noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,3095 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 55,
|
6
|
-
"id": "82296d9f-6bd1-4f6e-b9b7-3fa6bf7609aa",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"name": "stdout",
|
11
|
-
"output_type": "stream",
|
12
|
-
"text": [
|
13
|
-
"Loaded Text:\n",
|
14
|
-
"In the bustling city of San Francisco, tech enthusiasts from all over the world gathered for the annual Tech Innovators Conference. The event was a melting pot of ideas, innovations, and collaborations. Among the attendees was Emily Chen, a renowned AI researcher from MIT, who was eager to present her latest findings on machine learning algorithms. Emily's colleague, Dr. Michael Thompson, who is also a well-respected figure in the field of artificial intelligence, accompanied her. The duo had been working on a groundbreaking project that aimed to revolutionize the way neural networks process information.\n",
|
15
|
-
"\n",
|
16
|
-
"As the conference commenced, Emily and Michael were greeted by a host of familiar faces. Jennifer Lee, a data scientist from Google, was there to showcase her team's advancements in quantum computing. She was joined by her mentor, Dr. Robert Lang, who had been a pioneer in the field of computational neuroscience. Jennifer introduced Emily and Michael to her friend, Carlos Mendez, a software engineer at Facebook who specialized in developing algorithms for social media analytics.\n",
|
17
|
-
"\n",
|
18
|
-
"The keynote speaker for the event was none other than Dr. Elizabeth Warren, a distinguished professor at Stanford University. Dr. Warren's speech focused on the ethical implications of AI and the importance of developing technologies that benefit humanity as a whole. Her insights sparked a lively discussion among the attendees, including Sarah Johnson, a policy advisor from the United Nations, and Ahmed Khan, a cybersecurity expert from Microsoft.\n",
|
19
|
-
"\n",
|
20
|
-
"During the breaks between sessions, the attendees mingled and exchanged ideas. Emily caught up with her former classmate, David Kim, who now works as a data analyst at Amazon. David introduced her to his colleague, Jessica Brown, a machine learning engineer with a knack for developing innovative solutions to complex problems. Emily was particularly interested in Jessica's work on natural language processing and invited her to collaborate on a future project.\n",
|
21
|
-
"\n",
|
22
|
-
"In another corner of the room, Michael was deep in conversation with Raj Patel, a roboticist from Carnegie Mellon University. Raj had recently developed a new type of robotic arm that could perform delicate surgical procedures with unprecedented precision. He was accompanied by his research assistant, Maria Gonzalez, who had been instrumental in the project's success. Michael was fascinated by their work and proposed a partnership to integrate their technology with his AI algorithms.\n",
|
23
|
-
"\n",
|
24
|
-
"As the day progressed, the conference attendees were treated to a series of insightful presentations. Dr. James Clark from Harvard University shared his research on deep learning and its applications in healthcare. He was followed by Lisa Robinson, a computer vision expert from Nvidia, who demonstrated the latest advancements in image recognition technology. The audience was particularly impressed by the presentation from Dr. Ananya Singh, an AI ethicist from Oxford University, who discussed the societal impacts of AI and the importance of responsible innovation.\n",
|
25
|
-
"\n",
|
26
|
-
"In the evening, the attendees gathered for a gala dinner at the Grand Hyatt Hotel. The event was a perfect opportunity for networking and fostering new collaborations. Emily found herself seated next to Henry Zhang, a venture capitalist from Sequoia Capital, who was keen to invest in promising AI startups. They were joined by Priya Sharma, a legal expert from the Electronic Frontier Foundation, who provided valuable insights into the regulatory landscape of emerging technologies.\n",
|
27
|
-
"\n",
|
28
|
-
"At the same table, Michael struck up a conversation with Laura Martinez, a bioinformatics researcher from the University of California, Berkeley. Laura had been working on a project to use AI for predicting genetic disorders and was interested in Michael's expertise in neural networks. They exchanged contact information and planned to meet after the conference to discuss potential collaborations.\n",
|
29
|
-
"\n",
|
30
|
-
"Meanwhile, Jennifer and Carlos were deep in discussion with Ethan Liu, a blockchain developer from IBM, about the potential of combining AI with blockchain technology to enhance data security. Ethan's colleague, Dr. Olivia Parker, joined the conversation, bringing her expertise in cryptography to the table. The group brainstormed various applications and decided to form a working group to explore these ideas further.\n",
|
31
|
-
"\n",
|
32
|
-
"The next morning, the conference resumed with a panel discussion featuring several industry leaders. Among them were Dr. William Harris, the CEO of AI Inc., and Dr. Katherine Adams, a senior researcher at OpenAI. They discussed the future of AI and its potential to transform industries ranging from healthcare to finance. The panel also included Dr. Mei Ling, a professor at the University of Tokyo, who highlighted the advancements in AI research in Asia.\n",
|
33
|
-
"\n",
|
34
|
-
"In the audience, Emily and Michael sat with their new acquaintances, eager to absorb the wealth of knowledge being shared. They were particularly inspired by the talk from Dr. Samuel Green, a cognitive scientist from Yale University, who discussed the intersection of AI and human cognition. His research on how AI can augment human decision-making resonated deeply with the audience.\n",
|
35
|
-
"\n",
|
36
|
-
"As the conference drew to a close, the attendees reflected on the valuable connections they had made and the new knowledge they had gained. Emily and Michael felt energized and excited about the future of their research. They had formed new collaborations with Jessica, Raj, and Laura, and were eager to start working on their joint projects.\n",
|
37
|
-
"\n",
|
38
|
-
"Before leaving, they took a moment to thank the conference organizers, including Dr. Karen Wilson, the director of the Tech Innovators Network, and her team. The event had been a resounding success, bringing together some of the brightest minds in the field of AI and fostering a spirit of innovation and collaboration.\n",
|
39
|
-
"\n",
|
40
|
-
"As they boarded their flight back to Boston, Emily and Michael couldn't help but feel optimistic about the future. They knew that the connections they had made at the conference would lead to exciting new opportunities and advancements in their research. They were more determined than ever to push the boundaries of what AI could achieve and to ensure that their work would have a positive impact on the world.\n",
|
41
|
-
"\n",
|
42
|
-
"In the weeks that followed, Emily and Michael stayed in touch with their new collaborators. They began working on joint projects, sharing ideas and resources to push the boundaries of AI research. Emily collaborated with Jessica on a project to enhance natural language processing algorithms, while Michael worked with Raj and Maria to integrate their robotic technology with his neural networks. Laura and Emily started a project on using AI to predict genetic disorders, combining their expertise to tackle complex biological problems.\n",
|
43
|
-
"\n",
|
44
|
-
"The conference had not only expanded their professional networks but also enriched their understanding of the diverse applications of AI. They were grateful for the opportunity to connect with so many talented individuals and looked forward to the future with renewed enthusiasm and a sense of purpose. The Tech Innovators Conference had been a transformative experience, setting the stage for new discoveries and groundbreaking advancements in the field of artificial intelligence.\n"
|
45
|
-
]
|
46
|
-
}
|
47
|
-
],
|
48
|
-
"source": [
|
49
|
-
"# Load the text file\n",
|
50
|
-
"file_path = 'E:/126156048/leb_2/name_essay.txt' # Replace with the path to your text file\n",
|
51
|
-
"with open(file_path, 'r') as file:\n",
|
52
|
-
" text = file.read()\n",
|
53
|
-
"\n",
|
54
|
-
"print(\"Loaded Text:\")\n",
|
55
|
-
"print(text)"
|
56
|
-
]
|
57
|
-
},
|
58
|
-
{
|
59
|
-
"cell_type": "code",
|
60
|
-
"execution_count": 81,
|
61
|
-
"id": "069a035a-428f-49ba-8215-75053e901f05",
|
62
|
-
"metadata": {},
|
63
|
-
"outputs": [
|
64
|
-
{
|
65
|
-
"name": "stderr",
|
66
|
-
"output_type": "stream",
|
67
|
-
"text": [
|
68
|
-
"[nltk_data] Downloading package stopwords to\n",
|
69
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
70
|
-
"[nltk_data] Package stopwords is already up-to-date!\n"
|
71
|
-
]
|
72
|
-
}
|
73
|
-
],
|
74
|
-
"source": [
|
75
|
-
"from nltk.corpus import stopwords\n",
|
76
|
-
"# Download stop words if not already downloaded\n",
|
77
|
-
"nltk.download('stopwords')\n",
|
78
|
-
"\n",
|
79
|
-
"# Load the stop words\n",
|
80
|
-
"stop_words = set(stopwords.words('english'))\n",
|
81
|
-
"\n",
|
82
|
-
"# Remove stop words from tokens\n",
|
83
|
-
"filteredd_tokens = [word for word in tokens if word.lower() not in stop_words]\n",
|
84
|
-
"\n",
|
85
|
-
"list_stop = [\",\" , \".\" , \"'\", \"'s\"] \n",
|
86
|
-
"filtered_tokens = [word for word in filteredd_tokens if word not in list_stop]"
|
87
|
-
]
|
88
|
-
},
|
89
|
-
{
|
90
|
-
"cell_type": "code",
|
91
|
-
"execution_count": 82,
|
92
|
-
"id": "68cf8b0b-52b7-486d-a5eb-8cec56e14712",
|
93
|
-
"metadata": {},
|
94
|
-
"outputs": [],
|
95
|
-
"source": [
|
96
|
-
"# Initialize stemmer and lemmatizer\n",
|
97
|
-
"stemmer = PorterStemmer()\n",
|
98
|
-
"lemmatizer = WordNetLemmatizer()"
|
99
|
-
]
|
100
|
-
},
|
101
|
-
{
|
102
|
-
"cell_type": "code",
|
103
|
-
"execution_count": 83,
|
104
|
-
"id": "64f4ffcb-f57a-42be-abbc-b83cf8538fac",
|
105
|
-
"metadata": {},
|
106
|
-
"outputs": [],
|
107
|
-
"source": [
|
108
|
-
"# Define a function to get the part of speech for lemmatization\n",
|
109
|
-
"def get_wordnet_pos(treebank_tag):\n",
|
110
|
-
" if treebank_tag.startswith('J'):\n",
|
111
|
-
" return wordnet.ADJ\n",
|
112
|
-
" elif treebank_tag.startswith('V'):\n",
|
113
|
-
" return wordnet.VERB\n",
|
114
|
-
" elif treebank_tag.startswith('N'):\n",
|
115
|
-
" return wordnet.NOUN\n",
|
116
|
-
" elif treebank_tag.startswith('R'):\n",
|
117
|
-
" return wordnet.ADV\n",
|
118
|
-
" else:\n",
|
119
|
-
" return wordnet.NOUN"
|
120
|
-
]
|
121
|
-
},
|
122
|
-
{
|
123
|
-
"cell_type": "code",
|
124
|
-
"execution_count": 84,
|
125
|
-
"id": "56c7583e-b9a3-4de2-95a7-de4e5dd1d390",
|
126
|
-
"metadata": {},
|
127
|
-
"outputs": [],
|
128
|
-
"source": [
|
129
|
-
"# Perform stemming\n",
|
130
|
-
"stems = [stemmer.stem(word) for word in filtered_tokens]\n",
|
131
|
-
"\n",
|
132
|
-
"# Perform lemmatization\n",
|
133
|
-
"tagged_tokens = nltk.pos_tag(filtered_tokens)\n",
|
134
|
-
"lemmas = [lemmatizer.lemmatize(word, get_wordnet_pos(tag)) for word, tag in tagged_tokens]"
|
135
|
-
]
|
136
|
-
},
|
137
|
-
{
|
138
|
-
"cell_type": "code",
|
139
|
-
"execution_count": 85,
|
140
|
-
"id": "24efe7bd-0ed5-4582-af18-504b6fbdfe7b",
|
141
|
-
"metadata": {},
|
142
|
-
"outputs": [
|
143
|
-
{
|
144
|
-
"name": "stdout",
|
145
|
-
"output_type": "stream",
|
146
|
-
"text": [
|
147
|
-
"\n",
|
148
|
-
"Stems : \n",
|
149
|
-
"['bustl', 'citi', 'san', 'francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'tech', 'innov', 'confer', 'event', 'melt', 'pot', 'idea', 'innov', 'collabor', 'among', 'attende', 'emili', 'chen', 'renown', 'ai', 'research', 'mit', 'eager', 'present', 'latest', 'find', 'machin', 'learn', 'algorithm', 'emili', 'colleagu', 'dr.', 'michael', 'thompson', 'also', 'well-respect', 'figur', 'field', 'artifici', 'intellig', 'accompani', 'duo', 'work', 'groundbreak', 'project', 'aim', 'revolution', 'way', 'neural', 'network', 'process', 'inform', 'confer', 'commenc', 'emili', 'michael', 'greet', 'host', 'familiar', 'face', 'jennif', 'lee', 'data', 'scientist', 'googl', 'showcas', 'team', 'advanc', 'quantum', 'comput', 'join', 'mentor', 'dr.', 'robert', 'lang', 'pioneer', 'field', 'comput', 'neurosci', 'jennif', 'introduc', 'emili', 'michael', 'friend', 'carlo', 'mendez', 'softwar', 'engin', 'facebook', 'special', 'develop', 'algorithm', 'social', 'media', 'analyt', 'keynot', 'speaker', 'event', 'none', 'dr.', 'elizabeth', 'warren', 'distinguish', 'professor', 'stanford', 'univers', 'dr.', 'warren', 'speech', 'focus', 'ethic', 'implic', 'ai', 'import', 'develop', 'technolog', 'benefit', 'human', 'whole', 'insight', 'spark', 'live', 'discuss', 'among', 'attende', 'includ', 'sarah', 'johnson', 'polici', 'advisor', 'unit', 'nation', 'ahm', 'khan', 'cybersecur', 'expert', 'microsoft', 'break', 'session', 'attende', 'mingl', 'exchang', 'idea', 'emili', 'caught', 'former', 'classmat', 'david', 'kim', 'work', 'data', 'analyst', 'amazon', 'david', 'introduc', 'colleagu', 'jessica', 'brown', 'machin', 'learn', 'engin', 'knack', 'develop', 'innov', 'solut', 'complex', 'problem', 'emili', 'particularli', 'interest', 'jessica', 'work', 'natur', 'languag', 'process', 'invit', 'collabor', 'futur', 'project', 'anoth', 'corner', 'room', 'michael', 'deep', 'convers', 'raj', 'patel', 'roboticist', 'carnegi', 'mellon', 'univers', 'raj', 'recent', 'develop', 'new', 'type', 'robot', 'arm', 'could', 'perform', 'delic', 'surgic', 'procedur', 'unpreced', 'precis', 'accompani', 'research', 'assist', 'maria', 'gonzalez', 'instrument', 'project', 'success', 'michael', 'fascin', 'work', 'propos', 'partnership', 'integr', 'technolog', 'ai', 'algorithm', 'day', 'progress', 'confer', 'attende', 'treat', 'seri', 'insight', 'present', 'dr.', 'jame', 'clark', 'harvard', 'univers', 'share', 'research', 'deep', 'learn', 'applic', 'healthcar', 'follow', 'lisa', 'robinson', 'comput', 'vision', 'expert', 'nvidia', 'demonstr', 'latest', 'advanc', 'imag', 'recognit', 'technolog', 'audienc', 'particularli', 'impress', 'present', 'dr.', 'ananya', 'singh', 'ai', 'ethicist', 'oxford', 'univers', 'discuss', 'societ', 'impact', 'ai', 'import', 'respons', 'innov', 'even', 'attende', 'gather', 'gala', 'dinner', 'grand', 'hyatt', 'hotel', 'event', 'perfect', 'opportun', 'network', 'foster', 'new', 'collabor', 'emili', 'found', 'seat', 'next', 'henri', 'zhang', 'ventur', 'capitalist', 'sequoia', 'capit', 'keen', 'invest', 'promis', 'ai', 'startup', 'join', 'priya', 'sharma', 'legal', 'expert', 'electron', 'frontier', 'foundat', 'provid', 'valuabl', 'insight', 'regulatori', 'landscap', 'emerg', 'technolog', 'tabl', 'michael', 'struck', 'convers', 'laura', 'martinez', 'bioinformat', 'research', 'univers', 'california', 'berkeley', 'laura', 'work', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'interest', 'michael', 'expertis', 'neural', 'network', 'exchang', 'contact', 'inform', 'plan', 'meet', 'confer', 'discuss', 'potenti', 'collabor', 'meanwhil', 'jennif', 'carlo', 'deep', 'discuss', 'ethan', 'liu', 'blockchain', 'develop', 'ibm', 'potenti', 'combin', 'ai', 'blockchain', 'technolog', 'enhanc', 'data', 'secur', 'ethan', 'colleagu', 'dr.', 'olivia', 'parker', 'join', 'convers', 'bring', 'expertis', 'cryptographi', 'tabl', 'group', 'brainstorm', 'variou', 'applic', 'decid', 'form', 'work', 'group', 'explor', 'idea', 'next', 'morn', 'confer', 'resum', 'panel', 'discuss', 'featur', 'sever', 'industri', 'leader', 'among', 'dr.', 'william', 'harri', 'ceo', 'ai', 'inc.', 'dr.', 'katherin', 'adam', 'senior', 'research', 'openai', 'discuss', 'futur', 'ai', 'potenti', 'transform', 'industri', 'rang', 'healthcar', 'financ', 'panel', 'also', 'includ', 'dr.', 'mei', 'ling', 'professor', 'univers', 'tokyo', 'highlight', 'advanc', 'ai', 'research', 'asia', 'audienc', 'emili', 'michael', 'sat', 'new', 'acquaint', 'eager', 'absorb', 'wealth', 'knowledg', 'share', 'particularli', 'inspir', 'talk', 'dr.', 'samuel', 'green', 'cognit', 'scientist', 'yale', 'univers', 'discuss', 'intersect', 'ai', 'human', 'cognit', 'research', 'ai', 'augment', 'human', 'decision-mak', 'reson', 'deepli', 'audienc', 'confer', 'drew', 'close', 'attende', 'reflect', 'valuabl', 'connect', 'made', 'new', 'knowledg', 'gain', 'emili', 'michael', 'felt', 'energ', 'excit', 'futur', 'research', 'form', 'new', 'collabor', 'jessica', 'raj', 'laura', 'eager', 'start', 'work', 'joint', 'project', 'leav', 'took', 'moment', 'thank', 'confer', 'organ', 'includ', 'dr.', 'karen', 'wilson', 'director', 'tech', 'innov', 'network', 'team', 'event', 'resound', 'success', 'bring', 'togeth', 'brightest', 'mind', 'field', 'ai', 'foster', 'spirit', 'innov', 'collabor', 'board', 'flight', 'back', 'boston', 'emili', 'michael', 'could', \"n't\", 'help', 'feel', 'optimist', 'futur', 'knew', 'connect', 'made', 'confer', 'would', 'lead', 'excit', 'new', 'opportun', 'advanc', 'research', 'determin', 'ever', 'push', 'boundari', 'ai', 'could', 'achiev', 'ensur', 'work', 'would', 'posit', 'impact', 'world', 'week', 'follow', 'emili', 'michael', 'stay', 'touch', 'new', 'collabor', 'began', 'work', 'joint', 'project', 'share', 'idea', 'resourc', 'push', 'boundari', 'ai', 'research', 'emili', 'collabor', 'jessica', 'project', 'enhanc', 'natur', 'languag', 'process', 'algorithm', 'michael', 'work', 'raj', 'maria', 'integr', 'robot', 'technolog', 'neural', 'network', 'laura', 'emili', 'start', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'combin', 'expertis', 'tackl', 'complex', 'biolog', 'problem', 'confer', 'expand', 'profession', 'network', 'also', 'enrich', 'understand', 'divers', 'applic', 'ai', 'grate', 'opportun', 'connect', 'mani', 'talent', 'individu', 'look', 'forward', 'futur', 'renew', 'enthusiasm', 'sens', 'purpos', 'tech', 'innov', 'confer', 'transform', 'experi', 'set', 'stage', 'new', 'discoveri', 'groundbreak', 'advanc', 'field', 'artifici', 'intellig']\n",
|
150
|
-
"\n",
|
151
|
-
"Tagged Tokens : \n",
|
152
|
-
"[('bustling', 'VBG'), ('city', 'NN'), ('San', 'NNP'), ('Francisco', 'NNP'), ('tech', 'NN'), ('enthusiasts', 'VBZ'), ('world', 'NN'), ('gathered', 'VBD'), ('annual', 'JJ'), ('Tech', 'NNP'), ('Innovators', 'NNP'), ('Conference', 'NNP'), ('event', 'NN'), ('melting', 'VBG'), ('pot', 'NN'), ('ideas', 'NNS'), ('innovations', 'NNS'), ('collaborations', 'NNS'), ('Among', 'IN'), ('attendees', 'NNS'), ('Emily', 'RB'), ('Chen', 'NNP'), ('renowned', 'VBD'), ('AI', 'NNP'), ('researcher', 'NN'), ('MIT', 'NNP'), ('eager', 'JJ'), ('present', 'JJ'), ('latest', 'JJS'), ('findings', 'NNS'), ('machine', 'NN'), ('learning', 'VBG'), ('algorithms', 'JJ'), ('Emily', 'NNP'), ('colleague', 'NN'), ('Dr.', 'NNP'), ('Michael', 'NNP'), ('Thompson', 'NNP'), ('also', 'RB'), ('well-respected', 'JJ'), ('figure', 'NN'), ('field', 'NN'), ('artificial', 'JJ'), ('intelligence', 'NN'), ('accompanied', 'VBN'), ('duo', 'NN'), ('working', 'VBG'), ('groundbreaking', 'VBG'), ('project', 'NN'), ('aimed', 'VBN'), ('revolutionize', 'VB'), ('way', 'NN'), ('neural', 'JJ'), ('networks', 'NNS'), ('process', 'NN'), ('information', 'NN'), ('conference', 'NN'), ('commenced', 'VBD'), ('Emily', 'RB'), ('Michael', 'NNP'), ('greeted', 'VBD'), ('host', 'NN'), ('familiar', 'JJ'), ('faces', 'VBZ'), ('Jennifer', 'NNP'), ('Lee', 'NNP'), ('data', 'NNS'), ('scientist', 'NN'), ('Google', 'NNP'), ('showcase', 'NN'), ('team', 'NN'), ('advancements', 'NNS'), ('quantum', 'VBP'), ('computing', 'VBG'), ('joined', 'VBD'), ('mentor', 'NN'), ('Dr.', 'NNP'), ('Robert', 'NNP'), ('Lang', 'NNP'), ('pioneer', 'VBD'), ('field', 'NN'), ('computational', 'JJ'), ('neuroscience', 'NN'), ('Jennifer', 'NNP'), ('introduced', 'VBD'), ('Emily', 'RB'), ('Michael', 'NNP'), ('friend', 'VBP'), ('Carlos', 'NNP'), ('Mendez', 'NNP'), ('software', 'NN'), ('engineer', 'NN'), ('Facebook', 'NNP'), ('specialized', 'VBD'), ('developing', 'VBG'), ('algorithms', 'JJ'), ('social', 'JJ'), ('media', 'NNS'), ('analytics', 'NNS'), ('keynote', 'VBP'), ('speaker', 'NN'), ('event', 'NN'), ('none', 'NN'), ('Dr.', 'NNP'), ('Elizabeth', 'NNP'), ('Warren', 'NNP'), ('distinguished', 'VBD'), ('professor', 'NN'), ('Stanford', 'NNP'), ('University', 'NNP'), ('Dr.', 'NNP'), ('Warren', 'NNP'), ('speech', 'NN'), ('focused', 'VBD'), ('ethical', 'JJ'), ('implications', 'NNS'), ('AI', 'VBP'), ('importance', 'NN'), ('developing', 'VBG'), ('technologies', 'NNS'), ('benefit', 'VBP'), ('humanity', 'NN'), ('whole', 'JJ'), ('insights', 'NNS'), ('sparked', 'VBD'), ('lively', 'JJ'), ('discussion', 'NN'), ('among', 'IN'), ('attendees', 'NNS'), ('including', 'VBG'), ('Sarah', 'NNP'), ('Johnson', 'NNP'), ('policy', 'NN'), ('advisor', 'NN'), ('United', 'NNP'), ('Nations', 'NNP'), ('Ahmed', 'NNP'), ('Khan', 'NNP'), ('cybersecurity', 'NN'), ('expert', 'NN'), ('Microsoft', 'NNP'), ('breaks', 'NNS'), ('sessions', 'NNS'), ('attendees', 'NNS'), ('mingled', 'VBD'), ('exchanged', 'VBN'), ('ideas', 'NNS'), ('Emily', 'RB'), ('caught', 'VBD'), ('former', 'JJ'), ('classmate', 'NN'), ('David', 'NNP'), ('Kim', 'NNP'), ('works', 'VBZ'), ('data', 'NNS'), ('analyst', 'NN'), ('Amazon', 'NNP'), ('David', 'NNP'), ('introduced', 'VBD'), ('colleague', 'NN'), ('Jessica', 'NNP'), ('Brown', 'NNP'), ('machine', 'NN'), ('learning', 'VBG'), ('engineer', 'JJ'), ('knack', 'NN'), ('developing', 'VBG'), ('innovative', 'JJ'), ('solutions', 'NNS'), ('complex', 'JJ'), ('problems', 'NNS'), ('Emily', 'RB'), ('particularly', 'RB'), ('interested', 'JJ'), ('Jessica', 'NNP'), ('work', 'NN'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('invited', 'JJ'), ('collaborate', 'NN'), ('future', 'NN'), ('project', 'NN'), ('another', 'DT'), ('corner', 'NN'), ('room', 'NN'), ('Michael', 'NNP'), ('deep', 'JJ'), ('conversation', 'NN'), ('Raj', 'NNP'), ('Patel', 'NNP'), ('roboticist', 'NN'), ('Carnegie', 'NNP'), ('Mellon', 'NNP'), ('University', 'NNP'), ('Raj', 'NNP'), ('recently', 'RB'), ('developed', 'VBD'), ('new', 'JJ'), ('type', 'NN'), ('robotic', 'JJ'), ('arm', 'NN'), ('could', 'MD'), ('perform', 'VB'), ('delicate', 'JJ'), ('surgical', 'JJ'), ('procedures', 'NNS'), ('unprecedented', 'JJ'), ('precision', 'NN'), ('accompanied', 'VBN'), ('research', 'NN'), ('assistant', 'NN'), ('Maria', 'NNP'), ('Gonzalez', 'NNP'), ('instrumental', 'JJ'), ('project', 'NN'), ('success', 'NN'), ('Michael', 'NNP'), ('fascinated', 'VBD'), ('work', 'NN'), ('proposed', 'VBN'), ('partnership', 'NN'), ('integrate', 'NN'), ('technology', 'NN'), ('AI', 'NNP'), ('algorithms', 'VBD'), ('day', 'NN'), ('progressed', 'VBD'), ('conference', 'NN'), ('attendees', 'NNS'), ('treated', 'VBD'), ('series', 'NN'), ('insightful', 'JJ'), ('presentations', 'NNS'), ('Dr.', 'NNP'), ('James', 'NNP'), ('Clark', 'NNP'), ('Harvard', 'NNP'), ('University', 'NNP'), ('shared', 'VBD'), ('research', 'NN'), ('deep', 'NN'), ('learning', 'NN'), ('applications', 'NNS'), ('healthcare', 'VBP'), ('followed', 'VBN'), ('Lisa', 'NNP'), ('Robinson', 'NNP'), ('computer', 'NN'), ('vision', 'NN'), ('expert', 'JJ'), ('Nvidia', 'NNP'), ('demonstrated', 'VBD'), ('latest', 'JJS'), ('advancements', 'NNS'), ('image', 'NN'), ('recognition', 'NN'), ('technology', 'NN'), ('audience', 'NN'), ('particularly', 'RB'), ('impressed', 'JJ'), ('presentation', 'NN'), ('Dr.', 'NNP'), ('Ananya', 'NNP'), ('Singh', 'NNP'), ('AI', 'NNP'), ('ethicist', 'NN'), ('Oxford', 'NNP'), ('University', 'NNP'), ('discussed', 'VBD'), ('societal', 'JJ'), ('impacts', 'NNS'), ('AI', 'NNP'), ('importance', 'NN'), ('responsible', 'JJ'), ('innovation', 'NN'), ('evening', 'VBG'), ('attendees', 'NNS'), ('gathered', 'VBN'), ('gala', 'NN'), ('dinner', 'NN'), ('Grand', 'NNP'), ('Hyatt', 'NNP'), ('Hotel', 'NNP'), ('event', 'NN'), ('perfect', 'JJ'), ('opportunity', 'NN'), ('networking', 'VBG'), ('fostering', 'VBG'), ('new', 'JJ'), ('collaborations', 'NNS'), ('Emily', 'RB'), ('found', 'VBD'), ('seated', 'VBN'), ('next', 'JJ'), ('Henry', 'NNP'), ('Zhang', 'NNP'), ('venture', 'NN'), ('capitalist', 'NN'), ('Sequoia', 'NNP'), ('Capital', 'NNP'), ('keen', 'JJ'), ('invest', 'JJS'), ('promising', 'VBG'), ('AI', 'NNP'), ('startups', 'NNS'), ('joined', 'VBD'), ('Priya', 'NNP'), ('Sharma', 'NNP'), ('legal', 'JJ'), ('expert', 'NN'), ('Electronic', 'NNP'), ('Frontier', 'NNP'), ('Foundation', 'NNP'), ('provided', 'VBD'), ('valuable', 'JJ'), ('insights', 'NNS'), ('regulatory', 'JJ'), ('landscape', 'NN'), ('emerging', 'VBG'), ('technologies', 'NNS'), ('table', 'JJ'), ('Michael', 'NNP'), ('struck', 'VBD'), ('conversation', 'NN'), ('Laura', 'NNP'), ('Martinez', 'NNP'), ('bioinformatics', 'NNS'), ('researcher', 'VBP'), ('University', 'NNP'), ('California', 'NNP'), ('Berkeley', 'NNP'), ('Laura', 'NNP'), ('working', 'VBG'), ('project', 'NN'), ('use', 'NN'), ('AI', 'NNP'), ('predicting', 'VBG'), ('genetic', 'JJ'), ('disorders', 'NNS'), ('interested', 'JJ'), ('Michael', 