
|
-
"Epoch 37/250\n",
|
351
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6816 - loss: 1.3697\n",
|
352
|
-
"Epoch 38/250\n",
|
353
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.6765 - loss: 1.3983 \n",
|
354
|
-
"Epoch 39/250\n",
|
355
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6890 - loss: 1.3791\n",
|
356
|
-
"Epoch 40/250\n",
|
357
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6858 - loss: 1.3224\n",
|
358
|
-
"Epoch 41/250\n",
|
359
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6773 - loss: 1.3356\n",
|
360
|
-
"Epoch 42/250\n",
|
361
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7078 - loss: 1.2610\n",
|
362
|
-
"Epoch 43/250\n",
|
363
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6823 - loss: 1.3231\n",
|
364
|
-
"Epoch 44/250\n",
|
365
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6857 - loss: 1.2862\n",
|
366
|
-
"Epoch 45/250\n",
|
367
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6810 - loss: 1.2644\n",
|
368
|
-
"Epoch 46/250\n",
|
369
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7053 - loss: 1.2733\n",
|
370
|
-
"Epoch 47/250\n",
|
371
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6911 - loss: 1.2492\n",
|
372
|
-
"Epoch 48/250\n",
|
373
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6948 - loss: 1.2085\n",
|
374
|
-
"Epoch 49/250\n",
|
375
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7002 - loss: 1.1929\n",
|
376
|
-
"Epoch 50/250\n",
|
377
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6789 - loss: 1.2071\n",
|
378
|
-
"Epoch 51/250\n",
|
379
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7086 - loss: 1.1786\n",
|
380
|
-
"Epoch 52/250\n",
|
381
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7023 - loss: 1.1867\n",
|
382
|
-
"Epoch 53/250\n",
|
383
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6882 - loss: 1.1937\n",
|
384
|
-
"Epoch 54/250\n",
|
385
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7204 - loss: 1.1244\n",
|
386
|
-
"Epoch 55/250\n",
|
387
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7124 - loss: 1.1174\n",
|
388
|
-
"Epoch 56/250\n",
|
389
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7141 - loss: 1.1203\n",
|
390
|
-
"Epoch 57/250\n",
|
391
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7081 - loss: 1.1245\n",
|
392
|
-
"Epoch 58/250\n",
|
393
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.6781 - loss: 1.1441\n",
|
394
|
-
"Epoch 59/250\n",
|
395
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7033 - loss: 1.1250\n",
|
396
|
-
"Epoch 60/250\n",
|
397
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6858 - loss: 1.1300\n",
|
398
|
-
"Epoch 61/250\n",
|
399
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7026 - loss: 1.0910\n",
|
400
|
-
"Epoch 62/250\n",
|
401
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7125 - loss: 1.0977\n",
|
402
|
-
"Epoch 63/250\n",
|
403
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6824 - loss: 1.1461\n",
|
404
|
-
"Epoch 64/250\n",
|
405
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7119 - loss: 1.0453\n",
|
406
|
-
"Epoch 65/250\n",
|
407
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7243 - loss: 1.0098\n",
|
408
|
-
"Epoch 66/250\n",
|
409
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7026 - loss: 1.0282\n",
|
410
|
-
"Epoch 67/250\n",
|
411
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7046 - loss: 1.0299\n",
|
412
|
-
"Epoch 68/250\n",
|
413
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6984 - loss: 1.0382\n",
|
414
|
-
"Epoch 69/250\n",
|
415
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 0.7155 - loss: 1.0104\n",
|
416
|
-
"Epoch 70/250\n",
|
417
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7284 - loss: 1.0011\n",
|
418
|
-
"Epoch 71/250\n",
|
419
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6857 - loss: 1.0424 \n",
|
420
|
-
"Epoch 72/250\n",
|
421
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7005 - loss: 1.0137\n",
|
422
|
-
"Epoch 73/250\n",
|
423
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7045 - loss: 1.0055\n",
|
424
|
-
"Epoch 74/250\n",
|
425
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7245 - loss: 0.9540\n",
|
426
|
-
"Epoch 75/250\n",
|
427
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6887 - loss: 0.9784\n",
|
428
|
-
"Epoch 76/250\n",
|
429
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6903 - loss: 1.0153\n",
|
430
|
-
"Epoch 77/250\n",
