noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (228) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
  17. noshot-0.1.8.dist-info/RECORD +24 -0
  18. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  19. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  20. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  21. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  22. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  23. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  24. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  25. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  26. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  27. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  28. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  29. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  30. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  31. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  32. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  33. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  34. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  35. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  36. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  37. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  38. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  39. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  40. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  41. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  42. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  43. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  44. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  45. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  46. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  47. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  48. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  49. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  50. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  51. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  52. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  53. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  54. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  55. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  56. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  57. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  58. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  59. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  60. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  61. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  62. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  63. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  64. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  65. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  66. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  67. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  68. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  69. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  70. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  71. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  72. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  73. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  74. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  77. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  78. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  79. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  80. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  81. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  82. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  83. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  84. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  85. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  86. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  87. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  88. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  89. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  90. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  91. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  92. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  93. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  94. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  95. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  96. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  97. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  98. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  99. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  100. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  101. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  103. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  104. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  105. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  106. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  107. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  108. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  109. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  110. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  111. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  112. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  113. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  114. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  115. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  116. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  117. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  118. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  119. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  120. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  121. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  122. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  123. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  124. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  125. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  126. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  127. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  128. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  129. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  130. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  131. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  132. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  133. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  134. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  135. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  136. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  137. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  138. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  139. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  140. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  141. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  142. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  143. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  144. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  145. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  162. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  163. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  164. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  165. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  166. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  167. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  168. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  169. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  170. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  171. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  172. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  173. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  174. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  175. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  176. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  177. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  178. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  179. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  180. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  181. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  182. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  183. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  184. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  185. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  186. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  187. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  188. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  189. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  190. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  191. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  192. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  193. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  194. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  195. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  196. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  197. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  198. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  199. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  200. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  201. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  202. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  203. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  204. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  205. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  206. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  207. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  208. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  209. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  210. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  211. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  213. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  214. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  215. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  216. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  217. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  218. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  219. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  220. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  221. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  222. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  223. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  224. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  225. noshot-0.1.7.dist-info/RECORD +0 -216
  226. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
  227. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
  228. {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,868 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "import warnings\n",
10
- "warnings.filterwarnings('ignore')"
11
- ]
12
- },
13
- {
14
- "cell_type": "code",
15
- "execution_count": 2,
16
- "metadata": {
17
- "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
18
- "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5"
19
- },
20
- "outputs": [],
21
- "source": [
22
- "import tensorflow as tf\n",
23
- "import numpy as np\n",
24
- "import pandas as pd"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": 3,
30
- "metadata": {},
31
- "outputs": [
32
- {
33
- "data": {
34
- "text/html": [
35
- "<div>\n",
36
- "<style scoped>\n",
37
- " .dataframe tbody tr th:only-of-type {\n",
38
- " vertical-align: middle;\n",
39
- " }\n",
40
- "\n",
41
- " .dataframe tbody tr th {\n",
42
- " vertical-align: top;\n",
43
- " }\n",
44
- "\n",
45
- " .dataframe thead th {\n",
46
- " text-align: right;\n",
47
- " }\n",
48
- "</style>\n",
49
- "<table border=\"1\" class=\"dataframe\">\n",
50
- " <thead>\n",
51
- " <tr style=\"text-align: right;\">\n",
52
- " <th></th>\n",
53
- " <th>english</th>\n",
54
- " <th>spanish</th>\n",
55
- " </tr>\n",
56
- " </thead>\n",
57
- " <tbody>\n",
58
- " <tr>\n",
59
- " <th>0</th>\n",
60
- " <td>Go.</td>\n",
61
- " <td>Ve.</td>\n",
62
- " </tr>\n",
63
- " <tr>\n",
64
- " <th>1</th>\n",
65
- " <td>Go.</td>\n",
66
- " <td>Vete.</td>\n",
67
- " </tr>\n",
68
- " <tr>\n",
69
- " <th>2</th>\n",
70
- " <td>Go.</td>\n",
71
- " <td>Vaya.</td>\n",
72
- " </tr>\n",
73
- " <tr>\n",
74
- " <th>3</th>\n",
75
- " <td>Go.</td>\n",
76
- " <td>Váyase.</td>\n",
77
- " </tr>\n",
78
- " <tr>\n",
79
- " <th>4</th>\n",
80
- " <td>Hi.</td>\n",
81
- " <td>Hola.</td>\n",
82
- " </tr>\n",
83
- " <tr>\n",
84
- " <th>5</th>\n",
85
- " <td>Run!</td>\n",
86
- " <td>¡Corre!</td>\n",
87
- " </tr>\n",
88
- " <tr>\n",
89
- " <th>6</th>\n",
90
- " <td>Run.</td>\n",
91
- " <td>Corred.</td>\n",
92
- " </tr>\n",
93
- " <tr>\n",
94
- " <th>7</th>\n",
95
- " <td>Who?</td>\n",
96
- " <td>¿Quién?</td>\n",
97
- " </tr>\n",
98
- " <tr>\n",
99
- " <th>8</th>\n",
100
- " <td>Fire!</td>\n",
101
- " <td>¡Fuego!</td>\n",
102
- " </tr>\n",
103
- " <tr>\n",
104
- " <th>9</th>\n",
105
- " <td>Fire!</td>\n",
106
- " <td>¡Incendio!</td>\n",
107
- " </tr>\n",
108
- " </tbody>\n",
109
- "</table>\n",
110
- "</div>"
111
- ],
112
- "text/plain": [
113
- " english spanish\n",
114
- "0 Go. Ve.\n",
115
- "1 Go. Vete.\n",
116
- "2 Go. Vaya.\n",
117
- "3 Go. Váyase.\n",
118
- "4 Hi. Hola.\n",
119
- "5 Run! ¡Corre!\n",
120
- "6 Run. Corred.\n",
121
- "7 Who? ¿Quién?\n",
122
- "8 Fire! ¡Fuego!\n",
123
- "9 Fire! ¡Incendio!"