'NNP'), ('expertise', 'NN'), ('neural', 'JJ'), ('networks', 'NNS'), ('exchanged', 'VBD'), ('contact', 'JJ'), ('information', 'NN'), ('planned', 'VBN'), ('meet', 'NN'), ('conference', 'NN'), ('discuss', 'VBP'), ('potential', 'JJ'), ('collaborations', 'NNS'), ('Meanwhile', 'RB'), ('Jennifer', 'NNP'), ('Carlos', 'NNP'), ('deep', 'JJ'), ('discussion', 'NN'), ('Ethan', 'NNP'), ('Liu', 'NNP'), ('blockchain', 'VBP'), ('developer', 'NN'), ('IBM', 'NNP'), ('potential', 'JJ'), ('combining', 'NN'), ('AI', 'NNP'), ('blockchain', 'NN'), ('technology', 'NN'), ('enhance', 'NN'), ('data', 'NNS'), ('security', 'NN'), ('Ethan', 'NNP'), ('colleague', 'NN'), ('Dr.', 'NNP'), ('Olivia', 'NNP'), ('Parker', 'NNP'), ('joined', 'VBD'), ('conversation', 'NN'), ('bringing', 'VBG'), ('expertise', 'NN'), ('cryptography', 'NN'), ('table', 'NN'), ('group', 'NN'), ('brainstormed', 'VBD'), ('various', 'JJ'), ('applications', 'NNS'), ('decided', 'VBD'), ('form', 'NN'), ('working', 'VBG'), ('group', 'NN'), ('explore', 'VBD'), ('ideas', 'NNS'), ('next', 'IN'), ('morning', 'NN'), ('conference', 'NN'), ('resumed', 'VBD'), ('panel', 'NN'), ('discussion', 'NN'), ('featuring', 'VBG'), ('several', 'JJ'), ('industry', 'NN'), ('leaders', 'NNS'), ('Among', 'IN'), ('Dr.', 'NNP'), ('William', 'NNP'), ('Harris', 'NNP'), ('CEO', 'NNP'), ('AI', 'NNP'), ('Inc.', 'NNP'), ('Dr.', 'NNP'), ('Katherine', 'NNP'), ('Adams', 'NNP'), ('senior', 'JJ'), ('researcher', 'NN'), ('OpenAI', 'NNP'), ('discussed', 'VBD'), ('future', 'JJ'), ('AI', 'NNP'), ('potential', 'JJ'), ('transform', 'NN'), ('industries', 'NNS'), ('ranging', 'VBG'), ('healthcare', 'NN'), ('finance', 'NN'), ('panel', 'NN'), ('also', 'RB'), ('included', 'VBD'), ('Dr.', 'NNP'), ('Mei', 'NNP'), ('Ling', 'NNP'), ('professor', 'NN'), ('University', 'NNP'), ('Tokyo', 'NNP'), ('highlighted', 'VBD'), ('advancements', 'NNS'), ('AI', 'NNP'), ('research', 'NN'), ('Asia', 'NNP'), ('audience', 'NN'), ('Emily', 'RB'), ('Michael', 'NNP'), ('sat', 'VBD'), ('new', 'JJ'), ('acquaintances', 'NNS'), ('eager', 'JJ'), ('absorb', 'JJ'), ('wealth', 'NN'), ('knowledge', 'NN'), ('shared', 'VBD'), ('particularly', 'RB'), ('inspired', 'JJ'), ('talk', 'NN'), ('Dr.', 'NNP'), ('Samuel', 'NNP'), ('Green', 'NNP'), ('cognitive', 'JJ'), ('scientist', 'NN'), ('Yale', 'NNP'), ('University', 'NNP'), ('discussed', 'VBD'), ('intersection', 'NN'), ('AI', 'NNP'), ('human', 'JJ'), ('cognition', 'NN'), ('research', 'NN'), ('AI', 'NNP'), ('augment', 'JJ'), ('human', 'JJ'), ('decision-making', 'NN'), ('resonated', 'VBD'), ('deeply', 'RB'), ('audience', 'NN'), ('conference', 'NN'), ('drew', 'VBD'), ('close', 'JJ'), ('attendees', 'NNS'), ('reflected', 'VBD'), ('valuable', 'JJ'), ('connections', 'NNS'), ('made', 'VBD'), ('new', 'JJ'), ('knowledge', 'NN'), ('gained', 'VBN'), ('Emily', 'RB'), ('Michael', 'NNP'), ('felt', 'VBD'), ('energized', 'VBN'), ('excited', 'JJ'), ('future', 'JJ'), ('research', 'NN'), ('formed', 'VBD'), ('new', 'JJ'), ('collaborations', 'NNS'), ('Jessica', 'NNP'), ('Raj', 'NNP'), ('Laura', 'NNP'), ('eager', 'JJ'), ('start', 'VBP'), ('working', 'VBG'), ('joint', 'JJ'), ('projects', 'NNS'), ('leaving', 'VBG'), ('took', 'VBD'), ('moment', 'NN'), ('thank', 'NN'), ('conference', 'NN'), ('organizers', 'NNS'), ('including', 'VBG'), ('Dr.', 'NNP'), ('Karen', 'NNP'), ('Wilson', 'NNP'), ('director', 'NN'), ('Tech', 'NNP'), ('Innovators', 'NNP'), ('Network', 'NNP'), ('team', 'NN'), ('event', 'NN'), ('resounding', 'VBG'), ('success', 'NN'), ('bringing', 'VBG'), ('together', 'RB'), ('brightest', 'JJS'), ('minds', 'NNS'), ('field', 'NN'), ('AI', 'NNP'), ('fostering', 'VBG'), ('spirit', 'JJ'), ('innovation', 'NN'), ('collaboration', 'NN'), ('boarded', 'VBD'), ('flight', 'NN'), ('back', 'RB'), ('Boston', 'NNP'), ('Emily', 'NNP'), ('Michael', 'NNP'), ('could', 'MD'), (\"n't\", 'RB'), ('help', 'VB'), ('feel', 'VB'), ('optimistic', 'JJ'), ('future', 'NN'), ('knew', 'VBD'), ('connections', 'NNS'), ('made', 'VBN'), ('conference', 'NN'), ('would', 'MD'), ('lead', 'VB'), ('exciting', 'VBG'), ('new', 'JJ'), ('opportunities', 'NNS'), ('advancements', 'NNS'), ('research', 'NN'), ('determined', 'VBD'), ('ever', 'RB'), ('push', 'JJ'), ('boundaries', 'NNS'), ('AI', 'NNP'), ('could', 'MD'), ('achieve', 'VB'), ('ensure', 'VB'), ('work', 'NN'), ('would', 'MD'), ('positive', 'JJ'), ('impact', 'NN'), ('world', 'NN'), ('weeks', 'NNS'), ('followed', 'VBD'), ('Emily', 'RB'), ('Michael', 'NNP'), ('stayed', 'VBD'), ('touch', 'JJ'), ('new', 'JJ'), ('collaborators', 'NNS'), ('began', 'VBD'), ('working', 'VBG'), ('joint', 'JJ'), ('projects', 'NNS'), ('sharing', 'VBG'), ('ideas', 'JJ'), ('resources', 'NNS'), ('push', 'NN'), ('boundaries', 'NNS'), ('AI', 'NNP'), ('research', 'NN'), ('Emily', 'NNP'), ('collaborated', 'VBD'), ('Jessica', 'NNP'), ('project', 'NN'), ('enhance', 'NN'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN'), ('algorithms', 'NN'), ('Michael', 'NNP'), ('worked', 'VBD'), ('Raj', 'NNP'), ('Maria', 'NNP'), ('integrate', 'VBP'), ('robotic', 'JJ'), ('technology', 'NN'), ('neural', 'JJ'), ('networks', 'NNS'), ('Laura', 'NNP'), ('Emily', 'NNP'), ('started', 'VBD'), ('project', 'NN'), ('using', 'VBG'), ('AI', 'NNP'), ('predict', 'JJ'), ('genetic', 'JJ'), ('disorders', 'NNS'), ('combining', 'VBG'), ('expertise', 'NN'), ('tackle', 'NN'), ('complex', 'JJ'), ('biological', 'JJ'), ('problems', 'NNS'), ('conference', 'NN'), ('expanded', 'VBD'), ('professional', 'JJ'), ('networks', 'NNS'), ('also', 'RB'), ('enriched', 'VBD'), ('understanding', 'JJ'), ('diverse', 'JJ'), ('applications', 'NNS'), ('AI', 'VBP'), ('grateful', 'JJ'), ('opportunity', 'NN'), ('connect', 'VBP'), ('many', 'JJ'), ('talented', 'JJ'), ('individuals', 'NNS'), ('looked', 'VBD'), ('forward', 'RB'), ('future', 'JJ'), ('renewed', 'VBN'), ('enthusiasm', 'NN'), ('sense', 'NN'), ('purpose', 'NN'), ('Tech', 'NNP'), ('Innovators', 'NNP'), ('Conference', 'NNP'), ('transformative', 'JJ'), ('experience', 'NN'), ('setting', 'VBG'), ('stage', 'NN'), ('new', 'JJ'), ('discoveries', 'NNS'), ('groundbreaking', 'VBG'), ('advancements', 'NNS'), ('field', 'NN'), ('artificial', 'JJ'), ('intelligence', 'NN')]\n",
|
153
|
-
"\n",
|
154
|
-
"Lemma : \n",
|
155
|
-
"['bustle', 'city', 'San', 'Francisco', 'tech', 'enthusiasts', 'world', 'gather', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melt', 'pot', 'idea', 'innovation', 'collaboration', 'Among', 'attendee', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'late', 'finding', 'machine', 'learn', 'algorithms', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompany', 'duo', 'work', 'groundbreaking', 'project', 'aim', 'revolutionize', 'way', 'neural', 'network', 'process', 'information', 'conference', 'commence', 'Emily', 'Michael', 'greet', 'host', 'familiar', 'face', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancement', 'quantum', 'compute', 'join', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduce', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialize', 'develop', 'algorithms', 'social', 'medium', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguish', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focus', 'ethical', 'implication', 'AI', 'importance', 'develop', 'technology', 'benefit', 'humanity', 'whole', 'insight', 'spark', 'lively', 'discussion', 'among', 'attendee', 'include', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'break', 'session', 'attendee', 'mingle', 'exchange', 'idea', 'Emily', 'catch', 'former', 'classmate', 'David', 'Kim', 'work', 'data', 'analyst', 'Amazon', 'David', 'introduce', 'colleague', 'Jessica', 'Brown', 'machine', 'learn', 'engineer', 'knack', 'develop', 'innovative', 'solution', 'complex', 'problem', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invited', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'develop', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedure', 'unprecedented', 'precision', 'accompany', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinate', 'work', 'propose', 'partnership', 'integrate', 'technology', 'AI', 'algorithms', 'day', 'progress', 'conference', 'attendee', 'treat', 'series', 'insightful', 'presentation', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'share', 'research', 'deep', 'learning', 'application', 'healthcare', 'follow', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrate', 'late', 'advancement', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discuss', 'societal', 'impact', 'AI', 'importance', 'responsible', 'innovation', 'even', 'attendee', 'gather', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'network', 'foster', 'new', 'collaboration', 'Emily', 'find', 'seat', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promise', 'AI', 'startup', 'join', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provide', 'valuable', 'insight', 'regulatory', 'landscape', 'emerge', 'technology', 'table', 'Michael', 'strike', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'work', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'interested', 'Michael', 'expertise', 'neural', 'network', 'exchange', 'contact', 'information', 'plan', 'meet', 'conference', 'discuss', 'potential', 'collaboration', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combining', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'join', 'conversation', 'bring', 'expertise', 'cryptography', 'table', 'group', 'brainstorm', 'various', 'application', 'decide', 'form', 'work', 'group', 'explore', 'idea', 'next', 'morning', 'conference', 'resume', 'panel', 'discussion', 'feature', 'several', 'industry', 'leader', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discuss', 'future', 'AI', 'potential', 'transform', 'industry', 'range', 'healthcare', 'finance', 'panel', 'also', 'include', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlight', 'advancement', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sit', 'new', 'acquaintance', 'eager', 'absorb', 'wealth', 'knowledge', 'share', 'particularly', 'inspired', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discuss', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonate', 'deeply', 'audience', 'conference', 'draw', 'close', 'attendee', 'reflect', 'valuable', 'connection', 'make', 'new', 'knowledge', 'gain', 'Emily', 'Michael', 'felt', 'energize', 'excited', 'future', 'research', 'form', 'new', 'collaboration', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'work', 'joint', 'project', 'leave', 'take', 'moment', 'thank', 'conference', 'organizer', 'include', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resound', 'success', 'bring', 'together', 'bright', 'mind', 'field', 'AI', 'foster', 'spirit', 'innovation', 'collaboration', 'board', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'know', 'connection', 'make', 'conference', 'would', 'lead', 'excite', 'new', 'opportunity', 'advancement', 'research', 'determine', 'ever', 'push', 'boundary', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'week', 'follow', 'Emily', 'Michael', 'stay', 'touch', 'new', 'collaborator', 'begin', 'work', 'joint', 'project', 'share', 'ideas', 'resource', 'push', 'boundary', 'AI', 'research', 'Emily', 'collaborate', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithm', 'Michael', 'work', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'network', 'Laura', 'Emily', 'start', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'combine', 'expertise', 'tackle', 'complex', 'biological', 'problem', 'conference', 'expand', 'professional', 'network', 'also', 'enrich', 'understanding', 'diverse', 'application', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individual', 'look', 'forward', 'future', 'renew', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'set', 'stage', 'new', 'discovery', 'groundbreaking', 'advancement', 'field', 'artificial', 'intelligence']\n"
|
156
|
-
]
|
157
|
-
}
|
158
|
-
],
|
159
|
-
"source": [
|
160
|
-
"print(\"\\nStems : \")\n",
|
161
|
-
"print(stems)\n",
|
162
|
-
"\n",
|
163
|
-
"print(\"\\nTagged Tokens : \")\n",
|
164
|
-
"print(tagged_tokens)\n",
|
165
|
-
"\n",
|
166
|
-
"print(\"\\nLemma : \")\n",
|
167
|
-
"print(lemmas)"
|
168
|
-
]
|
169
|
-
},
|
170
|
-
{
|
171
|
-
"cell_type": "code",
|
172
|
-
"execution_count": 86,
|
173
|
-
"id": "4b233e82-55b7-4b76-a5d5-0d57ad2a1b2c",
|
174
|
-
"metadata": {},
|
175
|
-
"outputs": [],
|
176
|
-
"source": [
|
177
|
-
"# Calculate frequency distribution\n",
|
178
|
-
"freq_dist = FreqDist(filtered_tokens)\n",
|
179
|
-
"\n",
|
180
|
-
"# Calculate probability distribution\n",
|
181
|
-
"total_tokens = len(filtered_tokens)\n",
|
182
|
-
"prob_dist = {word: freq / total_tokens for word, freq in freq_dist.items()}"
|
183
|
-
]
|
184
|
-
},
|
185
|
-
{
|
186
|
-
"cell_type": "code",
|
187
|
-
"execution_count": 87,
|
188
|
-
"id": "a0a4b92b-fdd3-4373-8d71-6f1dd31673cd",
|
189
|
-
"metadata": {},
|
190
|
-
"outputs": [
|
191
|
-
{
|
192
|
-
"name": "stdout",
|
193
|
-
"output_type": "stream",
|
194
|
-
"text": [
|
195
|
-
"\n",
|
196
|
-
"Original Tokens:\n",
|
197
|
-
"['bustling', 'city', 'San', 'Francisco', 'tech', 'enthusiasts', 'world', 'gathered', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melting', 'pot', 'ideas', 'innovations', 'collaborations', 'Among', 'attendees', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'latest', 'findings', 'machine', 'learning', 'algorithms', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompanied', 'duo', 'working', 'groundbreaking', 'project', 'aimed', 'revolutionize', 'way', 'neural', 'networks', 'process', 'information', 'conference', 'commenced', 'Emily', 'Michael', 'greeted', 'host', 'familiar', 'faces', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancements', 'quantum', 'computing', 'joined', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduced', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialized', 'developing', 'algorithms', 'social', 'media', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguished', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focused', 'ethical', 'implications', 'AI', 'importance', 'developing', 'technologies', 'benefit', 'humanity', 'whole', 'insights', 'sparked', 'lively', 'discussion', 'among', 'attendees', 'including', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'breaks', 'sessions', 'attendees', 'mingled', 'exchanged', 'ideas', 'Emily', 'caught', 'former', 'classmate', 'David', 'Kim', 'works', 'data', 'analyst', 'Amazon', 'David', 'introduced', 'colleague', 'Jessica', 'Brown', 'machine', 'learning', 'engineer', 'knack', 'developing', 'innovative', 'solutions', 'complex', 'problems', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invited', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'developed', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedures', 'unprecedented', 'precision', 'accompanied', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinated', 'work', 'proposed', 'partnership', 'integrate', 'technology', 'AI', 'algorithms', 'day', 'progressed', 'conference', 'attendees', 'treated', 'series', 'insightful', 'presentations', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'shared', 'research', 'deep', 'learning', 'applications', 'healthcare', 'followed', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrated', 'latest', 'advancements', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discussed', 'societal', 'impacts', 'AI', 'importance', 'responsible', 'innovation', 'evening', 'attendees', 'gathered', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'networking', 'fostering', 'new', 'collaborations', 'Emily', 'found', 'seated', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promising', 'AI', 'startups', 'joined', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provided', 'valuable', 'insights', 'regulatory', 'landscape', 'emerging', 'technologies', 'table', 'Michael', 'struck', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'working', 'project', 'use', 'AI', 'predicting', 'genetic', 'disorders', 'interested', 'Michael', 'expertise', 'neural', 'networks', 'exchanged', 'contact', 'information', 'planned', 'meet', 'conference', 'discuss', 'potential', 'collaborations', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combining', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'joined', 'conversation', 'bringing', 'expertise', 'cryptography', 'table', 'group', 'brainstormed', 'various', 'applications', 'decided', 'form', 'working', 'group', 'explore', 'ideas', 'next', 'morning', 'conference', 'resumed', 'panel', 'discussion', 'featuring', 'several', 'industry', 'leaders', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discussed', 'future', 'AI', 'potential', 'transform', 'industries', 'ranging', 'healthcare', 'finance', 'panel', 'also', 'included', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlighted', 'advancements', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sat', 'new', 'acquaintances', 'eager', 'absorb', 'wealth', 'knowledge', 'shared', 'particularly', 'inspired', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discussed', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonated', 'deeply', 'audience', 'conference', 'drew', 'close', 'attendees', 'reflected', 'valuable', 'connections', 'made', 'new', 'knowledge', 'gained', 'Emily', 'Michael', 'felt', 'energized', 'excited', 'future', 'research', 'formed', 'new', 'collaborations', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'working', 'joint', 'projects', 'leaving', 'took', 'moment', 'thank', 'conference', 'organizers', 'including', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resounding', 'success', 'bringing', 'together', 'brightest', 'minds', 'field', 'AI', 'fostering', 'spirit', 'innovation', 'collaboration', 'boarded', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'knew', 'connections', 'made', 'conference', 'would', 'lead', 'exciting', 'new', 'opportunities', 'advancements', 'research', 'determined', 'ever', 'push', 'boundaries', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'weeks', 'followed', 'Emily', 'Michael', 'stayed', 'touch', 'new', 'collaborators', 'began', 'working', 'joint', 'projects', 'sharing', 'ideas', 'resources', 'push', 'boundaries', 'AI', 'research', 'Emily', 'collaborated', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithms', 'Michael', 'worked', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'networks', 'Laura', 'Emily', 'started', 'project', 'using', 'AI', 'predict', 'genetic', 'disorders', 'combining', 'expertise', 'tackle', 'complex', 'biological', 'problems', 'conference', 'expanded', 'professional', 'networks', 'also', 'enriched', 'understanding', 'diverse', 'applications', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individuals', 'looked', 'forward', 'future', 'renewed', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'setting', 'stage', 'new', 'discoveries', 'groundbreaking', 'advancements', 'field', 'artificial', 'intelligence']\n",
|
198
|
-
"\n",
|
199
|
-
"Stems:\n",
|
200
|
-
"['bustl', 'citi', 'san', 'francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'tech', 'innov', 'confer', 'event', 'melt', 'pot', 'idea', 'innov', 'collabor', 'among', 'attende', 'emili', 'chen', 'renown', 'ai', 'research', 'mit', 'eager', 'present', 'latest', 'find', 'machin', 'learn', 'algorithm', 'emili', 'colleagu', 'dr.', 'michael', 'thompson', 'also', 'well-respect', 'figur', 'field', 'artifici', 'intellig', 'accompani', 'duo', 'work', 'groundbreak', 'project', 'aim', 'revolution', 'way', 'neural', 'network', 'process', 'inform', 'confer', 'commenc', 'emili', 'michael', 'greet', 'host', 'familiar', 'face', 'jennif', 'lee', 'data', 'scientist', 'googl', 'showcas', 'team', 'advanc', 'quantum', 'comput', 'join', 'mentor', 'dr.', 'robert', 'lang', 'pioneer', 'field', 'comput', 'neurosci', 'jennif', 'introduc', 'emili', 'michael', 'friend', 'carlo', 'mendez', 'softwar', 'engin', 'facebook', 'special', 'develop', 'algorithm', 'social', 'media', 'analyt', 'keynot', 'speaker', 'event', 'none', 'dr.', 'elizabeth', 'warren', 'distinguish', 'professor', 'stanford', 'univers', 'dr.', 'warren', 'speech', 'focus', 'ethic', 'implic', 'ai', 'import', 'develop', 'technolog', 'benefit', 'human', 'whole', 'insight', 'spark', 'live', 'discuss', 'among', 'attende', 'includ', 'sarah', 'johnson', 'polici', 'advisor', 'unit', 'nation', 'ahm', 'khan', 'cybersecur', 'expert', 'microsoft', 'break', 'session', 'attende', 'mingl', 'exchang', 'idea', 'emili', 'caught', 'former', 'classmat', 'david', 'kim', 'work', 'data', 'analyst', 'amazon', 'david', 'introduc', 'colleagu', 'jessica', 'brown', 'machin', 'learn', 'engin', 'knack', 'develop', 'innov', 'solut', 'complex', 'problem', 'emili', 'particularli', 'interest', 'jessica', 'work', 'natur', 'languag', 'process', 'invit', 'collabor', 'futur', 'project', 'anoth', 'corner', 'room', 'michael', 'deep', 'convers', 'raj', 'patel', 'roboticist', 'carnegi', 'mellon', 'univers', 'raj', 'recent', 'develop', 'new', 'type', 'robot', 'arm', 'could', 'perform', 'delic', 'surgic', 'procedur', 'unpreced', 'precis', 'accompani', 'research', 'assist', 'maria', 'gonzalez', 'instrument', 'project', 'success', 'michael', 'fascin', 'work', 'propos', 'partnership', 'integr', 'technolog', 'ai', 'algorithm', 'day', 'progress', 'confer', 'attende', 'treat', 'seri', 'insight', 'present', 'dr.', 'jame', 'clark', 'harvard', 'univers', 'share', 'research', 'deep', 'learn', 'applic', 'healthcar', 'follow', 'lisa', 'robinson', 'comput', 'vision', 'expert', 'nvidia', 'demonstr', 'latest', 'advanc', 'imag', 'recognit', 'technolog', 'audienc', 'particularli', 'impress', 'present', 'dr.', 'ananya', 'singh', 'ai', 'ethicist', 'oxford', 'univers', 'discuss', 'societ', 'impact', 'ai', 'import', 'respons', 'innov', 'even', 'attende', 'gather', 'gala', 'dinner', 'grand', 'hyatt', 'hotel', 'event', 'perfect', 'opportun', 'network', 'foster', 'new', 'collabor', 'emili', 'found', 'seat', 'next', 'henri', 'zhang', 'ventur', 'capitalist', 'sequoia', 'capit', 'keen', 'invest', 'promis', 'ai', 'startup', 'join', 'priya', 'sharma', 'legal', 'expert', 'electron', 'frontier', 'foundat', 'provid', 'valuabl', 'insight', 'regulatori', 'landscap', 'emerg', 'technolog', 'tabl', 'michael', 'struck', 'convers', 'laura', 'martinez', 'bioinformat', 'research', 'univers', 'california', 'berkeley', 'laura', 'work', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'interest', 'michael', 'expertis', 'neural', 'network', 'exchang', 'contact', 'inform', 'plan', 'meet', 'confer', 'discuss', 'potenti', 'collabor', 'meanwhil', 'jennif', 'carlo', 'deep', 'discuss', 'ethan', 'liu', 'blockchain', 'develop', 'ibm', 'potenti', 'combin', 'ai', 'blockchain', 'technolog', 'enhanc', 'data', 'secur', 'ethan', 'colleagu', 'dr.', 'olivia', 'parker', 'join', 'convers', 'bring', 'expertis', 'cryptographi', 'tabl', 'group', 'brainstorm', 'variou', 'applic', 'decid', 'form', 'work', 'group', 'explor', 'idea', 'next', 'morn', 'confer', 'resum', 'panel', 'discuss', 'featur', 'sever', 'industri', 'leader', 'among', 'dr.', 'william', 'harri', 'ceo', 'ai', 'inc.', 'dr.', 'katherin', 'adam', 'senior', 'research', 'openai', 'discuss', 'futur', 'ai', 'potenti', 'transform', 'industri', 'rang', 'healthcar', 'financ', 'panel', 'also', 'includ', 'dr.', 'mei', 'ling', 'professor', 'univers', 'tokyo', 'highlight', 'advanc', 'ai', 'research', 'asia', 'audienc', 'emili', 'michael', 'sat', 'new', 'acquaint', 'eager', 'absorb', 'wealth', 'knowledg', 'share', 'particularli', 'inspir', 'talk', 'dr.', 'samuel', 'green', 'cognit', 'scientist', 'yale', 'univers', 'discuss', 'intersect', 'ai', 'human', 'cognit', 'research', 'ai', 'augment', 'human', 'decision-mak', 'reson', 'deepli', 'audienc', 'confer', 'drew', 'close', 'attende', 'reflect', 'valuabl', 'connect', 'made', 'new', 'knowledg', 'gain', 'emili', 'michael', 'felt', 'energ', 'excit', 'futur', 'research', 'form', 'new', 'collabor', 'jessica', 'raj', 'laura', 'eager', 'start', 'work', 'joint', 'project', 'leav', 'took', 'moment', 'thank', 'confer', 'organ', 'includ', 'dr.', 'karen', 'wilson', 'director', 'tech', 'innov', 'network', 'team', 'event', 'resound', 'success', 'bring', 'togeth', 'brightest', 'mind', 'field', 'ai', 'foster', 'spirit', 'innov', 'collabor', 'board', 'flight', 'back', 'boston', 'emili', 'michael', 'could', \"n't\", 'help', 'feel', 'optimist', 'futur', 'knew', 'connect', 'made', 'confer', 'would', 'lead', 'excit', 'new', 'opportun', 'advanc', 'research', 'determin', 'ever', 'push', 'boundari', 'ai', 'could', 'achiev', 'ensur', 'work', 'would', 'posit', 'impact', 'world', 'week', 'follow', 'emili', 'michael', 'stay', 'touch', 'new', 'collabor', 'began', 'work', 'joint', 'project', 'share', 'idea', 'resourc', 'push', 'boundari', 'ai', 'research', 'emili', 'collabor', 'jessica', 'project', 'enhanc', 'natur', 'languag', 'process', 'algorithm', 'michael', 'work', 'raj', 'maria', 'integr', 'robot', 'technolog', 'neural', 'network', 'laura', 'emili', 'start', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'combin', 'expertis', 'tackl', 'complex', 'biolog', 'problem', 'confer', 'expand', 'profession', 'network', 'also', 'enrich', 'understand', 'divers', 'applic', 'ai', 'grate', 'opportun', 'connect', 'mani', 'talent', 'individu', 'look', 'forward', 'futur', 'renew', 'enthusiasm', 'sens', 'purpos', 'tech', 'innov', 'confer', 'transform', 'experi', 'set', 'stage', 'new', 'discoveri', 'groundbreak', 'advanc', 'field', 'artifici', 'intellig']\n",