|
431
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6836 - loss: 1.0235\n",
|
432
|
-
"Epoch 78/250\n",
|
433
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7089 - loss: 0.9448\n",
|
434
|
-
"Epoch 79/250\n",
|
435
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.6936 - loss: 0.9708\n",
|
436
|
-
"Epoch 80/250\n",
|
437
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.6905 - loss: 0.9770\n",
|
438
|
-
"Epoch 81/250\n",
|
439
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7035 - loss: 0.9573\n",
|
440
|
-
"Epoch 82/250\n",
|
441
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7114 - loss: 0.9332\n",
|
442
|
-
"Epoch 83/250\n",
|
443
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6936 - loss: 0.9725\n",
|
444
|
-
"Epoch 84/250\n",
|
445
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - accuracy: 0.7073 - loss: 0.9231\n",
|
446
|
-
"Epoch 85/250\n",
|
447
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7012 - loss: 0.9412\n",
|
448
|
-
"Epoch 86/250\n",
|
449
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7106 - loss: 0.9572\n",
|
450
|
-
"Epoch 87/250\n",
|
451
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7129 - loss: 0.9076\n",
|
452
|
-
"Epoch 88/250\n",
|
453
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6834 - loss: 0.9151\n",
|
454
|
-
"Epoch 89/250\n",
|
455
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7067 - loss: 0.8893\n",
|
456
|
-
"Epoch 90/250\n",
|
457
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6995 - loss: 0.9119\n",
|
458
|
-
"Epoch 91/250\n",
|
459
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7206 - loss: 0.8794\n",
|
460
|
-
"Epoch 92/250\n",
|
461
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7004 - loss: 0.9174\n",
|
462
|
-
"Epoch 93/250\n",
|
463
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7050 - loss: 0.9097\n",
|
464
|
-
"Epoch 94/250\n",
|
465
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7292 - loss: 0.8522\n",
|
466
|
-
"Epoch 95/250\n",
|
467
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.7206 - loss: 0.8803\n",
|
468
|
-
"Epoch 96/250\n",
|
469
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7267 - loss: 0.8682\n",
|
470
|
-
"Epoch 97/250\n",
|
471
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7091 - loss: 0.8823\n",
|
472
|
-
"Epoch 98/250\n",
|
473
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7204 - loss: 0.8807 \n",
|
474
|
-
"Epoch 99/250\n",
|
475
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7032 - loss: 0.8802\n",
|
476
|
-
"Epoch 100/250\n",
|
477
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.7341 - loss: 0.8194\n",
|
478
|
-
"Epoch 101/250\n",
|
479
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7159 - loss: 0.8322 \n",
|
480
|
-
"Epoch 102/250\n",
|
481
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7190 - loss: 0.8357\n",
|
482
|
-
"Epoch 103/250\n",
|
483
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7228 - loss: 0.8570 \n",
|
484
|
-
"Epoch 104/250\n",
|
485
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6886 - loss: 0.8731\n",
|
486
|
-
"Epoch 105/250\n",
|
487
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7017 - loss: 0.8473 \n",
|
488
|
-
"Epoch 106/250\n",
|
489
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6952 - loss: 0.8597\n",
|
490
|
-
"Epoch 107/250\n",
|
491
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7070 - loss: 0.8317 \n",
|
492
|
-
"Epoch 108/250\n",
|
493
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7082 - loss: 0.8033\n",
|
494
|
-
"Epoch 109/250\n",
|
495
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7239 - loss: 0.8137 \n",
|
496
|
-
"Epoch 110/250\n",
|
497
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7115 - loss: 0.8258\n",
|
498
|
-
"Epoch 111/250\n",
|
499
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7082 - loss: 0.8286\n",
|
500
|
-
"Epoch 112/250\n",
|
501
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7241 - loss: 0.8125\n",
|
502
|
-
"Epoch 113/250\n",
|
503
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7044 - loss: 0.8416\n",
|
504
|
-
"Epoch 114/250\n",
|
505
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7167 - loss: 0.7990\n",
|
506
|
-
"Epoch 115/250\n",
|
507
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7140 - loss: 0.7978 \n",
|
508
|
-
"Epoch 116/250\n",
|
509
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7192 - loss: 0.7953\n",
|
510
|
-