124
- ]
125
- },
126
- "execution_count": 3,
127
- "metadata": {},
128
- "output_type": "execute_result"
129
- }
130
- ],
131
- "source": [
132
- "df = pd.read_csv('data.csv')\n",
133
- "df.head(10)"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": 4,
139
- "metadata": {},
140
- "outputs": [
141
- {
142
- "data": {
143
- "text/plain": [
144
- "Index(['english', 'spanish'], dtype='object')"
145
- ]
146
- },
147
- "execution_count": 4,
148
- "metadata": {},
149
- "output_type": "execute_result"
150
- }
151
- ],
152
- "source": [
153
- "df.columns"
154
- ]
155
- },
156
- {
157
- "cell_type": "code",
158
- "execution_count": 5,
159
- "metadata": {},
160
- "outputs": [],
161
- "source": [
162
- "source_vocab = set(' '.join(df['english'][25:125]))\n",
163
- "target_vocab = set(' '.join(df['spanish'][25:125]))\n",
164
- "source_vocab_size = len(source_vocab)\n",
165
- "target_vocab_size = len(target_vocab)"
166
- ]
167
- },
168
- {
169
- "cell_type": "code",
170
- "execution_count": 6,
171
- "metadata": {},
172
- "outputs": [
173
- {
174
- "name": "stdout",
175
- "output_type": "stream",
176
- "text": [
177
- "{'u', 'q', 'H', 'D', 'O', ' ', 'N', 'n', 'A', 'C', 'B', 'S', 'g', 'L', 'r', 'p', 'f', \"'\", 'c', '1', 't', '9', 'W', 'l', 'a', 's', 'x', 'i', 'I', 'y', 'w', 'G', 'e', 'b', 'k', 'h', 'T', '.', 'm', 'o', '?', 'd', 'R', '!'}\n",
178
- "{'q', 'u', 'H', 'D', 'O', 'j', 'U', ' ', 'N', 'V', 'n', 'C', 'A', 'E', 'É', 'B', 'S', 'g', 'é', 'L', 'r', 'ú', ',', 'p', 'f', 'c', 'Y', '¿', 't', 'R', 'í', 'M', '!', 'z', 'l', 's', 'i', 'á', 'I', 'y', 'v', 'Ó', 'G', 'e', 'b', 'ó', 'h', 'T', '¡', '.', 'P', 'Á', 'm', 'o', '?', 'a', 'd'}\n"
179
- ]
180
- }
181
- ],
182
- "source": [
183
- "print(source_vocab)\n",
184
- "print(target_vocab)"
185
- ]
186
- },
187
- {
188
- "cell_type": "code",
189
- "execution_count": 7,
190
- "metadata": {},
191
- "outputs": [],
192
- "source": [
193
- "source_char_to_int = {char: idx for idx, char in enumerate(source_vocab)}\n",
194
- "target_char_to_int = {char: idx for idx, char in enumerate(target_vocab)}\n",
195
- "source_int_to_char = {idx: char for char, idx in source_char_to_int.items()}\n",
196
- "target_int_to_char = {idx: char for char, idx in target_char_to_int.items()}"
197
- ]
198
- },
199
- {
200
- "cell_type": "code",
201
- "execution_count": 8,
202
- "metadata": {},
203
- "outputs": [],
204
- "source": [
205
- "# Convert text sequences to integer sequences\n",
206
- "source_sequences = [[source_char_to_int[char] for char in text] for text in df['english'][25:125]]\n",
207
- "target_sequences = [[target_char_to_int[char] for char in text] for text in df['spanish'][25:125]]"
208
- ]
209
- },
210
- {
211
- "cell_type": "code",
212
- "execution_count": 9,
213
- "metadata": {},
214
- "outputs": [],
215
- "source": [
216
- "# Pad sequences to the same length\n",
217
- "max_sequence_length = max(len(seq) for seq in source_sequences)\n",
218
- "source_sequences = tf.keras.preprocessing.sequence.pad_sequences(source_sequences, maxlen=max_sequence_length, padding='post')\n",
219
- "target_sequences = tf.keras.preprocessing.sequence.pad_sequences(target_sequences, maxlen=max_sequence_length, padding='post')"
220
- ]
221
- },
222
- {
223
- "cell_type": "code",
224
- "execution_count": 10,
225
- "metadata": {},
226
- "outputs": [],
227
- "source": [
228
- "# Build the model\n",
229
- "input_shape = (max_sequence_length, source_vocab_size)\n",
230
- "output_shape = (max_sequence_length, target_vocab_size)\n",
231
- "\n",
232
- "model = tf.keras.models.Sequential([\n",
233
- " # Embedding layer with a larger dimension for richer word representations\n",
234
- " tf.keras.layers.Embedding(source_vocab_size, 512, input_length=max_sequence_length),\n",
235
- "\n",
236
- " # First Bidirectional RNN layer with dropout and L2 regularization\n",
237
- " tf.keras.layers.Bidirectional(tf.keras.layers.SimpleRNN(512, return_sequences=True, \n",
238
- " kernel_regularizer=tf.keras.regularizers.l2(0.001))),\n",
239
- " tf.keras.layers.Dropout(0.4),\n",
240
- "\n",
241
- " # Second RNN layer with higher units and dropout\n",
242
- " tf.keras.layers.SimpleRNN(512, return_sequences=True),\n",
243
- " tf.keras.layers.Dropout(0.4),\n",
244
- "\n",
245
- " # Third RNN layer for more complex patterns\n",
246
- " tf.keras.layers.SimpleRNN(256, return_sequences=True),\n",
247
- " tf.keras.layers.Dropout(0.3),\n",
248
- "\n",
249
- " # Dense layer for more feature learning\n",
250
- " tf.keras.layers.Dense(512, activation='relu'),\n",
251
- "\n",
252
- " # Output layer to map to the target vocabulary\n",
253
- " tf.keras.layers.Dense(target_vocab_size, activation='softmax')\n",
254
- "])\n",
255
- "\n",
256
- "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
257
- ]
258
- },
259
- {
260
- "cell_type": "code",
261
- "execution_count": 11,
262
- "metadata": {},
263
- "outputs": [],
264
- "source": [
265
- "# One-hot encode the target sequences\n",