|
201
|
-
"\n",
|
202
|
-
"Lemmas:\n",
|
203
|
-
"['bustle', 'city', 'San', 'Francisco', 'tech', 'enthusiasts', 'world', 'gather', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melt', 'pot', 'idea', 'innovation', 'collaboration', 'Among', 'attendee', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'late', 'finding', 'machine', 'learn', 'algorithms', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompany', 'duo', 'work', 'groundbreaking', 'project', 'aim', 'revolutionize', 'way', 'neural', 'network', 'process', 'information', 'conference', 'commence', 'Emily', 'Michael', 'greet', 'host', 'familiar', 'face', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancement', 'quantum', 'compute', 'join', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduce', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialize', 'develop', 'algorithms', 'social', 'medium', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguish', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focus', 'ethical', 'implication', 'AI', 'importance', 'develop', 'technology', 'benefit', 'humanity', 'whole', 'insight', 'spark', 'lively', 'discussion', 'among', 'attendee', 'include', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'break', 'session', 'attendee', 'mingle', 'exchange', 'idea', 'Emily', 'catch', 'former', 'classmate', 'David', 'Kim', 'work', 'data', 'analyst', 'Amazon', 'David', 'introduce', 'colleague', 'Jessica', 'Brown', 'machine', 'learn', 'engineer', 'knack', 'develop', 'innovative', 'solution', 'complex', 'problem', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invited', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'develop', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedure', 'unprecedented', 'precision', 'accompany', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinate', 'work', 'propose', 'partnership', 'integrate', 'technology', 'AI', 'algorithms', 'day', 'progress', 'conference', 'attendee', 'treat', 'series', 'insightful', 'presentation', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'share', 'research', 'deep', 'learning', 'application', 'healthcare', 'follow', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrate', 'late', 'advancement', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discuss', 'societal', 'impact', 'AI', 'importance', 'responsible', 'innovation', 'even', 'attendee', 'gather', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'network', 'foster', 'new', 'collaboration', 'Emily', 'find', 'seat', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promise', 'AI', 'startup', 'join', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provide', 'valuable', 'insight', 'regulatory', 'landscape', 'emerge', 'technology', 'table', 'Michael', 'strike', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'work', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'interested', 'Michael', 'expertise', 'neural', 'network', 'exchange', 'contact', 'information', 'plan', 'meet', 'conference', 'discuss', 'potential', 'collaboration', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combining', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'join', 'conversation', 'bring', 'expertise', 'cryptography', 'table', 'group', 'brainstorm', 'various', 'application', 'decide', 'form', 'work', 'group', 'explore', 'idea', 'next', 'morning', 'conference', 'resume', 'panel', 'discussion', 'feature', 'several', 'industry', 'leader', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discuss', 'future', 'AI', 'potential', 'transform', 'industry', 'range', 'healthcare', 'finance', 'panel', 'also', 'include', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlight', 'advancement', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sit', 'new', 'acquaintance', 'eager', 'absorb', 'wealth', 'knowledge', 'share', 'particularly', 'inspired', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discuss', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonate', 'deeply', 'audience', 'conference', 'draw', 'close', 'attendee', 'reflect', 'valuable', 'connection', 'make', 'new', 'knowledge', 'gain', 'Emily', 'Michael', 'felt', 'energize', 'excited', 'future', 'research', 'form', 'new', 'collaboration', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'work', 'joint', 'project', 'leave', 'take', 'moment', 'thank', 'conference', 'organizer', 'include', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resound', 'success', 'bring', 'together', 'bright', 'mind', 'field', 'AI', 'foster', 'spirit', 'innovation', 'collaboration', 'board', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'know', 'connection', 'make', 'conference', 'would', 'lead', 'excite', 'new', 'opportunity', 'advancement', 'research', 'determine', 'ever', 'push', 'boundary', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'week', 'follow', 'Emily', 'Michael', 'stay', 'touch', 'new', 'collaborator', 'begin', 'work', 'joint', 'project', 'share', 'ideas', 'resource', 'push', 'boundary', 'AI', 'research', 'Emily', 'collaborate', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithm', 'Michael', 'work', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'network', 'Laura', 'Emily', 'start', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'combine', 'expertise', 'tackle', 'complex', 'biological', 'problem', 'conference', 'expand', 'professional', 'network', 'also', 'enrich', 'understanding', 'diverse', 'application', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individual', 'look', 'forward', 'future', 'renew', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'set', 'stage', 'new', 'discovery', 'groundbreaking', 'advancement', 'field', 'artificial', 'intelligence']\n",
|
204
|
-
"\n",
|
205
|
-
"Frequency Distribution:\n",
|
206
|
-
"bustling: 1\n",
|
207
|
-
"city: 1\n",
|
208
|
-
"San: 1\n",
|
209
|
-
"Francisco: 1\n",
|
210
|
-
"tech: 1\n",
|
211
|
-
"enthusiasts: 1\n",
|
212
|
-
"world: 2\n",
|
213
|
-
"gathered: 2\n",
|
214
|
-
"annual: 1\n",
|
215
|
-
"Tech: 3\n",
|
216
|
-
"Innovators: 3\n",
|
217
|
-
"Conference: 2\n",
|
218
|
-
"event: 4\n",
|
219
|
-
"melting: 1\n",
|
220
|
-
"pot: 1\n",
|
221
|
-
"ideas: 4\n",
|
222
|
-
"innovations: 1\n",
|
223
|
-
"collaborations: 4\n",
|
224
|
-
"Among: 2\n",
|
225
|
-
"attendees: 6\n",
|
226
|
-
"Emily: 13\n",
|
227
|
-
"Chen: 1\n",
|
228
|
-
"renowned: 1\n",
|
229
|
-
"AI: 18\n",
|
230
|
-
"researcher: 3\n",
|
231
|
-
"MIT: 1\n",
|
232
|
-
"eager: 3\n",
|
233
|
-
"present: 1\n",
|
234
|
-
"latest: 2\n",
|
235
|
-
"findings: 1\n",
|
236
|
-
"machine: 2\n",
|
237
|
-
"learning: 3\n",
|
238
|
-
"algorithms: 4\n",
|
239
|
-
"colleague: 3\n",
|
240
|
-
"Dr.: 12\n",
|
241
|
-
"Michael: 12\n",
|
242
|
-
"Thompson: 1\n",
|
243
|
-
"also: 3\n",
|
244
|
-
"well-respected: 1\n",
|
245
|
-
"figure: 1\n",
|
246
|
-
"field: 4\n",
|
247
|
-
"artificial: 2\n",
|
248
|
-
"intelligence: 2\n",
|
249
|
-
"accompanied: 2\n",
|
250
|
-
"duo: 1\n",
|
251
|
-
"working: 5\n",
|
252
|
-
"groundbreaking: 2\n",
|
253
|
-
"project: 6\n",
|
254
|
-
"aimed: 1\n",
|
255
|
-
"revolutionize: 1\n",
|
256
|
-
"way: 1\n",
|
257
|
-
"neural: 3\n",
|
258
|
-
"networks: 4\n",
|
259
|
-
"process: 1\n",
|
260
|
-
"information: 2\n",
|
261
|
-
"conference: 8\n",
|
262
|
-
"commenced: 1\n",
|
263
|
-
"greeted: 1\n",
|
264
|
-
"host: 1\n",
|
265
|
-
"familiar: 1\n",
|
266
|
-
"faces: 1\n",
|
267
|
-
"Jennifer: 3\n",
|
268
|
-
"Lee: 1\n",
|
269
|
-
"data: 3\n",
|
270
|
-
"scientist: 2\n",
|
271
|
-
"Google: 1\n",
|
272
|
-
"showcase: 1\n",
|
273
|
-
"team: 2\n",
|
274
|
-
"advancements: 5\n",
|
275
|
-
"quantum: 1\n",
|
276
|
-
"computing: 1\n",
|
277
|
-
"joined: 3\n",
|
278
|
-
"mentor: 1\n",
|
279
|
-
"Robert: 1\n",
|
280
|
-
"Lang: 1\n",
|
281
|
-
"pioneer: 1\n",
|
282
|
-
"computational: 1\n",
|
283
|
-
"neuroscience: 1\n",
|
284
|
-
"introduced: 2\n",
|
285
|
-
"friend: 1\n",
|
286
|
-
"Carlos: 2\n",
|
287
|
-
"Mendez: 1\n",
|
288
|
-
"software: 1\n",
|
289
|
-
"engineer: 2\n",
|
290
|
-
"Facebook: 1\n",
|
291
|
-
"specialized: 1\n",
|
292
|
-
"developing: 3\n",
|
293
|
-
"social: 1\n",
|
294
|
-
"media: 1\n",
|
295
|
-
"analytics: 1\n",
|
296
|
-
"keynote: 1\n",
|
297
|
-
"speaker: 1\n",
|
298
|
-
"none: 1\n",
|
299
|
-
"Elizabeth: 1\n",
|
300
|
-
"Warren: 2\n",
|
301
|
-
"distinguished: 1\n",
|
302
|
-
"professor: 2\n",
|
303
|
-
"Stanford: 1\n",
|
304
|
-
"University: 7\n",
|
305
|
-
"speech: 1\n",
|
306
|
-
"focused: 1\n",
|
307
|
-
"ethical: 1\n",
|
308
|
-
"implications: 1\n",
|
309
|
-
"importance: 2\n",
|
310
|
-
"technologies: 2\n",
|
311
|
-
"benefit: 1\n",
|
312
|
-
"humanity: 1\n",
|
313
|
-
"whole: 1\n",
|
314
|
-
"insights: 2\n",
|
315
|
-
"sparked: 1\n",
|
316
|
-
"lively: 1\n",
|
317
|
-
"discussion: 3\n",
|
318
|
-
"among: 1\n",
|
319
|
-
"including: 2\n",
|
320
|
-
"Sarah: 1\n",
|
321
|
-
"Johnson: 1\n",
|
322
|
-
"policy: 1\n",
|
323
|
-
"advisor: 1\n",
|
324
|
-
"United: 1\n",
|
325
|
-
"Nations: 1\n",
|
326
|
-
"Ahmed: 1\n",
|
327
|
-
"Khan: 1\n",
|
328
|
-
"cybersecurity: 1\n",
|
329
|
-
"expert: 3\n",
|
330
|
-
"Microsoft: 1\n",
|
331
|
-
"breaks: 1\n",
|
332
|
-
"sessions: 1\n",
|
333
|
-
"mingled: 1\n",
|
334
|
-
"exchanged: 2\n",
|
335
|
-
"caught: 1\n",
|
336
|
-
"former: 1\n",
|
337
|
-
"classmate: 1\n",
|
338
|
-
"David: 2\n",
|
339
|
-
"Kim: 1\n",
|
340
|
-
"works: 1\n",
|
341
|
-
"analyst: 1\n",
|
342
|
-
"Amazon: 1\n",
|
343
|
-
"Jessica: 4\n",
|
344
|
-
"Brown: 1\n",
|
345
|
-
"knack: 1\n",
|
346
|
-
"innovative: 1\n",
|
347
|
-
"solutions: 1\n",
|
348
|
-
"complex: 2\n",
|
349
|
-
"problems: 2\n",
|
350
|
-
"particularly: 3\n",
|
351
|
-
"interested: 2\n",
|
352
|
-
"work: 3\n",
|
353
|
-
"natural: 2\n",
|
354
|
-
"language: 2\n",
|
355
|
-
"processing: 2\n",
|
356
|
-
"invited: 1\n",
|
357
|
-
"collaborate: 1\n",
|
358
|
-
"future: 5\n",
|
359
|
-
"another: 1\n",
|
360
|
-
"corner: 1\n",
|
361
|
-
"room: 1\n",
|
362
|
-
"deep: 3\n",
|
363
|
-
"conversation: 3\n",
|
364
|
-
"Raj: 4\n",
|
365
|
-
"Patel: 1\n",
|
366
|
-
"roboticist: 1\n",
|
367
|
-
"Carnegie: 1\n",
|
368
|
-
"Mellon: 1\n",
|
369
|
-
"recently: 1\n",
|
370
|
-
"developed: 1\n",
|
371
|
-
"new: 8\n",
|
372
|
-
"type: 1\n",
|
373
|
-
"robotic: 2\n",
|
374
|
-
"arm: 1\n",
|
375
|
-
"could: 3\n",
|
376
|
-
"perform: 1\n",
|
377
|
-
"delicate: 1\n",
|
378
|
-
"surgical: 1\n",
|
379
|
-
"procedures: 1\n",
|
380
|
-
"unprecedented: 1\n",
|
381
|
-
"precision: 1\n",
|
382
|
-
"research: 7\n",
|
383
|
-
"assistant: 1\n",
|
384
|
-
"Maria: 2\n",
|
385
|
-
"Gonzalez: 1\n",
|
386
|
-
"instrumental: 1\n",
|
387
|
-
"success: 2\n",
|
388
|
-
"fascinated: 1\n",
|
389
|
-
"proposed: 1\n",
|
390
|
-
"partnership: 1\n",
|
391
|
-
"integrate: 2\n",
|
392
|
-
"technology: 4\n",
|
393
|
-
"day: 1\n",
|
394
|
-
"progressed: 1\n",
|
395
|
-
"treated: 1\n",
|
396
|
-
"series: 1\n",
|
397
|
-
"insightful: 1\n",
|
398
|
-
"presentations: 1\n",
|
399
|
-
"James: 1\n",
|
400
|
-
"Clark: 1\n",
|
401
|
-
"Harvard: 1\n",
|
402
|
-
"shared: 2\n",
|
403
|
-
"applications: 3\n",
|
404
|
-
"healthcare: 2\n",
|
405
|
-
"followed: 2\n",
|
406
|
-
"Lisa: 1\n",
|
407
|
-
"Robinson: 1\n",
|
408
|
-
"computer: 1\n",
|
409
|
-
"vision: 1\n",
|
410
|
-
"Nvidia: 1\n",
|
411
|
-
"demonstrated: 1\n",
|
412
|
-
"image: 1\n",
|
413
|
-
"recognition: 1\n",
|
414
|
-
"audience: 3\n",
|
415
|
-
"impressed: 1\n",
|
416
|
-
"presentation: 1\n",
|
417
|
-
"Ananya: 1\n",
|
418
|
-
"Singh: 1\n",
|
419
|
-
"ethicist: 1\n",
|
420
|
-
"Oxford: 1\n",
|
421
|
-
"discussed: 3\n",
|
422
|
-
"societal: 1\n",
|
423
|
-
"impacts: 1\n",
|
424
|
-
"responsible: 1\n",
|
425
|
-
"innovation: 2\n",
|
426
|
-
"evening: 1\n",
|
427
|
-
"gala: 1\n",
|
428
|
-
"dinner: 1\n",
|
429
|
-
"Grand: 1\n",
|
430
|
-
"Hyatt: 1\n",
|
431
|
-
"Hotel: 1\n",
|
432
|
-
"perfect: 1\n",
|
433
|
-
"opportunity: 2\n",
|
434
|
-
"networking: 1\n",
|
435
|
-
"fostering: 2\n",
|
436
|
-
"found: 1\n",
|
437
|
-
"seated: 1\n",
|
438
|
-
"next: 2\n",
|
439
|
-
"Henry: 1\n",
|
440
|
-
"Zhang: 1\n",
|
441
|
-
"venture: 1\n",
|
442
|
-
"capitalist: 1\n",
|
443
|
-
"Sequoia: 1\n",
|
444
|
-
"Capital: 1\n",
|
445
|
-
"keen: 1\n",
|
446
|
-
"invest: 1\n",
|
447
|
-
"promising: 1\n",
|
448
|
-
"startups: 1\n",
|
449
|
-
"Priya: 1\n",
|
450
|
-
"Sharma: 1\n",
|
451
|
-
"legal: 1\n",
|
452
|
-
"Electronic: 1\n",
|
453
|
-
"Frontier: 1\n",
|
454
|
-
"Foundation: 1\n",
|
455
|
-
"provided: 1\n",
|
456
|
-
"valuable: 2\n",
|
457
|
-
"regulatory: 1\n",
|
458
|
-
"landscape: 1\n",
|
459
|
-
"emerging: 1\n",
|
460
|
-
"table: 2\n",
|
461
|
-
"struck: 1\n",
|
462
|
-
"Laura: 4\n",
|
463
|
-
"Martinez: 1\n",
|
464
|
-
"bioinformatics: 1\n",
|
465
|
-
"California: 1\n",
|
466
|
-
"Berkeley: 1\n",
|
467
|
-
"use: 1\n",
|
468
|
-
"predicting: 1\n",
|
469
|
-
"genetic: 2\n",
|
470
|
-
"disorders: 2\n",
|
471
|
-
"expertise: 3\n",
|
472
|
-
"contact: 1\n",
|
473
|
-
"planned: 1\n",
|
474
|
-
"meet: 1\n",
|
475
|
-
"discuss: 1\n",
|
476
|
-
"potential: 3\n",
|
477
|
-
"Meanwhile: 1\n",
|
478
|
-
"Ethan: 2\n",
|
479
|
-
"Liu: 1\n",
|
480
|
-
"blockchain: 2\n",
|
481
|
-
"developer: 1\n",
|
482
|
-
"IBM: 1\n",
|
483
|
-
"combining: 2\n",
|
484
|
-
"enhance: 2\n",
|
485
|
-
"security: 1\n",
|
486
|
-
"Olivia: 1\n",
|
487
|
-
"Parker: 1\n",
|
488
|
-
"bringing: 2\n",
|
489
|
-
"cryptography: 1\n",
|
490
|
-
"group: 2\n",
|
491
|
-
"brainstormed: 1\n",
|
492
|
-
"various: 1\n",
|
493
|
-
"decided: 1\n",
|
494
|
-
"form: 1\n",
|
495
|
-
"explore: 1\n",
|
496
|
-
"morning: 1\n",
|
497
|
-
"resumed: 1\n",
|
498
|
-
"panel: 2\n",
|
499
|
-
"featuring: 1\n",
|
500
|
-
"several: 1\n",
|
501
|
-
"industry: 1\n",
|
502
|
-
"leaders: 1\n",
|
503
|
-
"William: 1\n",
|
504
|
-
"Harris: 1\n",
|
505
|
-
"CEO: 1\n",
|
506
|
-
"Inc.: 1\n",
|
507
|
-
"Katherine: 1\n",
|
508
|
-
"Adams: 1\n",
|
509
|
-
"senior: 1\n",
|
510
|
-
"OpenAI: 1\n",
|
511
|
-
"transform: 1\n",
|
512
|
-
"industries: 1\n",
|
513
|
-
"ranging: 1\n",
|
514
|
-
"finance: 1\n",
|
515
|
-
"included: 1\n",
|
516
|
-
"Mei: 1\n",
|
517
|
-
"Ling: 1\n",
|
518
|
-
"Tokyo: 1\n",
|
519
|
-
"highlighted: 1\n",
|
520
|
-
"Asia: 1\n",
|
521
|
-
"sat: 1\n",
|
522
|
-
"acquaintances: 1\n",
|
523
|
-
"absorb: 1\n",
|
524
|
-
"wealth: 1\n",
|
525
|
-
"knowledge: 2\n",
|
526
|
-
"inspired: 1\n",
|
527
|
-
"talk: 1\n",
|
528
|
-
"Samuel: 1\n",
|
529
|
-
"Green: 1\n",
|
530
|
-
"cognitive: 1\n",
|
531
|
-
"Yale: 1\n",
|
532
|
-
"intersection: 1\n",
|
533
|
-
"human: 2\n",
|
534
|
-
"cognition: 1\n",
|
535
|
-
"augment: 1\n",
|
536
|
-
"decision-making: 1\n",
|
537
|
-
"resonated: 1\n",
|
538
|
-
"deeply: 1\n",
|
539
|
-
"drew: 1\n",
|
540
|
-
"close: 1\n",
|
541
|
-
"reflected: 1\n",
|
542
|
-
"connections: 2\n",
|
543
|
-
"made: 2\n",
|
544
|
-
"gained: 1\n",
|
545
|
-
"felt: 1\n",
|
546
|
-
"energized: 1\n",
|
547
|
-
"excited: 1\n",
|
548
|
-
"formed: 1\n",
|
549
|
-
"start: 1\n",
|
550
|
-
"joint: 2\n",
|
551
|
-
"projects: 2\n",
|
552
|
-
"leaving: 1\n",
|
553
|
-
"took: 1\n",
|
554
|
-
"moment: 1\n",
|
555
|
-
"thank: 1\n",
|
556
|
-
"organizers: 1\n",
|
557
|
-
"Karen: 1\n",
|
558
|
-
"Wilson: 1\n",
|
559
|
-
"director: 1\n",
|
560
|
-
"Network: 1\n",
|
561
|
-
"resounding: 1\n",
|
562
|
-
"together: 1\n",
|
563
|
-
"brightest: 1\n",
|
564
|
-
"minds: 1\n",
|
565
|
-
"spirit: 1\n",
|
566
|
-
"collaboration: 1\n",
|
567
|
-
"boarded: 1\n",
|
568
|
-
"flight: 1\n",
|
569
|
-
"back: 1\n",
|
570
|
-
"Boston: 1\n",
|
571
|
-
"n't: 1\n",
|
572
|
-
"help: 1\n",
|
573
|
-
"feel: 1\n",
|
574
|
-
"optimistic: 1\n",
|
575
|
-
"knew: 1\n",
|
576
|
-
"would: 2\n",
|
577
|
-
"lead: 1\n",
|
578
|
-
"exciting: 1\n",
|
579
|
-
"opportunities: 1\n",
|
580
|
-
"determined: 1\n",
|
581
|
-
"ever: 1\n",
|
582
|
-
"push: 2\n",
|
583
|
-
"boundaries: 2\n",
|
584
|
-
"achieve: 1\n",
|
585
|
-
"ensure: 1\n",
|
586
|
-
"positive: 1\n",
|
587
|
-
"impact: 1\n",
|
588
|
-
"weeks: 1\n",
|
589
|
-
"stayed: 1\n",
|
590
|
-
"touch: 1\n",
|
591
|
-
"collaborators: 1\n",
|
592
|
-
"began: 1\n",
|
593
|
-
"sharing: 1\n",
|
594
|
-
"resources: 1\n",
|
595
|
-
"collaborated: 1\n",
|
596
|
-
"worked: 1\n",
|
597
|
-
"started: 1\n",
|
598
|
-
"using: 1\n",
|
599
|
-
"predict: 1\n",
|
600
|
-
"tackle: 1\n",
|
601
|
-
"biological: 1\n",
|
602
|
-
"expanded: 1\n",
|
603
|
-
"professional: 1\n",
|
604
|
-
"enriched: 1\n",
|
605
|
-
"understanding: 1\n",
|
606
|
-
"diverse: 1\n",
|
607
|
-
"grateful: 1\n",
|
608
|
-
"connect: 1\n",
|
609
|
-
"many: 1\n",
|
610
|
-
"talented: 1\n",
|
611
|
-
"individuals: 1\n",
|
612
|
-
"looked: 1\n",
|
613
|
-
"forward: 1\n",
|
614
|
-
"renewed: 1\n",
|
615
|
-
"enthusiasm: 1\n",
|
616
|
-
"sense: 1\n",
|
617
|
-
"purpose: 1\n",
|
618
|
-
"transformative: 1\n",
|
619
|
-
"experience: 1\n",
|
620
|
-
"setting: 1\n",
|
621
|
-
"stage: 1\n",
|
622
|
-
"discoveries: 1\n",
|
623
|
-
"\n",
|
624
|
-
"Probability Distribution:\n",
|
625
|
-
"bustling: 0.0015\n",
|
626
|
-
"city: 0.0015\n",
|
627
|
-
"San: 0.0015\n",
|
628
|
-
"Francisco: 0.0015\n",
|
629
|
-
"tech: 0.0015\n",
|
630
|
-
"enthusiasts: 0.0015\n",
|
631
|
-
"world: 0.0031\n",
|
632
|
-
"gathered: 0.0031\n",
|
633
|
-
"annual: 0.0015\n",
|
634
|
-
"Tech: 0.0046\n",
|
635
|
-
"Innovators: 0.0046\n",
|
636
|
-
"Conference: 0.0031\n",
|
637
|
-
"event: 0.0061\n",
|
638
|
-
"melting: 0.0015\n",
|
639
|
-
"pot: 0.0015\n",
|
640
|
-
"ideas: 0.0061\n",
|
641
|
-
"innovations: 0.0015\n",
|
642
|
-
"collaborations: 0.0061\n",
|
643
|
-
"Among: 0.0031\n",
|
644
|
-
"attendees: 0.0092\n",
|
645
|
-
"Emily: 0.0198\n",
|
646
|
-
"Chen: 0.0015\n",
|
647
|
-
"renowned: 0.0015\n",
|
648
|
-
"AI: 0.0275\n",
|
649
|
-
"researcher: 0.0046\n",
|
650
|
-
"MIT: 0.0015\n",
|
651
|
-
"eager: 0.0046\n",
|
652
|
-
"present: 0.0015\n",
|
653
|
-
"latest: 0.0031\n",
|
654
|
-
"findings: 0.0015\n",
|
655
|
-
"machine: 0.0031\n",
|
656
|
-
"learning: 0.0046\n",
|
657
|
-
"algorithms: 0.0061\n",
|
658
|
-
"colleague: 0.0046\n",
|
659
|
-
"Dr.: 0.0183\n",
|
660
|
-
"Michael: 0.0183\n",
|
661
|
-
"Thompson: 0.0015\n",
|
662
|
-
"also: 0.0046\n",
|
663
|
-
"well-respected: 0.0015\n",
|
664
|
-
"figure: 0.0015\n",
|
665
|
-
"field: 0.0061\n",
|
666
|
-
"artificial: 0.0031\n",
|
667
|
-
"intelligence: 0.0031\n",
|
668
|
-
"accompanied: 0.0031\n",
|
669
|
-
"duo: 0.0015\n",
|
670
|
-
"working: 0.0076\n",
|
671
|
-
"groundbreaking: 0.0031\n",
|
672
|
-
"project: 0.0092\n",
|
673
|
-
"aimed: 0.0015\n",
|
674
|
-
"revolutionize: 0.0015\n",
|
675
|
-
"way: 0.0015\n",
|
676
|
-
"neural: 0.0046\n",
|
677
|
-
"networks: 0.0061\n",
|
678
|
-
"process: 0.0015\n",
|
679
|
-
"information: 0.0031\n",
|
680
|
-
"conference: 0.0122\n",
|
681
|
-
"commenced: 0.0015\n",
|
682
|
-
"greeted: 0.0015\n",
|
683
|
-
"host: 0.0015\n",
|
684
|
-
"familiar: 0.0015\n",
|
685
|
-
"faces: 0.0015\n",
|
686
|
-
"Jennifer: 0.0046\n",
|
687
|
-
"Lee: 0.0015\n",
|
688
|
-
"data: 0.0046\n",
|
689
|
-
"scientist: 0.0031\n",
|
690
|
-
"Google: 0.0015\n",
|
691
|
-
"showcase: 0.0015\n",
|
692
|
-
"team: 0.0031\n",
|
693
|
-
"advancements: 0.0076\n",
|
694
|
-
"quantum: 0.0015\n",
|
695
|
-
"computing: 0.0015\n",
|
696
|
-
"joined: 0.0046\n",
|
697
|
-
"mentor: 0.0015\n",
|
698
|
-
"Robert: 0.0015\n",
|
699
|
-
"Lang: 0.0015\n",
|
700
|
-
"pioneer: 0.0015\n",
|
701
|
-
"computational: 0.0015\n",
|
702
|
-
"neuroscience: 0.0015\n",
|
703
|
-
"introduced: 0.0031\n",
|
704
|
-
"friend: 0.0015\n",
|
705
|
-
"Carlos: 0.0031\n",
|
706
|
-
"Mendez: 0.0015\n",
|
707
|
-
"software: 0.0015\n",
|
708
|
-
"engineer: 0.0031\n",
|
709
|
-
"Facebook: 0.0015\n",
|
710
|
-
"specialized: 0.0015\n",
|
711
|
-
"developing: 0.0046\n",
|
712
|
-
"social: 0.0015\n",
|
713
|
-
"media: 0.0015\n",
|
714
|
-
"analytics: 0.0015\n",
|
715
|
-
"keynote: 0.0015\n",
|
716
|
-
"speaker: 0.0015\n",
|
717
|
-
"none: 0.0015\n",
|
718
|
-
"Elizabeth: 0.0015\n",
|
719
|
-
"Warren: 0.0031\n",
|
720
|
-
"distinguished: 0.0015\n",
|
721
|
-
"professor: 0.0031\n",
|
722
|
-
"Stanford: 0.0015\n",
|
723
|
-
"University: 0.0107\n",
|
724
|
-
"speech: 0.0015\n",
|
725
|
-
"focused: 0.0015\n",
|
726
|
-
"ethical: 0.0015\n",
|
727
|
-
"implications: 0.0015\n",
|
728
|
-
"importance: 0.0031\n",
|
729
|
-
"technologies: 0.0031\n",
|
730
|
-
"benefit: 0.0015\n",
|
731
|
-
"humanity: 0.0015\n",
|
732
|
-
"whole: 0.0015\n",
|
733
|
-
"insights: 0.0031\n",
|
734
|
-
"sparked: 0.0015\n",
|
735
|
-
"lively: 0.0015\n",
|
736
|
-
"discussion: 0.0046\n",
|
737
|
-
"among: 0.0015\n",
|
738
|
-
"including: 0.0031\n",
|
739
|
-
"Sarah: 0.0015\n",
|
740
|
-
"Johnson: 0.0015\n",
|
741
|
-
"policy: 0.0015\n",
|
742
|
-
"advisor: 0.0015\n",
|
743
|
-
"United: 0.0015\n",
|
744
|
-
"Nations: 0.0015\n",
|
745
|
-
"Ahmed: 0.0015\n",
|
746
|
-
"Khan: 0.0015\n",
|
747
|
-
"cybersecurity: 0.0015\n",
|
748
|
-
"expert: 0.0046\n",
|
749
|
-
"Microsoft: 0.0015\n",
|
750
|
-
"breaks: 0.0015\n",
|
751
|
-
"sessions: 0.0015\n",
|
752
|
-
"mingled: 0.0015\n",
|
753
|
-
"exchanged: 0.0031\n",
|
754
|
-
"caught: 0.0015\n",
|
755
|
-
"former: 0.0015\n",
|
756
|
-
"classmate: 0.0015\n",
|
757
|
-
"David: 0.0031\n",
|
758
|
-
"Kim: 0.0015\n",
|
759
|
-
"works: 0.0015\n",
|
760
|
-
"analyst: 0.0015\n",
|
761
|
-
"Amazon: 0.0015\n",
|
762
|
-
"Jessica: 0.0061\n",
|
763
|
-
"Brown: 0.0015\n",
|
764
|
-
"knack: 0.0015\n",
|
765
|
-
"innovative: 0.0015\n",
|
766
|
-
"solutions: 0.0015\n",
|
767
|
-
"complex: 0.0031\n",
|
768
|
-
"problems: 0.0031\n",
|
769
|
-
"particularly: 0.0046\n",
|
770
|
-
"interested: 0.0031\n",
|
771
|
-
"work: 0.0046\n",
|
772
|
-
"natural: 0.0031\n",
|
773
|
-
"language: 0.0031\n",
|
774
|
-
"processing: 0.0031\n",
|
775
|
-
"invited: 0.0015\n",
|
776
|
-
"collaborate: 0.0015\n",
|
777
|
-
"future: 0.0076\n",
|
778
|
-
"another: 0.0015\n",
|
779
|
-
"corner: 0.0015\n",
|
780
|
-
"room: 0.0015\n",
|
781
|
-
"deep: 0.0046\n",
|
782
|
-
"conversation: 0.0046\n",
|
783
|
-
"Raj: 0.0061\n",
|
784
|
-
"Patel: 0.0015\n",
|
785
|
-
"roboticist: 0.0015\n",
|
786
|
-
"Carnegie: 0.0015\n",
|
787
|
-
"Mellon: 0.0015\n",
|
788
|
-
"recently: 0.0015\n",
|
789
|
-
"developed: 0.0015\n",
|
790
|
-
"new: 0.0122\n",
|
791
|
-
"type: 0.0015\n",
|
792
|
-
"robotic: 0.0031\n",
|
793
|
-
"arm: 0.0015\n",
|
794
|
-
"could: 0.0046\n",
|
795
|
-
"perform: 0.0015\n",
|
796
|
-
"delicate: 0.0015\n",
|
797
|
-
"surgical: 0.0015\n",
|
798
|
-
"procedures: 0.0015\n",
|
799
|
-
"unprecedented: 0.0015\n",
|
800
|
-
"precision: 0.0015\n",
|
801
|
-
"research: 0.0107\n",
|
802
|
-
"assistant: 0.0015\n",
|
803
|
-
"Maria: 0.0031\n",
|
804
|
-
"Gonzalez: 0.0015\n",
|
805
|
-
"instrumental: 0.0015\n",
|
806
|
-
"success: 0.0031\n",
|
807
|
-
"fascinated: 0.0015\n",
|
808
|
-
"proposed: 0.0015\n",
|
809
|
-
"partnership: 0.0015\n",
|
810
|
-
"integrate: 0.0031\n",
|
811
|
-
"technology: 0.0061\n",
|
812
|
-
"day: 0.0015\n",
|
813
|
-
"progressed: 0.0015\n",
|
814
|
-
"treated: 0.0015\n",
|
815
|
-
"series: 0.0015\n",
|
816
|
-
"insightful: 0.0015\n",
|
817
|
-
"presentations: 0.0015\n",
|
818
|
-
"James: 0.0015\n",
|
819
|
-
"Clark: 0.0015\n",
|
820
|
-
"Harvard: 0.0015\n",
|
821
|
-
"shared: 0.0031\n",
|
822
|
-
"applications: 0.0046\n",
|
823
|
-
"healthcare: 0.0031\n",
|
824
|
-
"followed: 0.0031\n",
|
825
|
-
"Lisa: 0.0015\n",
|
826
|
-
"Robinson: 0.0015\n",
|
827
|
-
"computer: 0.0015\n",
|
828
|
-
"vision: 0.0015\n",
|
829
|
-
"Nvidia: 0.0015\n",
|
830
|
-
"demonstrated: 0.0015\n",
|
831
|
-
"image: 0.0015\n",
|
832
|
-
"recognition: 0.0015\n",
|
833
|
-
"audience: 0.0046\n",
|
834
|
-
"impressed: 0.0015\n",
|
835
|
-
"presentation: 0.0015\n",
|
836
|
-
"Ananya: 0.0015\n",
|
837
|
-
"Singh: 0.0015\n",
|
838
|
-
"ethicist: 0.0015\n",
|
839
|
-
"Oxford: 0.0015\n",
|
840
|
-
"discussed: 0.0046\n",
|
841
|
-
"societal: 0.0015\n",
|
842
|
-
"impacts: 0.0015\n",
|
843
|
-
"responsible: 0.0015\n",
|
844
|
-
"innovation: 0.0031\n",
|
845
|
-
"evening: 0.0015\n",
|
846
|
-
"gala: 0.0015\n",
|
847
|
-
"dinner: 0.0015\n",
|
848
|
-
"Grand: 0.0015\n",
|
849
|
-
"Hyatt: 0.0015\n",
|
850
|
-
"Hotel: 0.0015\n",
|
851
|
-
"perfect: 0.0015\n",
|
852
|
-
"opportunity: 0.0031\n",
|
853
|
-
"networking: 0.0015\n",
|
854
|
-
"fostering: 0.0031\n",
|
855
|
-
"found: 0.0015\n",
|
856
|
-
"seated: 0.0015\n",
|
857
|
-
"next: 0.0031\n",
|
858
|
-
"Henry: 0.0015\n",
|
859
|
-
"Zhang: 0.0015\n",
|
860
|
-
"venture: 0.0015\n",
|
861
|
-
"capitalist: 0.0015\n",
|
862
|
-
"Sequoia: 0.0015\n",
|