"Epoch 117/250\n",
|
511
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.7227 - loss: 0.8115\n",
|
512
|
-
"Epoch 118/250\n",
|
513
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7201 - loss: 0.7926\n",
|
514
|
-
"Epoch 119/250\n",
|
515
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7162 - loss: 0.7952\n",
|
516
|
-
"Epoch 120/250\n",
|
517
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7059 - loss: 0.8028\n",
|
518
|
-
"Epoch 121/250\n",
|
519
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7239 - loss: 0.7502 \n",
|
520
|
-
"Epoch 122/250\n",
|
521
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7024 - loss: 0.7778\n",
|
522
|
-
"Epoch 123/250\n",
|
523
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7310 - loss: 0.7704 \n",
|
524
|
-
"Epoch 124/250\n",
|
525
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7205 - loss: 0.7640 \n",
|
526
|
-
"Epoch 125/250\n",
|
527
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - accuracy: 0.7036 - loss: 0.7966\n",
|
528
|
-
"Epoch 126/250\n",
|
529
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.7259 - loss: 0.7673 \n",
|
530
|
-
"Epoch 127/250\n",
|
531
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7058 - loss: 0.7865 \n",
|
532
|
-
"Epoch 128/250\n",
|
533
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7042 - loss: 0.8111\n",
|
534
|
-
"Epoch 129/250\n",
|
535
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7125 - loss: 0.8145 \n",
|
536
|
-
"Epoch 130/250\n",
|
537
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6967 - loss: 0.8053\n",
|
538
|
-
"Epoch 131/250\n",
|
539
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6922 - loss: 0.8116\n",
|
540
|
-
"Epoch 132/250\n",
|
541
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7216 - loss: 0.7449 \n",
|
542
|
-
"Epoch 133/250\n",
|
543
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7144 - loss: 0.7686\n",
|
544
|
-
"Epoch 134/250\n",
|
545
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.7086 - loss: 0.7445\n",
|
546
|
-
"Epoch 135/250\n",
|
547
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7180 - loss: 0.7439\n",
|
548
|
-
"Epoch 136/250\n",
|
549
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7410 - loss: 0.6904 \n",
|
550
|
-
"Epoch 137/250\n",
|
551
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7318 - loss: 0.7259\n",
|
552
|
-
"Epoch 138/250\n",
|
553
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6875 - loss: 0.7982\n",
|
554
|
-
"Epoch 139/250\n",
|
555
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6970 - loss: 0.7766 \n",
|
556
|
-
"Epoch 140/250\n",
|
557
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.6936 - loss: 0.7664 \n",
|
558
|
-
"Epoch 141/250\n",
|
559
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6946 - loss: 0.7588\n",
|
560
|
-
"Epoch 142/250\n",
|
561
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7286 - loss: 0.7381\n",
|
562
|
-
"Epoch 143/250\n",
|
563
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7031 - loss: 0.7409\n",
|
564
|
-
"Epoch 144/250\n",
|
565
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7162 - loss: 0.7413\n",
|
566
|
-
"Epoch 145/250\n",
|
567
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7382 - loss: 0.7325\n",
|
568
|
-
"Epoch 146/250\n",
|
569
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7095 - loss: 0.7451\n",
|
570
|
-
"Epoch 147/250\n",
|
571
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7101 - loss: 0.7607\n",
|
572
|
-
"Epoch 148/250\n",
|
573
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7076 - loss: 0.7827\n",
|
574
|
-
"Epoch 149/250\n",
|
575
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7218 - loss: 0.7108 \n",
|
576
|
-
"Epoch 150/250\n",
|
577
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - accuracy: 0.6948 - loss: 0.7612 \n",
|
578
|
-
"Epoch 151/250\n",
|
579
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.7143 - loss: 0.7427\n",
|
580
|
-
"Epoch 152/250\n",
|
581
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7052 - loss: 0.7566\n",
|
582
|
-
"Epoch 153/250\n",
|
583
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7034 - loss: 0.7464 \n",
|
584
|
-
"Epoch 154/250\n",
|
585
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7034 - loss: 0.7527\n",
|
586
|
-
"Epoch 155/250\n",
|
587
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7064 - loss: 0.7284\n",
|
588
|
-
"Epoch 156/250\n",
|
589