266
- "target_sequences_one_hot = np.array([tf.keras.utils.to_categorical(seq, num_classes=target_vocab_size) for seq in target_sequences])"
267
- ]
268
- },
269
- {
270
- "cell_type": "code",
271
- "execution_count": 12,
272
- "metadata": {},
273
- "outputs": [
274
- {
275
- "name": "stdout",
276
- "output_type": "stream",
277
- "text": [
278
- "Epoch 1/250\n",
279
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 73ms/step - accuracy: 0.0383 - loss: 5.0589\n",
280
- "Epoch 2/250\n",
281
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.1816 - loss: 4.4064\n",
282
- "Epoch 3/250\n",
283
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.2055 - loss: 4.0004\n",
284
- "Epoch 4/250\n",
285
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.2451 - loss: 3.7294\n",
286
- "Epoch 5/250\n",
287
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - accuracy: 0.2933 - loss: 3.5840\n",
288
- "Epoch 6/250\n",
289
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.3071 - loss: 3.4270\n",
290
- "Epoch 7/250\n",
291
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - accuracy: 0.3330 - loss: 3.2929\n",
292
- "Epoch 8/250\n",
293
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.3658 - loss: 3.1366\n",
294
- "Epoch 9/250\n",
295
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - accuracy: 0.3885 - loss: 3.0769\n",
296
- "Epoch 10/250\n",
297
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 0.3884 - loss: 2.9481\n",
298
- "Epoch 11/250\n",
299
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.4352 - loss: 2.8165\n",
300
- "Epoch 12/250\n",
301
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.4594 - loss: 2.6767\n",
302
- "Epoch 13/250\n",
303
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.4886 - loss: 2.6054\n",
304
- "Epoch 14/250\n",
305
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.4595 - loss: 2.5226\n",
306
- "Epoch 15/250\n",
307
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.4907 - loss: 2.4308\n",
308
- "Epoch 16/250\n",
309
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.5010 - loss: 2.3419\n",
310
- "Epoch 17/250\n",
311
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.5705 - loss: 2.2170\n",
312
- "Epoch 18/250\n",
313
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.5697 - loss: 2.1596\n",
314
- "Epoch 19/250\n",
315
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.5695 - loss: 2.0619\n",
316
- "Epoch 20/250\n",
317
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.5808 - loss: 2.0323\n",
318
- "Epoch 21/250\n",
319
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.6052 - loss: 1.9811\n",
320
- "Epoch 22/250\n",
321
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.5973 - loss: 1.9575\n",
322
- "Epoch 23/250\n",
323
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.6225 - loss: 1.8432\n",
324
- "Epoch 24/250\n",
325
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.6213 - loss: 1.7922\n",
326
- "Epoch 25/250\n",
327
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6102 - loss: 1.7951\n",
328
- "Epoch 26/250\n",
329
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6453 - loss: 1.7020\n",
330
- "Epoch 27/250\n",
331
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.6447 - loss: 1.6611\n",
332
- "Epoch 28/250\n",
333
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.6669 - loss: 1.6527\n",
334
- "Epoch 29/250\n",
335
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6567 - loss: 1.6107\n",
336
- "Epoch 30/250\n",
337
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6562 - loss: 1.5859\n",
338
- "Epoch 31/250\n",
339
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6768 - loss: 1.5303\n",
340
- "Epoch 32/250\n",
341
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6676 - loss: 1.5063\n",
342
- "Epoch 33/250\n",
343
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6758 - loss: 1.5048\n",
344
- "Epoch 34/250\n",
345
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6856 - loss: 1.4455\n",
346
- "Epoch 35/250\n",
347
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.6933 - loss: 1.4395\n",
348
- "Epoch 36/250\n",
349
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6828 - loss: 1.4123\n",
350
- "Epoch 37/250\n",
351
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6816 - loss: 1.3697\n",
352
- "Epoch 38/250\n",
353
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.6765 - loss: 1.3983 \n",
354
- "Epoch 39/250\n",
355
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6890 - loss: 1.3791\n",
356
- "Epoch 40/250\n",
357
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6858 - loss: 1.3224\n",
358
- "Epoch 41/250\n",
359
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6773 - loss: 1.3356\n",
360
- "Epoch 42/250\n",
361
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7078 - loss: 1.2610\n",
362
- "Epoch 43/250\n",
363
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6823 - loss: 1.3231\n",