863
|
-
"Capital: 0.0015\n",
|
864
|
-
"keen: 0.0015\n",
|
865
|
-
"invest: 0.0015\n",
|
866
|
-
"promising: 0.0015\n",
|
867
|
-
"startups: 0.0015\n",
|
868
|
-
"Priya: 0.0015\n",
|
869
|
-
"Sharma: 0.0015\n",
|
870
|
-
"legal: 0.0015\n",
|
871
|
-
"Electronic: 0.0015\n",
|
872
|
-
"Frontier: 0.0015\n",
|
873
|
-
"Foundation: 0.0015\n",
|
874
|
-
"provided: 0.0015\n",
|
875
|
-
"valuable: 0.0031\n",
|
876
|
-
"regulatory: 0.0015\n",
|
877
|
-
"landscape: 0.0015\n",
|
878
|
-
"emerging: 0.0015\n",
|
879
|
-
"table: 0.0031\n",
|
880
|
-
"struck: 0.0015\n",
|
881
|
-
"Laura: 0.0061\n",
|
882
|
-
"Martinez: 0.0015\n",
|
883
|
-
"bioinformatics: 0.0015\n",
|
884
|
-
"California: 0.0015\n",
|
885
|
-
"Berkeley: 0.0015\n",
|
886
|
-
"use: 0.0015\n",
|
887
|
-
"predicting: 0.0015\n",
|
888
|
-
"genetic: 0.0031\n",
|
889
|
-
"disorders: 0.0031\n",
|
890
|
-
"expertise: 0.0046\n",
|
891
|
-
"contact: 0.0015\n",
|
892
|
-
"planned: 0.0015\n",
|
893
|
-
"meet: 0.0015\n",
|
894
|
-
"discuss: 0.0015\n",
|
895
|
-
"potential: 0.0046\n",
|
896
|
-
"Meanwhile: 0.0015\n",
|
897
|
-
"Ethan: 0.0031\n",
|
898
|
-
"Liu: 0.0015\n",
|
899
|
-
"blockchain: 0.0031\n",
|
900
|
-
"developer: 0.0015\n",
|
901
|
-
"IBM: 0.0015\n",
|
902
|
-
"combining: 0.0031\n",
|
903
|
-
"enhance: 0.0031\n",
|
904
|
-
"security: 0.0015\n",
|
905
|
-
"Olivia: 0.0015\n",
|
906
|
-
"Parker: 0.0015\n",
|
907
|
-
"bringing: 0.0031\n",
|
908
|
-
"cryptography: 0.0015\n",
|
909
|
-
"group: 0.0031\n",
|
910
|
-
"brainstormed: 0.0015\n",
|
911
|
-
"various: 0.0015\n",
|
912
|
-
"decided: 0.0015\n",
|
913
|
-
"form: 0.0015\n",
|
914
|
-
"explore: 0.0015\n",
|
915
|
-
"morning: 0.0015\n",
|
916
|
-
"resumed: 0.0015\n",
|
917
|
-
"panel: 0.0031\n",
|
918
|
-
"featuring: 0.0015\n",
|
919
|
-
"several: 0.0015\n",
|
920
|
-
"industry: 0.0015\n",
|
921
|
-
"leaders: 0.0015\n",
|
922
|
-
"William: 0.0015\n",
|
923
|
-
"Harris: 0.0015\n",
|
924
|
-
"CEO: 0.0015\n",
|
925
|
-
"Inc.: 0.0015\n",
|
926
|
-
"Katherine: 0.0015\n",
|
927
|
-
"Adams: 0.0015\n",
|
928
|
-
"senior: 0.0015\n",
|
929
|
-
"OpenAI: 0.0015\n",
|
930
|
-
"transform: 0.0015\n",
|
931
|
-
"industries: 0.0015\n",
|
932
|
-
"ranging: 0.0015\n",
|
933
|
-
"finance: 0.0015\n",
|
934
|
-
"included: 0.0015\n",
|
935
|
-
"Mei: 0.0015\n",
|
936
|
-
"Ling: 0.0015\n",
|
937
|
-
"Tokyo: 0.0015\n",
|
938
|
-
"highlighted: 0.0015\n",
|
939
|
-
"Asia: 0.0015\n",
|
940
|
-
"sat: 0.0015\n",
|
941
|
-
"acquaintances: 0.0015\n",
|
942
|
-
"absorb: 0.0015\n",
|
943
|
-
"wealth: 0.0015\n",
|
944
|
-
"knowledge: 0.0031\n",
|
945
|
-
"inspired: 0.0015\n",
|
946
|
-
"talk: 0.0015\n",
|
947
|
-
"Samuel: 0.0015\n",
|
948
|
-
"Green: 0.0015\n",
|
949
|
-
"cognitive: 0.0015\n",
|
950
|
-
"Yale: 0.0015\n",
|
951
|
-
"intersection: 0.0015\n",
|
952
|
-
"human: 0.0031\n",
|
953
|
-
"cognition: 0.0015\n",
|
954
|
-
"augment: 0.0015\n",
|
955
|
-
"decision-making: 0.0015\n",
|
956
|
-
"resonated: 0.0015\n",
|
957
|
-
"deeply: 0.0015\n",
|
958
|
-
"drew: 0.0015\n",
|
959
|
-
"close: 0.0015\n",
|
960
|
-
"reflected: 0.0015\n",
|
961
|
-
"connections: 0.0031\n",
|
962
|
-
"made: 0.0031\n",
|
963
|
-
"gained: 0.0015\n",
|
964
|
-
"felt: 0.0015\n",
|
965
|
-
"energized: 0.0015\n",
|
966
|
-
"excited: 0.0015\n",
|
967
|
-
"formed: 0.0015\n",
|
968
|
-
"start: 0.0015\n",
|
969
|
-
"joint: 0.0031\n",
|
970
|
-
"projects: 0.0031\n",
|
971
|
-
"leaving: 0.0015\n",
|
972
|
-
"took: 0.0015\n",
|
973
|
-
"moment: 0.0015\n",
|
974
|
-
"thank: 0.0015\n",
|
975
|
-
"organizers: 0.0015\n",
|
976
|
-
"Karen: 0.0015\n",
|
977
|
-
"Wilson: 0.0015\n",
|
978
|
-
"director: 0.0015\n",
|
979
|
-
"Network: 0.0015\n",
|
980
|
-
"resounding: 0.0015\n",
|
981
|
-
"together: 0.0015\n",
|
982
|
-
"brightest: 0.0015\n",
|
983
|
-
"minds: 0.0015\n",
|
984
|
-
"spirit: 0.0015\n",
|
985
|
-
"collaboration: 0.0015\n",
|
986
|
-
"boarded: 0.0015\n",
|
987
|
-
"flight: 0.0015\n",
|
988
|
-
"back: 0.0015\n",
|
989
|
-
"Boston: 0.0015\n",
|
990
|
-
"n't: 0.0015\n",
|
991
|
-
"help: 0.0015\n",
|
992
|
-
"feel: 0.0015\n",
|
993
|
-
"optimistic: 0.0015\n",
|
994
|
-
"knew: 0.0015\n",
|
995
|
-
"would: 0.0031\n",
|
996
|
-
"lead: 0.0015\n",
|
997
|
-
"exciting: 0.0015\n",
|
998
|
-
"opportunities: 0.0015\n",
|
999
|
-
"determined: 0.0015\n",
|
1000
|
-
"ever: 0.0015\n",
|
1001
|
-
"push: 0.0031\n",
|
1002
|
-
"boundaries: 0.0031\n",
|
1003
|
-
"achieve: 0.0015\n",
|
1004
|
-
"ensure: 0.0015\n",
|
1005
|
-
"positive: 0.0015\n",
|
1006
|
-
"impact: 0.0015\n",
|
1007
|
-
"weeks: 0.0015\n",
|
1008
|
-
"stayed: 0.0015\n",
|
1009
|
-
"touch: 0.0015\n",
|
1010
|
-
"collaborators: 0.0015\n",
|
1011
|
-
"began: 0.0015\n",
|
1012
|
-
"sharing: 0.0015\n",
|
1013
|
-
"resources: 0.0015\n",
|
1014
|
-
"collaborated: 0.0015\n",
|
1015
|
-
"worked: 0.0015\n",
|
1016
|
-
"started: 0.0015\n",
|
1017
|
-
"using: 0.0015\n",
|
1018
|
-
"predict: 0.0015\n",
|
1019
|
-
"tackle: 0.0015\n",
|
1020
|
-
"biological: 0.0015\n",
|
1021
|
-
"expanded: 0.0015\n",
|
1022
|
-
"professional: 0.0015\n",
|
1023
|
-
"enriched: 0.0015\n",
|
1024
|
-
"understanding: 0.0015\n",
|
1025
|
-
"diverse: 0.0015\n",
|
1026
|
-
"grateful: 0.0015\n",
|
1027
|
-
"connect: 0.0015\n",
|
1028
|
-
"many: 0.0015\n",
|
1029
|
-
"talented: 0.0015\n",
|
1030
|
-
"individuals: 0.0015\n",
|
1031
|
-
"looked: 0.0015\n",
|
1032
|
-
"forward: 0.0015\n",
|
1033
|
-
"renewed: 0.0015\n",
|
1034
|
-
"enthusiasm: 0.0015\n",
|
1035
|
-
"sense: 0.0015\n",
|
1036
|
-
"purpose: 0.0015\n",
|
1037
|
-
"transformative: 0.0015\n",
|
1038
|
-
"experience: 0.0015\n",
|
1039
|
-
"setting: 0.0015\n",
|
1040
|
-
"stage: 0.0015\n",
|
1041
|
-
"discoveries: 0.0015\n"
|
1042
|
-
]
|
1043
|
-
}
|
1044
|
-
],
|
1045
|
-
"source": [
|
1046
|
-
"# Display results\n",
|
1047
|
-
"print(\"\\nOriginal Tokens:\")\n",
|
1048
|
-
"print(filtered_tokens)\n",
|
1049
|
-
"\n",
|
1050
|
-
"print(\"\\nStems:\")\n",
|
1051
|
-
"print(stems)\n",
|
1052
|
-
"\n",
|
1053
|
-
"print(\"\\nLemmas:\")\n",
|
1054
|
-
"print(lemmas)\n",
|
1055
|
-
"\n",
|
1056
|
-
"print(\"\\nFrequency Distribution:\")\n",
|
1057
|
-
"for word, freq in freq_dist.items():\n",
|
1058
|
-
" print(f\"{word}: {freq}\")\n",
|
1059
|
-
"\n",
|
1060
|
-
"print(\"\\nProbability Distribution:\")\n",
|
1061
|
-
"for word, prob in prob_dist.items():\n",
|
1062
|
-
" print(f\"{word}: {prob:.4f}\")"
|
1063
|
-
]
|
1064
|
-
},
|
1065
|
-
{
|
1066
|
-
"cell_type": "code",
|
1067
|
-
"execution_count": 88,
|
1068
|
-
"id": "42192a7f-f0fc-4152-abcd-6b0264ebc368",
|
1069
|
-
"metadata": {},
|
1070
|
-
"outputs": [
|
1071
|
-
{
|
1072
|
-
"name": "stdout",
|
1073
|
-
"output_type": "stream",
|
1074
|
-
"text": [
|
1075
|
-
"Original Tokens:\n",
|
1076
|
-
" ['In', 'the', 'bustling', 'city', 'of', 'San', 'Francisco', ',', 'tech', 'enthusiasts', 'from', 'all', 'over', 'the', 'world', 'gathered', 'for', 'the', 'annual', 'Tech', 'Innovators', 'Conference', '.', 'The', 'event', 'was', 'a', 'melting', 'pot', 'of', 'ideas', ',', 'innovations', ',', 'and', 'collaborations', '.', 'Among', 'the', 'attendees', 'was', 'Emily', 'Chen', ',', 'a', 'renowned', 'AI', 'researcher', 'from', 'MIT', ',', 'who', 'was', 'eager', 'to', 'present', 'her', 'latest', 'findings', 'on', 'machine', 'learning', 'algorithms', '.', 'Emily', \"'s\", 'colleague', ',', 'Dr.', 'Michael', 'Thompson', ',', 'who', 'is', 'also', 'a', 'well-respected', 'figure', 'in', 'the', 'field', 'of', 'artificial', 'intelligence', ',', 'accompanied', 'her', '.', 'The', 'duo', 'had', 'been', 'working', 'on', 'a', 'groundbreaking', 'project', 'that', 'aimed', 'to', 'revolutionize', 'the', 'way', 'neural', 'networks', 'process', 'information', '.', 'As', 'the', 'conference', 'commenced', ',', 'Emily', 'and', 'Michael', 'were', 'greeted', 'by', 'a', 'host', 'of', 'familiar', 'faces', '.', 'Jennifer', 'Lee', ',', 'a', 'data', 'scientist', 'from', 'Google', ',', 'was', 'there', 'to', 'showcase', 'her', 'team', \"'s\", 'advancements', 'in', 'quantum', 'computing', '.', 'She', 'was', 'joined', 'by', 'her', 'mentor', ',', 'Dr.', 'Robert', 'Lang', ',', 'who', 'had', 'been', 'a', 'pioneer', 'in', 'the', 'field', 'of', 'computational', 'neuroscience', '.', 'Jennifer', 'introduced', 'Emily', 'and', 'Michael', 'to', 'her', 'friend', ',', 'Carlos', 'Mendez', ',', 'a', 'software', 'engineer', 'at', 'Facebook', 'who', 'specialized', 'in', 'developing', 'algorithms', 'for', 'social', 'media', 'analytics', '.', 'The', 'keynote', 'speaker', 'for', 'the', 'event', 'was', 'none', 'other', 'than', 'Dr.', 'Elizabeth', 'Warren', ',', 'a', 'distinguished', 'professor', 'at', 'Stanford', 'University', '.', 'Dr.', 'Warren', \"'s\", 'speech', 'focused', 'on', 'the', 'ethical', 'implications', 'of', 'AI', 'and', 'the', 'importance', 'of', 'developing', 'technologies', 'that', 'benefit', 'humanity', 'as', 'a', 'whole', '.', 'Her', 'insights', 'sparked', 'a', 'lively', 'discussion', 'among', 'the', 'attendees', ',', 'including', 'Sarah', 'Johnson', ',', 'a', 'policy', 'advisor', 'from', 'the', 'United', 'Nations', ',', 'and', 'Ahmed', 'Khan', ',', 'a', 'cybersecurity', 'expert', 'from', 'Microsoft', '.', 'During', 'the', 'breaks', 'between', 'sessions', ',', 'the', 'attendees', 'mingled', 'and', 'exchanged', 'ideas', '.', 'Emily', 'caught', 'up', 'with', 'her', 'former', 'classmate', ',', 'David', 'Kim', ',', 'who', 'now', 'works', 'as', 'a', 'data', 'analyst', 'at', 'Amazon', '.', 'David', 'introduced', 'her', 'to', 'his', 'colleague', ',', 'Jessica', 'Brown', ',', 'a', 'machine', 'learning', 'engineer', 'with', 'a', 'knack', 'for', 'developing', 'innovative', 'solutions', 'to', 'complex', 'problems', '.', 'Emily', 'was', 'particularly', 'interested', 'in', 'Jessica', \"'s\", 'work', 'on', 'natural', 'language', 'processing', 'and', 'invited', 'her', 'to', 'collaborate', 'on', 'a', 'future', 'project', '.', 'In', 'another', 'corner', 'of', 'the', 'room', ',', 'Michael', 'was', 'deep', 'in', 'conversation', 'with', 'Raj', 'Patel', ',', 'a', 'roboticist', 'from', 'Carnegie', 'Mellon', 'University', '.', 'Raj', 'had', 'recently', 'developed', 'a', 'new', 'type', 'of', 'robotic', 'arm', 'that', 'could', 'perform', 'delicate', 'surgical', 'procedures', 'with', 'unprecedented', 'precision', '.', 'He', 'was', 'accompanied', 'by', 'his', 'research', 'assistant', ',', 'Maria', 'Gonzalez', ',', 'who', 'had', 'been', 'instrumental', 'in', 'the', 'project', \"'s\", 'success', '.', 'Michael', 'was', 'fascinated', 'by', 'their', 'work', 'and', 'proposed', 'a', 'partnership', 'to', 'integrate', 'their', 'technology', 'with', 'his', 'AI', 'algorithms', '.', 'As', 'the', 'day', 'progressed', ',', 'the', 'conference', 'attendees', 'were', 'treated', 'to', 'a', 'series', 'of', 'insightful', 'presentations', '.', 'Dr.', 'James', 'Clark', 'from', 'Harvard', 'University', 'shared', 'his', 'research', 'on', 'deep', 'learning', 'and', 'its', 'applications', 'in', 'healthcare', '.', 'He', 'was', 'followed', 'by', 'Lisa', 'Robinson', ',', 'a', 'computer', 'vision', 'expert', 'from', 'Nvidia', ',', 'who', 'demonstrated', 'the', 'latest', 'advancements', 'in', 'image', 'recognition', 'technology', '.', 'The', 'audience', 'was', 'particularly', 'impressed', 'by', 'the', 'presentation', 'from', 'Dr.', 'Ananya', 'Singh', ',', 'an', 'AI', 'ethicist', 'from', 'Oxford', 'University', ',', 'who', 'discussed', 'the', 'societal', 'impacts', 'of', 'AI', 'and', 'the', 'importance', 'of', 'responsible', 'innovation', '.', 'In', 'the', 'evening', ',', 'the', 'attendees', 'gathered', 'for', 'a', 'gala', 'dinner', 'at', 'the', 'Grand', 'Hyatt', 'Hotel', '.', 'The', 'event', 'was', 'a', 'perfect', 'opportunity', 'for', 'networking', 'and', 'fostering', 'new', 'collaborations', '.', 'Emily', 'found', 'herself', 'seated', 'next', 'to', 'Henry', 'Zhang', ',', 'a', 'venture', 'capitalist', 'from', 'Sequoia', 'Capital', ',', 'who', 'was', 'keen', 'to', 'invest', 'in', 'promising', 'AI', 'startups', '.', 'They', 'were', 'joined', 'by', 'Priya', 'Sharma', ',', 'a', 'legal', 'expert', 'from', 'the', 'Electronic', 'Frontier', 'Foundation', ',', 'who', 'provided', 'valuable', 'insights', 'into', 'the', 'regulatory', 'landscape', 'of', 'emerging', 'technologies', '.', 'At', 'the', 'same', 'table', ',', 'Michael', 'struck', 'up', 'a', 'conversation', 'with', 'Laura', 'Martinez', ',', 'a', 'bioinformatics', 'researcher', 'from', 'the', 'University', 'of', 'California', ',', 'Berkeley', '.', 'Laura', 'had', 'been', 'working', 'on', 'a', 'project', 'to', 'use', 'AI', 'for', 'predicting', 'genetic', 'disorders', 'and', 'was', 'interested', 'in', 'Michael', \"'s\", 'expertise', 'in', 'neural', 'networks', '.', 'They', 'exchanged', 'contact', 'information', 'and', 'planned', 'to', 'meet', 'after', 'the', 'conference', 'to', 'discuss', 'potential', 'collaborations', '.', 'Meanwhile', ',', 'Jennifer', 'and', 'Carlos', 'were', 'deep', 'in', 'discussion', 'with', 'Ethan', 'Liu', ',', 'a', 'blockchain', 'developer', 'from', 'IBM', ',', 'about', 'the', 'potential', 'of', 'combining', 'AI', 'with', 'blockchain', 'technology', 'to', 'enhance', 'data', 'security', '.', 'Ethan', \"'s\", 'colleague', ',', 'Dr.', 'Olivia', 'Parker', ',', 'joined', 'the', 'conversation', ',', 'bringing', 'her', 'expertise', 'in', 'cryptography', 'to', 'the', 'table', '.', 'The', 'group', 'brainstormed', 'various', 'applications', 'and', 'decided', 'to', 'form', 'a', 'working', 'group', 'to', 'explore', 'these', 'ideas', 'further', '.', 'The', 'next', 'morning', ',', 'the', 'conference', 'resumed', 'with', 'a', 'panel', 'discussion', 'featuring', 'several', 'industry', 'leaders', '.', 'Among', 'them', 'were', 'Dr.', 'William', 'Harris', ',', 'the', 'CEO', 'of', 'AI', 'Inc.', ',', 'and', 'Dr.', 'Katherine', 'Adams', ',', 'a', 'senior', 'researcher', 'at', 'OpenAI', '.', 'They', 'discussed', 'the', 'future', 'of', 'AI', 'and', 'its', 'potential', 'to', 'transform', 'industries', 'ranging', 'from', 'healthcare', 'to', 'finance', '.', 'The', 'panel', 'also', 'included', 'Dr.', 'Mei', 'Ling', ',', 'a', 'professor', 'at', 'the', 'University', 'of', 'Tokyo', ',', 'who', 'highlighted', 'the', 'advancements', 'in', 'AI', 'research', 'in', 'Asia', '.', 'In', 'the', 'audience', ',', 'Emily', 'and', 'Michael', 'sat', 'with', 'their', 'new', 'acquaintances', ',', 'eager', 'to', 'absorb', 'the', 'wealth', 'of', 'knowledge', 'being', 'shared', '.', 'They', 'were', 'particularly', 'inspired', 'by', 'the', 'talk', 'from', 'Dr.', 'Samuel', 'Green', ',', 'a', 'cognitive', 'scientist', 'from', 'Yale', 'University', ',', 'who', 'discussed', 'the', 'intersection', 'of', 'AI', 'and', 'human', 'cognition', '.', 'His', 'research', 'on', 'how', 'AI', 'can', 'augment', 'human', 'decision-making', 'resonated', 'deeply', 'with', 'the', 'audience', '.', 'As', 'the', 'conference', 'drew', 'to', 'a', 'close', ',', 'the', 'attendees', 'reflected', 'on', 'the', 'valuable', 'connections', 'they', 'had', 'made', 'and', 'the', 'new', 'knowledge', 'they', 'had', 'gained', '.', 'Emily', 'and', 'Michael', 'felt', 'energized', 'and', 'excited', 'about', 'the', 'future', 'of', 'their', 'research', '.', 'They', 'had', 'formed', 'new', 'collaborations', 'with', 'Jessica', ',', 'Raj', ',', 'and', 'Laura', ',', 'and', 'were', 'eager', 'to', 'start', 'working', 'on', 'their', 'joint', 'projects', '.', 'Before', 'leaving', ',', 'they', 'took', 'a', 'moment', 'to', 'thank', 'the', 'conference', 'organizers', ',', 'including', 'Dr.', 'Karen', 'Wilson', ',', 'the', 'director', 'of', 'the', 'Tech', 'Innovators', 'Network', ',', 'and', 'her', 'team', '.', 'The', 'event', 'had', 'been', 'a', 'resounding', 'success', ',', 'bringing', 'together', 'some', 'of', 'the', 'brightest', 'minds', 'in', 'the', 'field', 'of', 'AI', 'and', 'fostering', 'a', 'spirit', 'of', 'innovation', 'and', 'collaboration', '.', 'As', 'they', 'boarded', 'their', 'flight', 'back', 'to', 'Boston', ',', 'Emily', 'and', 'Michael', 'could', \"n't\", 'help', 'but', 'feel', 'optimistic', 'about', 'the', 'future', '.', 'They', 'knew', 'that', 'the', 'connections', 'they', 'had', 'made', 'at', 'the', 'conference', 'would', 'lead', 'to', 'exciting', 'new', 'opportunities', 'and', 'advancements', 'in', 'their', 'research', '.', 'They', 'were', 'more', 'determined', 'than', 'ever', 'to', 'push', 'the', 'boundaries', 'of', 'what', 'AI', 'could', 'achieve', 'and', 'to', 'ensure', 'that', 'their', 'work', 'would', 'have', 'a', 'positive', 'impact', 'on', 'the', 'world', '.', 'In', 'the', 'weeks', 'that', 'followed', ',', 'Emily', 'and', 'Michael', 'stayed', 'in', 'touch', 'with', 'their', 'new', 'collaborators', '.', 'They', 'began', 'working', 'on', 'joint', 'projects', ',', 'sharing', 'ideas', 'and', 'resources', 'to', 'push', 'the', 'boundaries', 'of', 'AI', 'research', '.', 'Emily', 'collaborated', 'with', 'Jessica', 'on', 'a', 'project', 'to', 'enhance', 'natural', 'language', 'processing', 'algorithms', ',', 'while', 'Michael', 'worked', 'with', 'Raj', 'and', 'Maria', 'to', 'integrate', 'their', 'robotic', 'technology', 'with', 'his', 'neural', 'networks', '.', 'Laura', 'and', 'Emily', 'started', 'a', 'project', 'on', 'using', 'AI', 'to', 'predict', 'genetic', 'disorders', ',', 'combining', 'their', 'expertise', 'to', 'tackle', 'complex', 'biological', 'problems', '.', 'The', 'conference', 'had', 'not', 'only', 'expanded', 'their', 'professional', 'networks', 'but', 'also', 'enriched', 'their', 'understanding', 'of', 'the', 'diverse', 'applications', 'of', 'AI', '.', 'They', 'were', 'grateful', 'for', 'the', 'opportunity', 'to', 'connect', 'with', 'so', 'many', 'talented', 'individuals', 'and', 'looked', 'forward', 'to', 'the', 'future', 'with', 'renewed', 'enthusiasm', 'and', 'a', 'sense', 'of', 'purpose', '.', 'The', 'Tech', 'Innovators', 'Conference', 'had', 'been', 'a', 'transformative', 'experience', ',', 'setting', 'the', 'stage', 'for', 'new', 'discoveries', 'and', 'groundbreaking', 'advancements', 'in', 'the', 'field', 'of', 'artificial', 'intelligence', '.']\n",
|
1077
|
-
"\n",
|
1078
|
-
"Stemmed Tokens:\n",
|
1079
|
-
" ['bustl', 'citi', 'san', 'francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'tech', 'innov', 'confer', 'event', 'melt', 'pot', 'idea', 'innov', 'collabor', 'among', 'attende', 'emili', 'chen', 'renown', 'ai', 'research', 'mit', 'eager', 'present', 'latest', 'find', 'machin', 'learn', 'algorithm', 'emili', 'colleagu', 'dr.', 'michael', 'thompson', 'also', 'well-respect', 'figur', 'field', 'artifici', 'intellig', 'accompani', 'duo', 'work', 'groundbreak', 'project', 'aim', 'revolution', 'way', 'neural', 'network', 'process', 'inform', 'confer', 'commenc', 'emili', 'michael', 'greet', 'host', 'familiar', 'face', 'jennif', 'lee', 'data', 'scientist', 'googl', 'showcas', 'team', 'advanc', 'quantum', 'comput', 'join', 'mentor', 'dr.', 'robert', 'lang', 'pioneer', 'field', 'comput', 'neurosci', 'jennif', 'introduc', 'emili', 'michael', 'friend', 'carlo', 'mendez', 'softwar', 'engin', 'facebook', 'special', 'develop', 'algorithm', 'social', 'media', 'analyt', 'keynot', 'speaker', 'event', 'none', 'dr.', 'elizabeth', 'warren', 'distinguish', 'professor', 'stanford', 'univers', 'dr.', 'warren', 'speech', 'focus', 'ethic', 'implic', 'ai', 'import', 'develop', 'technolog', 'benefit', 'human', 'whole', 'insight', 'spark', 'live', 'discuss', 'among', 'attende', 'includ', 'sarah', 'johnson', 'polici', 'advisor', 'unit', 'nation', 'ahm', 'khan', 'cybersecur', 'expert', 'microsoft', 'break', 'session', 'attende', 'mingl', 'exchang', 'idea', 'emili', 'caught', 'former', 'classmat', 'david', 'kim', 'work', 'data', 'analyst', 'amazon', 'david', 'introduc', 'colleagu', 'jessica', 'brown', 'machin', 'learn', 'engin', 'knack', 'develop', 'innov', 'solut', 'complex', 'problem', 'emili', 'particularli', 'interest', 'jessica', 'work', 'natur', 'languag', 'process', 'invit', 'collabor', 'futur', 'project', 'anoth', 'corner', 'room', 'michael', 'deep', 'convers', 'raj', 'patel', 'roboticist', 'carnegi', 'mellon', 'univers', 'raj', 'recent', 'develop', 'new', 'type', 'robot', 'arm', 'could', 'perform', 'delic', 'surgic', 'procedur', 'unpreced', 'precis', 'accompani', 'research', 'assist', 'maria', 'gonzalez', 'instrument', 'project', 'success', 'michael', 'fascin', 'work', 'propos', 'partnership', 'integr', 'technolog', 'ai', 'algorithm', 'day', 'progress', 'confer', 'attende', 'treat', 'seri', 'insight', 'present', 'dr.', 'jame', 'clark', 'harvard', 'univers', 'share', 'research', 'deep', 'learn', 'applic', 'healthcar', 'follow', 'lisa', 'robinson', 'comput', 'vision', 'expert', 'nvidia', 'demonstr', 'latest', 'advanc', 'imag', 'recognit', 'technolog', 'audienc', 'particularli', 'impress', 'present', 'dr.', 'ananya', 'singh', 'ai', 'ethicist', 'oxford', 'univers', 'discuss', 'societ', 'impact', 'ai', 'import', 'respons', 'innov', 'even', 'attende', 'gather', 'gala', 'dinner', 'grand', 'hyatt', 'hotel', 'event', 'perfect', 'opportun', 'network', 'foster', 'new', 'collabor', 'emili', 'found', 'seat', 'next', 'henri', 'zhang', 'ventur', 'capitalist', 'sequoia', 'capit', 'keen', 'invest', 'promis', 'ai', 'startup', 'join', 'priya', 'sharma', 'legal', 'expert', 'electron', 'frontier', 'foundat', 'provid', 'valuabl', 'insight', 'regulatori', 'landscap', 'emerg', 'technolog', 'tabl', 'michael', 'struck', 'convers', 'laura', 'martinez', 'bioinformat', 'research', 'univers', 'california', 'berkeley', 'laura', 'work', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'interest', 'michael', 'expertis', 'neural', 'network', 'exchang', 'contact', 'inform', 'plan', 'meet', 'confer', 'discuss', 'potenti', 'collabor', 'meanwhil', 'jennif', 'carlo', 'deep', 'discuss', 'ethan', 'liu', 'blockchain', 'develop', 'ibm', 'potenti', 'combin', 'ai', 'blockchain', 'technolog', 'enhanc', 'data', 'secur', 'ethan', 'colleagu', 'dr.', 'olivia', 'parker', 'join', 'convers', 'bring', 'expertis', 'cryptographi', 'tabl', 'group', 'brainstorm', 'variou', 'applic', 'decid', 'form', 'work', 'group', 'explor', 'idea', 'next', 'morn', 'confer', 'resum', 'panel', 'discuss', 'featur', 'sever', 'industri', 'leader', 'among', 'dr.', 'william', 'harri', 'ceo', 'ai', 'inc.', 'dr.', 'katherin', 'adam', 'senior', 'research', 'openai', 'discuss', 'futur', 'ai', 'potenti', 'transform', 'industri', 'rang', 'healthcar', 'financ', 'panel', 'also', 'includ', 'dr.', 'mei', 'ling', 'professor', 'univers', 'tokyo', 'highlight', 'advanc', 'ai', 'research', 'asia', 'audienc', 'emili', 'michael', 'sat', 'new', 'acquaint', 'eager', 'absorb', 'wealth', 'knowledg', 'share', 'particularli', 'inspir', 'talk', 'dr.', 'samuel', 'green', 'cognit', 'scientist', 'yale', 'univers', 'discuss', 'intersect', 'ai', 'human', 'cognit', 'research', 'ai', 'augment', 'human', 'decision-mak', 'reson', 'deepli', 'audienc', 'confer', 'drew', 'close', 'attende', 'reflect', 'valuabl', 'connect', 'made', 'new', 'knowledg', 'gain', 'emili', 'michael', 'felt', 'energ', 'excit', 'futur', 'research', 'form', 'new', 'collabor', 'jessica', 'raj', 'laura', 'eager', 'start', 'work', 'joint', 'project', 'leav', 'took', 'moment', 'thank', 'confer', 'organ', 'includ', 'dr.', 'karen', 'wilson', 'director', 'tech', 'innov', 'network', 'team', 'event', 'resound', 'success', 'bring', 'togeth', 'brightest', 'mind', 'field', 'ai', 'foster', 'spirit', 'innov', 'collabor', 'board', 'flight', 'back', 'boston', 'emili', 'michael', 'could', \"n't\", 'help', 'feel', 'optimist', 'futur', 'knew', 'connect', 'made', 'confer', 'would', 'lead', 'excit', 'new', 'opportun', 'advanc', 'research', 'determin', 'ever', 'push', 'boundari', 'ai', 'could', 'achiev', 'ensur', 'work', 'would', 'posit', 'impact', 'world', 'week', 'follow', 'emili', 'michael', 'stay', 'touch', 'new', 'collabor', 'began', 'work', 'joint', 'project', 'share', 'idea', 'resourc', 'push', 'boundari', 'ai', 'research', 'emili', 'collabor', 'jessica', 'project', 'enhanc', 'natur', 'languag', 'process', 'algorithm', 'michael', 'work', 'raj', 'maria', 'integr', 'robot', 'technolog', 'neural', 'network', 'laura', 'emili', 'start', 'project', 'use', 'ai', 'predict', 'genet', 'disord', 'combin', 'expertis', 'tackl', 'complex', 'biolog', 'problem', 'confer', 'expand', 'profession', 'network', 'also', 'enrich', 'understand', 'divers', 'applic', 'ai', 'grate', 'opportun', 'connect', 'mani', 'talent', 'individu', 'look', 'forward', 'futur', 'renew', 'enthusiasm', 'sens', 'purpos', 'tech', 'innov', 'confer', 'transform', 'experi', 'set', 'stage', 'new', 'discoveri', 'groundbreak', 'advanc', 'field', 'artifici', 'intellig']\n",
|
1080
|
-
"\n",
|
1081
|
-
"Lemmatized Tokens:\n",
|
1082
|
-