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - accuracy: 0.7086 - loss: 0.7173\n",
|
590
|
-
"Epoch 157/250\n",
|
591
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7049 - loss: 0.7294\n",
|
592
|
-
"Epoch 158/250\n",
|
593
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7036 - loss: 0.7525\n",
|
594
|
-
"Epoch 159/250\n",
|
595
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.7021 - loss: 0.7507\n",
|
596
|
-
"Epoch 160/250\n",
|
597
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7132 - loss: 0.7242\n",
|
598
|
-
"Epoch 161/250\n",
|
599
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7237 - loss: 0.6735\n",
|
600
|
-
"Epoch 162/250\n",
|
601
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.7283 - loss: 0.6973\n",
|
602
|
-
"Epoch 163/250\n",
|
603
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.7089 - loss: 0.7319\n",
|
604
|
-
"Epoch 164/250\n",
|
605
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.7203 - loss: 0.7241\n",
|
606
|
-
"Epoch 165/250\n",
|
607
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7119 - loss: 0.7178\n",
|
608
|
-
"Epoch 166/250\n",
|
609
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7063 - loss: 0.7305\n",
|
610
|
-
"Epoch 167/250\n",
|
611
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6894 - loss: 0.7351 \n",
|
612
|
-
"Epoch 168/250\n",
|
613
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7219 - loss: 0.6875\n",
|
614
|
-
"Epoch 169/250\n",
|
615
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7101 - loss: 0.7262\n",
|
616
|
-
"Epoch 170/250\n",
|
617
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7254 - loss: 0.7118\n",
|
618
|
-
"Epoch 171/250\n",
|
619
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7249 - loss: 0.6926\n",
|
620
|
-
"Epoch 172/250\n",
|
621
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7064 - loss: 0.6949\n",
|
622
|
-
"Epoch 173/250\n",
|
623
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7167 - loss: 0.7175\n",
|
624
|
-
"Epoch 174/250\n",
|
625
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.6844 - loss: 0.7526\n",
|
626
|
-
"Epoch 175/250\n",
|
627
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.6736 - loss: 0.7528\n",
|
628
|
-
"Epoch 176/250\n",
|
629
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7152 - loss: 0.7204\n",
|
630
|
-
"Epoch 177/250\n",
|
631
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7141 - loss: 0.6917\n",
|
632
|
-
"Epoch 178/250\n",
|
633
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.7134 - loss: 0.7064\n",
|
634
|
-
"Epoch 179/250\n",
|
635
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7131 - loss: 0.7019\n",
|
636
|
-
"Epoch 180/250\n",
|
637
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.7189 - loss: 0.7045\n",
|
638
|
-
"Epoch 181/250\n",
|
639
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7009 - loss: 0.7435\n",
|
640
|
-
"Epoch 182/250\n",
|
641
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7157 - loss: 0.7009\n",
|
642
|
-
"Epoch 183/250\n",
|
643
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6985 - loss: 0.7155\n",
|
644
|
-
"Epoch 184/250\n",
|
645
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7115 - loss: 0.7120\n",
|
646
|
-
"Epoch 185/250\n",
|
647
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6972 - loss: 0.7242\n",
|
648
|
-
"Epoch 186/250\n",
|
649
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6939 - loss: 0.7229\n",
|
650
|
-
"Epoch 187/250\n",
|
651
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7231 - loss: 0.6567\n",
|
652
|
-
"Epoch 188/250\n",
|
653
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7214 - loss: 0.6956\n",
|
654
|
-
"Epoch 189/250\n",
|
655
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6931 - loss: 0.7148\n",
|
656
|
-
"Epoch 190/250\n",
|
657
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 0.7197 - loss: 0.6843\n",
|
658
|
-
"Epoch 191/250\n",
|
659
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7291 - loss: 0.6710 \n",
|
660
|
-
"Epoch 192/250\n",
|
661
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7240 - loss: 0.6849\n",
|
662
|
-
"Epoch 193/250\n",
|
663
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7110 - loss: 0.7114\n",
|
664
|
-
"Epoch 194/250\n",
|
665
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7200 - loss: 0.6760\n",
|
666
|
-
"Epoch 195/250\n",
|
667
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7203 - loss: 0.6839\n",
|
668
|
-
"Epoch 196/250\n",
|
669