364
- "Epoch 44/250\n",
365
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6857 - loss: 1.2862\n",
366
- "Epoch 45/250\n",
367
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6810 - loss: 1.2644\n",
368
- "Epoch 46/250\n",
369
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7053 - loss: 1.2733\n",
370
- "Epoch 47/250\n",
371
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.6911 - loss: 1.2492\n",
372
- "Epoch 48/250\n",
373
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6948 - loss: 1.2085\n",
374
- "Epoch 49/250\n",
375
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7002 - loss: 1.1929\n",
376
- "Epoch 50/250\n",
377
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6789 - loss: 1.2071\n",
378
- "Epoch 51/250\n",
379
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7086 - loss: 1.1786\n",
380
- "Epoch 52/250\n",
381
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7023 - loss: 1.1867\n",
382
- "Epoch 53/250\n",
383
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6882 - loss: 1.1937\n",
384
- "Epoch 54/250\n",
385
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7204 - loss: 1.1244\n",
386
- "Epoch 55/250\n",
387
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7124 - loss: 1.1174\n",
388
- "Epoch 56/250\n",
389
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7141 - loss: 1.1203\n",
390
- "Epoch 57/250\n",
391
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7081 - loss: 1.1245\n",
392
- "Epoch 58/250\n",
393
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.6781 - loss: 1.1441\n",
394
- "Epoch 59/250\n",
395
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7033 - loss: 1.1250\n",
396
- "Epoch 60/250\n",
397
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6858 - loss: 1.1300\n",
398
- "Epoch 61/250\n",
399
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7026 - loss: 1.0910\n",
400
- "Epoch 62/250\n",
401
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7125 - loss: 1.0977\n",
402
- "Epoch 63/250\n",
403
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6824 - loss: 1.1461\n",
404
- "Epoch 64/250\n",
405
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7119 - loss: 1.0453\n",
406
- "Epoch 65/250\n",
407
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7243 - loss: 1.0098\n",
408
- "Epoch 66/250\n",
409
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7026 - loss: 1.0282\n",
410
- "Epoch 67/250\n",
411
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - accuracy: 0.7046 - loss: 1.0299\n",
412
- "Epoch 68/250\n",
413
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6984 - loss: 1.0382\n",
414
- "Epoch 69/250\n",
415
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 0.7155 - loss: 1.0104\n",
416
- "Epoch 70/250\n",
417
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7284 - loss: 1.0011\n",
418
- "Epoch 71/250\n",
419
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6857 - loss: 1.0424 \n",
420
- "Epoch 72/250\n",
421
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7005 - loss: 1.0137\n",
422
- "Epoch 73/250\n",
423
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7045 - loss: 1.0055\n",
424
- "Epoch 74/250\n",
425
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7245 - loss: 0.9540\n",
426
- "Epoch 75/250\n",
427
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6887 - loss: 0.9784\n",
428
- "Epoch 76/250\n",
429
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.6903 - loss: 1.0153\n",
430
- "Epoch 77/250\n",
431
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6836 - loss: 1.0235\n",
432
- "Epoch 78/250\n",
433
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7089 - loss: 0.9448\n",
434
- "Epoch 79/250\n",
435
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.6936 - loss: 0.9708\n",
436
- "Epoch 80/250\n",
437
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.6905 - loss: 0.9770\n",
438
- "Epoch 81/250\n",
439
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7035 - loss: 0.9573\n",
440
- "Epoch 82/250\n",
441
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7114 - loss: 0.9332\n",
442
- "Epoch 83/250\n",
443
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6936 - loss: 0.9725\n",
444
- "Epoch 84/250\n",
445
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - accuracy: 0.7073 - loss: 0.9231\n",
446
- "Epoch 85/250\n",
447
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7012 - loss: 0.9412\n",
448
- "Epoch 86/250\n",
449
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7106 - loss: 0.9572\n",
450
- "Epoch 87/250\n",
451
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7129 - loss: 0.9076\n",
452
- "Epoch 88/250\n",
453
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6834 - loss: 0.9151\n",
454
- "Epoch 89/250\n",
455
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7067 - loss: 0.8893\n",
456
- "Epoch 90/250\n",
457