" ['bustling', 'city', 'San', 'Francisco', 'tech', 'enthusiast', 'world', 'gather', 'annual', 'Tech', 'Innovators', 'Conference', 'event', 'melt', 'pot', 'idea', 'innovation', 'collaboration', 'Among', 'attendee', 'Emily', 'Chen', 'renowned', 'AI', 'researcher', 'MIT', 'eager', 'present', 'late', 'finding', 'machine', 'learn', 'algorithm', 'Emily', 'colleague', 'Dr.', 'Michael', 'Thompson', 'also', 'well-respected', 'figure', 'field', 'artificial', 'intelligence', 'accompany', 'duo', 'work', 'groundbreaking', 'project', 'aim', 'revolutionize', 'way', 'neural', 'network', 'process', 'information', 'conference', 'commenced', 'Emily', 'Michael', 'greet', 'host', 'familiar', 'face', 'Jennifer', 'Lee', 'data', 'scientist', 'Google', 'showcase', 'team', 'advancement', 'quantum', 'compute', 'join', 'mentor', 'Dr.', 'Robert', 'Lang', 'pioneer', 'field', 'computational', 'neuroscience', 'Jennifer', 'introduce', 'Emily', 'Michael', 'friend', 'Carlos', 'Mendez', 'software', 'engineer', 'Facebook', 'specialized', 'develop', 'algorithm', 'social', 'medium', 'analytics', 'keynote', 'speaker', 'event', 'none', 'Dr.', 'Elizabeth', 'Warren', 'distinguish', 'professor', 'Stanford', 'University', 'Dr.', 'Warren', 'speech', 'focus', 'ethical', 'implication', 'AI', 'importance', 'develop', 'technology', 'benefit', 'humanity', 'whole', 'insight', 'spark', 'lively', 'discussion', 'among', 'attendee', 'include', 'Sarah', 'Johnson', 'policy', 'advisor', 'United', 'Nations', 'Ahmed', 'Khan', 'cybersecurity', 'expert', 'Microsoft', 'break', 'session', 'attendee', 'mingle', 'exchange', 'idea', 'Emily', 'caught', 'former', 'classmate', 'David', 'Kim', 'work', 'data', 'analyst', 'Amazon', 'David', 'introduce', 'colleague', 'Jessica', 'Brown', 'machine', 'learn', 'engineer', 'knack', 'develop', 'innovative', 'solution', 'complex', 'problem', 'Emily', 'particularly', 'interested', 'Jessica', 'work', 'natural', 'language', 'processing', 'invite', 'collaborate', 'future', 'project', 'another', 'corner', 'room', 'Michael', 'deep', 'conversation', 'Raj', 'Patel', 'roboticist', 'Carnegie', 'Mellon', 'University', 'Raj', 'recently', 'developed', 'new', 'type', 'robotic', 'arm', 'could', 'perform', 'delicate', 'surgical', 'procedure', 'unprecedented', 'precision', 'accompany', 'research', 'assistant', 'Maria', 'Gonzalez', 'instrumental', 'project', 'success', 'Michael', 'fascinate', 'work', 'propose', 'partnership', 'integrate', 'technology', 'AI', 'algorithm', 'day', 'progress', 'conference', 'attendee', 'treat', 'series', 'insightful', 'presentation', 'Dr.', 'James', 'Clark', 'Harvard', 'University', 'share', 'research', 'deep', 'learn', 'application', 'healthcare', 'follow', 'Lisa', 'Robinson', 'computer', 'vision', 'expert', 'Nvidia', 'demonstrate', 'late', 'advancement', 'image', 'recognition', 'technology', 'audience', 'particularly', 'impressed', 'presentation', 'Dr.', 'Ananya', 'Singh', 'AI', 'ethicist', 'Oxford', 'University', 'discuss', 'societal', 'impact', 'AI', 'importance', 'responsible', 'innovation', 'even', 'attendee', 'gather', 'gala', 'dinner', 'Grand', 'Hyatt', 'Hotel', 'event', 'perfect', 'opportunity', 'networking', 'foster', 'new', 'collaboration', 'Emily', 'found', 'seat', 'next', 'Henry', 'Zhang', 'venture', 'capitalist', 'Sequoia', 'Capital', 'keen', 'invest', 'promising', 'AI', 'startup', 'join', 'Priya', 'Sharma', 'legal', 'expert', 'Electronic', 'Frontier', 'Foundation', 'provide', 'valuable', 'insight', 'regulatory', 'landscape', 'emerge', 'technology', 'table', 'Michael', 'struck', 'conversation', 'Laura', 'Martinez', 'bioinformatics', 'researcher', 'University', 'California', 'Berkeley', 'Laura', 'work', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'interested', 'Michael', 'expertise', 'neural', 'network', 'exchange', 'contact', 'information', 'plan', 'meet', 'conference', 'discus', 'potential', 'collaboration', 'Meanwhile', 'Jennifer', 'Carlos', 'deep', 'discussion', 'Ethan', 'Liu', 'blockchain', 'developer', 'IBM', 'potential', 'combine', 'AI', 'blockchain', 'technology', 'enhance', 'data', 'security', 'Ethan', 'colleague', 'Dr.', 'Olivia', 'Parker', 'join', 'conversation', 'bring', 'expertise', 'cryptography', 'table', 'group', 'brainstorm', 'various', 'application', 'decide', 'form', 'work', 'group', 'explore', 'idea', 'next', 'morning', 'conference', 'resume', 'panel', 'discussion', 'feature', 'several', 'industry', 'leader', 'Among', 'Dr.', 'William', 'Harris', 'CEO', 'AI', 'Inc.', 'Dr.', 'Katherine', 'Adams', 'senior', 'researcher', 'OpenAI', 'discuss', 'future', 'AI', 'potential', 'transform', 'industry', 'range', 'healthcare', 'finance', 'panel', 'also', 'include', 'Dr.', 'Mei', 'Ling', 'professor', 'University', 'Tokyo', 'highlight', 'advancement', 'AI', 'research', 'Asia', 'audience', 'Emily', 'Michael', 'sat', 'new', 'acquaintance', 'eager', 'absorb', 'wealth', 'knowledge', 'share', 'particularly', 'inspire', 'talk', 'Dr.', 'Samuel', 'Green', 'cognitive', 'scientist', 'Yale', 'University', 'discuss', 'intersection', 'AI', 'human', 'cognition', 'research', 'AI', 'augment', 'human', 'decision-making', 'resonate', 'deeply', 'audience', 'conference', 'drew', 'close', 'attendee', 'reflect', 'valuable', 'connection', 'make', 'new', 'knowledge', 'gain', 'Emily', 'Michael', 'felt', 'energize', 'excite', 'future', 'research', 'form', 'new', 'collaboration', 'Jessica', 'Raj', 'Laura', 'eager', 'start', 'work', 'joint', 'project', 'leave', 'take', 'moment', 'thank', 'conference', 'organizer', 'include', 'Dr.', 'Karen', 'Wilson', 'director', 'Tech', 'Innovators', 'Network', 'team', 'event', 'resound', 'success', 'bring', 'together', 'brightest', 'mind', 'field', 'AI', 'foster', 'spirit', 'innovation', 'collaboration', 'board', 'flight', 'back', 'Boston', 'Emily', 'Michael', 'could', \"n't\", 'help', 'feel', 'optimistic', 'future', 'knew', 'connection', 'make', 'conference', 'would', 'lead', 'excite', 'new', 'opportunity', 'advancement', 'research', 'determine', 'ever', 'push', 'boundary', 'AI', 'could', 'achieve', 'ensure', 'work', 'would', 'positive', 'impact', 'world', 'week', 'follow', 'Emily', 'Michael', 'stayed', 'touch', 'new', 'collaborator', 'begin', 'work', 'joint', 'project', 'share', 'idea', 'resource', 'push', 'boundary', 'AI', 'research', 'Emily', 'collaborate', 'Jessica', 'project', 'enhance', 'natural', 'language', 'processing', 'algorithm', 'Michael', 'work', 'Raj', 'Maria', 'integrate', 'robotic', 'technology', 'neural', 'network', 'Laura', 'Emily', 'start', 'project', 'use', 'AI', 'predict', 'genetic', 'disorder', 'combine', 'expertise', 'tackle', 'complex', 'biological', 'problem', 'conference', 'expand', 'professional', 'network', 'also', 'enrich', 'understand', 'diverse', 'application', 'AI', 'grateful', 'opportunity', 'connect', 'many', 'talented', 'individual', 'look', 'forward', 'future', 'renew', 'enthusiasm', 'sense', 'purpose', 'Tech', 'Innovators', 'Conference', 'transformative', 'experience', 'set', 'stage', 'new', 'discovery', 'groundbreaking', 'advancement', 'field', 'artificial', 'intelligence']\n",
|
1083
|
-
"\n",
|
1084
|
-
"Frequency Distribution of Original Tokens:\n",
|
1085
|
-
"Token Frequency Probability \n",
|
1086
|
-
"------------------------------------------\n",
|
1087
|
-
"AI 18 0.0275\n",
|
1088
|
-
"Emily 13 0.0198\n",
|
1089
|
-
"Dr. 12 0.0183\n",
|
1090
|
-
"Michael 12 0.0183\n",
|
1091
|
-
"conference 8 0.0122\n",
|
1092
|
-
"new 8 0.0122\n",
|
1093
|
-
"University 7 0.0107\n",
|
1094
|
-
"research 7 0.0107\n",
|
1095
|
-
"attendees 6 0.0092\n",
|
1096
|
-
"project 6 0.0092\n",
|
1097
|
-
"working 5 0.0076\n",
|
1098
|
-
"advancements 5 0.0076\n",
|
1099
|
-
"future 5 0.0076\n",
|
1100
|
-
"event 4 0.0061\n",
|
1101
|
-
"ideas 4 0.0061\n",
|
1102
|
-
"collaborations 4 0.0061\n",
|
1103
|
-
"algorithms 4 0.0061\n",
|
1104
|
-
"field 4 0.0061\n",
|
1105
|
-
"networks 4 0.0061\n",
|
1106
|
-
"Jessica 4 0.0061\n",
|
1107
|
-
"Raj 4 0.0061\n",
|
1108
|
-
"technology 4 0.0061\n",
|
1109
|
-
"Laura 4 0.0061\n",
|
1110
|
-
"Tech 3 0.0046\n",
|
1111
|
-
"Innovators 3 0.0046\n",
|
1112
|
-
"researcher 3 0.0046\n",
|
1113
|
-
"eager 3 0.0046\n",
|
1114
|
-
"learning 3 0.0046\n",
|
1115
|
-
"colleague 3 0.0046\n",
|
1116
|
-
"also 3 0.0046\n",
|
1117
|
-
"neural 3 0.0046\n",
|
1118
|
-
"Jennifer 3 0.0046\n",
|
1119
|
-
"data 3 0.0046\n",
|
1120
|
-
"joined 3 0.0046\n",
|
1121
|
-
"developing 3 0.0046\n",
|
1122
|
-
"discussion 3 0.0046\n",
|
1123
|
-
"expert 3 0.0046\n",
|
1124
|
-
"particularly 3 0.0046\n",
|
1125
|
-
"work 3 0.0046\n",
|
1126
|
-
"deep 3 0.0046\n",
|
1127
|
-
"conversation 3 0.0046\n",
|
1128
|
-
"could 3 0.0046\n",
|
1129
|
-
"applications 3 0.0046\n",
|
1130
|
-
"audience 3 0.0046\n",
|
1131
|
-
"discussed 3 0.0046\n",
|
1132
|
-
"expertise 3 0.0046\n",
|
1133
|
-
"potential 3 0.0046\n",
|
1134
|
-
"world 2 0.0031\n",
|
1135
|
-
"gathered 2 0.0031\n",
|
1136
|
-
"Conference 2 0.0031\n",
|
1137
|
-
"Among 2 0.0031\n",
|
1138
|
-
"latest 2 0.0031\n",
|
1139
|
-
"machine 2 0.0031\n",
|
1140
|
-
"artificial 2 0.0031\n",
|
1141
|
-
"intelligence 2 0.0031\n",
|
1142
|
-
"accompanied 2 0.0031\n",
|
1143
|
-
"groundbreaking 2 0.0031\n",
|
1144
|
-
"information 2 0.0031\n",
|
1145
|
-
"scientist 2 0.0031\n",
|
1146
|
-
"team 2 0.0031\n",
|
1147
|
-
"introduced 2 0.0031\n",
|
1148
|
-
"Carlos 2 0.0031\n",
|
1149
|
-
"engineer 2 0.0031\n",
|
1150
|
-
"Warren 2 0.0031\n",
|
1151
|
-
"professor 2 0.0031\n",
|
1152
|
-
"importance 2 0.0031\n",
|
1153
|
-
"technologies 2 0.0031\n",
|
1154
|
-
"insights 2 0.0031\n",
|
1155
|
-
"including 2 0.0031\n",
|
1156
|
-
"exchanged 2 0.0031\n",
|
1157
|
-
"David 2 0.0031\n",
|
1158
|
-
"complex 2 0.0031\n",
|
1159
|
-
"problems 2 0.0031\n",
|
1160
|
-
"interested 2 0.0031\n",
|
1161
|
-
"natural 2 0.0031\n",
|
1162
|
-
"language 2 0.0031\n",
|
1163
|
-
"processing 2 0.0031\n",
|
1164
|
-
"robotic 2 0.0031\n",
|
1165
|
-
"Maria 2 0.0031\n",
|
1166
|
-
"success 2 0.0031\n",
|
1167
|
-
"integrate 2 0.0031\n",
|
1168
|
-
"shared 2 0.0031\n",
|
1169
|
-
"healthcare 2 0.0031\n",
|
1170
|
-
"followed 2 0.0031\n",
|
1171
|
-
"innovation 2 0.0031\n",
|
1172
|
-
"opportunity 2 0.0031\n",
|
1173
|
-
"fostering 2 0.0031\n",
|
1174
|
-
"next 2 0.0031\n",
|
1175
|
-
"valuable 2 0.0031\n",
|
1176
|
-
"table 2 0.0031\n",
|
1177
|
-
"genetic 2 0.0031\n",
|
1178
|
-
"disorders 2 0.0031\n",
|
1179
|
-
"Ethan 2 0.0031\n",
|
1180
|
-
"blockchain 2 0.0031\n",
|
1181
|
-
"combining 2 0.0031\n",
|
1182
|
-
"enhance 2 0.0031\n",
|
1183
|
-
"bringing 2 0.0031\n",
|
1184
|
-
"group 2 0.0031\n",
|
1185
|
-
"panel 2 0.0031\n",
|
1186
|
-
"knowledge 2 0.0031\n",
|
1187
|
-
"human 2 0.0031\n",
|
1188
|
-
"connections 2 0.0031\n",
|
1189
|
-
"made 2 0.0031\n",
|
1190
|
-
"joint 2 0.0031\n",
|
1191
|
-
"projects 2 0.0031\n",
|
1192
|
-
"would 2 0.0031\n",
|
1193
|
-
"push 2 0.0031\n",
|
1194
|
-
"boundaries 2 0.0031\n",
|
1195
|
-
"bustling 1 0.0015\n",
|
1196
|
-
"city 1 0.0015\n",
|
1197
|
-
"San 1 0.0015\n",
|
1198
|
-
"Francisco 1 0.0015\n",
|
1199
|
-
"tech 1 0.0015\n",
|
1200
|
-
"enthusiasts 1 0.0015\n",
|
1201
|
-
"annual 1 0.0015\n",
|
1202
|
-
"melting 1 0.0015\n",
|
1203
|
-
"pot 1 0.0015\n",
|
1204
|
-
"innovations 1 0.0015\n",
|
1205
|
-
"Chen 1 0.0015\n",
|
1206
|
-
"renowned 1 0.0015\n",
|
1207
|
-
"MIT 1 0.0015\n",
|
1208
|
-
"present 1 0.0015\n",
|
1209
|
-
"findings 1 0.0015\n",
|
1210
|
-
"Thompson 1 0.0015\n",
|
1211
|
-
"well-respected 1 0.0015\n",
|
1212
|
-
"figure 1 0.0015\n",
|
1213
|
-
"duo 1 0.0015\n",
|
1214
|
-
"aimed 1 0.0015\n",
|
1215
|
-
"revolutionize 1 0.0015\n",
|
1216
|
-
"way 1 0.0015\n",
|
1217
|
-
"process 1 0.0015\n",
|
1218
|
-
"commenced 1 0.0015\n",
|
1219
|
-
"greeted 1 0.0015\n",
|
1220
|
-
"host 1 0.0015\n",
|
1221
|
-
"familiar 1 0.0015\n",
|
1222
|
-
"faces 1 0.0015\n",
|
1223
|
-
"Lee 1 0.0015\n",
|
1224
|
-
"Google 1 0.0015\n",
|
1225
|
-
"showcase 1 0.0015\n",
|
1226
|
-
"quantum 1 0.0015\n",
|
1227
|
-
"computing 1 0.0015\n",
|
1228
|
-
"mentor 1 0.0015\n",
|
1229
|
-
"Robert 1 0.0015\n",
|
1230
|
-
"Lang 1 0.0015\n",
|
1231
|
-
"pioneer 1 0.0015\n",
|
1232
|
-
"computational 1 0.0015\n",
|
1233
|
-
"neuroscience 1 0.0015\n",
|
1234
|
-
"friend 1 0.0015\n",
|
1235
|
-
"Mendez 1 0.0015\n",
|
1236
|
-
"software 1 0.0015\n",
|
1237
|
-
"Facebook 1 0.0015\n",
|
1238
|
-
"specialized 1 0.0015\n",
|
1239
|
-
"social 1 0.0015\n",
|
1240
|
-
"media 1 0.0015\n",
|
1241
|
-
"analytics 1 0.0015\n",
|
1242
|
-
"keynote 1 0.0015\n",
|
1243
|
-
"speaker 1 0.0015\n",
|
1244
|
-
"none 1 0.0015\n",
|
1245
|
-
"Elizabeth 1 0.0015\n",
|
1246
|
-
"distinguished 1 0.0015\n",
|
1247
|
-
"Stanford 1 0.0015\n",
|
1248
|
-
"speech 1 0.0015\n",
|
1249
|
-
"focused 1 0.0015\n",
|
1250
|
-
"ethical 1 0.0015\n",
|
1251
|
-
"implications 1 0.0015\n",
|
1252
|
-
"benefit 1 0.0015\n",
|
1253
|
-
"humanity 1 0.0015\n",
|
1254
|
-
"whole 1 0.0015\n",
|
1255
|
-
"sparked 1 0.0015\n",
|
1256
|
-
"lively 1 0.0015\n",
|
1257
|
-
"among 1 0.0015\n",
|
1258
|
-
"Sarah 1 0.0015\n",
|
1259
|
-
"Johnson 1 0.0015\n",
|
1260
|
-
"policy 1 0.0015\n",
|
1261
|
-
"advisor 1 0.0015\n",
|
1262
|
-
"United 1 0.0015\n",
|
1263
|
-
"Nations 1 0.0015\n",
|
1264
|
-
"Ahmed 1 0.0015\n",
|
1265
|
-
"Khan 1 0.0015\n",
|
1266
|
-
"cybersecurity 1 0.0015\n",
|
1267
|
-
"Microsoft 1 0.0015\n",
|
1268
|
-
"breaks 1 0.0015\n",
|
1269
|
-
"sessions 1 0.0015\n",
|
1270
|
-
"mingled 1 0.0015\n",
|
1271
|
-
"caught 1 0.0015\n",
|
1272
|
-
"former 1 0.0015\n",
|
1273
|
-
"classmate 1 0.0015\n",
|
1274
|
-
"Kim 1 0.0015\n",
|
1275
|
-
"works 1 0.0015\n",
|
1276
|
-
"analyst 1 0.0015\n",
|
1277
|
-
"Amazon 1 0.0015\n",
|
1278
|
-
"Brown 1 0.0015\n",
|
1279
|
-
"knack 1 0.0015\n",
|
1280
|
-
"innovative 1 0.0015\n",
|
1281
|
-
"solutions 1 0.0015\n",
|
1282
|
-
"invited 1 0.0015\n",
|
1283
|
-
"collaborate 1 0.0015\n",
|
1284
|
-
"another 1 0.0015\n",
|
1285
|
-
"corner 1 0.0015\n",
|
1286
|
-
"room 1 0.0015\n",
|
1287
|
-
"Patel 1 0.0015\n",
|
1288
|
-
"roboticist 1 0.0015\n",
|
1289
|
-
"Carnegie 1 0.0015\n",
|
1290
|
-
"Mellon 1 0.0015\n",
|
1291
|
-
"recently 1 0.0015\n",
|
1292
|
-
"developed 1 0.0015\n",
|
1293
|
-
"type 1 0.0015\n",
|
1294
|
-
"arm 1 0.0015\n",
|
1295
|
-
"perform 1 0.0015\n",
|
1296
|
-
"delicate 1 0.0015\n",
|
1297
|
-
"surgical 1 0.0015\n",
|
1298
|
-
"procedures 1 0.0015\n",
|
1299
|
-
"unprecedented 1 0.0015\n",
|
1300
|
-
"precision 1 0.0015\n",
|
1301
|
-
"assistant 1 0.0015\n",
|
1302
|
-
"Gonzalez 1 0.0015\n",
|
1303
|
-
"instrumental 1 0.0015\n",
|
1304
|
-
"fascinated 1 0.0015\n",
|
1305
|
-
"proposed 1 0.0015\n",
|
1306
|
-
"partnership 1 0.0015\n",
|
1307
|
-
"day 1 0.0015\n",
|
1308
|
-
"progressed 1 0.0015\n",
|
1309
|
-
"treated 1 0.0015\n",
|
1310
|
-
"series 1 0.0015\n",
|
1311
|
-
"insightful 1 0.0015\n",
|
1312
|
-
"presentations 1 0.0015\n",
|
1313
|
-
"James 1 0.0015\n",
|
1314
|
-
"Clark 1 0.0015\n",
|
1315
|
-
"Harvard 1 0.0015\n",
|
1316
|
-
"Lisa 1 0.0015\n",
|
1317
|
-
"Robinson 1 0.0015\n",
|
1318
|
-
"computer 1 0.0015\n",
|
1319
|
-
"vision 1 0.0015\n",
|
1320
|
-
"Nvidia 1 0.0015\n",
|
1321
|
-
"demonstrated 1 0.0015\n",
|
1322
|
-
"image 1 0.0015\n",
|
1323
|
-
"recognition 1 0.0015\n",
|
1324
|
-
"impressed 1 0.0015\n",
|
1325
|
-
"presentation 1 0.0015\n",
|
1326
|
-
"Ananya 1 0.0015\n",
|
1327
|
-
"Singh 1 0.0015\n",
|
1328
|
-
"ethicist 1 0.0015\n",
|
1329
|
-
"Oxford 1 0.0015\n",
|
1330
|
-
"societal 1 0.0015\n",
|
1331
|
-
"impacts 1 0.0015\n",
|
1332
|
-
"responsible 1 0.0015\n",
|
1333
|
-
"evening 1 0.0015\n",
|
1334
|
-
"gala 1 0.0015\n",
|
1335
|
-
"dinner 1 0.0015\n",
|
1336
|
-
"Grand 1 0.0015\n",
|
1337
|
-
"Hyatt 1 0.0015\n",
|
1338
|
-
"Hotel 1 0.0015\n",
|
1339
|
-
"perfect 1 0.0015\n",
|
1340
|
-
"networking 1 0.0015\n",
|
1341
|
-
"found 1 0.0015\n",
|
1342
|
-
"seated 1 0.0015\n",
|
1343
|
-
"Henry 1 0.0015\n",
|
1344
|
-
"Zhang 1 0.0015\n",
|
1345
|
-
"venture 1 0.0015\n",
|
1346
|
-
"capitalist 1 0.0015\n",
|
1347
|
-
"Sequoia 1 0.0015\n",
|
1348
|
-
"Capital 1 0.0015\n",
|
1349
|
-
"keen 1 0.0015\n",
|
1350
|
-
"invest 1 0.0015\n",
|
1351
|
-
"promising 1 0.0015\n",
|
1352
|
-
"startups 1 0.0015\n",
|
1353
|
-
"Priya 1 0.0015\n",
|
1354
|
-
"Sharma 1 0.0015\n",
|
1355
|
-
"legal 1 0.0015\n",
|
1356
|
-
"Electronic 1 0.0015\n",
|
1357
|
-
"Frontier 1 0.0015\n",
|
1358
|
-
"Foundation 1 0.0015\n",
|
1359
|
-
"provided 1 0.0015\n",
|
1360
|
-
"regulatory 1 0.0015\n",
|
1361
|
-
"landscape 1 0.0015\n",
|
1362
|
-
"emerging 1 0.0015\n",
|
1363
|
-
"struck 1 0.0015\n",
|
1364
|
-
"Martinez 1 0.0015\n",
|
1365
|
-
"bioinformatics 1 0.0015\n",
|
1366
|
-
"California 1 0.0015\n",
|
1367
|
-
"Berkeley 1 0.0015\n",
|
1368
|
-
"use 1 0.0015\n",
|
1369
|
-
"predicting 1 0.0015\n",
|
1370
|
-
"contact 1 0.0015\n",
|
1371
|
-
"planned 1 0.0015\n",
|
1372
|
-
"meet 1 0.0015\n",
|
1373
|
-
"discuss 1 0.0015\n",
|
1374
|
-
"Meanwhile 1 0.0015\n",
|
1375
|
-
"Liu 1 0.0015\n",
|
1376
|
-
"developer 1 0.0015\n",
|
1377
|
-
"IBM 1 0.0015\n",
|
1378
|
-
"security 1 0.0015\n",
|
1379
|
-
"Olivia 1 0.0015\n",
|
1380
|
-
"Parker 1 0.0015\n",
|
1381
|
-
"cryptography 1 0.0015\n",
|
1382
|
-
"brainstormed 1 0.0015\n",
|
1383
|
-
"various 1 0.0015\n",
|
1384
|
-
"decided 1 0.0015\n",
|
1385
|
-
"form 1 0.0015\n",
|
1386
|
-
"explore 1 0.0015\n",
|
1387
|
-
"morning 1 0.0015\n",
|
1388
|
-
"resumed 1 0.0015\n",
|
1389
|
-
"featuring 1 0.0015\n",
|
1390
|
-
"several 1 0.0015\n",
|
1391
|
-
"industry 1 0.0015\n",
|
1392
|
-
"leaders 1 0.0015\n",
|
1393
|
-
"William 1 0.0015\n",
|
1394
|
-
"Harris 1 0.0015\n",
|
1395
|
-
"CEO 1 0.0015\n",
|
1396
|
-
"Inc. 1 0.0015\n",
|
1397
|
-
"Katherine 1 0.0015\n",
|
1398
|
-
"Adams 1 0.0015\n",
|
1399
|
-
"senior 1 0.0015\n",
|
1400
|
-
"OpenAI 1 0.0015\n",
|
1401
|
-
"transform 1 0.0015\n",
|
1402
|
-
"industries 1 0.0015\n",
|
1403
|
-
"ranging 1 0.0015\n",
|
1404
|
-
"finance 1 0.0015\n",
|
1405
|
-
"included 1 0.0015\n",
|
1406
|
-
"Mei 1 0.0015\n",
|
1407
|
-
"Ling 1 0.0015\n",
|
1408
|
-
"Tokyo 1 0.0015\n",
|
1409
|
-
"highlighted 1 0.0015\n",
|
1410
|
-
"Asia 1 0.0015\n",
|
1411
|
-
"sat 1 0.0015\n",
|
1412
|
-
"acquaintances 1 0.0015\n",
|
1413
|
-
"absorb 1 0.0015\n",
|
1414
|
-
"wealth 1 0.0015\n",
|
1415
|
-
"inspired 1 0.0015\n",
|
1416
|
-
"talk 1 0.0015\n",
|
1417
|
-
"Samuel 1 0.0015\n",
|
1418
|
-
"Green 1 0.0015\n",
|
1419
|
-
"cognitive 1 0.0015\n",
|
1420
|
-
"Yale 1 0.0015\n",
|
1421
|
-
"intersection 1 0.0015\n",
|
1422
|
-
"cognition 1 0.0015\n",
|
1423
|
-
"augment 1 0.0015\n",
|
1424
|
-
"decision-making 1 0.0015\n",
|
1425
|
-
"resonated 1 0.0015\n",
|
1426
|
-
"deeply 1 0.0015\n",
|
1427
|
-
"drew 1 0.0015\n",
|
1428
|
-
"close 1 0.0015\n",
|
1429
|
-
"reflected 1 0.0015\n",
|
1430
|
-
"gained 1 0.0015\n",
|
1431
|
-
"felt 1 0.0015\n",
|
1432
|
-
"energized 1 0.0015\n",
|
1433
|
-
"excited 1 0.0015\n",
|
1434
|
-
"formed 1 0.0015\n",
|
1435
|
-
"start 1 0.0015\n",
|
1436
|
-
"leaving 1 0.0015\n",
|
1437
|
-
"took 1 0.0015\n",
|
1438
|
-
"moment 1 0.0015\n",
|
1439
|
-
"thank 1 0.0015\n",
|
1440
|
-
"organizers 1 0.0015\n",
|
1441
|
-
"Karen 1 0.0015\n",
|
1442
|
-
"Wilson 1 0.0015\n",
|
1443
|
-
"director 1 0.0015\n",
|
1444
|
-
"Network 1 0.0015\n",
|
1445
|
-
"resounding 1 0.0015\n",
|
1446
|
-
"together 1 0.0015\n",
|
1447
|
-
"brightest 1 0.0015\n",
|
1448
|
-
"minds 1 0.0015\n",
|
1449
|
-
"spirit 1 0.0015\n",
|
1450
|
-
"collaboration 1 0.0015\n",
|
1451
|
-
"boarded 1 0.0015\n",
|
1452
|
-
"flight 1 0.0015\n",
|
1453
|
-
"back 1 0.0015\n",
|
1454
|
-
"Boston 1 0.0015\n",
|
1455
|
-
"n't 1 0.0015\n",
|
1456
|
-
"help 1 0.0015\n",
|
1457
|
-
"feel 1 0.0015\n",
|
1458
|
-
"optimistic 1 0.0015\n",
|
1459
|
-
"knew 1 0.0015\n",
|
1460
|
-
"lead 1 0.0015\n",
|
1461
|
-
"exciting 1 0.0015\n",
|
1462
|
-
"opportunities 1 0.0015\n",
|
1463
|
-
"determined 1 0.0015\n",
|
1464
|
-
"ever 1 0.0015\n",
|
1465
|
-
"achieve 1 0.0015\n",
|
1466
|
-
"ensure 1 0.0015\n",
|
1467
|
-
"positive 1 0.0015\n",
|
1468
|
-
"impact 1 0.0015\n",
|
1469
|
-
"weeks 1 0.0015\n",
|
1470
|
-
"stayed 1 0.0015\n",
|
1471
|
-
"touch 1 0.0015\n",
|
1472
|
-
"collaborators 1 0.0015\n",
|
1473
|
-
"began 1 0.0015\n",
|
1474
|
-
"sharing 1 0.0015\n",
|
1475
|
-
"resources 1 0.0015\n",
|
1476
|
-
"collaborated 1 0.0015\n",
|
1477
|
-
"worked 1 0.0015\n",
|
1478
|
-
"started 1 0.0015\n",
|
1479
|
-
"using 1 0.0015\n",
|
1480
|
-
"predict 1 0.0015\n",
|
1481
|
-
"tackle 1 0.0015\n",
|
1482
|
-
"biological 1 0.0015\n",
|
1483
|
-
"expanded 1 0.0015\n",
|
1484
|
-
"professional 1 0.0015\n",
|
1485
|
-
"enriched 1 0.0015\n",
|
1486
|
-
"understanding 1 0.0015\n",
|
1487
|
-
"diverse 1 0.0015\n",
|
1488
|
-
"grateful 1 0.0015\n",
|
1489
|
-
"connect 1 0.0015\n",
|
1490
|
-
"many 1 0.0015\n",
|
1491
|
-
"talented 1 0.0015\n",
|
1492
|
-
"individuals 1 0.0015\n",
|
1493
|
-
"looked 1 0.0015\n",
|
1494
|
-
"forward 1 0.0015\n",
|
1495
|
-
"renewed 1 0.0015\n",
|
1496
|
-
"enthusiasm 1 0.0015\n",
|
1497
|
-
"sense 1 0.0015\n",
|
1498
|
-
"purpose 1 0.0015\n",
|
1499
|
-
"transformative 1 0.0015\n",
|
1500
|
-
"experience 1 0.0015\n",
|
1501
|
-
"setting 1 0.0015\n",
|
1502
|
-
"stage 1 0.0015\n",
|
1503
|
-
"discoveries 1 0.0015\n",
|
1504
|
-
"\n",
|
1505
|
-
"Frequency Distribution of Stemmed Tokens:\n",
|
1506
|
-
"Token Frequency Probability \n",
|
1507
|
-
"------------------------------------------\n",
|
1508
|
-
"ai 18 0.0275\n",
|
1509
|
-
"emili 13 0.0198\n",
|
1510
|
-
"dr. 12 0.0183\n",
|
1511
|
-
"michael 12 0.0183\n",
|
1512
|
-
"confer 10 0.0153\n",
|
1513
|
-
"research 10 0.0153\n",
|
1514
|
-
"work 10 0.0153\n",
|
1515
|
-
"collabor 8 0.0122\n",
|
1516
|
-
"project 8 0.0122\n",
|
1517
|
-
"new 8 0.0122\n",
|
1518
|
-
"innov 7 0.0107\n",
|
1519
|
-
"univers 7 0.0107\n",
|
1520
|
-
"discuss 7 0.0107\n",
|
1521
|
-
"attende 6 0.0092\n",
|
1522
|
-
"network 6 0.0092\n",
|
1523
|
-
"technolog 6 0.0092\n",
|
1524
|
-
"advanc 5 0.0076\n",
|
1525
|
-
"develop 5 0.0076\n",
|
1526
|
-
"futur 5 0.0076\n",
|
1527
|
-
"tech 4 0.0061\n",
|
1528
|
-
"event 4 0.0061\n",
|
1529
|
-
"idea 4 0.0061\n",
|
1530
|
-
"algorithm 4 0.0061\n",
|
1531
|
-
"field 4 0.0061\n",
|
1532
|
-
"jessica 4 0.0061\n",
|
1533
|
-
"raj 4 0.0061\n",
|
1534
|
-
"laura 4 0.0061\n",
|
1535
|
-
"among 3 0.0046\n",
|
1536
|
-
"eager 3 0.0046\n",
|
1537
|
-
"present 3 0.0046\n",
|
1538
|
-
"learn 3 0.0046\n",
|
1539
|
-
"colleagu 3 0.0046\n",
|
1540
|
-
"also 3 0.0046\n",
|
1541
|
-
"neural 3 0.0046\n",
|
1542
|
-
"process 3 0.0046\n",
|
1543
|
-
"jennif 3 0.0046\n",
|
1544
|
-
"data 3 0.0046\n",
|
1545
|
-
"comput 3 0.0046\n",
|
1546
|
-
"join 3 0.0046\n",
|
1547
|
-
"human 3 0.0046\n",
|
1548
|
-
"insight 3 0.0046\n",
|
1549
|
-
"includ 3 0.0046\n",
|
1550
|
-
"expert 3 0.0046\n",
|
1551
|
-
"particularli 3 0.0046\n",
|
1552
|
-
"deep 3 0.0046\n",
|
1553
|
-
"convers 3 0.0046\n",
|
1554
|
-
"could 3 0.0046\n",
|
1555
|
-
"share 3 0.0046\n",
|
1556
|
-
"applic 3 0.0046\n",
|
1557
|
-
"audienc 3 0.0046\n",
|
1558
|
-
"opportun 3 0.0046\n",
|
1559
|
-
"expertis 3 0.0046\n",
|
1560
|
-
"potenti 3 0.0046\n",
|
1561
|
-
"connect 3 0.0046\n",
|
1562
|
-
"world 2 0.0031\n",
|
1563
|
-
"gather 2 0.0031\n",
|
1564
|
-
"latest 2 0.0031\n",
|
1565
|
-
"machin 2 0.0031\n",
|
1566
|
-
"artifici 2 0.0031\n",
|
1567
|
-
"intellig 2 0.0031\n",
|
1568
|
-
"accompani 2 0.0031\n",
|
1569
|
-
"groundbreak 2 0.0031\n",
|
1570
|
-
"inform 2 0.0031\n",
|
1571
|
-
"scientist 2 0.0031\n",
|
1572
|
-
"team 2 0.0031\n",
|
1573
|
-
"introduc 2 0.0031\n",
|
1574
|
-
"carlo 2 0.0031\n",
|
1575
|
-
"engin 2 0.0031\n",
|
1576
|
-
"warren 2 0.0031\n",
|
1577
|
-
"professor 2 0.0031\n",
|
1578
|
-
"import 2 0.0031\n",
|
1579
|
-
"exchang 2 0.0031\n",
|
1580
|
-
"david 2 0.0031\n",
|
1581
|
-
"complex 2 0.0031\n",
|
1582
|
-
"problem 2 0.0031\n",
|
1583
|
-
"interest 2 0.0031\n",
|
1584
|
-
"natur 2 0.0031\n",
|
1585
|
-
"languag 2 0.0031\n",
|
1586
|
-
"robot 2 0.0031\n",
|
1587
|
-
"maria 2 0.0031\n",
|
1588
|
-
"success 2 0.0031\n",
|
1589
|
-
"integr 2 0.0031\n",
|
1590
|
-
"healthcar 2 0.0031\n",
|
1591
|
-
"follow 2 0.0031\n",
|
1592
|
-
"impact 2 0.0031\n",
|
1593
|
-
"foster 2 0.0031\n",
|
1594
|
-
"next 2 0.0031\n",
|
1595
|
-
"valuabl 2 0.0031\n",
|
1596
|
-
"tabl 2 0.0031\n",
|
1597
|
-
"use 2 0.0031\n",
|
1598
|
-
"predict 2 0.0031\n",
|
1599
|
-
"genet 2 0.0031\n",
|
1600
|
-
"disord 2 0.0031\n",
|
1601
|
-
"ethan 2 0.0031\n",
|
1602
|
-
"blockchain 2 0.0031\n",
|
1603
|
-
"combin 2 0.0031\n",
|
1604
|
-
"enhanc 2 0.0031\n",
|
1605
|
-
"bring 2 0.0031\n",
|
1606
|
-
"group 2 0.0031\n",
|
1607
|
-
"form 2 0.0031\n",
|
1608
|
-
"panel 2 0.0031\n",
|
1609
|
-
"industri 2 0.0031\n",
|
1610
|
-
"transform 2 0.0031\n",
|
1611
|
-
"knowledg 2 0.0031\n",
|
1612
|
-
"cognit 2 0.0031\n",
|
1613
|
-
"made 2 0.0031\n",
|
1614
|
-
"excit 2 0.0031\n",
|
1615
|
-
"start 2 0.0031\n",
|
1616
|
-
"joint 2 0.0031\n",
|
1617
|
-
"would 2 0.0031\n",
|
1618
|
-
"push 2 0.0031\n",
|
1619
|
-
"boundari 2 0.0031\n",
|
1620
|
-
"bustl 1 0.0015\n",
|
1621
|
-
"citi 1 0.0015\n",
|
1622
|
-
"san 1 0.0015\n",
|
1623
|
-
"francisco 1 0.0015\n",
|
1624
|
-
"enthusiast 1 0.0015\n",
|
1625
|
-
"annual 1 0.0015\n",
|
1626
|
-
"melt 1 0.0015\n",
|
1627
|
-
"pot 1 0.0015\n",
|
1628
|
-