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7132 - loss: 0.7116\n",
|
670
|
-
"Epoch 197/250\n",
|
671
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7079 - loss: 0.7144\n",
|
672
|
-
"Epoch 198/250\n",
|
673
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6899 - loss: 0.7612\n",
|
674
|
-
"Epoch 199/250\n",
|
675
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.6813 - loss: 0.7378\n",
|
676
|
-
"Epoch 200/250\n",
|
677
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7178 - loss: 0.6629 \n",
|
678
|
-
"Epoch 201/250\n",
|
679
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6934 - loss: 0.7109\n",
|
680
|
-
"Epoch 202/250\n",
|
681
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7158 - loss: 0.6588\n",
|
682
|
-
"Epoch 203/250\n",
|
683
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.7164 - loss: 0.6759 \n",
|
684
|
-
"Epoch 204/250\n",
|
685
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7029 - loss: 0.6886 \n",
|
686
|
-
"Epoch 205/250\n",
|
687
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.7099 - loss: 0.6757\n",
|
688
|
-
"Epoch 206/250\n",
|
689
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.7141 - loss: 0.6794\n",
|
690
|
-
"Epoch 207/250\n",
|
691
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7171 - loss: 0.6742\n",
|
692
|
-
"Epoch 208/250\n",
|
693
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7088 - loss: 0.6813\n",
|
694
|
-
"Epoch 209/250\n",
|
695
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7047 - loss: 0.6745\n",
|
696
|
-
"Epoch 210/250\n",
|
697
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7177 - loss: 0.6843 \n",
|
698
|
-
"Epoch 211/250\n",
|
699
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7108 - loss: 0.6794\n",
|
700
|
-
"Epoch 212/250\n",
|
701
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7310 - loss: 0.6627\n",
|
702
|
-
"Epoch 213/250\n",
|
703
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7242 - loss: 0.6488\n",
|
704
|
-
"Epoch 214/250\n",
|
705
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.6976 - loss: 0.6948\n",
|
706
|
-
"Epoch 215/250\n",
|
707
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7143 - loss: 0.6751\n",
|
708
|
-
"Epoch 216/250\n",
|
709
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7120 - loss: 0.6936\n",
|
710
|
-
"Epoch 217/250\n",
|
711
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6966 - loss: 0.7077\n",
|
712
|
-
"Epoch 218/250\n",
|
713
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7136 - loss: 0.7025\n",
|
714
|
-
"Epoch 219/250\n",
|
715
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7048 - loss: 0.6946\n",
|
716
|
-
"Epoch 220/250\n",
|
717
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.6927 - loss: 0.7021\n",
|
718
|
-
"Epoch 221/250\n",
|
719
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7099 - loss: 0.6956\n",
|
720
|
-
"Epoch 222/250\n",
|
721
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7003 - loss: 0.6831\n",
|
722
|
-
"Epoch 223/250\n",
|
723
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7025 - loss: 0.6807\n",
|
724
|
-
"Epoch 224/250\n",
|
725
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.7119 - loss: 0.6638\n",
|
726
|
-
"Epoch 225/250\n",
|
727
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7106 - loss: 0.6792\n",
|
728
|
-
"Epoch 226/250\n",
|
729
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7141 - loss: 0.6728 \n",
|
730
|
-
"Epoch 227/250\n",
|
731
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6990 - loss: 0.6887\n",
|
732
|
-
"Epoch 228/250\n",
|
733
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7251 - loss: 0.6658\n",
|
734
|
-
"Epoch 229/250\n",
|
735
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7283 - loss: 0.6472 \n",
|
736
|
-
"Epoch 230/250\n",
|
737
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7097 - loss: 0.7016\n",
|
738
|
-
"Epoch 231/250\n",
|
739
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7098 - loss: 0.6944\n",
|
740
|
-
"Epoch 232/250\n",
|
741
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7165 - loss: 0.6822\n",
|
742
|
-
"Epoch 233/250\n",
|
743
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.7083 - loss: 0.6725\n",
|
744
|
-
"Epoch 234/250\n",
|
745
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7148 - loss: 0.7113\n",
|
746
|
-
"Epoch 235/250\n",
|
747
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7128 - loss: 0.6877\n",
|
748
|
-