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6995 - loss: 0.9119\n",
458
- "Epoch 91/250\n",
459
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7206 - loss: 0.8794\n",
460
- "Epoch 92/250\n",
461
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7004 - loss: 0.9174\n",
462
- "Epoch 93/250\n",
463
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7050 - loss: 0.9097\n",
464
- "Epoch 94/250\n",
465
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7292 - loss: 0.8522\n",
466
- "Epoch 95/250\n",
467
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.7206 - loss: 0.8803\n",
468
- "Epoch 96/250\n",
469
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7267 - loss: 0.8682\n",
470
- "Epoch 97/250\n",
471
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7091 - loss: 0.8823\n",
472
- "Epoch 98/250\n",
473
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7204 - loss: 0.8807 \n",
474
- "Epoch 99/250\n",
475
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7032 - loss: 0.8802\n",
476
- "Epoch 100/250\n",
477
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.7341 - loss: 0.8194\n",
478
- "Epoch 101/250\n",
479
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7159 - loss: 0.8322 \n",
480
- "Epoch 102/250\n",
481
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7190 - loss: 0.8357\n",
482
- "Epoch 103/250\n",
483
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7228 - loss: 0.8570 \n",
484
- "Epoch 104/250\n",
485
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6886 - loss: 0.8731\n",
486
- "Epoch 105/250\n",
487
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7017 - loss: 0.8473 \n",
488
- "Epoch 106/250\n",
489
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6952 - loss: 0.8597\n",
490
- "Epoch 107/250\n",
491
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7070 - loss: 0.8317 \n",
492
- "Epoch 108/250\n",
493
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7082 - loss: 0.8033\n",
494
- "Epoch 109/250\n",
495
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7239 - loss: 0.8137 \n",
496
- "Epoch 110/250\n",
497
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7115 - loss: 0.8258\n",
498
- "Epoch 111/250\n",
499
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7082 - loss: 0.8286\n",
500
- "Epoch 112/250\n",
501
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7241 - loss: 0.8125\n",
502
- "Epoch 113/250\n",
503
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7044 - loss: 0.8416\n",
504
- "Epoch 114/250\n",
505
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7167 - loss: 0.7990\n",
506
- "Epoch 115/250\n",
507
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7140 - loss: 0.7978 \n",
508
- "Epoch 116/250\n",
509
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7192 - loss: 0.7953\n",
510
- "Epoch 117/250\n",
511
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.7227 - loss: 0.8115\n",
512
- "Epoch 118/250\n",
513
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7201 - loss: 0.7926\n",
514
- "Epoch 119/250\n",
515
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7162 - loss: 0.7952\n",
516
- "Epoch 120/250\n",
517
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7059 - loss: 0.8028\n",
518
- "Epoch 121/250\n",
519
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7239 - loss: 0.7502 \n",
520
- "Epoch 122/250\n",
521
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.7024 - loss: 0.7778\n",
522
- "Epoch 123/250\n",
523
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7310 - loss: 0.7704 \n",
524
- "Epoch 124/250\n",
525
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7205 - loss: 0.7640 \n",
526
- "Epoch 125/250\n",
527
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - accuracy: 0.7036 - loss: 0.7966\n",
528
- "Epoch 126/250\n",
529
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.7259 - loss: 0.7673 \n",
530
- "Epoch 127/250\n",
531
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7058 - loss: 0.7865 \n",
532
- "Epoch 128/250\n",
533
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7042 - loss: 0.8111\n",
534
- "Epoch 129/250\n",
535
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7125 - loss: 0.8145 \n",
536
- "Epoch 130/250\n",
537
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6967 - loss: 0.8053\n",
538
- "Epoch 131/250\n",
539
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6922 - loss: 0.8116\n",
540
- "Epoch 132/250\n",
541
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7216 - loss: 0.7449 \n",
542
- "Epoch 133/250\n",
543
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7144 - loss: 0.7686\n",
544
- "Epoch 134/250\n",
545
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.7086 - loss: 0.7445\n",
546
- "Epoch 135/250\n",
547
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7180 - loss: 0.7439\n",
548
- "Epoch 136/250\n",
549