"chen 1 0.0015\n",
|
1629
|
-
"renown 1 0.0015\n",
|
1630
|
-
"mit 1 0.0015\n",
|
1631
|
-
"find 1 0.0015\n",
|
1632
|
-
"thompson 1 0.0015\n",
|
1633
|
-
"well-respect 1 0.0015\n",
|
1634
|
-
"figur 1 0.0015\n",
|
1635
|
-
"duo 1 0.0015\n",
|
1636
|
-
"aim 1 0.0015\n",
|
1637
|
-
"revolution 1 0.0015\n",
|
1638
|
-
"way 1 0.0015\n",
|
1639
|
-
"commenc 1 0.0015\n",
|
1640
|
-
"greet 1 0.0015\n",
|
1641
|
-
"host 1 0.0015\n",
|
1642
|
-
"familiar 1 0.0015\n",
|
1643
|
-
"face 1 0.0015\n",
|
1644
|
-
"lee 1 0.0015\n",
|
1645
|
-
"googl 1 0.0015\n",
|
1646
|
-
"showcas 1 0.0015\n",
|
1647
|
-
"quantum 1 0.0015\n",
|
1648
|
-
"mentor 1 0.0015\n",
|
1649
|
-
"robert 1 0.0015\n",
|
1650
|
-
"lang 1 0.0015\n",
|
1651
|
-
"pioneer 1 0.0015\n",
|
1652
|
-
"neurosci 1 0.0015\n",
|
1653
|
-
"friend 1 0.0015\n",
|
1654
|
-
"mendez 1 0.0015\n",
|
1655
|
-
"softwar 1 0.0015\n",
|
1656
|
-
"facebook 1 0.0015\n",
|
1657
|
-
"special 1 0.0015\n",
|
1658
|
-
"social 1 0.0015\n",
|
1659
|
-
"media 1 0.0015\n",
|
1660
|
-
"analyt 1 0.0015\n",
|
1661
|
-
"keynot 1 0.0015\n",
|
1662
|
-
"speaker 1 0.0015\n",
|
1663
|
-
"none 1 0.0015\n",
|
1664
|
-
"elizabeth 1 0.0015\n",
|
1665
|
-
"distinguish 1 0.0015\n",
|
1666
|
-
"stanford 1 0.0015\n",
|
1667
|
-
"speech 1 0.0015\n",
|
1668
|
-
"focus 1 0.0015\n",
|
1669
|
-
"ethic 1 0.0015\n",
|
1670
|
-
"implic 1 0.0015\n",
|
1671
|
-
"benefit 1 0.0015\n",
|
1672
|
-
"whole 1 0.0015\n",
|
1673
|
-
"spark 1 0.0015\n",
|
1674
|
-
"live 1 0.0015\n",
|
1675
|
-
"sarah 1 0.0015\n",
|
1676
|
-
"johnson 1 0.0015\n",
|
1677
|
-
"polici 1 0.0015\n",
|
1678
|
-
"advisor 1 0.0015\n",
|
1679
|
-
"unit 1 0.0015\n",
|
1680
|
-
"nation 1 0.0015\n",
|
1681
|
-
"ahm 1 0.0015\n",
|
1682
|
-
"khan 1 0.0015\n",
|
1683
|
-
"cybersecur 1 0.0015\n",
|
1684
|
-
"microsoft 1 0.0015\n",
|
1685
|
-
"break 1 0.0015\n",
|
1686
|
-
"session 1 0.0015\n",
|
1687
|
-
"mingl 1 0.0015\n",
|
1688
|
-
"caught 1 0.0015\n",
|
1689
|
-
"former 1 0.0015\n",
|
1690
|
-
"classmat 1 0.0015\n",
|
1691
|
-
"kim 1 0.0015\n",
|
1692
|
-
"analyst 1 0.0015\n",
|
1693
|
-
"amazon 1 0.0015\n",
|
1694
|
-
"brown 1 0.0015\n",
|
1695
|
-
"knack 1 0.0015\n",
|
1696
|
-
"solut 1 0.0015\n",
|
1697
|
-
"invit 1 0.0015\n",
|
1698
|
-
"anoth 1 0.0015\n",
|
1699
|
-
"corner 1 0.0015\n",
|
1700
|
-
"room 1 0.0015\n",
|
1701
|
-
"patel 1 0.0015\n",
|
1702
|
-
"roboticist 1 0.0015\n",
|
1703
|
-
"carnegi 1 0.0015\n",
|
1704
|
-
"mellon 1 0.0015\n",
|
1705
|
-
"recent 1 0.0015\n",
|
1706
|
-
"type 1 0.0015\n",
|
1707
|
-
"arm 1 0.0015\n",
|
1708
|
-
"perform 1 0.0015\n",
|
1709
|
-
"delic 1 0.0015\n",
|
1710
|
-
"surgic 1 0.0015\n",
|
1711
|
-
"procedur 1 0.0015\n",
|
1712
|
-
"unpreced 1 0.0015\n",
|
1713
|
-
"precis 1 0.0015\n",
|
1714
|
-
"assist 1 0.0015\n",
|
1715
|
-
"gonzalez 1 0.0015\n",
|
1716
|
-
"instrument 1 0.0015\n",
|
1717
|
-
"fascin 1 0.0015\n",
|
1718
|
-
"propos 1 0.0015\n",
|
1719
|
-
"partnership 1 0.0015\n",
|
1720
|
-
"day 1 0.0015\n",
|
1721
|
-
"progress 1 0.0015\n",
|
1722
|
-
"treat 1 0.0015\n",
|
1723
|
-
"seri 1 0.0015\n",
|
1724
|
-
"jame 1 0.0015\n",
|
1725
|
-
"clark 1 0.0015\n",
|
1726
|
-
"harvard 1 0.0015\n",
|
1727
|
-
"lisa 1 0.0015\n",
|
1728
|
-
"robinson 1 0.0015\n",
|
1729
|
-
"vision 1 0.0015\n",
|
1730
|
-
"nvidia 1 0.0015\n",
|
1731
|
-
"demonstr 1 0.0015\n",
|
1732
|
-
"imag 1 0.0015\n",
|
1733
|
-
"recognit 1 0.0015\n",
|
1734
|
-
"impress 1 0.0015\n",
|
1735
|
-
"ananya 1 0.0015\n",
|
1736
|
-
"singh 1 0.0015\n",
|
1737
|
-
"ethicist 1 0.0015\n",
|
1738
|
-
"oxford 1 0.0015\n",
|
1739
|
-
"societ 1 0.0015\n",
|
1740
|
-
"respons 1 0.0015\n",
|
1741
|
-
"even 1 0.0015\n",
|
1742
|
-
"gala 1 0.0015\n",
|
1743
|
-
"dinner 1 0.0015\n",
|
1744
|
-
"grand 1 0.0015\n",
|
1745
|
-
"hyatt 1 0.0015\n",
|
1746
|
-
"hotel 1 0.0015\n",
|
1747
|
-
"perfect 1 0.0015\n",
|
1748
|
-
"found 1 0.0015\n",
|
1749
|
-
"seat 1 0.0015\n",
|
1750
|
-
"henri 1 0.0015\n",
|
1751
|
-
"zhang 1 0.0015\n",
|
1752
|
-
"ventur 1 0.0015\n",
|
1753
|
-
"capitalist 1 0.0015\n",
|
1754
|
-
"sequoia 1 0.0015\n",
|
1755
|
-
"capit 1 0.0015\n",
|
1756
|
-
"keen 1 0.0015\n",
|
1757
|
-
"invest 1 0.0015\n",
|
1758
|
-
"promis 1 0.0015\n",
|
1759
|
-
"startup 1 0.0015\n",
|
1760
|
-
"priya 1 0.0015\n",
|
1761
|
-
"sharma 1 0.0015\n",
|
1762
|
-
"legal 1 0.0015\n",
|
1763
|
-
"electron 1 0.0015\n",
|
1764
|
-
"frontier 1 0.0015\n",
|
1765
|
-
"foundat 1 0.0015\n",
|
1766
|
-
"provid 1 0.0015\n",
|
1767
|
-
"regulatori 1 0.0015\n",
|
1768
|
-
"landscap 1 0.0015\n",
|
1769
|
-
"emerg 1 0.0015\n",
|
1770
|
-
"struck 1 0.0015\n",
|
1771
|
-
"martinez 1 0.0015\n",
|
1772
|
-
"bioinformat 1 0.0015\n",
|
1773
|
-
"california 1 0.0015\n",
|
1774
|
-
"berkeley 1 0.0015\n",
|
1775
|
-
"contact 1 0.0015\n",
|
1776
|
-
"plan 1 0.0015\n",
|
1777
|
-
"meet 1 0.0015\n",
|
1778
|
-
"meanwhil 1 0.0015\n",
|
1779
|
-
"liu 1 0.0015\n",
|
1780
|
-
"ibm 1 0.0015\n",
|
1781
|
-
"secur 1 0.0015\n",
|
1782
|
-
"olivia 1 0.0015\n",
|
1783
|
-
"parker 1 0.0015\n",
|
1784
|
-
"cryptographi 1 0.0015\n",
|
1785
|
-
"brainstorm 1 0.0015\n",
|
1786
|
-
"variou 1 0.0015\n",
|
1787
|
-
"decid 1 0.0015\n",
|
1788
|
-
"explor 1 0.0015\n",
|
1789
|
-
"morn 1 0.0015\n",
|
1790
|
-
"resum 1 0.0015\n",
|
1791
|
-
"featur 1 0.0015\n",
|
1792
|
-
"sever 1 0.0015\n",
|
1793
|
-
"leader 1 0.0015\n",
|
1794
|
-
"william 1 0.0015\n",
|
1795
|
-
"harri 1 0.0015\n",
|
1796
|
-
"ceo 1 0.0015\n",
|
1797
|
-
"inc. 1 0.0015\n",
|
1798
|
-
"katherin 1 0.0015\n",
|
1799
|
-
"adam 1 0.0015\n",
|
1800
|
-
"senior 1 0.0015\n",
|
1801
|
-
"openai 1 0.0015\n",
|
1802
|
-
"rang 1 0.0015\n",
|
1803
|
-
"financ 1 0.0015\n",
|
1804
|
-
"mei 1 0.0015\n",
|
1805
|
-
"ling 1 0.0015\n",
|
1806
|
-
"tokyo 1 0.0015\n",
|
1807
|
-
"highlight 1 0.0015\n",
|
1808
|
-
"asia 1 0.0015\n",
|
1809
|
-
"sat 1 0.0015\n",
|
1810
|
-
"acquaint 1 0.0015\n",
|
1811
|
-
"absorb 1 0.0015\n",
|
1812
|
-
"wealth 1 0.0015\n",
|
1813
|
-
"inspir 1 0.0015\n",
|
1814
|
-
"talk 1 0.0015\n",
|
1815
|
-
"samuel 1 0.0015\n",
|
1816
|
-
"green 1 0.0015\n",
|
1817
|
-
"yale 1 0.0015\n",
|
1818
|
-
"intersect 1 0.0015\n",
|
1819
|
-
"augment 1 0.0015\n",
|
1820
|
-
"decision-mak 1 0.0015\n",
|
1821
|
-
"reson 1 0.0015\n",
|
1822
|
-
"deepli 1 0.0015\n",
|
1823
|
-
"drew 1 0.0015\n",
|
1824
|
-
"close 1 0.0015\n",
|
1825
|
-
"reflect 1 0.0015\n",
|
1826
|
-
"gain 1 0.0015\n",
|
1827
|
-
"felt 1 0.0015\n",
|
1828
|
-
"energ 1 0.0015\n",
|
1829
|
-
"leav 1 0.0015\n",
|
1830
|
-
"took 1 0.0015\n",
|
1831
|
-
"moment 1 0.0015\n",
|
1832
|
-
"thank 1 0.0015\n",
|
1833
|
-
"organ 1 0.0015\n",
|
1834
|
-
"karen 1 0.0015\n",
|
1835
|
-
"wilson 1 0.0015\n",
|
1836
|
-
"director 1 0.0015\n",
|
1837
|
-
"resound 1 0.0015\n",
|
1838
|
-
"togeth 1 0.0015\n",
|
1839
|
-
"brightest 1 0.0015\n",
|
1840
|
-
"mind 1 0.0015\n",
|
1841
|
-
"spirit 1 0.0015\n",
|
1842
|
-
"board 1 0.0015\n",
|
1843
|
-
"flight 1 0.0015\n",
|
1844
|
-
"back 1 0.0015\n",
|
1845
|
-
"boston 1 0.0015\n",
|
1846
|
-
"n't 1 0.0015\n",
|
1847
|
-
"help 1 0.0015\n",
|
1848
|
-
"feel 1 0.0015\n",
|
1849
|
-
"optimist 1 0.0015\n",
|
1850
|
-
"knew 1 0.0015\n",
|
1851
|
-
"lead 1 0.0015\n",
|
1852
|
-
"determin 1 0.0015\n",
|
1853
|
-
"ever 1 0.0015\n",
|
1854
|
-
"achiev 1 0.0015\n",
|
1855
|
-
"ensur 1 0.0015\n",
|
1856
|
-
"posit 1 0.0015\n",
|
1857
|
-
"week 1 0.0015\n",
|
1858
|
-
"stay 1 0.0015\n",
|
1859
|
-
"touch 1 0.0015\n",
|
1860
|
-
"began 1 0.0015\n",
|
1861
|
-
"resourc 1 0.0015\n",
|
1862
|
-
"tackl 1 0.0015\n",
|
1863
|
-
"biolog 1 0.0015\n",
|
1864
|
-
"expand 1 0.0015\n",
|
1865
|
-
"profession 1 0.0015\n",
|
1866
|
-
"enrich 1 0.0015\n",
|
1867
|
-
"understand 1 0.0015\n",
|
1868
|
-
"divers 1 0.0015\n",
|
1869
|
-
"grate 1 0.0015\n",
|
1870
|
-
"mani 1 0.0015\n",
|
1871
|
-
"talent 1 0.0015\n",
|
1872
|
-
"individu 1 0.0015\n",
|
1873
|
-
"look 1 0.0015\n",
|
1874
|
-
"forward 1 0.0015\n",
|
1875
|
-
"renew 1 0.0015\n",
|
1876
|
-
"enthusiasm 1 0.0015\n",
|
1877
|
-
"sens 1 0.0015\n",
|
1878
|
-
"purpos 1 0.0015\n",
|
1879
|
-
"experi 1 0.0015\n",
|
1880
|
-
"set 1 0.0015\n",
|
1881
|
-
"stage 1 0.0015\n",
|
1882
|
-
"discoveri 1 0.0015\n",
|
1883
|
-
"\n",
|
1884
|
-
"Frequency Distribution of Lemmatized Tokens:\n",
|
1885
|
-
"Token Frequency Probability \n",
|
1886
|
-
"------------------------------------------\n",
|
1887
|
-
"AI 18 0.0275\n",
|
1888
|
-
"Emily 13 0.0198\n",
|
1889
|
-
"Dr. 12 0.0183\n",
|
1890
|
-
"Michael 12 0.0183\n",
|
1891
|
-
"work 10 0.0153\n",
|
1892
|
-
"project 8 0.0122\n",
|
1893
|
-
"conference 8 0.0122\n",
|
1894
|
-
"new 8 0.0122\n",
|
1895
|
-
"University 7 0.0107\n",
|
1896
|
-
"research 7 0.0107\n",
|
1897
|
-
"attendee 6 0.0092\n",
|
1898
|
-
"technology 6 0.0092\n",
|
1899
|
-
"collaboration 5 0.0076\n",
|
1900
|
-
"advancement 5 0.0076\n",
|
1901
|
-
"future 5 0.0076\n",
|
1902
|
-
"event 4 0.0061\n",
|
1903
|
-
"idea 4 0.0061\n",
|
1904
|
-
"algorithm 4 0.0061\n",
|
1905
|
-
"field 4 0.0061\n",
|
1906
|
-
"network 4 0.0061\n",
|
1907
|
-
"Jessica 4 0.0061\n",
|
1908
|
-
"Raj 4 0.0061\n",
|
1909
|
-
"Laura 4 0.0061\n",
|
1910
|
-
"Tech 3 0.0046\n",
|
1911
|
-
"Innovators 3 0.0046\n",
|
1912
|
-
"innovation 3 0.0046\n",
|
1913
|
-
"researcher 3 0.0046\n",
|
1914
|
-
"eager 3 0.0046\n",
|
1915
|
-
"learn 3 0.0046\n",
|
1916
|
-
"colleague 3 0.0046\n",
|
1917
|
-
"also 3 0.0046\n",
|
1918
|
-
"neural 3 0.0046\n",
|
1919
|
-
"Jennifer 3 0.0046\n",
|
1920
|
-
"data 3 0.0046\n",
|
1921
|
-
"join 3 0.0046\n",
|
1922
|
-
"develop 3 0.0046\n",
|
1923
|
-
"discussion 3 0.0046\n",
|
1924
|
-
"include 3 0.0046\n",
|
1925
|
-
"expert 3 0.0046\n",
|
1926
|
-
"particularly 3 0.0046\n",
|
1927
|
-
"deep 3 0.0046\n",
|
1928
|
-
"conversation 3 0.0046\n",
|
1929
|
-
"could 3 0.0046\n",
|
1930
|
-
"share 3 0.0046\n",
|
1931
|
-
"application 3 0.0046\n",
|
1932
|
-
"audience 3 0.0046\n",
|
1933
|
-
"discuss 3 0.0046\n",
|
1934
|
-
"opportunity 3 0.0046\n",
|
1935
|
-
"expertise 3 0.0046\n",
|
1936
|
-
"potential 3 0.0046\n",
|
1937
|
-
"world 2 0.0031\n",
|
1938
|
-
"gather 2 0.0031\n",
|
1939
|
-
"Conference 2 0.0031\n",
|
1940
|
-
"Among 2 0.0031\n",
|
1941
|
-
"late 2 0.0031\n",
|
1942
|
-
"machine 2 0.0031\n",
|
1943
|
-
"artificial 2 0.0031\n",
|
1944
|
-
"intelligence 2 0.0031\n",
|
1945
|
-
"accompany 2 0.0031\n",
|
1946
|
-
"groundbreaking 2 0.0031\n",
|
1947
|
-
"information 2 0.0031\n",
|
1948
|
-
"scientist 2 0.0031\n",
|
1949
|
-
"team 2 0.0031\n",
|
1950
|
-
"introduce 2 0.0031\n",
|
1951
|
-
"Carlos 2 0.0031\n",
|
1952
|
-
"engineer 2 0.0031\n",
|
1953
|
-
"Warren 2 0.0031\n",
|
1954
|
-
"professor 2 0.0031\n",
|
1955
|
-
"importance 2 0.0031\n",
|
1956
|
-
"insight 2 0.0031\n",
|
1957
|
-
"exchange 2 0.0031\n",
|
1958
|
-
"David 2 0.0031\n",
|
1959
|
-
"complex 2 0.0031\n",
|
1960
|
-
"problem 2 0.0031\n",
|
1961
|
-
"interested 2 0.0031\n",
|
1962
|
-
"natural 2 0.0031\n",
|
1963
|
-
"language 2 0.0031\n",
|
1964
|
-
"processing 2 0.0031\n",
|
1965
|
-
"collaborate 2 0.0031\n",
|
1966
|
-
"robotic 2 0.0031\n",
|
1967
|
-
"Maria 2 0.0031\n",
|
1968
|
-
"success 2 0.0031\n",
|
1969
|
-
"integrate 2 0.0031\n",
|
1970
|
-
"presentation 2 0.0031\n",
|
1971
|
-
"healthcare 2 0.0031\n",
|
1972
|
-
"follow 2 0.0031\n",
|
1973
|
-
"impact 2 0.0031\n",
|
1974
|
-
"foster 2 0.0031\n",
|
1975
|
-
"next 2 0.0031\n",
|
1976
|
-
"valuable 2 0.0031\n",
|
1977
|
-
"table 2 0.0031\n",
|
1978
|
-
"use 2 0.0031\n",
|
1979
|
-
"predict 2 0.0031\n",
|
1980
|
-
"genetic 2 0.0031\n",
|
1981
|
-
"disorder 2 0.0031\n",
|
1982
|
-
"Ethan 2 0.0031\n",
|
1983
|
-
"blockchain 2 0.0031\n",
|
1984
|
-
"combine 2 0.0031\n",
|
1985
|
-
"enhance 2 0.0031\n",
|
1986
|
-
"bring 2 0.0031\n",
|
1987
|
-
"group 2 0.0031\n",
|
1988
|
-
"form 2 0.0031\n",
|
1989
|
-
"panel 2 0.0031\n",
|
1990
|
-
"industry 2 0.0031\n",
|
1991
|
-
"knowledge 2 0.0031\n",
|
1992
|
-
"human 2 0.0031\n",
|
1993
|
-
"connection 2 0.0031\n",
|
1994
|
-
"make 2 0.0031\n",
|
1995
|
-
"excite 2 0.0031\n",
|
1996
|
-
"start 2 0.0031\n",
|
1997
|
-
"joint 2 0.0031\n",
|
1998
|
-
"would 2 0.0031\n",
|
1999
|
-
"push 2 0.0031\n",
|
2000
|
-
"boundary 2 0.0031\n",
|
2001
|
-
"bustling 1 0.0015\n",
|
2002
|
-
"city 1 0.0015\n",
|
2003
|
-
"San 1 0.0015\n",
|
2004
|
-
"Francisco 1 0.0015\n",
|
2005
|
-
"tech 1 0.0015\n",
|
2006
|
-
"enthusiast 1 0.0015\n",
|
2007
|
-
"annual 1 0.0015\n",
|
2008
|
-
"melt 1 0.0015\n",
|
2009
|
-
"pot 1 0.0015\n",
|
2010
|
-
"Chen 1 0.0015\n",
|
2011
|
-
"renowned 1 0.0015\n",
|
2012
|
-
"MIT 1 0.0015\n",
|
2013
|
-
"present 1 0.0015\n",
|
2014
|
-
"finding 1 0.0015\n",
|
2015
|
-
"Thompson 1 0.0015\n",
|
2016
|
-
"well-respected 1 0.0015\n",
|
2017
|
-
"figure 1 0.0015\n",
|
2018
|
-
"duo 1 0.0015\n",
|
2019
|
-
"aim 1 0.0015\n",
|
2020
|
-
"revolutionize 1 0.0015\n",
|
2021
|
-
"way 1 0.0015\n",
|
2022
|
-
"process 1 0.0015\n",
|
2023
|
-
"commenced 1 0.0015\n",
|
2024
|
-
"greet 1 0.0015\n",
|
2025
|
-
"host 1 0.0015\n",
|
2026
|
-
"familiar 1 0.0015\n",
|
2027
|
-
"face 1 0.0015\n",
|
2028
|
-
"Lee 1 0.0015\n",
|
2029
|
-
"Google 1 0.0015\n",
|
2030
|
-
"showcase 1 0.0015\n",
|
2031
|
-
"quantum 1 0.0015\n",
|
2032
|
-
"compute 1 0.0015\n",
|
2033
|
-
"mentor 1 0.0015\n",
|
2034
|
-
"Robert 1 0.0015\n",
|
2035
|
-
"Lang 1 0.0015\n",
|
2036
|
-
"pioneer 1 0.0015\n",
|
2037
|
-
"computational 1 0.0015\n",
|
2038
|
-
"neuroscience 1 0.0015\n",
|
2039
|
-
"friend 1 0.0015\n",
|
2040
|
-
"Mendez 1 0.0015\n",
|
2041
|
-
"software 1 0.0015\n",
|
2042
|
-
"Facebook 1 0.0015\n",
|
2043
|
-
"specialized 1 0.0015\n",
|
2044
|
-
"social 1 0.0015\n",
|
2045
|
-
"medium 1 0.0015\n",
|
2046
|
-
"analytics 1 0.0015\n",
|
2047
|
-
"keynote 1 0.0015\n",
|
2048
|
-
"speaker 1 0.0015\n",
|
2049
|
-
"none 1 0.0015\n",
|
2050
|
-
"Elizabeth 1 0.0015\n",
|
2051
|
-
"distinguish 1 0.0015\n",
|
2052
|
-
"Stanford 1 0.0015\n",
|
2053
|
-
"speech 1 0.0015\n",
|
2054
|
-
"focus 1 0.0015\n",
|
2055
|
-
"ethical 1 0.0015\n",
|
2056
|
-
"implication 1 0.0015\n",
|
2057
|
-
"benefit 1 0.0015\n",
|
2058
|
-
"humanity 1 0.0015\n",
|
2059
|
-
"whole 1 0.0015\n",
|
2060
|
-
"spark 1 0.0015\n",
|
2061
|
-
"lively 1 0.0015\n",
|
2062
|
-
"among 1 0.0015\n",
|
2063
|
-
"Sarah 1 0.0015\n",
|
2064
|
-
"Johnson 1 0.0015\n",
|
2065
|
-
"policy 1 0.0015\n",
|
2066
|
-
"advisor 1 0.0015\n",
|
2067
|
-
"United 1 0.0015\n",
|
2068
|
-
"Nations 1 0.0015\n",
|
2069
|
-
"Ahmed 1 0.0015\n",
|
2070
|
-
"Khan 1 0.0015\n",
|
2071
|
-
"cybersecurity 1 0.0015\n",
|
2072
|
-
"Microsoft 1 0.0015\n",
|
2073
|
-
"break 1 0.0015\n",
|
2074
|
-
"session 1 0.0015\n",
|
2075
|
-
"mingle 1 0.0015\n",
|
2076
|
-
"caught 1 0.0015\n",
|
2077
|
-
"former 1 0.0015\n",
|
2078
|
-
"classmate 1 0.0015\n",
|
2079
|
-
"Kim 1 0.0015\n",
|
2080
|
-
"analyst 1 0.0015\n",
|
2081
|
-
"Amazon 1 0.0015\n",
|
2082
|
-
"Brown 1 0.0015\n",
|
2083
|
-
"knack 1 0.0015\n",
|
2084
|
-
"innovative 1 0.0015\n",
|
2085
|
-
"solution 1 0.0015\n",
|
2086
|
-
"invite 1 0.0015\n",
|
2087
|
-
"another 1 0.0015\n",
|
2088
|
-
"corner 1 0.0015\n",
|
2089
|
-
"room 1 0.0015\n",
|
2090
|
-
"Patel 1 0.0015\n",
|
2091
|
-
"roboticist 1 0.0015\n",
|
2092
|
-
"Carnegie 1 0.0015\n",
|
2093
|
-
"Mellon 1 0.0015\n",
|
2094
|
-
"recently 1 0.0015\n",
|
2095
|
-
"developed 1 0.0015\n",
|
2096
|
-
"type 1 0.0015\n",
|
2097
|
-
"arm 1 0.0015\n",
|
2098
|
-
"perform 1 0.0015\n",
|
2099
|
-
"delicate 1 0.0015\n",
|
2100
|
-
"surgical 1 0.0015\n",
|
2101
|
-
"procedure 1 0.0015\n",
|
2102
|
-
"unprecedented 1 0.0015\n",
|
2103
|
-
"precision 1 0.0015\n",
|
2104
|
-
"assistant 1 0.0015\n",
|
2105
|
-
"Gonzalez 1 0.0015\n",
|
2106
|
-
"instrumental 1 0.0015\n",
|
2107
|
-
"fascinate 1 0.0015\n",
|
2108
|
-
"propose 1 0.0015\n",
|
2109
|
-
"partnership 1 0.0015\n",
|
2110
|
-
"day 1 0.0015\n",
|
2111
|
-
"progress 1 0.0015\n",
|
2112
|
-
"treat 1 0.0015\n",
|
2113
|
-
"series 1 0.0015\n",
|
2114
|
-
"insightful 1 0.0015\n",
|
2115
|
-
"James 1 0.0015\n",
|
2116
|
-
"Clark 1 0.0015\n",
|
2117
|
-
"Harvard 1 0.0015\n",
|
2118
|
-
"Lisa 1 0.0015\n",
|
2119
|
-
"Robinson 1 0.0015\n",
|
2120
|
-
"computer 1 0.0015\n",
|
2121
|
-
"vision 1 0.0015\n",
|
2122
|
-
"Nvidia 1 0.0015\n",
|
2123
|
-
"demonstrate 1 0.0015\n",
|
2124
|
-
"image 1 0.0015\n",
|
2125
|
-
"recognition 1 0.0015\n",
|
2126
|
-
"impressed 1 0.0015\n",
|
2127
|
-
"Ananya 1 0.0015\n",
|
2128
|
-
"Singh 1 0.0015\n",
|
2129
|
-
"ethicist 1 0.0015\n",
|
2130
|
-
"Oxford 1 0.0015\n",
|
2131
|
-
"societal 1 0.0015\n",
|
2132
|
-
"responsible 1 0.0015\n",
|
2133
|
-
"even 1 0.0015\n",
|
2134
|
-
"gala 1 0.0015\n",
|
2135
|
-
"dinner 1 0.0015\n",
|
2136
|
-
"Grand 1 0.0015\n",
|
2137
|
-
"Hyatt 1 0.0015\n",
|
2138
|
-
"Hotel 1 0.0015\n",
|
2139
|
-
"perfect 1 0.0015\n",
|
2140
|
-
"networking 1 0.0015\n",
|
2141
|
-
"found 1 0.0015\n",
|
2142
|
-
"seat 1 0.0015\n",
|
2143
|
-
"Henry 1 0.0015\n",
|
2144
|
-
"Zhang 1 0.0015\n",
|
2145
|
-
"venture 1 0.0015\n",
|
2146
|
-
"capitalist 1 0.0015\n",
|
2147
|
-
"Sequoia 1 0.0015\n",
|
2148
|
-
"Capital 1 0.0015\n",
|
2149
|
-
"keen 1 0.0015\n",
|
2150
|
-
"invest 1 0.0015\n",
|
2151
|
-
"promising 1 0.0015\n",
|
2152
|
-
"startup 1 0.0015\n",
|
2153
|
-
"Priya 1 0.0015\n",
|
2154
|
-
"Sharma 1 0.0015\n",
|
2155
|
-
"legal 1 0.0015\n",
|
2156
|
-
"Electronic 1 0.0015\n",
|
2157
|
-
"Frontier 1 0.0015\n",
|
2158
|
-
"Foundation 1 0.0015\n",
|
2159
|
-
"provide 1 0.0015\n",
|
2160
|
-
"regulatory 1 0.0015\n",
|
2161
|
-
"landscape 1 0.0015\n",
|
2162
|
-
"emerge 1 0.0015\n",
|
2163
|
-
"struck 1 0.0015\n",
|
2164
|
-
"Martinez 1 0.0015\n",
|
2165
|
-
"bioinformatics 1 0.0015\n",
|
2166
|
-
"California 1 0.0015\n",
|
2167
|
-
"Berkeley 1 0.0015\n",
|
2168
|
-
"contact 1 0.0015\n",
|
2169
|
-
"plan 1 0.0015\n",
|
2170
|
-
"meet 1 0.0015\n",
|
2171
|
-
"discus 1 0.0015\n",
|
2172
|
-
"Meanwhile 1 0.0015\n",
|
2173
|
-
"Liu 1 0.0015\n",
|
2174
|
-
"developer 1 0.0015\n",
|
2175
|
-
"IBM 1 0.0015\n",
|
2176
|
-
"security 1 0.0015\n",
|
2177
|
-
"Olivia 1 0.0015\n",
|
2178
|
-
"Parker 1 0.0015\n",
|
2179
|
-
"cryptography 1 0.0015\n",
|
2180
|
-
"brainstorm 1 0.0015\n",
|
2181
|
-
"various 1 0.0015\n",
|
2182
|
-
"decide 1 0.0015\n",
|
2183
|
-
"explore 1 0.0015\n",
|
2184
|
-
"morning 1 0.0015\n",
|
2185
|
-
"resume 1 0.0015\n",
|
2186
|
-
"feature 1 0.0015\n",
|
2187
|
-
"several 1 0.0015\n",
|
2188
|
-
"leader 1 0.0015\n",
|
2189
|
-
"William 1 0.0015\n",
|
2190
|
-
"Harris 1 0.0015\n",
|
2191
|
-
"CEO 1 0.0015\n",
|
2192
|
-
"Inc. 1 0.0015\n",
|
2193
|
-
"Katherine 1 0.0015\n",
|
2194
|
-
"Adams 1 0.0015\n",
|
2195
|
-
"senior 1 0.0015\n",
|
2196
|
-
"OpenAI 1 0.0015\n",
|
2197
|
-
"transform 1 0.0015\n",
|
2198
|
-
"range 1 0.0015\n",
|
2199
|
-
"finance 1 0.0015\n",
|
2200
|
-
"Mei 1 0.0015\n",
|
2201
|
-
"Ling 1 0.0015\n",
|
2202
|
-
"Tokyo 1 0.0015\n",
|
2203
|
-
"highlight 1 0.0015\n",
|
2204
|
-
"Asia 1 0.0015\n",
|
2205
|
-
"sat 1 0.0015\n",
|
2206
|
-
"acquaintance 1 0.0015\n",
|
2207
|
-
"absorb 1 0.0015\n",
|
2208
|
-
"wealth 1 0.0015\n",
|
2209
|
-
"inspire 1 0.0015\n",
|
2210
|
-
"talk 1 0.0015\n",
|
2211
|
-
"Samuel 1 0.0015\n",
|
2212
|
-
"Green 1 0.0015\n",
|
2213
|
-
"cognitive 1 0.0015\n",
|
2214
|
-
"Yale 1 0.0015\n",
|
2215
|
-
"intersection 1 0.0015\n",
|
2216
|
-
"cognition 1 0.0015\n",
|
2217
|
-
"augment 1 0.0015\n",
|
2218
|
-
"decision-making 1 0.0015\n",
|
2219
|
-
"resonate 1 0.0015\n",
|
2220
|
-
"deeply 1 0.0015\n",
|
2221
|
-
"drew 1 0.0015\n",
|
2222
|
-
"close 1 0.0015\n",
|
2223
|
-
"reflect 1 0.0015\n",
|
2224
|
-
"gain 1 0.0015\n",
|
2225
|
-
"felt 1 0.0015\n",
|
2226
|
-
"energize 1 0.0015\n",
|
2227
|
-
"leave 1 0.0015\n",
|
2228
|
-
"take 1 0.0015\n",
|
2229
|
-
"moment 1 0.0015\n",
|
2230
|
-
"thank 1 0.0015\n",
|
2231
|
-
"organizer 1 0.0015\n",
|
2232
|
-
"Karen 1 0.0015\n",
|
2233
|
-
"Wilson 1 0.0015\n",
|
2234
|
-
"director 1 0.0015\n",
|
2235
|
-
"Network 1 0.0015\n",
|
2236
|
-
"resound 1 0.0015\n",
|
2237
|
-
"together 1 0.0015\n",
|
2238
|
-
"brightest 1 0.0015\n",
|
2239
|
-
"mind 1 0.0015\n",
|
2240
|
-
"spirit 1 0.0015\n",
|
2241
|
-
"board 1 0.0015\n",
|
2242
|
-
"flight 1 0.0015\n",
|
2243
|
-
"back 1 0.0015\n",
|
2244
|
-
"Boston 1 0.0015\n",
|
2245
|
-
"n't 1 0.0015\n",
|
2246
|
-
"help 1 0.0015\n",
|
2247
|
-
"feel 1 0.0015\n",
|
2248
|
-
"optimistic 1 0.0015\n",
|
2249
|
-
"knew 1 0.0015\n",
|
2250
|
-
"lead 1 0.0015\n",
|
2251
|
-
"determine 1 0.0015\n",
|
2252
|
-
"ever 1 0.0015\n",
|
2253
|
-
"achieve 1 0.0015\n",
|
2254
|
-
"ensure 1 0.0015\n",
|
2255
|
-
"positive 1 0.0015\n",
|
2256
|
-
"week 1 0.0015\n",
|
2257
|
-
"stayed 1 0.0015\n",
|
2258
|
-
"touch 1 0.0015\n",
|
2259
|
-
"collaborator 1 0.0015\n",
|
2260
|
-
"begin 1 0.0015\n",
|
2261
|
-
"resource 1 0.0015\n",
|
2262
|
-
"tackle 1 0.0015\n",
|
2263
|
-
"biological 1 0.0015\n",
|
2264
|
-
"expand 1 0.0015\n",
|
2265
|
-
"professional 1 0.0015\n",
|
2266
|
-
"enrich 1 0.0015\n",
|
2267
|
-
"understand 1 0.0015\n",
|
2268
|
-
"diverse 1 0.0015\n",
|
2269
|
-
"grateful 1 0.0015\n",
|
2270
|
-
"connect 1 0.0015\n",
|
2271
|
-
"many 1 0.0015\n",
|
2272
|
-
"talented 1 0.0015\n",
|
2273
|
-
"individual 1 0.0015\n",
|
2274
|
-
"look 1 0.0015\n",
|
2275
|
-
"forward 1 0.0015\n",
|
2276
|
-
"renew 1 0.0015\n",
|
2277
|
-
"enthusiasm 1 0.0015\n",
|
2278
|
-
"sense 1 0.0015\n",
|
2279
|
-
"purpose 1 0.0015\n",
|
2280
|
-
"transformative 1 0.0015\n",
|
2281
|
-
"experience 1 0.0015\n",
|
2282
|
-
"set 1 0.0015\n",
|
2283
|
-
"stage 1 0.0015\n",
|
2284
|
-
"discovery 1 0.0015\n"
|
2285
|
-
]
|
2286
|
-
}
|
2287
|
-
],
|
2288
|
-
"source": [
|
2289
|
-
"# Read the text from the file and tokenize\n",
|
2290
|
-
"file_path = 'E:/126156048/leb_2/name_essay.txt'\n",
|
2291
|
-
"\n",
|
2292
|
-
"with open(file_path, 'r', encoding='utf-8') as file:\n",
|
2293
|
-
" content = file.read()\n",
|
2294
|
-
" tokens = word_tokenize(content)\n",
|
2295
|
-
"\n",
|
2296
|
-
"# Print the original tokens\n",
|
2297
|
-
"print(\"Original Tokens:\\n\", tokens)\n",
|
2298
|
-
"\n",
|
2299
|
-
"# Initialize the Porter Stemmer\n",
|
2300
|
-
"stemmer = PorterStemmer()\n",
|
2301
|
-
"\n",
|
2302
|
-
"# Apply stemming to each token\n",
|
2303
|
-
"stemmed_words = [stemmer.stem(token) for token in filtered_tokens]\n",
|
2304
|
-
"\n",
|
2305
|
-
"# Print the stemmed tokens\n",
|
2306
|
-
"print(\"\\nStemmed Tokens:\\n\", stemmed_words)\n",
|
2307
|
-
"\n",
|
2308
|
-
"# Initialize the WordNet Lemmatizer\n",
|
2309
|
-
"lemmatizer = WordNetLemmatizer()\n",
|
2310
|
-
"\n",
|
2311
|
-
"# Function to get part of speech tag for lemmatization\n",
|
2312
|
-
"def get_wordnet_pos(word):\n",
|
2313
|
-
" tag = nltk.pos_tag([word])[0][1][0].upper()\n",
|
2314
|
-
" tag_dict = {\"J\": wordnet.ADJ,\n",
|
2315
|
-
" \"N\": wordnet.NOUN,\n",
|
2316
|
-
" \"V\": wordnet.VERB,\n",
|
2317
|
-
" \"R\": wordnet.ADV}\n",
|
2318
|
-
" return tag_dict.get(tag, wordnet.NOUN)\n",
|
2319
|
-
"\n",
|
2320
|
-
"# Apply lemmatization to each token\n",
|
2321
|
-
"lemmatized_words = [lemmatizer.lemmatize(token, get_wordnet_pos(token)) for token in filtered_tokens]\n",
|
2322
|
-
"\n",
|
2323
|
-
"# Print the lemmatized tokens\n",
|
2324
|
-
"print(\"\\nLemmatized Tokens:\\n\", lemmatized_words)\n",
|
2325
|
-
"\n",
|
2326
|
-
"# Calculate frequency distribution for original tokens\n",
|
2327
|
-
"freq_dist_original = FreqDist(filtered_tokens)\n",
|
2328
|
-
"total_original_tokens = len(filtered_tokens)\n",
|
2329
|
-
"\n",
|
2330
|
-
"# Calculate frequency distribution for stemmed tokens\n",
|
2331
|
-
"freq_dist_stemmed = FreqDist(stemmed_words)\n",
|
2332
|
-
"total_stemmed_tokens = len(stemmed_words)\n",
|
2333
|
-
"\n",
|
2334
|
-
"# Calculate frequency distribution for lemmatized tokens\n",
|
2335
|
-
"freq_dist_lemmatized = FreqDist(lemmatized_words)\n",
|
2336
|
-
"total_lemmatized_tokens = len(lemmatized_words)\n",
|
2337
|
-
"\n",
|
2338
|
-
"# Function to print frequency distributions\n",
|
2339
|
-
"def print_freq_dist(freq_dist, total_tokens, title):\n",
|
2340
|
-
" print(f\"\\n{title}:\")\n",
|
2341
|
-
" print(f\"{'Token':<20} {'Frequency':<10} {'Probability':<12}\")\n",
|
2342
|
-
" print(\"-\" * 42)\n",
|
2343
|
-
" for word, frequency in freq_dist.most_common():\n",
|
2344
|
-
" probability = frequency / total_tokens\n",
|
2345
|
-
" print(f\"{word:<20} {frequency:<10} {probability:.4f}\")\n",
|
2346
|
-
"\n",
|
2347
|
-
"# Print frequency distributions and probabilities\n",
|
2348
|
-
"print_freq_dist(freq_dist_original, total_original_tokens, \"Frequency Distribution of Original Tokens\")\n",
|
2349
|
-
"print_freq_dist(freq_dist_stemmed, total_stemmed_tokens, \"Frequency Distribution of Stemmed Tokens\")\n",
|
2350
|
-
"print_freq_dist(freq_dist_lemmatized, total_lemmatized_tokens, \"Frequency Distribution of Lemmatized Tokens\")"
|
2351
|
-
]
|
2352
|
-
},
|
2353
|
-
{
|
2354
|
-
"cell_type": "code",
|
2355
|
-
"execution_count": 89,
|
2356
|
-
"id": "47548364-cf93-4c1d-b1ab-5f847b344442",
|
2357
|
-