"Epoch 236/250\n",
|
749
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7119 - loss: 0.6790\n",
|
750
|
-
"Epoch 237/250\n",
|
751
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7065 - loss: 0.6821 \n",
|
752
|
-
"Epoch 238/250\n",
|
753
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7218 - loss: 0.6439\n",
|
754
|
-
"Epoch 239/250\n",
|
755
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.6977 - loss: 0.6968\n",
|
756
|
-
"Epoch 240/250\n",
|
757
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.6997 - loss: 0.6897\n",
|
758
|
-
"Epoch 241/250\n",
|
759
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7258 - loss: 0.6510\n",
|
760
|
-
"Epoch 242/250\n",
|
761
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7023 - loss: 0.6563 \n",
|
762
|
-
"Epoch 243/250\n",
|
763
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7206 - loss: 0.6590\n",
|
764
|
-
"Epoch 244/250\n",
|
765
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7264 - loss: 0.6616\n",
|
766
|
-
"Epoch 245/250\n",
|
767
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7258 - loss: 0.6244\n",
|
768
|
-
"Epoch 246/250\n",
|
769
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7104 - loss: 0.6832\n",
|
770
|
-
"Epoch 247/250\n",
|
771
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7303 - loss: 0.6390\n",
|
772
|
-
"Epoch 248/250\n",
|
773
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7302 - loss: 0.6613\n",
|
774
|
-
"Epoch 249/250\n",
|
775
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6991 - loss: 0.6966\n",
|
776
|
-
"Epoch 250/250\n",
|
777
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7018 - loss: 0.6779\n"
|
778
|
-
]
|
779
|
-
},
|
780
|
-
{
|
781
|
-
"data": {
|
782
|
-
"text/plain": [
|
783
|
-
"<keras.src.callbacks.history.History at 0x20912cf66f0>"
|
784
|
-
]
|
785
|
-
},
|
786
|
-
"execution_count": 12,
|
787
|
-
"metadata": {},
|
788
|
-
"output_type": "execute_result"
|
789
|
-
}
|
790
|
-
],
|
791
|
-
"source": [
|
792
|
-
"# Train the model\n",
|
793
|
-
"model.fit(source_sequences, target_sequences_one_hot,batch_size = 64, epochs=250)"
|
794
|
-
]
|
795
|
-
},
|
796
|
-
{
|
797
|
-
"cell_type": "code",
|
798
|
-
"execution_count": 13,
|
799
|
-
"metadata": {},
|
800
|
-
"outputs": [
|
801
|
-
{
|
802
|
-
"name": "stdin",
|
803
|
-
"output_type": "stream",
|
804
|
-
"text": [
|
805
|
-
"Enter String : Thanks\n"
|
806
|
-
]
|
807
|
-
},
|
808
|
-
{
|
809
|
-
"name": "stdout",
|
810
|
-
"output_type": "stream",
|
811
|
-
"text": [
|
812
|
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1s/step\n",
|
813
|
-
"Input Sequence: Thanks\n",
|
814
|
-
"Translated Sequence: Gracias!\n"
|
815
|
-
]
|
816
|
-
}
|
817
|
-
],
|
818
|
-
"source": [
|
819
|
-
"# Translate a new input sequence\n",
|
820
|
-
"x = input(\"Enter String : \")\n",
|
821
|
-
"input_sequence = x\n",
|
822
|
-
"input_sequence = [source_char_to_int[char] for char in input_sequence]\n",
|
823
|
-
"input_sequence = tf.keras.preprocessing.sequence.pad_sequences([input_sequence], maxlen=max_sequence_length, padding='post')\n",
|
824
|
-
"output_sequence = model.predict(input_sequence)[0]\n",
|
825
|
-
"# Decode the output sequence\n",
|
826
|
-
"output_sequence = [target_int_to_char[np.argmax(char)] for char in output_sequence]\n",
|
827
|
-
"print(\"Input Sequence:\",x)\n",
|
828
|
-
"print(\"Translated Sequence:\", ''.join(output_sequence))"
|
829
|
-
]
|
830
|
-
}
|
831
|
-
],
|
832
|
-
"metadata": {
|
833
|
-
"kaggle": {
|
834
|
-
"accelerator": "none",
|
835
|
-
"dataSources": [
|
836
|
-
{
|
837
|
-
"datasetId": 5923474,
|
838
|
-
"sourceId": 9689378,
|
839
|
-
"sourceType": "datasetVersion"
|
840
|
-
}
|
841
|
-
],
|
842
|
-
"dockerImageVersionId": 30786,
|
843
|
-
"isGpuEnabled": false,
|
844
|
-
"isInternetEnabled": true,
|
845
|
-
"language": "python",
|
846
|
-
"sourceType": "notebook"
|
847
|
-
},
|
848
|
-
"kernelspec": {
|
849
|
-
"display_name": "Python 3 (ipykernel)",
|
850
|
-
"language": "python",
|
851
|
-
"name": "python3"
|
852
|
-
},
|
853
|
-
"language_info": {
|
854
|
-
"codemirror_mode": {
|
855
|
-
"name": "ipython",
|
856
|
-
"version": 3
|
857
|
-
},
|
858
|
-
"file_extension": ".py",
|
859
|
-
"mimetype": "text/x-python",
|
860
|
-
"name": "python",
|
861
|
-
"nbconvert_exporter": "python",
|
862
|
-
"pygments_lexer": "ipython3",
|
863
|
-
"version": "3.12.4"
|
864
|
-
}
|
865
|
-
},
|
866
|
-
"nbformat": 4,
|
867
|
-
"nbformat_minor": 4
|
868
|
-
}
|