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7410 - loss: 0.6904 \n",
550
- "Epoch 137/250\n",
551
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7318 - loss: 0.7259\n",
552
- "Epoch 138/250\n",
553
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6875 - loss: 0.7982\n",
554
- "Epoch 139/250\n",
555
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6970 - loss: 0.7766 \n",
556
- "Epoch 140/250\n",
557
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.6936 - loss: 0.7664 \n",
558
- "Epoch 141/250\n",
559
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6946 - loss: 0.7588\n",
560
- "Epoch 142/250\n",
561
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7286 - loss: 0.7381\n",
562
- "Epoch 143/250\n",
563
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7031 - loss: 0.7409\n",
564
- "Epoch 144/250\n",
565
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7162 - loss: 0.7413\n",
566
- "Epoch 145/250\n",
567
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7382 - loss: 0.7325\n",
568
- "Epoch 146/250\n",
569
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7095 - loss: 0.7451\n",
570
- "Epoch 147/250\n",
571
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7101 - loss: 0.7607\n",
572
- "Epoch 148/250\n",
573
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7076 - loss: 0.7827\n",
574
- "Epoch 149/250\n",
575
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7218 - loss: 0.7108 \n",
576
- "Epoch 150/250\n",
577
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - accuracy: 0.6948 - loss: 0.7612 \n",
578
- "Epoch 151/250\n",
579
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - accuracy: 0.7143 - loss: 0.7427\n",
580
- "Epoch 152/250\n",
581
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7052 - loss: 0.7566\n",
582
- "Epoch 153/250\n",
583
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7034 - loss: 0.7464 \n",
584
- "Epoch 154/250\n",
585
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.7034 - loss: 0.7527\n",
586
- "Epoch 155/250\n",
587
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7064 - loss: 0.7284\n",
588
- "Epoch 156/250\n",
589
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - accuracy: 0.7086 - loss: 0.7173\n",
590
- "Epoch 157/250\n",
591
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7049 - loss: 0.7294\n",
592
- "Epoch 158/250\n",
593
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7036 - loss: 0.7525\n",
594
- "Epoch 159/250\n",
595
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.7021 - loss: 0.7507\n",
596
- "Epoch 160/250\n",
597
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7132 - loss: 0.7242\n",
598
- "Epoch 161/250\n",
599
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7237 - loss: 0.6735\n",
600
- "Epoch 162/250\n",
601
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.7283 - loss: 0.6973\n",
602
- "Epoch 163/250\n",
603
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.7089 - loss: 0.7319\n",
604
- "Epoch 164/250\n",
605
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.7203 - loss: 0.7241\n",
606
- "Epoch 165/250\n",
607
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7119 - loss: 0.7178\n",
608
- "Epoch 166/250\n",
609
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7063 - loss: 0.7305\n",
610
- "Epoch 167/250\n",
611
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6894 - loss: 0.7351 \n",
612
- "Epoch 168/250\n",
613
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7219 - loss: 0.6875\n",
614
- "Epoch 169/250\n",
615
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7101 - loss: 0.7262\n",
616
- "Epoch 170/250\n",
617
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7254 - loss: 0.7118\n",
618
- "Epoch 171/250\n",
619
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7249 - loss: 0.6926\n",
620
- "Epoch 172/250\n",
621
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - accuracy: 0.7064 - loss: 0.6949\n",
622
- "Epoch 173/250\n",
623
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7167 - loss: 0.7175\n",
624
- "Epoch 174/250\n",
625
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.6844 - loss: 0.7526\n",
626
- "Epoch 175/250\n",
627
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.6736 - loss: 0.7528\n",
628
- "Epoch 176/250\n",
629
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7152 - loss: 0.7204\n",
630
- "Epoch 177/250\n",
631
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7141 - loss: 0.6917\n",
632
- "Epoch 178/250\n",
633
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.7134 - loss: 0.7064\n",
634
- "Epoch 179/250\n",
635
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7131 - loss: 0.7019\n",
636
- "Epoch 180/250\n",
637
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.7189 - loss: 0.7045\n",
638
- "Epoch 181/250\n",
639
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7009 - loss: 0.7435\n",
640
- "Epoch 182/250\n",
641
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7157 - loss: 0.7009\n",
642
- "Epoch 183/250\n",
643
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6985 - loss: 0.7155\n",
644
- "Epoch 184/250\n",
645
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - accuracy: 0.7115 - loss: 0.7120\n",
646
- "Epoch 185/250\n",
647
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6972 - loss: 0.7242\n",
648
- "Epoch 186/250\n",
649
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6939 - loss: 0.7229\n",
650
- "Epoch 187/250\n",
651
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7231 - loss: 0.6567\n",
652
- "Epoch 188/250\n",
653
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7214 - loss: 0.6956\n",
654
- "Epoch 189/250\n",
655
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.6931 - loss: 0.7148\n",
656
- "Epoch 190/250\n",
657
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 0.7197 - loss: 0.6843\n",
658
- "Epoch 191/250\n",
659
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7291 - loss: 0.6710 \n",
660
- "Epoch 192/250\n",
661
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7240 - loss: 0.6849\n",
662
- "Epoch 193/250\n",
663
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7110 - loss: 0.7114\n",
664
- "Epoch 194/250\n",
665
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7200 - loss: 0.6760\n",
666
- "Epoch 195/250\n",
667
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7203 - loss: 0.6839\n",
668
- "Epoch 196/250\n",
669
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7132 - loss: 0.7116\n",
670
- "Epoch 197/250\n",
671
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7079 - loss: 0.7144\n",
672
- "Epoch 198/250\n",
673
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.6899 - loss: 0.7612\n",
674
- "Epoch 199/250\n",
675
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.6813 - loss: 0.7378\n",
676
- "Epoch 200/250\n",
677
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7178 - loss: 0.6629 \n",
678
- "Epoch 201/250\n",
679
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.6934 - loss: 0.7109\n",
680
- "Epoch 202/250\n",
681
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7158 - loss: 0.6588\n",
682
- "Epoch 203/250\n",
683
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.7164 - loss: 0.6759 \n",
684
- "Epoch 204/250\n",
685
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7029 - loss: 0.6886 \n",
686
- "Epoch 205/250\n",
687
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.7099 - loss: 0.6757\n",
688
- "Epoch 206/250\n",
689
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.7141 - loss: 0.6794\n",
690
- "Epoch 207/250\n",
691
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7171 - loss: 0.6742\n",
692
- "Epoch 208/250\n",
693
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7088 - loss: 0.6813\n",
694
- "Epoch 209/250\n",
695
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7047 - loss: 0.6745\n",
696
- "Epoch 210/250\n",
697
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7177 - loss: 0.6843 \n",
698
- "Epoch 211/250\n",
699
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7108 - loss: 0.6794\n",
700
- "Epoch 212/250\n",
701
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7310 - loss: 0.6627\n",
702
- "Epoch 213/250\n",
703
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7242 - loss: 0.6488\n",
704
- "Epoch 214/250\n",
705
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - accuracy: 0.6976 - loss: 0.6948\n",
706
- "Epoch 215/250\n",
707
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7143 - loss: 0.6751\n",
708
- "Epoch 216/250\n",
709
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7120 - loss: 0.6936\n",
710
- "Epoch 217/250\n",
711
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6966 - loss: 0.7077\n",
712
- "Epoch 218/250\n",
713
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7136 - loss: 0.7025\n",
714
- "Epoch 219/250\n",
715
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - accuracy: 0.7048 - loss: 0.6946\n",
716
- "Epoch 220/250\n",
717
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.6927 - loss: 0.7021\n",
718
- "Epoch 221/250\n",
719
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7099 - loss: 0.6956\n",
720
- "Epoch 222/250\n",
721
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7003 - loss: 0.6831\n",
722
- "Epoch 223/250\n",
723
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7025 - loss: 0.6807\n",
724
- "Epoch 224/250\n",
725
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.7119 - loss: 0.6638\n",
726
- "Epoch 225/250\n",
727
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7106 - loss: 0.6792\n",
728
- "Epoch 226/250\n",
729
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7141 - loss: 0.6728 \n",
730
- "Epoch 227/250\n",
731
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.6990 - loss: 0.6887\n",
732
- "Epoch 228/250\n",
733
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7251 - loss: 0.6658\n",
734
- "Epoch 229/250\n",
735
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7283 - loss: 0.6472 \n",
736
- "Epoch 230/250\n",
737
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.7097 - loss: 0.7016\n",
738
- "Epoch 231/250\n",
739
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7098 - loss: 0.6944\n",
740
- "Epoch 232/250\n",
741
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7165 - loss: 0.6822\n",
742
- "Epoch 233/250\n",
743
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.7083 - loss: 0.6725\n",
744
- "Epoch 234/250\n",
745
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - accuracy: 0.7148 - loss: 0.7113\n",
746
- "Epoch 235/250\n",
747
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7128 - loss: 0.6877\n",
748
- "Epoch 236/250\n",
749
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7119 - loss: 0.6790\n",
750
- "Epoch 237/250\n",
751
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - accuracy: 0.7065 - loss: 0.6821 \n",
752
- "Epoch 238/250\n",
753
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.7218 - loss: 0.6439\n",
754
- "Epoch 239/250\n",
755
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.6977 - loss: 0.6968\n",
756
- "Epoch 240/250\n",
757
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - accuracy: 0.6997 - loss: 0.6897\n",
758
- "Epoch 241/250\n",
759
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7258 - loss: 0.6510\n",
760
- "Epoch 242/250\n",
761
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7023 - loss: 0.6563 \n",
762
- "Epoch 243/250\n",
763
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.7206 - loss: 0.6590\n",
764
- "Epoch 244/250\n",
765
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7264 - loss: 0.6616\n",
766
- "Epoch 245/250\n",
767
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7258 - loss: 0.6244\n",
768
- "Epoch 246/250\n",
769
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7104 - loss: 0.6832\n",
770
- "Epoch 247/250\n",
771
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.7303 - loss: 0.6390\n",
772
- "Epoch 248/250\n",
773
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7302 - loss: 0.6613\n",
774
- "Epoch 249/250\n",
775
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - accuracy: 0.6991 - loss: 0.6966\n",
776
- "Epoch 250/250\n",
777
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7018 - loss: 0.6779\n"
778
- ]
779
- },
780
- {
781
- "data": {
782
- "text/plain": [
783
- "<keras.src.callbacks.history.History at 0x20912cf66f0>"
784
- ]
785
- },
786
- "execution_count": 12,
787
- "metadata": {},
788
- "output_type": "execute_result"
789
- }
790
- ],
791
- "source": [
792
- "# Train the model\n",
793
- "model.fit(source_sequences, target_sequences_one_hot,batch_size = 64, epochs=250)"
794
- ]
795
- },
796
- {
797
- "cell_type": "code",
798
- "execution_count": 13,
799
- "metadata": {},
800
- "outputs": [
801
- {
802
- "name": "stdin",
803
- "output_type": "stream",
804
- "text": [
805
- "Enter String : Thanks\n"
806
- ]
807
- },
808
- {
809
- "name": "stdout",
810
- "output_type": "stream",
811
- "text": [
812
- "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1s/step\n",
813
- "Input Sequence: Thanks\n",
814
- "Translated Sequence: Gracias!\n"
815
- ]
816
- }
817
- ],
818
- "source": [
819
- "# Translate a new input sequence\n",
820
- "x = input(\"Enter String : \")\n",
821
- "input_sequence = x\n",
822
- "input_sequence = [source_char_to_int[char] for char in input_sequence]\n",
823
- "input_sequence = tf.keras.preprocessing.sequence.pad_sequences([input_sequence], maxlen=max_sequence_length, padding='post')\n",
824
- "output_sequence = model.predict(input_sequence)[0]\n",
825
- "# Decode the output sequence\n",
826
- "output_sequence = [target_int_to_char[np.argmax(char)] for char in output_sequence]\n",
827
- "print(\"Input Sequence:\",x)\n",
828
- "print(\"Translated Sequence:\", ''.join(output_sequence))"
829
- ]
830
- }
831
- ],
832
- "metadata": {
833
- "kaggle": {
834
- "accelerator": "none",
835
- "dataSources": [
836
- {
837
- "datasetId": 5923474,
838
- "sourceId": 9689378,
839
- "sourceType": "datasetVersion"
840
- }
841
- ],
842
- "dockerImageVersionId": 30786,
843
- "isGpuEnabled": false,
844
- "isInternetEnabled": true,
845
- "language": "python",
846
- "sourceType": "notebook"
847
- },
848
- "kernelspec": {
849
- "display_name": "Python 3 (ipykernel)",
850
- "language": "python",
851
- "name": "python3"
852
- },
853
- "language_info": {
854
- "codemirror_mode": {
855
- "name": "ipython",
856
- "version": 3
857
- },
858
- "file_extension": ".py",
859
- "mimetype": "text/x-python",
860
- "name": "python",
861
- "nbconvert_exporter": "python",
862
- "pygments_lexer": "ipython3",
863
- "version": "3.12.4"
864
- }
865
- },
866
- "nbformat": 4,
867
- "nbformat_minor": 4
868
- }