"metadata": {},
|
2358
|
-
"outputs": [
|
2359
|
-
{
|
2360
|
-
"data": {
|
2361
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1q0lEQVR4nOzdeVxV1f7/8fcREBxxBMQQ0ZznoRTNKRVDr0NpOZRDaV3TckArKc2hwTQ1MsfKMU2t1NT05lCOZV0VHOqaqaGYgoqVOKRM+/eHP87XI4OA+3C29no+Hvvx8Ky99vqsAyIfP2fttW2GYRgCAAAAAAAAAFhCPldPAAAAAAAAAADwfyjaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCyBMLFy6UzWbL8Bg5cqSrp3dPufVr7eXlJT8/P7Vq1UoTJ07UuXPn0l0zbtw42Wy2HMW5evWqxo0bp23btuXouoxilS9fXv/6179yNM7tfPrpp4qIiMjwnM1m07hx40yNBwAA/lluzbnc3d1133336emnn9bp06dNjWWz2fTCCy+YNt6JEydks9k0ZcqU2/ZNe58nTpywt/Xr10/ly5d36Fe+fHn169fP/vrMmTMaN26c9u/fb86kb5kPuS65LnCvc3f1BAD8syxYsEBVq1Z1aPP393fRbO5taV/rpKQknTt3Trt27dKkSZM0ZcoUrVixQm3atLH3HTBggB555JEcjX/16lWNHz9ektSyZctsX5ebWLnx6aef6qefftKwYcPSndu9e7fuu+8+p88BAADc+9Jyrr///ls7duzQxIkTtX37dh06dEiFChVy9fTuWIcOHbR7926VKVMmy36rV69W0aJF7a/PnDmj8ePHq3z58qpbt67p8yLXJdcF7nUUbQHkqZo1a6phw4bZ6puUlGRftYCcu/Vr3bVrVw0fPlwPPfSQHnvsMR09elS+vr6SpPvuu8/pid3Vq1dVsGDBPIl1O40bN3ZpfAAAcO+4Oedq1aqVUlJS9MYbb+jLL7/Uk08+meE1aXnR3aB06dIqXbr0bfvVq1cvD2bzf8h1M0euC9wb2B4BgCVs27ZNNptNn3zyiUaMGKGyZcvK09NTx44dkyRt2bJFrVu3VtGiRVWwYEE1bdpU33zzTbpx1q9fr7p168rT01NBQUGaMmVKuluU0m4HW7hwYbrrM7qV6OjRo+rVq5d8fHzk6empatWqaebMmRnOf9myZXrttdfk7++vokWLqk2bNjpy5Ei6OF9//bVat24tb29vFSxYUNWqVdPEiRMlSZ988olsNpt2796d7roJEybIw8NDZ86cue3XNCPlypXT1KlTdenSJc2dO9fentFtXN9++61atmypkiVLqkCBAipXrpy6du2qq1ev6sSJE/bkffz48fbb09JuiUsbLzIyUt26dVPx4sVVsWLFTGOlWb16tWrXri0vLy9VqFBB06dPdzif0e150v99/dNuX2vZsqXWr1+vkydPOtw+lyaj7/NPP/2kzp07q3jx4vLy8lLdunW1aNGiDONk9/sMAAD+edIKZidPnpR0YyuBwoUL69ChQwoJCVGRIkXUunVrSdIff/yhQYMGqWzZssqfP78qVKig1157TdevX89w7Llz56py5cry9PRU9erVtXz5cofz58+f16BBg1S9enUVLlxYPj4+evjhh7Vz584Mx0tNTdVbb72lcuXKycvLSw0bNkyXY2eWf93q5u0Rtm3bpgceeECS9PTTT9tzsXHjxpHrkusCyCaWrwHIUykpKUpOTnZou3klbXh4uIKDgzVnzhzly5dPPj4+WrJkifr06aPOnTtr0aJF8vDw0Ny5c9WuXTtt3LjRnvR+88036ty5s4KDg7V8+XKlpKRo8uTJOnv2bK7n+7///U9NmjSxJ4B+fn7auHGjhgwZovj4eI0dO9ah/6uvvqqmTZvq448/VkJCgl555RV17NhRhw8flpubmyRp3rx5evbZZ9WiRQvNmTNHPj4++vXXX/XTTz9Jkrp3766XX35ZM2fOVHBwsH3s5ORkzZ07V48++ugdbSnRvn17ubm5aceOHZn2OXHihDp06KBmzZpp/vz5KlasmE6fPq2vv/5aiYmJKlOmjL7++ms98sgj6t+/vwYMGCBJ6VZhPPbYY+rRo4cGDhyoK1euZDmv/fv3a9iwYRo3bpz8/Py0dOlSDR06VImJiTne93jWrFl67rnndPz4ca1evfq2/Y8cOaImTZrIx8dH06dPV8mSJbVkyRL169dPZ8+e1csvv+zQPzvfZwAA8M+Utujg5rwoMTFRnTp10r///W+NGjVKycnJunbtmlq1aqXjx49r/Pjxql27tnbu3KmJEydq//79Wr9+vcO4a9eu1datWzVhwgQVKlRIs2bNUs+ePeXu7q5u3bpJulEElqSxY8fKz89Ply9f1urVq9WyZUt988036W7znzFjhgIDAxUREaHU1FRNnjxZoaGh2r59u0MemlP169fXggUL9PTTT2v06NHq0KGDpBsrXn18fMh1yXUBZIcBAHlgwYIFhqQMj6SkJGPr1q2GJKN58+YO1125csUoUaKE0bFjR4f2lJQUo06dOsaDDz5ob2vUqJHh7+9v/P333/a2hIQEo0SJEsbN/9xFR0cbkowFCxakm6ckY+zYsfbX7dq1M+677z7j4sWLDv1eeOEFw8vLy/jjjz8MwzDs82/fvr1Dv88++8yQZOzevdswDMO4dOmSUbRoUeOhhx4yUlNTM/16jR071sifP79x9uxZe9uKFSsMScb27dszvc4w/u9rvWfPnkz7+Pr6GtWqVXOId/PX6IsvvjAkGfv37890jPPnz6f7et063uuvv57puZsFBgYaNpstXby2bdsaRYsWNa5cueLw3qKjox36pX39t27dam/r0KGDERgYmOHcb513jx49DE9PTyMmJsahX2hoqFGwYEHjr7/+cohzu+8zAAC496XlJT/88IORlJRkXLp0yfjqq6+M0qVLG0WKFDHi4uIMwzCMvn37GpKM+fPnO1w/Z84cQ5Lx2WefObRPmjTJkGRs2rTJ3ibJKFCggH1MwzCM5ORko2rVqsb999+f6RyTk5ONpKQko3Xr1sajjz5qb0/LhzPLndu0aZPufd6cf/Xt2zddnhUYGGj07dvX/nrPnj2Z5tzkujeQ6wLICtsjAMhTixcv1p49exyOm1fadu3a1aH/999/rz/++EN9+/ZVcnKy/UhNTdUjjzyiPXv26MqVK7py5Yr27Nmjxx57TF5eXvbrixQpoo4dO+ZqrteuXdM333yjRx99VAULFnSI3759e127dk0//PCDwzWdOnVyeF27dm1J/3d73Pfff6+EhAQNGjQoyyfYPv/885Kkjz76yN42Y8YM1apVS82bN8/V+7mZYRhZnq9bt67y58+v5557TosWLdJvv/2Wqzi3fj+zUqNGDdWpU8ehrVevXkpISFBkZGSu4mfXt99+q9atWysgIMChvV+/frp69Wq62/du930GAAD/HI0bN5aHh4eKFCmif/3rX/Lz89N//vMf+36qaW7Ni7799lsVKlTIvko2Tdot+LduU9C6dWuHMd3c3NS9e3cdO3ZMv//+u719zpw5ql+/vry8vOTu7i4PDw998803Onz4cLq5Z5Y779ixQykpKTn7QuQAue4N5LoAskLRFkCeqlatmho2bOhw3OzWp9KmbW3QrVs3eXh4OByTJk2SYRj6448/9Oeffyo1NVV+fn7pYmbUlh0XLlxQcnKyPvjgg3Sx27dvL0mKj493uKZkyZIOrz09PSVJf//9t6Qb+4xJuu3DCXx9fdW9e3fNnTtXKSkpOnjwoHbu3KkXXnghV+/lZleuXNGFCxeyvO2sYsWK2rJli3x8fDR48GBVrFhRFStW1Pvvv5+jWLd7yvDNsvreXbhwIUdxc+rChQsZzjXta3Rr/Nt9nwEAwD9H2qKEqKgonTlzRgcPHlTTpk0d+hQsWFBFixZ1aLtw4YL8/PzSfZDv4+Mjd3f3dPlHdnKladOm6fnnn1ejRo20cuVK/fDDD9qzZ48eeeSRDPOUzMZMTEzU5cuXs/Huc4dc17GNXBdARtjTFoCl3Jq0lipVSpL0wQcfZPoUVF9fXyUlJclmsykuLi7d+Vvb0lYT3PqAh1uTleLFi8vNzU29e/fW4MGDM4wdFBSUxbtJL20frJtXQ2Rm6NCh+uSTT7RmzRp9/fXXKlasWKZPIM6J9evXKyUlJd2eZrdq1qyZmjVrppSUFO3du1cffPCBhg0bJl9fX/Xo0SNbsbJaTXyrrL53aYljZt+7W4vnOVWyZEnFxsama097CEba30MAAIBbpS1KyEpGOVHJkiX1448/yjAMh/Pnzp1TcnJyuvwjO7nSkiVL1LJlS82ePduh36VLlzKcV2Zj5s+fX4ULF87yPd0pcl1yXQBZY6UtAEtr2rSpihUrpv/973/pVuimHfnz51ehQoX04IMPatWqVbp27Zr9+kuXLmndunUOY/r6+srLy0sHDx50aF+zZo3D64IFC6pVq1aKiopS7dq1M4x966fQt9OkSRN5e3trzpw5t71tq0GDBmrSpIkmTZqkpUuXql+/fipUqFCO4t0qJiZGI0eOlLe3t/79739n6xo3Nzc1atRIM2fOlCT77Vtmf+L+888/68CBAw5tn376qYoUKaL69etLuvFUYknpvndr165NN56np2e259a6dWt9++236Z5UvHjxYhUsWDDTDwwAAAByq3Xr1rp8+bK+/PJLh/bFixfbz9/sm2++cXjAbkpKilasWKGKFSva7+Ky2Wz2HC3NwYMH093+niaz3LlZs2Z3/MCp2+WK5LrkugCyxkpbAJZWuHBhffDBB+rbt6/++OMPdevWTT4+Pjp//rwOHDig8+fP21cSvPHGG3rkkUfUtm1bjRgxQikpKZo0aZIKFSpkf5KudCOZfeqppzR//nxVrFhRderU0X//+199+umn6eK///77euihh9SsWTM9//zzKl++vC5duqRjx45p3bp1+vbbb3P8fqZOnaoBAwaoTZs2evbZZ+Xr66tjx47pwIEDmjFjhkP/oUOHqnv37rLZbBo0aFCOYv3000/2PXjPnTunnTt3asGCBXJzc9Pq1avTPf32ZnPmzNG3336rDh06qFy5crp27Zrmz58vSWrTpo2kG3ueBQYGas2aNWrdurVKlCihUqVK2ZPNnPL391enTp00btw4lSlTRkuWLNHmzZs1adIkFSxYUJL0wAMPqEqVKho5cqSSk5NVvHhxrV69Wrt27Uo3Xq1atbRq1SrNnj1bDRo0UL58+TJdBTN27Fh99dVXatWqlV5//XWVKFFCS5cu1fr16zV58mR5e3vn6j0BAABkpk+fPpo5c6b69u2rEydOqFatWtq1a5fefvtttW/f3p5zpSlVqpQefvhhjRkzRoUKFdKsWbP0yy+/aPny5fY+//rXv/TGG29o7NixatGihY4cOaIJEyYoKChIycnJ6ebg5uamtm3bKiwsTKmpqZo0aZISEhI0fvz4O35/FStWVIECBbR06VJVq1ZNhQsXlr+/v8O2BeS65LoAMkfRFoDlPfXUUypXrpwmT56sf//737p06ZJ8fHxUt25d+4MaJKlt27b68ssvNXr0aHXv3l1+fn4aNGiQ/v7773SJ59SpUyVJkydP1uXLl/Xwww/rq6++SpeEVa9eXZGRkXrjjTc0evRonTt3TsWKFVOlSpXs+9rmVP/+/eXv769JkyZpwIABMgxD5cuXV9++fdP17dKlizw9PdWqVStVqlQpR3GefvppSVL+/PlVrFgxVatWTa+88ooGDBiQZRIr3Xg4w6ZNmzR27FjFxcWpcOHCqlmzptauXauQkBB7v3nz5umll15Sp06ddP36dfXt21cLFy7M0Txvjvn0009r7NixOnr0qPz9/TVt2jQNHz7c3sfNzU3r1q3TCy+8oIEDB8rT01M9evTQjBkz1KFDB4fxhg4dqp9//lmvvvqqLl68KMMwMl3dXKVKFX3//fd69dVXNXjwYP3999+qVq2aFixY4PB3DAAAwCxeXl7aunWrXnvtNb377rs6f/68ypYtq5EjR2rs2LHp+nfq1Ek1atTQ6NGjFRMTo4oVK2rp0qXq3r27vc9rr72mq1evat68eZo8ebKqV6+uOXPmaPXq1dq2bVu6MV944QVdu3ZNQ4YM0blz51SjRg2tX78+3Z68uVGwYEHNnz9f48ePV0hIiJKSkjR27FiNGzfO3odcl1wXQOZsxu3uzwWAu9y4ceM0fvz4225HYEXr1q1Tp06dtH79+lwXiQEAAAArItcFgMyx0hYALOh///ufTp48qREjRqhu3boKDQ119ZQAAAAAU5DrAsDt8SAyALCgQYMGqVOnTipevLiWLVuWoyfTAgAAAFZGrgsAt8f2CAAAAAAAAABgIay0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALMTd1ROwotTUVJ05c0ZFihRhQ3QAAAAXMQxDly5dkr+/v/LlY63BnSLHBQAAcL3s5rgUbTNw5swZBQQEuHoaAAAAkHTq1Cndd999rp7GXY8cFwAAwDpul+NStM1AkSJFJN344hUtWtTFswEAAPhnSkhIUEBAgD03w50hxwUAAHC97Oa4FG0zkHa7WNGiRUloAQAAXIxb+c1BjgsAAGAdt8tx2RwMAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxN3VE8AN70TFO23sUfVKOW1sAAAAIDNJ40c4bWyPsVOdNjYAAICrsdIWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhbi0aLtjxw517NhR/v7+stls+vLLLx3O22y2DI9333030zEXLlyY4TXXrl1z8rsBAAAAAAAAgDvn0qLtlStXVKdOHc2YMSPD87GxsQ7H/PnzZbPZ1LVr1yzHLVq0aLprvby8nPEWAAAAAAAAAMBU7q4MHhoaqtDQ0EzP+/n5Obxes2aNWrVqpQoVKmQ5rs1mS3ctAAAAAAAAANwN7po9bc+ePav169erf//+t+17+fJlBQYG6r777tO//vUvRUVFZdn/+vXrSkhIcDgAAAAAAAAAwBXumqLtokWLVKRIET322GNZ9qtataoWLlyotWvXatmyZfLy8lLTpk119OjRTK+ZOHGivL297UdAQIDZ0wcAAAAAAACAbLlrirbz58/Xk08+edu9aRs3bqynnnpKderUUbNmzfTZZ5+pcuXK+uCDDzK9Jjw8XBcvXrQfp06dMnv6AAAAAAAAAJAtLt3TNrt27typI0eOaMWKFTm+Nl++fHrggQeyXGnr6ekpT0/PO5kiAAAAAAAAAJjirlhpO2/ePDVo0EB16tTJ8bWGYWj//v0qU6aME2YGAAAAAAAAAOZy6Urby5cv69ixY/bX0dHR2r9/v0qUKKFy5cpJkhISEvT5559r6tSpGY7Rp08flS1bVhMnTpQkjR8/Xo0bN1alSpWUkJCg6dOna//+/Zo5c6bz3xAAAAAAAAAA3CGXFm337t2rVq1a2V+HhYVJkvr27auFCxdKkpYvXy7DMNSzZ88Mx4iJiVG+fP+3YPivv/7Sc889p7i4OHl7e6tevXrasWOHHnzwQee9EQAAAAAAAAAwic0wDMPVk7CahIQEeXt76+LFiypatGiexHwnKt5pY4+qV8ppYwMAADiLK3Kye5krvp5J40c4bWyPsRnfiQcAAGBl2c3J7oo9bQEAAAAAAADgn4KiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAByYNasWQoKCpKXl5caNGignTt3Ztl/+/btatCggby8vFShQgXNmTPH4fxHH32kZs2aqXjx4ipevLjatGmj//73vw59xo0bJ5vN5nD4+fmZ/t4AAABgDRRtAQAAgGxasWKFhg0bptdee01RUVFq1qyZQkNDFRMTk2H/6OhotW/fXs2aNVNUVJReffVVDRkyRCtXrrT32bZtm3r27KmtW7dq9+7dKleunEJCQnT69GmHsWrUqKHY2Fj7cejQIae+VwAAALiOu6snAAAAANwtpk2bpv79+2vAgAGSpIiICG3cuFGzZ8/WxIkT0/WfM2eOypUrp4iICElStWrVtHfvXk2ZMkVdu3aVJC1dutThmo8++khffPGFvvnmG/Xp08fe7u7uzupaAACAfwhW2gIAAADZkJiYqH379ikkJMShPSQkRN9//32G1+zevTtd/3bt2mnv3r1KSkrK8JqrV68qKSlJJUqUcGg/evSo/P39FRQUpB49eui3337Lcr7Xr19XQkKCwwEAAIC7A0VbAAAAIBvi4+OVkpIiX19fh3ZfX1/FxcVleE1cXFyG/ZOTkxUfH5/hNaNGjVLZsmXVpk0be1ujRo20ePFibdy4UR999JHi4uLUpEkTXbhwIdP5Tpw4Ud7e3vYjICAgu28VAAAALkbRFgAAAMgBm83m8NowjHRtt+ufUbskTZ48WcuWLdOqVavk5eVlbw8NDVXXrl1Vq1YttWnTRuvXr5ckLVq0KNO44eHhunjxov04derU7d8cAAAALIE9bQEAAIBsKFWqlNzc3NKtqj137ly61bRp/Pz8Muzv7u6ukiVLOrRPmTJFb7/9trZs2aLatWtnOZdChQqpVq1aOnr0aKZ9PD095enpmeU4AAAAsCZW2gIAAADZkD9/fjVo0ECbN292aN+8ebOaNGmS4TXBwcHp+m/atEkNGzaUh4eHve3dd9/VG2+8oa+//loNGza87VyuX7+uw4cPq0yZMrl4JwAAALA6irYAAABANoWFhenjjz/W/PnzdfjwYQ0fPlwxMTEaOHCgpBtbEvTp08fef+DAgTp58qTCwsJ0+PBhzZ8/X/PmzdPIkSPtfSZPnqzRo0dr/vz5Kl++vOLi4hQXF6fLly/b+4wcOVLbt29XdHS0fvzxR3Xr1k0JCQnq27dv3r15AAAA5Bm2RwAAAACyqXv37rpw4YImTJig2NhY1axZUxs2bFBgYKAkKTY2VjExMfb+QUFB2rBhg4YPH66ZM2fK399f06dPV9euXe19Zs2apcTERHXr1s0h1tixYzVu3DhJ0u+//66ePXsqPj5epUuXVuPGjfXDDz/Y4wIAAODeYjPSnoQAu4SEBHl7e+vixYsqWrRonsR8JyrjpwebYVS9Uk4bGwAAwFlckZPdy1zx9UwaP8JpY3uMneq0sQEAAJwluzkZ2yMAAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFuLSou2OHTvUsWNH+fv7y2az6csvv3Q4369fP9lsNoejcePGtx135cqVql69ujw9PVW9enWtXr3aSe8AAAAAAAAAAMzl0qLtlStXVKdOHc2YMSPTPo888ohiY2Ptx4YNG7Icc/fu3erevbt69+6tAwcOqHfv3nriiSf0448/mj19AAAAAAAAADCduyuDh4aGKjQ0NMs+np6e8vPzy/aYERERatu2rcLDwyVJ4eHh2r59uyIiIrRs2bI7mi8AAAAAAAAAOJvl97Tdtm2bfHx8VLlyZT377LM6d+5clv13796tkJAQh7Z27drp+++/d+Y0AQAAAAAAAMAULl1pezuhoaF6/PHHFRgYqOjoaI0ZM0YPP/yw9u3bJ09PzwyviYuLk6+vr0Obr6+v4uLiMo1z/fp1Xb9+3f46ISHBnDcAAAAAAAAAADlk6aJt9+7d7X+uWbOmGjZsqMDAQK1fv16PPfZYptfZbDaH14ZhpGu72cSJEzV+/Pg7nzAAAAAAAAAA3CHLb49wszJlyigwMFBHjx7NtI+fn1+6VbXnzp1Lt/r2ZuHh4bp48aL9OHXqlGlzBgAAAAAAAICcuKuKthcuXNCpU6dUpkyZTPsEBwdr8+bNDm2bNm1SkyZNMr3G09NTRYsWdTgAAAAAAAAAwBVcuj3C5cuXdezYMfvr6Oho7d+/XyVKlFCJEiU0btw4de3aVWXKlNGJEyf06quvqlSpUnr00Uft1/Tp00dly5bVxIkTJUlDhw5V8+bNNWnSJHXu3Flr1qzRli1btGvXrjx/fwAAAAAAAACQUy4t2u7du1etWrWyvw4LC5Mk9e3bV7Nnz9ahQ4e0ePFi/fXXXypTpoxatWqlFStWqEiRIvZrYmJilC/f/y0YbtKkiZYvX67Ro0drzJgxqlixolasWKFGjRrl3RsDAAAAAAAAgFxyadG2ZcuWMgwj0/MbN2687Rjbtm1L19atWzd169btTqYGAAAAAAAAAC5xV+1pCwAAAAAAAAD3Ooq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAJADs2bNUlBQkLy8vNSgQQPt3Lkzy/7bt29XgwYN5OXlpQoVKmjOnDkO5z/66CM1a9ZMxYsXV/HixdWmTRv997//veO4AAAAuHtRtAUAAACyacWKFRo2bJhee+01RUVFqVmzZgoNDVVMTEyG/aOjo9W+fXs1a9ZMUVFRevXVVzVkyBCtXLnS3mfbtm3q2bOntm7dqt27d6tcuXIKCQnR6dOncx0XAAAAdzebYRiGqydhNQkJCfL29tbFixdVtGjRPIn5TlS808YeVa+U08YGAABwFlfkZLfTqFEj1a9fX7Nnz7a3VatWTV26dNHEiRPT9X/llVe0du1aHT582N42cOBAHThwQLt3784wRkpKiooXL64ZM2aoT58+uYqbEVd8PZPGj3Da2B5jpzptbAAAAGfJbk7GSlsAAAAgGxITE7Vv3z6FhIQ4tIeEhOj777/P8Jrdu3en69+uXTvt3btXSUlJGV5z9epVJSUlqUSJErmOCwAAgLubu6snAAAAANwN4uPjlZKSIl9fX4d2X19fxcXFZXhNXFxchv2Tk5MVHx+vMmXKpLtm1KhRKlu2rNq0aZPruJJ0/fp1Xb9+3f46ISEh6zcIAAAAy2ClLQAAAJADNpvN4bVhGOnabtc/o3ZJmjx5spYtW6ZVq1bJy8vrjuJOnDhR3t7e9iMgICDTvgAAALAWirYAAABANpQqVUpubm7pVreeO3cu3SrYNH5+fhn2d3d3V8mSJR3ap0yZorffflubNm1S7dq17yiuJIWHh+vixYv249SpU9l6nwAAAHA9tkf4h+LBZwAAADmTP39+NWjQQJs3b9ajjz5qb9+8ebM6d+6c4TXBwcFat26dQ9umTZvUsGFDeXh42Nveffddvfnmm9q4caMaNmx4x3ElydPTU56enjl6j3c7HnwGAADuFRRtAQAAgGwKCwtT79691bBhQwUHB+vDDz9UTEyMBg4cKOnG6tbTp09r8eLFkqSBAwdqxowZCgsL07PPPqvdu3dr3rx5WrZsmX3MyZMna8yYMfr0009Vvnx5+4rawoULq3DhwtmKCwAAgHsLRVsAAAAgm7p3764LFy5owoQJio2NVc2aNbVhwwYFBgZKkmJjYxUTE2PvHxQUpA0bNmj48OGaOXOm/P39NX36dHXt2tXeZ9asWUpMTFS3bt0cYo0dO1bjxo3LVlwAAADcWyjaAgAAADkwaNAgDRo0KMNzCxcuTNfWokULRUZGZjreiRMn7jguAAAA7i08iAwAAAAAAAAALISiLQAAAAAAAABYiEuLtjt27FDHjh3l7+8vm82mL7/80n4uKSlJr7zyimrVqqVChQrJ399fffr00ZkzZ7Icc+HChbLZbOmOa9euOfndAAAAAAAAAMCdc2nR9sqVK6pTp45mzJiR7tzVq1cVGRmpMWPGKDIyUqtWrdKvv/6qTp063XbcokWLKjY21uHw8vJyxlsAAAAAAAAAAFO59EFkoaGhCg0NzfCct7e3Nm/e7ND2wQcf6MEHH1RMTIzKlSuX6bg2m01+fn6mzhUAAAAAAAAA8sJdtaftxYsXZbPZVKxYsSz7Xb58WYGBgbrvvvv0r3/9S1FRUXkzQQAAAAAAAAC4Q3dN0fbatWsaNWqUevXqpaJFi2bar2rVqlq4cKHWrl2rZcuWycvLS02bNtXRo0czveb69etKSEhwOAAAAAAAAADAFe6Kom1SUpJ69Oih1NRUzZo1K8u+jRs31lNPPaU6deqoWbNm+uyzz1S5cmV98MEHmV4zceJEeXt724+AgACz3wIAAAAAAAAAZIvli7ZJSUl64oknFB0drc2bN2e5yjYj+fLl0wMPPJDlStvw8HBdvHjRfpw6depOpw0AAAAAAAAAueLSB5HdTlrB9ujRo9q6datKliyZ4zEMw9D+/ftVq1atTPt4enrK09PzTqYKAAAAAAAAAKZwadH28uXLOnbsmP11dHS09u/frxIlSsjf31/dunVTZGSkvvrqK6WkpCguLk6SVKJECeXPn1+S1KdPH5UtW1YTJ06UJI0fP16NGzdWpUqVlJCQoOnTp2v//v2aOXNm3r9BAAAAAAAAAMghlxZt9+7dq1atWtlfh4WFSZL69u2rcePGae3atZKkunXrOly3detWtWzZUpIUExOjfPn+b5eHv/76S88995zi4uLk7e2tevXqaceOHXrwwQed+2YAAAAAAAAAwAQuLdq2bNlShmFkej6rc2m2bdvm8Pq9997Te++9d6dTAwAAAAAAAACXsPyDyAAAAAAAAADgn4SiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQtxdPQH8M7wTFe+0sUfVK5WnMTOLBwAAgH+WpPEjnDa2x9ipLo8HAABch5W2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAA97yFCxfq6tWrrp4GAAAAkC25KtpGR0ebPQ8AAADAacLDw+Xn56f+/fvr+++/d/V0AAAAgCzlqmh7//33q1WrVlqyZImuXbtm9pwAAAAAU/3+++9asmSJ/vzzT7Vq1UpVq1bVpEmTFBcX5+qpAQAAAOnkqmh74MAB1atXTyNGjJCfn5/+/e9/67///a/ZcwMAAABM4ebmpk6dOmnVqlU6deqUnnvuOS1dulTlypVTp06dtGbNGqWmprp6mgAAAICkXBZta9asqWnTpun06dNasGCB4uLi9NBDD6lGjRqaNm2azp8/b/Y8AQAAAFP4+PioadOmCg4OVr58+XTo0CH169dPFStW1LZt21w9PQAAAODOHkTm7u6uRx99VJ999pkmTZqk48ePa+TIkbrvvvvUp08fxcbGmjVPAAAA4I6cPXtWU6ZMUY0aNdSyZUslJCToq6++UnR0tM6cOaPHHntMffv2dfU0AQAAgDsr2u7du1eDBg1SmTJlNG3aNI0cOVLHjx/Xt99+q9OnT6tz585mzRMAAADItY4dOyogIEALFy7Us88+q9OnT2vZsmVq06aNJKlAgQIaMWKETp065eKZAgAAAJJ7bi6aNm2aFixYoCNHjqh9+/ZavHix2rdvr3z5btSAg4KCNHfuXFWtWtXUyQIAAAC54ePjo+3btys4ODjTPmXKlFF0dHQezgoAAADIWK5W2s6ePVu9evVSTEyMvvzyS/3rX/+yF2zTlCtXTvPmzTNlkgAAAMCdaNGiherXr5+uPTExUYsXL5Yk2Ww2BQYG5vXUAAAAgHRyVbQ9evSowsPD5efnl2mf/PnzsycYAAAALOHpp5/WxYsX07VfunRJTz/9tAtmBAAAAGQuV0XbBQsW6PPPP0/X/vnnn2vRokV3PCkAAADATIZhyGazpWv//fff5e3t7YIZAQAAAJnL1Z6277zzjubMmZOu3cfHR8899xwrbAEAAGAJ9erVk81mk81mU+vWreXu/n/pb0pKiqKjo/XII4+4cIYAAABAerkq2p48eVJBQUHp2gMDAxUTE3PHkwIAAADM0KVLF0nS/v371a5dOxUuXNh+Ln/+/Cpfvry6du3qotkBAAAAGctV0dbHx0cHDx5U+fLlHdoPHDigkiVLmjEvAAAA4I6NHTtWklS+fHl1795dXl5eLp4RAAAAcHu5Ktr26NFDQ4YMUZEiRdS8eXNJ0vbt2zV06FD16NHD1AkCAAAAd4rtuwAAAHA3yVXR9s0339TJkycd9gVLTU1Vnz599Pbbb5s6QQAAACA3SpQooV9//VWlSpVS8eLFM3wQWZo//vgjD2cGAAAAZC1XRdv8+fNrxYoVeuONN3TgwAEVKFBAtWrVUmBgoNnzAwAAAHLlvffeU5EiRex/zqpoCwAAAFhJroq2aSpXrqzKlSubNRcAAADANDdvidCvXz/XTQQAAADIoXy5uSglJUXz5s1Tr1691KZNGz388MMOR3bt2LFDHTt2lL+/v2w2m7788kuH84ZhaNy4cfL391eBAgXUsmVL/fzzz7cdd+XKlapevbo8PT1VvXp1rV69OqdvEQAAAHe5hISEbB8AAACAleSqaDt06FANHTpUKSkpqlmzpurUqeNwZNeVK1dUp04dzZgxI8PzkydP1rRp0zRjxgzt2bNHfn5+atu2rS5dupTpmLt371b37t3Vu3dvHThwQL1799YTTzyhH3/8McfvEwAAAHevYsWKqXjx4lkeaX0AAAAAK8nV9gjLly/XZ599pvbt299R8NDQUIWGhmZ4zjAMRURE6LXXXtNjjz0mSVq0aJF8fX316aef6t///neG10VERKht27YKDw+XJIWHh2v79u2KiIjQsmXL7mi+AAAAuHts3brV1VMAAAAAciVXK23z58+v+++/3+y5OIiOjlZcXJxCQkLsbZ6enmrRooW+//77TK/bvXu3wzWS1K5duyyvuX79OrfIAQAA3GNatGiR7SMnZs2apaCgIHl5ealBgwbauXNnlv23b9+uBg0ayMvLSxUqVNCcOXMczv/888/q2rWrypcvL5vNpoiIiHRjjBs3TjabzeHw8/PL0bwBAABw98hV0XbEiBF6//33ZRiG2fOxi4uLkyT5+vo6tPv6+trPZXZdTq+ZOHGivL297UdAQMAdzBwAAABWcPDgQaWmptr/nNWRXStWrNCwYcP02muvKSoqSs2aNVNoaKhiYmIy7B8dHa327durWbNmioqK0quvvqohQ4Zo5cqV9j5Xr15VhQoV9M4772RZiK1Ro4ZiY2Ptx6FDh7I9bwAAANxdcrU9wq5du7R161b95z//UY0aNeTh4eFwftWqVaZMTpJsNpvDa8Mw0rXd6TXh4eEKCwuzv05ISKBwCwAAcJerW7eu4uLi5OPjo7p168pms2W46MBmsyklJSVbY06bNk39+/fXgAEDJN3Ymmvjxo2aPXu2Jk6cmK7/nDlzVK5cOfvq2WrVqmnv3r2aMmWKunbtKkl64IEH9MADD0iSRo0alWlsd3d3VtcCAAD8Q+SqaFusWDE9+uijZs/FQVpCGhcXpzJlytjbz507l24l7a3X3bqq9nbXeHp6ytPT8w5nDAAAACuJjo5W6dKl7X++U4mJidq3b1+6wmpISEimW3FltnXXvHnzlJSUlG7xQ1aOHj0qf39/eXp6qlGjRnr77bdVoUKFnL8RAAAAWF6uirYLFiwwex7pBAUFyc/PT5s3b1a9evUk3UiUt2/frkmTJmV6XXBwsDZv3qzhw4fb2zZt2qQmTZo4fc4AAACwjsDAwAz/nFvx8fFKSUnJ0VZcmW3dlZycrPj4eIfFCVlp1KiRFi9erMqVK+vs2bN688031aRJE/38888qWbJkhtdcv35d169ft7/muQ0AAAB3j1wVbSUpOTlZ27Zt0/Hjx9WrVy8VKVJEZ86cUdGiRVW4cOFsjXH58mUdO3bM/jo6Olr79+9XiRIlVK5cOQ0bNkxvv/22KlWqpEqVKuntt99WwYIF1atXL/s1ffr0UdmyZe23ow0dOlTNmzfXpEmT1LlzZ61Zs0ZbtmzRrl27cvtWAQAAcA84cuSIPvjgAx0+fFg2m01Vq1bViy++qCpVquRonJxuxZVR/4zasxIaGmr/c61atRQcHKyKFStq0aJFDtt83WzixIkaP358tmMAAADAOnL1ILKTJ0+qVq1a6ty5swYPHqzz589LkiZPnqyRI0dme5y9e/eqXr169pW0YWFhqlevnl5//XVJ0ssvv6xhw4Zp0KBBatiwoU6fPq1NmzapSJEi9jFiYmIUGxtrf92kSRMtX75cCxYsUO3atbVw4UKtWLFCjRo1ys1bBQAAwD3giy++UM2aNbVv3z7VqVNHtWvXVmRkpGrWrKnPP/88W2OUKlVKbm5uOdqKK7Otu9zd3TNdIZsdhQoVUq1atXT06NFM+4SHh+vixYv249SpU7mOBwAAgLyVq5W2Q4cOVcOGDXXgwAGHZPPRRx+1P5QhO1q2bJnhwyDS2Gw2jRs3TuPGjcu0z7Zt29K1devWTd26dcv2PAAAAHBve/nllxUeHq4JEyY4tI8dO1avvPKKHn/88duOkT9/fjVo0ECbN292eL7D5s2b1blz5wyvCQ4O1rp16xzaNm3apIYNG+ZoP9tbXb9+XYcPH1azZs0y7cNzGwAAAO5euVppu2vXLo0ePVr58+d3aA8MDNTp06dNmRgAAABglri4OPXp0ydd+1NPPZXpfrQZCQsL08cff6z58+fr8OHDGj58uGJiYjRw4EBJN1a33hxn4MCBOnnypMLCwnT48GHNnz9f8+bNc7g7LTExUfv379f+/fuVmJio06dPa//+/Q7biI0cOVLbt29XdHS0fvzxR3Xr1k0JCQnq27dvbr4cAAAAsLhcrbRNTU1VSkpKuvbff//dYesCAAAAwApatmypnTt36v7773do37VrV5arVW/VvXt3XbhwQRMmTFBsbKxq1qypDRs22B90Fhsbq5iYGHv/oKAgbdiwQcOHD9fMmTPl7++v6dOnq2vXrvY+Z86csW8XJklTpkzRlClT1KJFC/tdZb///rt69uyp+Ph4lS5dWo0bN9YPP/xgygPWAAAAYD25Ktq2bdtWERER+vDDDyXd2Mbg8uXLGjt2rNq3b2/qBAEAAIDcWLt2rf3PnTp10iuvvKJ9+/apcePGkqQffvhBn3/+eY4f1jVo0CANGjQow3MLFy5M19aiRQtFRkZmOl758uWz3DJMkpYvX56jOQIAAODulqui7XvvvadWrVqpevXqunbtmnr16qWjR4+qVKlSWrZsmdlzBAAAAHKsS5cu6dpmzZqlWbNmObQNHjzYvr0BAAAAYAW5Ktr6+/tr//79WrZsmSIjI5Wamqr+/fvrySefVIECBcyeIwAAAJBjqamprp4CAAAAkCu5KtpKUoECBfTMM8/omWeeMXM+AAAAAAAAAPCPlqui7eLFi7M8n9GTeQEAAABXunLlirZv366YmBglJiY6nBsyZIiLZgUAAACkl6ui7dChQx1eJyUl6erVq8qfP78KFixI0RYAAACWEhUVpfbt2+vq1au6cuWKSpQoofj4eBUsWFA+Pj4UbQEAAGAp+XJz0Z9//ulwXL58WUeOHNFDDz3Eg8gAAABgOcOHD1fHjh31xx9/qECBAvrhhx908uRJNWjQQFOmTHH19AAAAAAHuSraZqRSpUp655130q3CBQAAAFxt//79GjFihNzc3OTm5qbr168rICBAkydP1quvvurq6QEAAAAOTCvaSpKbm5vOnDlj5pAAAADAHfPw8JDNZpMk+fr6KiYmRpLk7e1t/zMAAABgFbna03bt2rUOrw3DUGxsrGbMmKGmTZuaMjEAAADALPXq1dPevXtVuXJltWrVSq+//rri4+P1ySefqFatWq6eHgAAAOAgV0XbLl26OLy22WwqXbq0Hn74YU2dOtWMeQEAAACmefvtt3Xp0iVJ0htvvKG+ffvq+eef1/33368FCxa4eHYAAACAo1wVbVNTU82eBwAAAOA0DRs2tP+5dOnS2rBhgwtnAwAAAGQtV0VbAAAA4G507tw5HTlyRDabTVWqVFHp0qVdPSUAAAAgnVwVbcPCwrLdd9q0abkJAQAAAJgmISFBgwcP1vLly5WSkiLpxkN0u3fvrpkzZ8rb29vFMwQAAAD+T66KtlFRUYqMjFRycrKqVKkiSfr111/l5uam+vXr2/ulPaEXAAAAcKUBAwZo//79+uqrrxQcHCybzabvv/9eQ4cO1bPPPqvPPvvM1VMEAAAA7HJVtO3YsaOKFCmiRYsWqXjx4pKkP//8U08//bSaNWumESNGmDpJAAAA4E6sX79eGzdu1EMPPWRva9eunT766CM98sgjLpwZAAAAkF6+3Fw0depUTZw40V6wlaTixYvrzTff1NSpU02bHAAAAGCGkiVLZrgFgre3t0NOCwAAAFhBroq2CQkJOnv2bLr2c+fO6dKlS3c8KQAAAMBMo0ePVlhYmGJjY+1tcXFxeumllzRmzBgXzgwAAABIL1fbIzz66KN6+umnNXXqVDVu3FiS9MMPP+ill17SY489ZuoEAQAAgNyoV6+ewzMWjh49qsDAQJUrV06SFBMTI09PT50/f17//ve/XTVNAAAAIJ1cFW3nzJmjkSNH6qmnnlJSUtKNgdzd1b9/f7377rumThAAAADIjS5durh6CgAAAECu5KpoW7BgQc2aNUvvvvuujh8/LsMwdP/996tQoUJmzw8AAADIlbFjx7p6CgAAAECu5KpomyY2NlaxsbFq3ry5ChQoIMMwHG5BAwAAAKxk3759Onz4sGw2m6pXr6569eq5ekoAAABAOrkq2l64cEFPPPGEtm7dKpvNpqNHj6pChQoaMGCAihUrpqlTp5o9TwAAACDXzp07px49emjbtm0qVqyYDMPQxYsX1apVKy1fvlylS5d29RQBAAAAu3y5uWj48OHy8PBQTEyMChYsaG/v3r27vv76a9MmBwAAAJjhxRdfVEJCgn7++Wf98ccf+vPPP/XTTz8pISFBQ4YMcfX0AAAAAAe5Wmm7adMmbdy4Uffdd59De6VKlXTy5ElTJgYAAACY5euvv9aWLVtUrVo1e1v16tU1c+ZMhYSEuHBmAAAAQHq5Wml75coVhxW2aeLj4+Xp6XnHkwIAAADMlJqaKg8Pj3TtHh4eSk1NdcGMAAAAgMzlqmjbvHlzLV682P7aZrMpNTVV7777rlq1amXa5AAAAAAzPPzwwxo6dKjOnDljbzt9+rSGDx+u1q1bu3BmAAAAQHq52h7h3XffVcuWLbV3714lJibq5Zdftu8P9t1335k9RwAAAOCOzJgxQ507d1b58uUVEBAgm82mmJgY1apVS0uWLHH19AAAAAAHuSraVq9eXQcPHtTs2bPl5uamK1eu6LHHHtPgwYNVpkwZs+cIAAAA3JGAgABFRkZq8+bN+uWXX2QYhqpXr642bdq4emoAAABAOjku2iYlJSkkJERz587V+PHjnTEnAAAAwDTJycny8vLS/v371bZtW7Vt29bVUwIAAACylOM9bT08PPTTTz/JZrM5Yz4AAACAqdzd3RUYGKiUlBRXTwUAAADIllw9iKxPnz6aN2+e2XMBAAAAnGL06NEKDw/XH3/84eqpAAAAALeVqz1tExMT9fHHH2vz5s1q2LChChUq5HB+2rRppkwOAAAAMMP06dN17Ngx+fv7KzAwMF3+GhkZ6aKZAQAAAOnlqGj722+/qXz58vrpp59Uv359SdKvv/7q0IdtEwAAAGA1Xbp0kc1mk2EYrp4KAAAAcFs5KtpWqlRJsbGx2rp1qySpe/fumj59unx9fZ0yOQAAAOBOXL16VS+99JK+/PJLJSUlqXXr1vrggw9UqlQpV08NAAAAyFSOira3rkz4z3/+oytXrpg6IeBu9U5UvFPGHVUv4/9U5nU8AADuRmPHjtXChQv15JNPqkCBAvr000/1/PPP6/PPP3f11IC7QtL4EU4Z12PsVEvEAwDAqnK1p20abi8DAACAla1atUrz5s1Tjx49JElPPvmkmjZtqpSUFLm5ubl4dgAAAEDG8uWks81mS7dnLXvYAgAAwKpOnTqlZs2a2V8/+OCDcnd315kzZ1w4KwAAACBrOd4eoV+/fvL09JQkXbt2TQMHDkz39N1Vq1aZN0MAAAAgl1JSUpQ/f36HNnd3dyUnJ7toRgAAAMDt5aho27dvX4fXTz31lKmTAQAAAMx066IDKeOFByw6AAAAgJXkqGi7YMECZ80DAAAAMN2tiw4kFh4AAADA+u7oQWQAAACAlbHoAAAAAHejHD2IzBXKly9vfwDazcfgwYMz7L9t27YM+//yyy95PHMAAAAAAAAAyDnLr7Tds2ePUlJS7K9/+ukntW3bVo8//niW1x05ckRFixa1vy5durTT5ggAAAAAAAAAZrF80fbWYus777yjihUrqkWLFlle5+Pjo2LFijlxZgAAAAAAAABgPstvj3CzxMRELVmyRM8884xsNluWfevVq6cyZcqodevW2rp1a5Z9r1+/roSEBIcDAAAAAAAAAFzhrirafvnll/rrr7/Ur1+/TPuUKVNGH374oVauXKlVq1apSpUqat26tXbs2JHpNRMnTpS3t7f9CAgIcMLsAQAAAAAAAOD2LL89ws3mzZun0NBQ+fv7Z9qnSpUqqlKliv11cHCwTp06pSlTpqh58+YZXhMeHq6wsDD764SEBAq3AAAAAAAAAFzirinanjx5Ulu2bNGqVatyfG3jxo21ZMmSTM97enrK09PzTqYHAAAAAAAAAKa4a7ZHWLBggXx8fNShQ4ccXxsVFaUyZco4YVYAAAAAAAAAYK67YqVtamqqFixYoL59+8rd3XHK4eHhOn36tBYvXixJioiIUPny5VWjRg37g8tWrlyplStXumLqAAAAAAAAAJAjd0XRdsuWLYqJidEzzzyT7lxsbKxiYmLsrxMTEzVy5EidPn1aBQoUUI0aNbR+/Xq1b98+L6cMAAAAAAAAALlyVxRtQ0JCZBhGhucWLlzo8Prll1/Wyy+/nAezAgAAAAAAAADz3TV72gIAAAAAAADAPwFFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwELuigeRAXC9d6LinTLuqHql8jReVjEBAADwz5I0foRTxvUYOzVP42UVEwBwd2KlLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAcmDWrFkKCgqSl5eXGjRooJ07d2bZf/v27WrQoIG8vLxUoUIFzZkzx+H8zz//rK5du6p8+fKy2WyKiIgwJS4AAADuXhRtAQAAgGxasWKFhg0bptdee01RUVFq1qyZQkNDFRMTk2H/6OhotW/fXs2aNVNUVJReffVVDRkyRCtXrrT3uXr1qipUqKB33nlHfn5+psQFAADA3Y2iLQAAAJBN06ZNU//+/TVgwABVq1ZNERERCggI0OzZszPsP2fOHJUrV04RERGqVq2aBgwYoGeeeUZTpkyx93nggQf07rvvqkePHvL09DQlLgAAAO5uFG0BAACAbEhMTNS+ffsUEhLi0B4SEqLvv/8+w2t2796drn+7du20d+9eJSUlOS2uJF2/fl0JCQkOBwAAAO4OFG0BAACAbIiPj1dKSop8fX0d2n19fRUXF5fhNXFxcRn2T05OVnx8vNPiStLEiRPl7e1tPwICArIVDwAAAK5H0RYAAADIAZvN5vDaMIx0bbfrn1G72XHDw8N18eJF+3Hq1KkcxQMAAIDruLt6AgAAAMDdoFSpUnJzc0u3uvXcuXPpVsGm8fPzy7C/u7u7SpYs6bS4kuTp6ZnpHrkAAACwNlbaAgAAANmQP39+NWjQQJs3b3Zo37x5s5o0aZLhNcHBwen6b9q0SQ0bNpSHh4fT4gIAAODuxkpbAAAAIJvCwsLUu3dvNWzYUMHBwfrwww8VExOjgQMHSrqxJcHp06e1ePFiSdLAgQM1Y8YMhYWF6dlnn9Xu3bs1b948LVu2zD5mYmKi/ve//9n/fPr0ae3fv1+FCxfW/fffn624AAAAuLdQtAUAAACyqXv37rpw4YImTJig2NhY1axZUxs2bFBgYKAkKTY2VjExMfb+QUFB2rBhg4YPH66ZM2fK399f06dPV9euXe19zpw5o3r16tlfT5kyRVOmTFGLFi20bdu2bMUFAADAvYWiLQAAAJADgwYN0qBBgzI8t3DhwnRtLVq0UGRkZKbjlS9f3v5wstzGBQAAwL2FPW0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALMTd1RMAACt4JyreaWOPqlfK5fEAAADwz5M0foTTxvYYO9Xl8QDgXsZKWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBBLF23HjRsnm83mcPj5+WV5zfbt29WgQQN5eXmpQoUKmjNnTh7NFgAAAAAAAADunLurJ3A7NWrU0JYtW+yv3dzcMu0bHR2t9u3b69lnn9WSJUv03XffadCgQSpdurS6du2aF9MFAAAAAAAAgDti+aKtu7v7bVfXppkzZ47KlSuniIgISVK1atW0d+9eTZkyhaItAAAAAAAAgLuCpbdHkKSjR4/K399fQUFB6tGjh3777bdM++7evVshISEObe3atdPevXuVlJTk7KkCAAAAAAAAwB2zdNG2UaNGWrx4sTZu3KiPPvpIcXFxatKkiS5cuJBh/7i4OPn6+jq0+fr6Kjk5WfHx8ZnGuX79uhISEhwOAAAAAAAAAHAFS2+PEBoaav9zrVq1FBwcrIoVK2rRokUKCwvL8Bqbzebw2jCMDNtvNnHiRI0fP96EGQOANb0TlfkHV3dqVL1SeRrTKvEAAADgWknjRzhtbI+xU/M0plXiAbAOS6+0vVWhQoVUq1YtHT16NMPzfn5+iouLc2g7d+6c3N3dVbJkyUzHDQ8P18WLF+3HqVOnTJ03AAAAAAAAAGSXpVfa3ur69es6fPiwmjVrluH54OBgrVu3zqFt06ZNatiwoTw8PDId19PTU56enqbOFQAAAAAAAAByw9IrbUeOHKnt27crOjpaP/74o7p166aEhAT17dtX0o0Vsn369LH3HzhwoE6ePKmwsDAdPnxY8+fP17x58zRy5EhXvQUAAAAAAAAAyBFLr7T9/fff1bNnT8XHx6t06dJq3LixfvjhBwUGBkqSYmNjFRMTY+8fFBSkDRs2aPjw4Zo5c6b8/f01ffp0de3a1VVvAQAAAAAAAAByxNJF2+XLl2d5fuHChenaWrRoocjISCfNCAAAAAAAAACcy9LbIwAAAAAAAADAPw1FWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxN3VEwAA4G70TlS8U8YdVa9UnsbLLCbxzI3nzJhWiQcAAO5+SeNHOGVcj7FT7+l4mcW81+M5M6ZV4rkSK20BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAcmDWrFkKCgqSl5eXGjRooJ07d2bZf/v27WrQoIG8vLxUoUIFzZkzJ12flStXqnr16vL09FT16tW1evVqh/Pjxo2TzWZzOPz8/Ex9XwAAALAOirYAAABANq1YsULDhg3Ta6+9pqioKDVr1kyhoaGKiYnJsH90dLTat2+vZs2aKSoqSq+++qqGDBmilStX2vvs3r1b3bt3V+/evXXgwAH17t1bTzzxhH788UeHsWrUqKHY2Fj7cejQIae+VwAAALgORVsAAAAgm6ZNm6b+/ftrwIABqlatmiIiIhQQEKDZs2dn2H/OnDkqV66cIiIiVK1aNQ0YMEDPPPOMpkyZYu8TERGhtm3bKjw8XFWrVlV4eLhat26tiIgIh7Hc3d3l5+dnP0qXLu3MtwoAAAAXomgLAAAAZENiYqL27dunkJAQh/aQkBB9//33GV6ze/fudP3btWunvXv3KikpKcs+t4559OhR+fv7KygoSD169NBvv/12p28JAAAAFkXRFgAAAMiG+Ph4paSkyNfX16Hd19dXcXFxGV4TFxeXYf/k5GTFx8dn2efmMRs1aqTFixdr48aN+uijjxQXF6cmTZrowoULmc73+vXrSkhIcDgAAABwd6BoCwAAAOSAzWZzeG0YRrq22/W/tf12Y4aGhqpr166qVauW2rRpo/Xr10uSFi1alGnciRMnytvb234EBATc5p0BAADAKijaAgAAANlQqlQpubm5pVtVe+7cuXQrZdP4+fll2N/d3V0lS5bMsk9mY0pSoUKFVKtWLR09ejTTPuHh4bp48aL9OHXqVJbvDwAAANZB0RYAAADIhvz586tBgwbavHmzQ/vmzZvVpEmTDK8JDg5O13/Tpk1q2LChPDw8suyT2ZjSja0PDh8+rDJlymTax9PTU0WLFnU4AAAAcHegaAsAAABkU1hYmD7++GPNnz9fhw8f1vDhwxUTE6OBAwdKurG6tU+fPvb+AwcO1MmTJxUWFqbDhw9r/vz5mjdvnkaOHGnvM3ToUG3atEmTJk3SL7/8okmTJmnLli0aNmyYvc/IkSO1fft2RUdH68cff1S3bt2UkJCgvn375tl7BwAAQN5xd/UEAAAAgLtF9+7ddeHCBU2YMEGxsbGqWbOmNmzYoMDAQElSbGysYmJi7P2DgoK0YcMGDR8+XDNnzpS/v7+mT5+url272vs0adJEy5cv1+jRozVmzBhVrFhRK1asUKNGjex9fv/9d/Xs2VPx8fEqXbq0GjdurB9++MEeFwAAAPcWirYAAABADgwaNEiDBg3K8NzChQvTtbVo0UKRkZFZjtmtWzd169Yt0/PLly/P0RwBAABwd2N7BAAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZi6aLtxIkT9cADD6hIkSLy8fFRly5ddOTIkSyv2bZtm2w2W7rjl19+yaNZAwAAAAAAAEDuWbpou337dg0ePFg//PCDNm/erOTkZIWEhOjKlSu3vfbIkSOKjY21H5UqVcqDGQMAAAAAAADAnXF39QSy8vXXXzu8XrBggXx8fLRv3z41b948y2t9fHxUrFgxJ84OAAAAAAAAAMxn6ZW2t7p48aIkqUSJErftW69ePZUpU0atW7fW1q1bnT01AAAAAAAAADCFpVfa3swwDIWFhemhhx5SzZo1M+1XpkwZffjhh2rQoIGuX7+uTz75RK1bt9a2bdsyXZ17/fp1Xb9+3f46ISHB9PkDAAAAAAAAQHbcNUXbF154QQcPHtSuXbuy7FelShVVqVLF/jo4OFinTp3SlClTMi3aTpw4UePHjzd1vgAAAAAAAACQG3fF9ggvvvii1q5dq61bt+q+++7L8fWNGzfW0aNHMz0fHh6uixcv2o9Tp07dyXQBAAAAAAAAINcsvdLWMAy9+OKLWr16tbZt26agoKBcjRMVFaUyZcpket7T01Oenp65nSYAAAAAAAAAmMbSRdvBgwfr008/1Zo1a1SkSBHFxcVJkry9vVWgQAFJN1bJnj59WosXL5YkRUREqHz58qpRo4YSExO1ZMkSrVy5UitXrnTZ+wAAAAAAAACA7LJ00Xb27NmSpJYtWzq0L1iwQP369ZMkxcbGKiYmxn4uMTFRI0eO1OnTp1WgQAHVqFFD69evV/v27fNq2gAAAAAAAACQa5Yu2hqGcds+CxcudHj98ssv6+WXX3bSjAAAAAAAAADAue6KB5EBAAAAAAAAwD8FRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICF3BVF21mzZikoKEheXl5q0KCBdu7cmWX/7du3q0GDBvLy8lKFChU0Z86cPJopAAAA7nXOyE1Xrlyp6tWry9PTU9WrV9fq1avvOC4AAADuXpYv2q5YsULDhg3Ta6+9pqioKDVr1kyhoaGKiYnJsH90dLTat2+vZs2aKSoqSq+++qqGDBmilStX5vHMAQAAcK9xRm66e/dude/eXb1799aBAwfUu3dvPfHEE/rxxx9zHRcAAAB3N8sXbadNm6b+/ftrwIABqlatmiIiIhQQEKDZs2dn2H/OnDkqV66cIiIiVK1aNQ0YMEDPPPOMpkyZksczBwAAwL3GGblpRESE2rZtq/DwcFWtWlXh4eFq3bq1IiIich0XAAAAdzd3V08gK4mJidq3b59GjRrl0B4SEqLvv/8+w2t2796tkJAQh7Z27dpp3rx5SkpKkoeHR7prrl+/ruvXr9tfX7x4UZKUkJBwp28h265dvuS0sRMS8v/j4jkzJvHu7niZxSSeufGcGZN4eROTeObGc2ZMq8RzTqwbuZhhGHkWMyvOyk13796t4cOHp+uTVrTNTVzJGjlu0rXrt++USx4ZvA/imRvPmTGJlzcxiWduPGfGJN7dHS+zmPd6PGfGtEo8Z8h2jmtY2OnTpw1JxnfffefQ/tZbbxmVK1fO8JpKlSoZb731lkPbd999Z0gyzpw5k+E1Y8eONSRxcHBwcHBwcHBY8Dh16pQ5yeUdclZu6uHhYSxdutShz9KlS438+fPnOq5hkONycHBwcHBwcFj5uF2Oa+mVtmlsNpvDa8Mw0rXdrn9G7WnCw8MVFhZmf52amqo//vhDJUuWzDKOKyQkJCggIECnTp1S0aJF78mYxCMe8Vwbk3jEs3I8V8QknusYhqFLly7J39/f1VNx4IzcNDtj5jQuOa514rkiJvGIZ+V4rohJPOIRz7Ux7/V4OZHdHNfSRdtSpUrJzc1NcXFxDu3nzp2Tr69vhtf4+fll2N/d3V0lS5bM8BpPT095eno6tBUrViz3E88DRYsWzfO/dHkdk3jEI55rYxKPeFaO54qYxHMNb29vV0/Bzlm5aWZ90sbMTVyJHNeK8VwRk3jEs3I8V8QkHvGI59qY93q87MpOjmvpB5Hlz59fDRo00ObNmx3aN2/erCZNmmR4TXBwcLr+mzZtUsOGDTPczxYAAADIDmflppn1SRszN3EBAABwd7P0SltJCgsLU+/evdWwYUMFBwfrww8/VExMjAYOHCjpxm1fp0+f1uLFiyVJAwcO1IwZMxQWFqZnn31Wu3fv1rx587Rs2TJXvg0AAADcA5yRmw4dOlTNmzfXpEmT1LlzZ61Zs0ZbtmzRrl27sh0XAAAA9xbLF227d++uCxcuaMKECYqNjVXNmjW1YcMGBQYGSpJiY2MVExNj7x8UFKQNGzZo+PDhmjlzpvz9/TV9+nR17drVVW/BVJ6enho7dmy6W93upZjEIx7xXBuTeMSzcjxXxCQebuaM3LRJkyZavny5Ro8erTFjxqhixYpasWKFGjVqlO24d7t/wt/7e/09Eo94Vo9JPOIRz7Ux7/V4zmAz0p6EAAAAAAAAAABwOUvvaQsAAAAAAAAA/zQUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAgMliYmKU0XM+DcNweKo8AAAAcLcgxwXyls3I6CcOLnfw4MFs9atdu7aTZwKz/PXXX/riiy90/PhxvfTSSypRooQiIyPl6+ursmXLunp6yIGUlBQdOnRIgYGBKl68uFNixMTEKCAgQDabzaHdMAydOnVK5cqVc0rcvLJo0SKVKlVKHTp0kCS9/PLL+vDDD1W9enUtW7ZMgYGBpsc8duyYjh8/rubNm6tAgQIyDCPd19csbm5uio2NlY+Pj0P7hQsX5OPjo5SUFKfEdZWEhAR9++23qlKliqpVq2b6+JGRkfLw8FCtWrUkSWvWrNGCBQtUvXp1jRs3Tvnz5zc95r3s999/19q1axUTE6PExESHc9OmTXPRrPBPQY577yHHvXeQ4945clxy3JwgxzXXPZnjGrAkm81m5MuXz7DZbJke+fLlc1r8vn37Gtu3b3fa+Nl15swZ4+TJk66exh07cOCAUbp0aeP+++833N3djePHjxuGYRijR482evfubXq8MmXKGD179jTmzp1r/PLLL6aPf6uxY8caJ06ccHocVxk6dKjx8ccfG4ZhGMnJyUbTpk0Nm81mFCpUyNi6datTYubLl884e/Zsuvb4+HjTf/aLFStmFC9ePN1RokQJw9/f32jevLkxf/58U2NWrlzZ+OabbwzDMIzvv//eKFCggDF37lyjY8eOxqOPPmpqrPj4eKN169b2fzfTfv6eeeYZIywszNRYaWw2m3Hu3Ll07SdOnDAKFizolJi3unjxorF69Wrjf//7n+ljP/7448YHH3xgGIZhXL161ahUqZLh4eFhuLu7G1988YXp8Ro2bGgf9/jx44aXl5fRs2dP4/777zeGDh1qSoy6desa9erVy9bhDAsXLjS++uor++uXXnrJ8Pb2NoKDg03993XLli1GwYIFjRo1ahju7u5G3bp1jWLFihne3t5Gq1atTIsDZIYc9wZy3NwhxzUXOS45bk65Osd1Zn5rGOS4zkCOe2fYHsGioqOj9dtvvyk6OjrTY9++fU6Lf+nSJYWEhKhSpUp6++23dfr0aafFysrDDz+soKAgU8YqXry4SpQoka3DbGFhYerXr5+OHj0qLy8ve3toaKh27NhherypU6eqaNGimjZtmqpVq6YyZcqoR48emjNnjg4fPmx6vHXr1qlixYpq3bq1Pv30U127ds30GLc6e/asevfuLX9/f7m7u8vNzc3hMNMXX3yhOnXqSLrxXqOjo/XLL79o2LBheu2110yNlcbI5BPyy5cvO/wdMsPrr7+ufPnyqUOHDho/frzGjRunDh06KF++fBo8eLAqV66s559/Xh999JFpMU+dOqX7779fkvTll1+qW7dueu655zRx4kTt3LnTtDiSNHz4cLm7uysmJkYFCxa0t3fv3l1ff/21qbHCwsIUFhYmm82mMWPG2F+HhYVp6NCh6t69u+rWrWtqzDRPPPGEZsyYIUn6+++/1bBhQz3xxBOqXbu2Vq5caWqsHTt2qFmzZpKk1atXyzAM/fXXX5o+fbrefPNNU2NJ0q+//mr/un3++edq3ry5Pv30Uy1cuNC099alSxd17txZnTt3Vrt27XT8+HF5enqqZcuWatmypby8vHT8+HG1a9fOlHi3evvtt1WgQAFJ0u7duzVjxgxNnjxZpUqV0vDhw02LEx4erhEjRuinn36Sl5eXVq5cqVOnTqlFixZ6/PHHTYsDZIYc9wZy3NwhxyXHzQlyXPO4KsfNy/xWIsd1BnLcO+Pu6gkgY5ndNnHx4kUtXbpU8+bN0/79+512+8HKlSt14cIFLVmyRAsXLtTYsWPVpk0b9e/fX507d5aHh4dpsZKTk/XWW2/pmWeeUUBAgMO5xYsX6+rVq6bEiYiIMGWc3NizZ4/mzp2brr1s2bKKi4szPV7Pnj3Vs2dPSTcSv61bt+qrr77Siy++qNTUVNP/3uzbt08HDx7UggULNHz4cA0ePFg9evTQM888owceeMDUWGn69eunmJgYjRkzRmXKlHHaLUCSFB8fLz8/P0nShg0b9Pjjj6ty5crq37+/pk+fbmqssLAwSbInRDcnYCkpKfrxxx9NT4h27dqlN998UwMHDnRonzt3rjZt2qSVK1eqdu3amj59up599llTYhYuXFgXLlxQuXLltGnTJvsvbC8vL/3999+mxEizadMmbdy4Uffdd59De6VKlXTy5ElTY0VFRUm68R+SQ4cOOdzSlD9/ftWpU0cjR440NWaaHTt22P+DdXOSuWjRIr355pvq2rWrabEuXrxo/8//119/ra5du6pgwYLq0KGDXnrpJdPipDEMQ6mpqZKkLVu26F//+pckKSAgQPHx8abEGDt2rP3PAwYM0JAhQ/TGG2+k63Pq1ClT4t0qs//kNW3aVC1btjQtzuHDh7Vs2TJJkru7u/7++28VLlxYEyZMUOfOnfX888+bFgvICDnuDeS4uUOOay5yXHLc7HJVjpuX+a1EjusM5Lh3yFVLfJEz33zzjfHkk08aBQoUMKpWrWq89tprRmRkZJ7Fj4yMNF544QXDy8vLKFWqlDFs2DDj119/NW38QoUKGdHR0aaNZzU+Pj7271fhwoXtt65s3LjRuO+++5wS89KlS8Z//vMfY9SoUUbjxo0NT09Po169esawYcOcEi9NUlKSsWrVKqNjx46Gh4eHUbNmTSMiIsL466+/TI1TuHBhIyoqytQxM1OuXDlj48aNRnJyshEQEGCsW7fOMAzD+Omnn4xixYqZGqtly5ZGy5YtDZvNZjRp0sT+umXLlkZISIjx3HPPmfqzZxg3fv6OHj2arv3o0aNGoUKFDMMwjGPHjpl6y1OvXr2M+vXrG/379zcKFixoxMfHG4ZhGGvWrDFq1KhhWhzDuPF3Je1rdvPP33//+1+jRIkSpsZK069fP+PixYtOGTszXl5eRkxMjGEYhtG7d2/jlVdeMQzDME6ePGn/PpqlUqVKxooVK4zLly8bpUuXtt8GuH//fqNkyZKmxjIMw2jVqpXRp08fY/HixYaHh4f97+u2bduMwMBA0+MVLVo0w5+zX3/91ShatKjp8QzDMEqXLm3/PVG3bl1j0aJFhmHc+Nkz8/vn6+tr/Pzzz4ZhGEb16tWNNWvWGIZx43tn9t8TIDvIce9u5LjkuNlFjkuOmxt5md8aBjmuM5Dj3hm2R7Cw33//XW+++aYqVKignj17qnjx4kpKStLKlSv15ptvql69enkyj9jYWG3atEmbNm2Sm5ub2rdvr59//lnVq1fXe++9Z0qMNm3aaNu2baaMlV3Hjx/X6NGj1bNnT507d07SjU/Tfv75Z9Njde7cWRMmTFBSUpKkG58wx8TEaNSoUaZ/OihJjRo1UunSpTVmzBglJyfr1VdfVVxcnCIjI037nmUmNTVViYmJun79ugzDUIkSJTR79mwFBARoxYoVpsUJCAjI8MmlzvD000/riSeeUM2aNWWz2dS2bVtJ0o8//qiqVauaGmvr1q3aunWr+vbtq//85z/211u3btXGjRs1d+5cVapUydSYJUqU0Lp169K1r1u3zv5J85UrV1SkSBHTYs6cOVPBwcE6f/68Vq5cqZIlS0q6saIlbQWNWZo3b67FixfbX9tsNqWmpurdd99Vq1atTI2VZsGCBSpatKhTxs5MQECAdu/erStXrujrr79WSEiIJOnPP/80/XbDYcOG6cknn9R9990nf39/+6fkO3bssD9IwUwRERGKjIzUCy+8oNdee83+af0XX3yhJk2amB6vQIEC2rVrV7r2Xbt2mf61TNO2bVsNGDBAAwYM0K+//mp/gMnPP/+s8uXLmxancePG+u677yRJHTp00IgRI+wrARs3bmxaHCAr5LjORY7rHOS4d4Yclxw3N/Iyv5XIcZ2BHPcOubZmjMyEhoYaRYoUMXr27Gl89dVXRnJysmEYhuHu7m7/9MCZEhMTjS+++MLo0KGD4eHhYTRo0MCYPXu2kZCQYO+zbNky0z6BnTNnjuHn52eMGDHC+PTTT401a9Y4HGbbtm2bUaBAAaNNmzZG/vz57Z9KTpo0yejatavp8S5evGg0bdrUKFasmOHm5mYEBAQYHh4eRvPmzY3Lly+bHi9tg/0nnnjCmDVrltM2ar/Z3r17jcGDBxslSpQwypQpY7zyyisOn2xPmTLF8PHxMS3exo0bjZCQkDxbvfL5558b06ZNM06dOmVvW7hwofHll186Jd5ff/1lXLhwIV37hQsXTP90+8MPPzTc3NyMjh07Gm+88Ybx5ptvGp06dTLc3d3tD6eYMmWK8cQTT5gW8+TJk0ZKSkq69tTUVNMfzPLzzz8bpUuXNh555BEjf/78Rrdu3Yxq1aoZvr6+xrFjx0yNleby5cvG6NGjjeDgYKNixYpGUFCQw+EMM2fONNzd3Y1ixYoZderUsX99p0+fbrRs2dL0eHv27DFWrVplXLp0yd721VdfGbt27TI9Vmb+/vtvIzEx0fRxJ06caHh6ehqDBw82PvnkE+OTTz4xBg8ebBQoUMCYOHGi6fEMwzD+/PNPY/DgwUanTp2M//znP/b2119/3XjzzTdNi3P8+HHjwIEDhmEYxpUrV4znn3/eqFWrlvHoo4/e0w/bgXWQ45Lj3glyXPOR45Lj5kRe57h5nd8aBjmu2chx74zNMPLoYzzkiLu7u4YMGaLnn3/e4RNHDw8PHThwQNWrV3dq/FKlSik1NVU9e/bUs88+m+H+Qn/++afq16+v6OjoO46XL1/mi75tNpvp+1MFBwfr8ccfV1hYmIoUKaIDBw6oQoUK2rNnj7p06eK0h1J8++23ioyMVGpqqurXr682bdo4JY4kHTx4UNu2bdP27du1c+dO5cuXTy1atFCrVq3S7et0p2rXrq3Dhw8rJCREzz77rDp27JjuQQnnz5+Xr6+vfc+e3ChevLjDvl5XrlxRcnKyChYsmG4Puj/++CPXcbJy7do1p30KebPQ0FB17NhRgwYNcmifM2eO1q5dqw0bNpga77vvvtOMGTN05MgRGYahqlWr6sUXX3TKJ7yS5ObmptjYWPn4+Di0X7hwQT4+Pqb/zMfFxWn27Nnat2+f/edv8ODBKlOmjKlx0vTs2VPbt29X7969M9yPbujQoU6Ju2/fPsXExKht27YqXLiwJGn9+vUqVqyYmjZt6pSYee3y5cvp/h1xxoqPzz77TO+//779wTbVqlXT0KFD9cQTT5geS5ISExMd9oe7WXx8vEqVKuWUuEBeI8f9P+S4uUOOS46bE+S45nJFjvtPyG8lclxkjKKtRe3evVvz58/XZ599pqpVq6p3797q3r27/P398ySh/eSTT/T444/nyS9uVyhcuLAOHTqkoKAgh4T2xIkTqlq1ap48GTYv7du3TzNmzNCSJUuc8pCGN954Q88884zKli1r6ri3WrRoUbb79u3b17S4KSkpevvttzVnzhydPXtWv/76qypUqKAxY8aofPny6t+/v2mx0pQoUULfffedqlWr5tD+yy+/qGnTprpw4YLpMfNSvnz5FBcXly6hPXnypKpXr64rV66YEicpKUkhISGaO3euKleubMqY2VGsWDGtX7/+nkokb5aSkqKFCxfqm2++0blz59IlmN9++62p8aKjo/XCCy9o27ZtDv8+G///CdTOemBRXurSpYtWrVqVrsBz9uxZtW7dWj/99JMpcfbs2aPU1FQ1atTIof3HH3+Um5ubGjZsaEocIDPkuM5FjkuOmxPkuOYjx727keOajxz3zri7egLIWHBwsIKDg/X+++9r+fLlmj9/vsLCwpSamqrNmzcrICDA1L13btW7d2+njX2r1NRULVy4UKtWrdKJEydks9lUoUIFde3aVb1793bKE1OLFSum2NhYBQUFObRHRUU5JSkbMmSI7r//fg0ZMsShfcaMGTp27JjpT/2NiorStm3btG3bNu3cuVOXLl1SnTp1NHToUKfsb2QYhooXL56u/e+//9a7776r119/3ZQ4ZiapOfHWW29p0aJFmjx5ssOTZWvVqqX33nvPKQnt9evXlZycnK49KSnJ9CfPSjd+Do8dO5ZhctK8eXPT4tz85ODXX3/d6U8O9vDw0E8//eTUJy9npHjx4va90vLS77//rrVr1yomJkaJiYkO56ZNm2ZanKFDh2rhwoXq0KGDfR88Z3ryySclSfPnz5evr2+efz/zQmxsrPr3768FCxbY2+Li4tSqVSvVqFHDtDiDBw/Wyy+/nC6hPX36tCZNmqQff/zRtFhARshxyXHvBDmuuchxyXFzyhU5bl7ltxI5rjOQ494ZVtreRY4cOaJ58+bpk08+0V9//aW2bdtq7dq1po3/2GOPZbvvqlWrTIlpGIY6duyoDRs2qE6dOqpataoMw9Dhw4d16NAhderUSV9++aUpsW728ssva/fu3fr8889VuXJlRUZG6uzZs+rTp4/69OmjsWPHmhqvbNmyWrt2rRo0aODQHhkZqU6dOun33383NZ67u7vq1aunFi1aqGXLlmrevLlTN4zP69uAJGnDhg1yc3NTu3btHNo3bdqklJQUhYaGmhbr/vvv19y5c9W6dWuHVSu//PKLgoOD9eeff5oWK03Lli1Vq1YtffDBBw7tgwcP1sGDB7Vz507TYv3www/q1auXTp48me7BF2Z/wpv2H6rt27crODjY4VaZ/Pnzq3z58ho5cqSpD6IYMWKEPDw89M4775g25u0sWbJEa9as0aJFixySdmf65ptv1KlTJwUFBenIkSOqWbOmTpw4IcMwVL9+fVNXBpQqVUqLFy9W+/btTRszK4ULF9a+fftUpUoVp8W49dbUrDjj1tQLFy6oefPmCgkJ0XvvvafTp0/r4YcfVp06dbR8+fIsb7HOicKFC+vgwYOqUKGCQ3t0dLRq166tS5cumRIHyAlyXPOQ45qLHJccN7vIcZ0jL/NbiRyXHNd6WGl7F6lSpYomT56siRMnat26dZo/f76p43t7e5s6XnYsXLhQO3bs0DfffJPu0/Fvv/1WXbp00eLFi9WnTx9T47711lvq16+fypYtK8MwVL16daWkpKhXr14aPXq0qbGkG/9QZfT1LVq0qOLj402P98cff+TpUz3Tbt+41YEDB5z2SeyoUaMyTFBSU1M1atQoUxPa06dP25/keWustKclm+2tt95SmzZtdODAAbVu3VrSjaRlz5492rRpk6mxBg4cqIYNG2r9+vUZ7k1lpq1bt0q68bTi999/P0/+niYmJurjjz/W5s2b1bBhQxUqVMjhvNmf0EvS1KlTdfz4cfn6+qp8+fLp9qOLjIw0PWZ4eLhGjBihCRMmqEiRIlq5cqV8fHz05JNP6pFHHjE1Vv78+TP8mXCWBx54QKdOnXJqQmv2arCcKlmypDZu3KiHHnpI0o292urXr6+lS5ealsxKkqenp86ePZsuoY2NjZW7O2khXIMc1zzkuOYixzUfOa55/gk5bl7mtxI5rjOQ494ZVtrCpUJCQvTwww9r1KhRGZ5/++23tX37dm3cuNEp8Y8fP66oqCilpqaqXr16pn7yebOaNWtq4MCBeuGFFxzaP/jgA82ePVv/+9//TI/5119/6YsvvtDx48f10ksvqUSJEoqMjJSvr69pt8elfWp38eJFFS1a1CERSklJ0eXLlzVw4EDNnDnTlHg3K1CggA4fPqzy5cs7tJ84cUI1atQwbb8oSWrYsKGGDRump556ymEVwvjx47VlyxZTVwTcbP/+/Zo8ebIOHDigAgUKqHbt2goPDzf972mhQoV04MCBPE1Q8lJWt0vabDbTP6GXpPHjx2d53uyVTpJUpEgR7d+/XxUrVlTx4sW1a9cu1ahRQwcOHFDnzp114sQJ02JNnTpVv/32m2bMmJEnt3EdP35cAwcO1FNPPaWaNWum+w9C7dq1nT6HvHL06FE99NBDatu2rT755BPTv749evRQXFyc1qxZYy+0/PXXX+rSpYt8fHz02WefmRoP+KcixyXHzS1yXPOQ4979OW5e5rcSOa4zkePmzt1bbsY94eDBg5o8eXKm50NDQzV9+nSnxa9YsaIqVqzotPHThIWF6YUXXtD58+f18MMPS7rxifLUqVOd8snXwYMH1bp1axUrVkwnTpzQs88+qxIlSmj16tU6efKkFi9ebEqciIgIGYahZ555RuPHj3dYaZF2G1BwcLApsW7l7e2t3377LV1Ce+zYsXSfMt+psWPHqnfv3jp9+rRSU1O1atUqHTlyRIsXL9ZXX31laqyb1a1bV59++qnTxk/TqFEjHTt2LE8T2itXruidd97JdJP/3377zbRYaSsf8pIzirK3U6hQIV2/fl2S5O/vr+PHj9v3iTJ7tdOuXbu0detW/ec//1GNGjXSJZhm3V6c5vz58zp+/Liefvppe5vNZnPqQxqOHz+uBQsW6Pjx43r//ffl4+Ojr7/+WgEBAabtv5XZ7WpXr17VunXrVLJkSXubWberTZ06Vc2bN1dgYKDq1asn6cZ/nn19ffXJJ5+YEgMAOS45bu6R45qHHNd8eZ3j5mV+K5HjkuNaD0Vb2NWvX1/ffPONihcvrnr16mX5yYdZtz388ccf8vX1zfS8r6+vU/ZSkvJ2Q/NnnnlG169f11tvvaU33nhDklS+fHnNnj3b9NvipBsJ9NNPP63Jkyc7PMwjNDRUvXr1Mi1O2kMTgoKC1KRJk3S/1JypU6dOGjZsmFavXm3/T8mxY8c0YsQIderUydRYHTt21IoVK/T222/bHy5Qv359rVu3Tm3btjU11s3SfqH+9ttvioiIcMovVEl68cUXNWLECMXFxalWrVp58gnvgAEDtH37dvXu3dvpt6u5Sl6sBLpZ48aN9d1336l69erq0KGDRowYoUOHDmnVqlVq3LixqbGKFSumRx991NQxs/LMM8+oXr16WrZsWZ48pGH79u0KDQ1V06ZNtWPHDr311lvy8fHRwYMH9fHHH+uLL74wJY4rblcrW7asDh48qKVLl9pXOD399NPq2bNnnv4bDuQlctz/Q46bPeS45Li5RY5rbo6bl/mtRI5Ljms9bI8Au/Hjx+ull15SwYIF8+y2Bzc3N8XFxal06dIZnj979qz8/f1N/4Qprzc0v9n58+dVoEABFS5c2GkxvL29FRkZqYoVKzrc6nTy5ElVqVJF165du+MYCQkJ9r2aEhISsuzrjD2dLl68qEceeUR79+7VfffdJ+nGf1KaNWumVatWqVixYqbHzEu3/kI9fPiwKlSooMmTJ+u///2vab9QJWW4l5CzP+EtVqyY1q9fr6ZNm5o+9q1atWqVZQLkjJ/3gwcPqk2bNvL29taJEyd05MgRVahQQWPGjDF1JdDNfvvtN12+fFm1a9fW1atXNXLkSO3atUv333+/3nvvPQUGBpoeM6/k9e2NwcHBevzxxxUWFubwb+iePXvUpUsXnT592tR4ycnJWrp0qdq1ayc/Pz9TxwZAjkuOmzPkuM5Fjmuef0KOey/ntxI5Lm6PlbawuzlJzavbHgzDUL9+/eTp6Znh+bRbIcyW1xua3yyz5N1MXl5eGSaZR44cMS1+8eLF7U/TLVasWIYJgzMTIm9vb3333XfasmWLw35YzZs3Nz2W9H+fKP/2228aOXKk01dNjho1Sm+++ab9F2qaVq1a6f333zc1VnR0tKnjZUfx4sWd9gCPW9WtW9fhdVJSkvbv36+ffvrJvpLGbGFhYerXr5/TVwLd7OZN9wsWLKhZs2Y5Jc7Nzp8/ryNHjshms6ly5cpO+/ft4YcfztOE9tChQxnetlm6dGlduHDB9Hju7u56/vnndfjwYdPHlqS1a9cqNDRUHh4eWrt2bZZ9zV7FBVgBOS45bk6Q45Lj3glyXHO5Ir+VyHHNQo575yja4rYuX76cbi8esz5Vzs4vE2fcWnX48GEtW7ZM0o1/SP7++28VLlxYEyZMUOfOnfX888+bGu/s2bMaOXKkfW+jWxe4m53wde7cWRMmTLBvtm2z2RQTE6NRo0apa9eupsT49ttv7QlJXu+nlJycLC8vL+3fv18hISEKCQlxarxbP1EeMGCAU/ZPu1le/kJ1xSfUb7zxhl5//XUtWrRIBQsWdGqs9957L8P2cePG6fLly06JuWfPHs2dOzdde9myZRUXF+eUmFLe3a525coVvfjii1q8eLH994Obm5v69OmjDz74wPTvaceOHTV8+HAdOnQow9sbzU7CihUrptjYWAUFBTm0R0VFOeU/sNKNffeioqKc8vPYpUsXxcXFycfHR126dMm0n7MKEIBVkePeOXJcc5HjkuPmxD8lx83L7RjIcc1HjntnKNoiQ9HR0XrhhRe0bds2h9uMzP5UecGCBaaMk1N5vaF5v379FBMTozFjxuTJ3kZTpkxR+/bt5ePjo7///lstWrRQXFycGjdurLfeesuUGC1atMjwz3nB3d1dgYGBefYPrytWTTr7F6qrP5WcOnWqjh8/Ll9fX5UvXz5dgmLWnoJZeeqpp/Tggw9qypQppo+dFyuBbnXrf7yc9XAW6cbPxPbt27Vu3Tr77X+7du3SkCFDNGLECM2ePdu0WJI0cOBASdKECRPSnXNGEtarVy+98sor+vzzz2Wz2ZSamqrvvvtOI0eOdEqRRZIGDRqkESNG6Pfff1eDBg3SPWzmTvbdu7kodWuBCvinIcc1FzmuuchxyXHNcC/luHmZ30rkuM5Ajntn2NMWGWrSpIkkaejQoRluiJ3XCYzZunTpog4dOujZZ5/Vyy+/rNWrV6tfv35atWqVihcvri1btpgar0iRItq5c2e6W1icbevWrdq3b59SU1NVv359tWnTxilxvv76axUuXFgPPfSQJGnmzJn66KOPVL16dc2cOVPFixc3PeaCBQv0+eefa8mSJU6/BSkv9k+71csvv6zdu3fr888/V+XKlRUZGamzZ8+qT58+6tOnzx3f3pkvXz77p5IZ7feVxlmfSubVnoJZ+eSTT/TKK6/ozJkzpo/93HPP6fz58/rss89UokQJHTx4UG5uburSpYuaN2/ulM3527Rpo/r169v/45X29/T7779Xr169dOLECdNilSpVSl988YVatmzp0L5161Y98cQTOn/+vGmxXCEpKUn9+vXT8uXLZRiG3N3dlZKSol69emnhwoVyc3MzPaYr9t1L89dff931eyQC2UWOS46bE+S45Lg5RY4bYWq8vMxvJXJcclzroWiLDBUuXFj79u1TlSpVXD0Vp8jrDc2rV6+upUuXql69eqaOm5VvvvnGfqvarZ86zZ8/39RYtWrV0qRJk9S+fXsdOnRIDRs21IgRI/Ttt9+qWrVqTlltUq9ePR07dkxJSUkKDAxM94mdmZ9i+/r66uuvv1a9evUckoVNmzapf//+OnXqlGmx0rjiF+q96rHHHnN4bRiGYmNjtXfvXo0ZM8YpyXNCQoLat2+vn3/+WZcuXZK/v7/i4uIUHBysDRs2pPv7aoa8/I9XwYIFtW/fPlWrVs2h/eeff9aDDz6oK1eumBbLlY4fP66oqCilpqaqXr16qlSpktNinTx5MsvzZv1emjRpksqXL6/u3btLkh5//HGtXLlSZcqU0YYNG1SnTh1T4gBWRY5LjpsT5LjkuFb2T8hx8/qDBXJc85Hj3hm2R0CGHnjgAZ06deqeTWjzekPziIgIjRo1SnPnzlX58uWdGku68QnvhAkT1LBhwzy5VS06OlrVq1eXJK1cuVIdO3bU22+/rcjISLVv394pMbPas8ZsebF/2q08PDy0dOlSTZgwwem/UE+dOqWAgIAMz/3www9q3Lix6TGlvNufqmjRog4/A/ny5VOVKlU0YcIEp+0VV7RoUe3atUvffvutIv9fe/cel/P9/w/8cRWdJCFhSAeTipSxLQ21sSGnmMNEa842Cjnssy2Ww2ym2OyAOVRzbI47OSZRWIhySFoH7eAQhqmQev3+8Ov6dq0Q1/t6v68rj/vtdt0+vK/r834+a7p6XO/D85WSovMrgQB5b1fz8vLCrFmzEBMTAzMzMwBAUVERwsPD4eXlJWmtMnJ+SC/j5OQEJycnnez7v+Sau7ds2TKsWbMGALBnzx7s3bsXO3fuRGxsLKZNm4bdu3fL0geRUphxpcWMKz1mXOkw40pP7owr9zgGZlzpMeNqh1faUqWysrIwbtw4DBs2DK1bt64wi0ebuSP65N69e5W+OdrZ2Ulap27duigsLMT9+/dhYWFR4ft5/fp1Ses1btwYCxYswPDhwyXd78PUq1cPiYmJcHV1xSuvvILAwECMGTMGubm5cHV1RWFhoSx96IoSV03KqVWrVkhKSkL9+vU1ticlJcHPzw83btyQvOZ/51NlZGTA0dERYWFhOlv4Qk65ubmyfHgtT87b1U6fPo3u3bvjzp07aNu2LVQqFU6ePAkzMzPs2rVLPT9RKo/7kL5161ata0yZMgVz5sxBrVq1MGXKlEe+NjIyUut6lcnKysLixYuRnp4OlUoFFxcXhISESBqqzc3Ncf78eTRr1gwhISG4c+cOli1bhvPnz+Oll17CP//8I1ktIn3EjMuM+ySYcZlxnxQzrrTkHsfAjMuMq294pS1VKj8/H1lZWXjnnXfU2+SaOyKH8+fPY+TIkTh06JDGdl19fbqYX/ko9+7dU89sk4O3tzemTJkCb29vJCcnY+PGjQAefJ+bNm0qWx+6ItcZ5Sf5hWppaQk3Nze8+eabWt9G1qlTJ7z++uvYv3+/ehGKAwcOoHfv3vj444+12vfDyLnwhaOjI44ePVohsN+4cQPt2rVDdna2pPXKanbs2BHDhw/HwIEDdT6TDnj44ixeXl6SLc5SpnXr1sjMzMSaNWtw7tw5CCEwZMgQBAQEwNzcXNJaALB06VJERUXp9EN6VFQUPvjgA9SqVQsnTpx46Ot0dVXXrl270KdPH3h4eMDb2xtCCBw6dAhubm746aef0K1bN0nq1K1bV33l0c6dOzF37lwAD37/GfrvdqKqYMZlxn0SzLjSYMZlxn1acuZbgBlXF5hxtcMrbalSrq6ucHFxwfTp0ytdpEGuS9x1xdvbGzVq1MD7779f6RktQ513UmbGjBmwtLREWFiYLPXy8vLw3nvvIS8vD8HBwRg5ciQAYPLkySgpKcGXX34pec2SkhIsWrQIsbGxyMvLw7179zSel/rKDjn4+vpi69atsLa2hq+v7yNfe/fuXZw5cwZ9+/bV+oy9EAIDBw7ElStXsHv3bhw+fBh9+vTB3LlzERISotW+H0bO+VTlF6Qo7/Lly7Czs1Ovsi2llJQUrF+/Hhs2bEB+fj7eeOMNDBs2DH369IGpqank9cqTcySDXOrXr4/k5GSd3sZV/t/Jwz4E6ZKnpyfeeOMNfPrppxrb33//fezevVuyGYYTJkzAzz//jOeffx4nTpxAbm4uLC0tsXHjRnz22WeyrGpNpCRmXGbcJ8GMKw1mXGZcbVXHfAsw4zLjPh4P2lKlatWqhdTUVLRo0ULpVnSiVq1aOH78OFq1aiVbzaysLKxevRpZWVn44osvYGtri507d6JZs2aS32YREhKCmJgYuLu7w93dvcKtalLe9nD//n2sXbsWr7/+Oho3bizZfh9n5syZWLFiBaZMmYKwsDB8+OGHyM3NxbZt2zBz5kwEBwdrtf8nCeHa1npax44dw2uvvYabN29qva/i4mL4+fmhoKAAaWlpmD9/PiZMmCBBl5WTY+GLH3/8EcCD2XDR0dGoU6eO+rmSkhLExcVhz549yMjI0LrWwwghsH//fqxbtw6bN29GSUkJBgwYoLP5VLr0448/okePHqhZs6b6e/swffr0kbS2HB/S69evj19//RUvvfQSjIyMcPnyZZ3MSnsYMzMznDp1qsJMv/Pnz8Pd3V2yD3nFxcX44osv8McffyAoKEi9eNDixYthaWmJUaNGSVKHSF8x40qPGVdazLjMuI/DjCstZlzdYsbVDg/aUqV69+6NoKAgnQ2gV1qHDh2waNEivPLKK7LUS0hIQI8ePeDt7Y0DBw4gPT0djo6OWLBgAZKTk7Fp0yZJ6z3qDLZKpcK+ffskrWdhYYH09HRZr05xcnLCl19+CT8/P9SuXRsnT55Ubzty5AjWrVun1f4dHBw0/p6fn4/CwkJYW1sDeHDbkYWFBWxtbXVy61F5ZW/T/71a5t69e9ixYwf69u37xPtMS0ursO3ff//FW2+9BT8/P4wfP169XRfz/eSYT2VkZATg/257La9mzZqwt7dHREQEevXqpXWtqkhJScHIkSORlpYm2S06cn7wKn+Wvux7Wxmpbr8tf/tkaWkpoqOjdfohfcyYMYiJiUHjxo2Rl5eHpk2bPvS2TF38zDdr1gyRkZEYOHCgxvbY2FhMnToVeXl5ktckehYx40qLGVd6zLjMuI9T3TOu3CcWmHH/DzOu/uFBW6rU8uXLMXfuXIwYMQJt2rSp8OYh9RkmOZRfdfLYsWP46KOP8Mknn1T69VlZWUla28vLCwMHDsSUKVM0zrgePXoU/fr1w19//SVpPbn5+voiJCRE1tVua9WqhfT0dNjZ2aFx48b45Zdf1LObPD09JTkzX2bdunX45ptvsHLlSvVq0xkZGRg9ejTGjh2LgIAAyWqVFxMTg88//xyZmZkAgJYtW2LatGmSzDwyMjKqEPTK/13X8/3kXPjCwcEBR48ehY2NjWT7rKo//vgD69evx7p163Dq1Cl4eXkhICBA4wODNvTpg5fUHnf7ZHnx8fGS1Ny5cyd+//13BAcHY/bs2Rqz6MrTxS2Vs2fPxqJFi/D++++jY8eOUKlUSExMxGeffYbQ0FB89NFHktSJjo6GjY0N/Pz8AADTp0/H8uXL4erqivXr1xv8reFEj8OMy4z7JJhxmXGfFDOu9hm3OudbgBmXGfcJCaJKqFSqhz6MjIyUbu+plPVe9vjv38tvk1qtWrVEdna2EEIIS0tLkZWVJYQQIicnR5iamkpeT26xsbHC0dFRLFmyRBw6dEikpqZqPHShZcuW4siRI0IIIV555RUxf/58IYQQGzZsEA0aNJC0lqOjo0hJSamw/dixY8Le3l7SWmUiIiKEhYWFmD59uti+fbvYtm2bmDZtmrCwsBCRkZFa7z83N7fKD12Ki4sTn3/+ufjss8/Enj17dFpLTsuWLROdO3cWRkZGwtXVVcybN0/k5OTotObatWuFt7e3OHfunHrbuXPnRKdOncSaNWskrRUdHS3u3LlTYfvdu3dFdHS0pLWUEBQUJG7duiVrzdLSUhEZGSmaNGmi/n3bpEkTsXjxYlFaWipZnZYtW4q4uDghhBCHDh0S5ubmYtmyZaJ3797C399fsjpE+ooZV1rMuNJjxtUOM65uyZ1x5cy3QjDj6gIzrnZ4pS09MxISEqr82i5dukhau2nTpoiNjUXHjh01rkLYunUrpk6diqysLEnrya2y20h0fRb7/fffh5WVFT744ANs2rQJb731Fuzt7ZGXl4fJkydXGHSuDQsLC+zfvx8vvviixvbk5GT4+PigsLBQslplHBwcEB4ejsDAQI3t0dHR+Pjjj5GTkyNJneLiYowZMwZhYWFwdHSUZJ/6Zvbs2Y98fubMmZLXbNasmXqlWQ8PD8n3XxknJyds2rRJPb+pzPHjx/Hmm29K9m8GAIyNjXHx4sUKC19cu3YNtra2kv/MjxgxAl988UWFqwIKCgowceJEg5yf9ij//vsvADz0KghtWFhY4Ny5c7Czs8OMGTNw8eJFxMTE4MyZM/Dx8UF+fr7kNYlIt5hxdYcZlxlXnz0LGVfOfAsw4+oaM+6T40Fb0tCzZ0+sX79ePcx83rx5eO+999S3Ily7dg2dOnXC2bNnFezS8EyfPh2HDx/GDz/8gJYtWyIlJQWXL19GYGAgAgMDMWvWLKVb1MqFCxce+bwctyIcOXIEhw4dQosWLSS/tbF3797Iy8vDypUr8cILL0ClUuHYsWMYPXo0mjVr9tiB9U/DzMwMp0+frrBQSmZmJtq0aSPpyrPW1tZISUmRPdAmJydj//79uHLlCkpLSzWek3Ihkf+GvOLiYuTk5KBGjRpwcnLSyUqiQggkJiZi2bJlyM7Oxg8//IAmTZrg+++/h4ODg05mDcr5wethixikpqbC19dX8pWtHxagr169ikaNGuH+/fuS1lPCd999Bx8fnwqLNEjN1tYWu3btgqenJzw9PTF58mQEBgYiKysLbdu2xe3bt3Van0gpzLi6wYzLjPukmHGZcZ+E3CcWmHGlx4yrJeUu8iV9ZGRkJC5fvqz+e+3atdW3OQkhxKVLlwz21rHyVq1aJWJjYytsj42NFVFRUZLXu3fvnhg6dKj69rSaNWsKIyMjMWzYMHH//n3J65G0rly5Inr06CFUKpUwMTERJiYmwsjISPTo0UPj50VKbm5uYt68eRW2z5kzR7Ru3VrSWkFBQSIiIkLSfT7OvHnzhEqlEq1atRJdunQRPj4+6oevr6/O69+8eVP4+/uLmJgYnex/06ZNwtzcXIwaNUqYmpqq30e//vpr0aNHD53U7NWrl3B3dxdHjx5V32p09OhR4eHhIXr37i1JDQ8PD+Hp6SmMjIxEmzZthKenp/rh7u4uateuLQYOHChJLSEe/He6ceOGUKlU4vfffxc3b95UP65fvy6io6NF48aNJaunJGdnZ6FSqUTjxo3FkCFDxNKlS0V6errkdYYOHSratWsnRo4cKSwsLMTVq1eFEEJs375duLm5SV6PSF8w4zLjUkXMuNJjxpWWHPlWCGZcXWLG1Q6vtCUN5VdOBKBxmxMAXL58Gc8995xObgWSk7OzM5YuXVphCHhCQgLGjBmDjIwMyWoJIZCXl4cGDRrg0qVLSElJQWlpKTw9PXV+tklO33//PZYuXYqcnBwcPnwYzZs3x+LFi+Hg4PBUK7/qY83z58/j3LlzEELAxcUFLVu2lLxGmc2bN2Pw4MHo2rUrvL291QPb4+LiEBsbC39/f8lqzZs3DwsXLsRrr72GF154ocICCVKsyvpfDRs2xGeffYagoCDJ911Vp0+fRq9evZCbmyv5vsuf3S3/Pnry5El0794dly5dkrxmfn4+3n77bezcuVO98ExxcTG6d++O1atXo2HDhlrXCA8PV/9vaGgoLC0t1c+ZmJjA3t4eAwYMgImJida1gP9bTORhVCoVwsPD8eGHH0pST2mXLl1CfHw8EhISsH//fmRmZqJBgwbw8fHBhg0bJKlx48YNfPTRR/jjjz8wfvx4dO/eHQAwa9YsmJiYVJvvJdF/MeMy4z4tZlxpMePqXnXKuHLkW4AZV9eYcbWg5BFj0j8qlUrjrGr5BQWEqD5XIZiamlY6MD0nJ0eYmZlJWqukpETUrFlTnD9/XtL96pNvvvlG2NjYiLlz5wpzc3P1v5nVq1cLHx+falNTbsePHxcBAQGiXbt2wtPTUwQEBFS6WIS27O3tH/pwcHCQvJ4QQjRq1Ejxn4mDBw8Ka2trnezb3Nxc/R5T/n00KytL5wuznD9/Xr2wR0ZGhk5qREVFiaKiIp3su7z9+/eL+Ph4oVKpxJYtW8T+/fvVj0OHDom//vpL5z0o4fbt22Lnzp0iKChI1KhRQxgbGyvdEpHBY8Zlxn0azLi6wYyrW9Ux48qRb4VgxtU1ZtwnV0Ppg8akX1QqVYUzPo86A2SobG1tkZaWBnt7e43tqampqF+/vqS1jIyM8Pzzz+PatWvV6qqD8pYsWYLvvvsO/fr101gcoX379pg6darB1ywpKUFUVBTi4uIqnU21b98+SeuVXzhhzZo1ku67MlIP8K+KyZMn4+uvv8bixYt1XuvLL7/U+LsQAhcvXsT333+vPgMrtcaNG+P333+v8B6TmJgo6Vy1KVOmYM6cOahVqxamTJlS4fnyi9NIOUPt7bfflmxfj1K2YE5OTg7s7Oyq5e+jMjt27FBffZCamgo3Nzd07twZmzdvRqdOnSStdfDgQVnnLRPpA2ZcZtynwYzLjPukmHG1p1S+BZhxdYEZVzs8aEsahBAICgqCqakpAODOnTsYN26c+laSu3fvKtmeZIYMGYLg4GDUrl0bnTt3BvDgzT8kJARDhgyRvN6CBQswbdo0fPvtt2jdurXk+1daTk5OhUH4AGBqaoqCggKDrxkSEoKoqCj4+fmhdevWOv+lWrNmTWzduhVhYWE6rVMZ8f8n5uj6a5w6dSr8/Pzg5OQEV1dX9e1OZbZs2aLV/tPS0tC6dWsYGRlh0aJFGs8ZGRmhQYMGePvtt/G///1PqzoPM3bsWISEhGDVqlVQqVT4+++/cfjwYUydOlXSlXxPnDiB4uJi9Z8fRur/niUlJVi0aBFiY2ORl5eHe/fuaTwvxSIN5f8b3rx5E6dOnXroa93d3bWupzQ/Pz80aNAAoaGh2LVrl3qxJKlt3rwZw4cPR0BAAFJSUtS/1//991988skn+PXXX3VSl0hpzLjMuE+DGVdazLjMuFWhVL4FmHF1gRlXOzxoSxr+e2Zp2LBhFV4TGBgoVzs6M3fuXFy4cAGvvfYaatR48GNQWlqKwMBAfPLJJ5LXGzZsGAoLC9G2bVuYmJjA3Nxc43mpV6GUm4ODA06ePFlhBd0dO3bA1dXV4Gtu2LABsbGx6Nmzp6T7fRR/f39s27at0rPLuhATE4PPP/8cmZmZAICWLVti2rRpGD58uE7qTZw4EfHx8fD19UX9+vUlD12enp4aK7EePXoUNjY2ktZ4lOnTp+PmzZvw9fXFnTt30LlzZ5iammLq1KmYMGGCZHXi4+Mr/bOuhYeHY8WKFZgyZQrCwsLw4YcfIjc3F9u2bZMssHt4eKjnT3p4eEClUqk/cJWnUqkMfgYl8OBKkQMHDuDzzz9HZGQkunTpAh8fH/j4+MDFxUWyOnPnzsXSpUsRGBioMUOsY8eOmD17tmR1iPQNMy4z7tNgxpUeM652noWMq1S+BZhxdYEZVzs8aEsaVq9erXQLsjAxMcHGjRsxZ84cpKamwtzcHG3atKkQjqQix+0xSpo2bRree+893LlzB0IIJCcnY/369Zg/fz5WrFhh8DVNTEzQokULSff5OC1atMCcOXNw6NAhnS+cEBkZibCwMEyYMAHe3t4QQiApKQnjxo3D1atXMXnyZMlqlYmJicHmzZvh5+cn+b4BwNraGjk5ObC1tUVeXl6lQUjX5s2bhw8//BBnz55FaWkpXF1dNRY1MGRr167Fd999Bz8/P4SHh+Ott96Ck5MT3N3dceTIEUn+febk5KBBgwbqP1d3kyZNwqRJkwAAp06dQkJCAvbu3YuQkBDUr18fFy9elKRORkaG+uq78qysrHDjxg1JahDpI2ZcZtynwYwrPWZc7TDj6hYzrvSYcbUk/xhdIqqOli9fLuzs7IRKpRIqlUo0bdpUrFixolrUXLhwoXj33XdFaWmp5Pt+GDkXTrC3txfR0dEVtkdFRQl7e3tJa5Wxs7MT6enpOtm3EEKMHj1amJqaCnt7e2FkZCTs7OyEg4NDpQ96chYWFuLChQtCiAcLbhw/flwI8WARCisrK0lr3bt3TwQFBWksGFSdpaSkiMjISNG7d29hbW0tjI2NRfv27SXbv6Ojo9izZ48QQnMBkejoaOHi4iJZHSKi6oIZV1rMuNphxtUtZlzdYcZ9OiohFDg1Q6SAxw00L0/qgeYAkJWVhdWrVyMrKwtffPEFbG1tsXPnTjRr1gxubm6S11PK1atXUVpaqr5lpzrU9Pf3R3x8POrVqwc3NzfJZ1M9jtDxDC4zMzOcPn26wpUWmZmZaNOmDe7cuSN5zdWrV2Pnzp1YvXo1LCwsJN8/AOzcuRO///47goODMXv2bNSuXbvS14WEhOikfnXm7OyMmJgYvPTSS+jUqRP8/Pzw/vvvY+PGjZg4cSKuXLkiaT1ra2ukpKRIuoibvunTpw8SExNx69YteHh4qG8b69y5M6ysrCSrs2DBAkRHR2PVqlXo1q0bfv31V1y4cAGTJ0/GzJkzJR3fQUTyYMaVBzOu9Jhxnw4zru4w40qPGVc7HI9Az4yqDjTXhYSEBPTo0QPe3t44cOAA5s2bp17dd8WKFdi0aZOs/UgtPDwcw4YNg5OTk2wzlYqKiiCEgIWFBWxsbHDhwgUsXrwYrq6ueP311yWtZW1tDX9/f0n3WRUrV67EokWL1DO4nn/+eUyaNAmjRo2StE6LFi0QGxuLDz74QGP7xo0bdbYa9JdffomsrCw0bNgQ9vb2FT4kpKSkaF2jbNXc48ePIyQk5KGBlp6cv78/4uLi8NJLLyEkJARvvfUWVq5ciby8PJ3caij3/DsltGzZEmPGjJE8wP6XXPOWiUg+zLi6w4yrG8y42mHG1R1mXOkx42qHV9oSycDLywsDBw7ElClTULt2baSmpsLR0RFHjx5Fv3798Ndffyndolbc3d1x5swZdOjQAcOGDcPgwYPVc3p05fXXX0f//v0xbtw43LhxA87OzjAxMcHVq1cRGRmJ8ePH67S+roWFhWHRokWYOHEivLy8AACHDx/GV199hZCQEMydO1eyWps3b8bgwYPRtWtXeHt7Q6VSITExEXFxcYiNjdVJmA8PD3/k87NmzZK8JunOb7/9hqSkJLRo0QJ9+vSRfP/z5s3DwoUL8dprr+l8/p1SYmJiMHjwYPXK9mXu3buHDRs2SL5AUmFhYbWcRUdE8mLGlR4zLjMu6Q9mXO0x42qHB23pmTJixIjHvkalUmHlypWS1rW0tMSpU6fg4OCgEWhzc3PRqlUrndyaI7czZ85g7dq12LBhA/7880907doVw4YNQ79+/XRya5CNjQ0SEhLg5uaGFStWYMmSJThx4gQ2b96MmTNnIj09XdJ69+/fx/79+5GVlYWhQ4eidu3a+Pvvv2FlZaWTXwQ2NjZYsmQJ3nrrLY3t69evx8SJE3H16lVJ66WkpCAyMhLp6ekQQsDV1RWhoaHw9PSUtA4ZvuLiYowZMwZhYWGy3crl4ODw0OdUKhWys7Nl6UOXjI2NNVaDLnPt2jXY2tpqvXpw//79H/uaGjVqoFGjRujWrRt69+6tVT0ikhczru4w40qLGZf0FTOubjDjaofjEeiZEhUVhebNm8PT01PWlTatra1x8eLFCm/KJ06cQJMmTWTrQ5fc3NzwySef4JNPPkFSUhLWrVuHSZMmYdy4cbh165bk9QoLC9W3Au3evRv9+/eHkZERXn75ZVy4cEHSWhcuXED37t2Rl5eHu3fvolu3bqhduzYWLFiAO3fuYOnSpZLWA4CSkhK0b9++wvYXXngB9+/fl7RWQEAAfHx8MHPmTLRs2VLSfT/KjRs3sGnTJmRlZWHatGmoV68eUlJS0LBhw2rzc1Ed1axZE1u3bkVYWJhsNZ+FlXWFEJXO9Pvzzz9Rp04drfdflX2UlpYiMzMTK1aswNSpUzF79myt6xKRPJhxdYcZV1rMuNXj56I6YsbVDWZc7fCgLT1Txo0bhw0bNiA7OxsjRozAsGHDUK9ePZ3XHTp0KGbMmIEffvgBKpUKpaWlSEpKwtSpUyW/HUAf1KpVC+bm5jAxMcG///6rkxotWrTAtm3b4O/vj127dqlnDF25ckXyWTkhISFo3749UlNTUb9+ffV2f39/yWdvlRk2bBi+/fbbCguGLF++HAEBAZLWsrS0REREBMaNG4eGDRuiS5cu6NKlC3x8fNCqVStJa5VJS0tD165dUadOHeTm5mL06NGoV68etm7digsXLiAmJkYndUkaSs7f0vWiJXLz9PSESqWCSqXCa6+9hho1/i+alZSUICcnRz27ThurV6+u8mt/+eUXjB8/3qACLdGzjhlXHsy42mPGZcbVZ8y40mHGlQbHI9Az5+7du9iyZQtWrVqFQ4cOwc/PDyNHjsTrr7+uszfI4uJiBAUFYcOGDRBCoEaNGigpKcHQoUMRFRUFY2NjndSVU05ODtatW4e1a9fi/Pnz6Ny5M4YOHYqBAwdKcgbtvzZt2oShQ4eipKQEr776Kvbs2QMAmD9/Pg4cOIAdO3ZIVsvGxgZJSUlwdnaucOufq6srCgsLJatVZuLEiYiJiUGzZs3w8ssvAwCOHDmCP/74A4GBgRqLGki1EvSlS5ewf/9+7N+/HwkJCTh//jxsbW1x8eJFSfZfXteuXdGuXTssWLBA43t66NAhDB06FLm5uZLXJOkoMX8rJiYGn3/+uXrRkpYtW2LatGkYPny45LXkVDb7Ljw8HKGhoRq3opqYmMDe3h4DBgyAiYmJbD3duHEDI0aM0Pmq4UQkLWZc3WDGlRYzbq7kNUk6zLjSYcaVBg/a0jPtwoULiIqKQkxMDIqLi3H27FnJZjfdunWrwtnw7OxspKSkoLS0FJ6enjpbtVRuXl5eSE5ORps2bRAQEIChQ4fKcuvPpUuXcPHiRbRt2xZGRkYAgOTkZFhZWUl69rxevXpITEyEq6urRvhKTEzEgAEDcPnyZclqlfH19a3S61QqFfbt2ydJzYKCAiQmJqpDbUpKClxdXXWyEnWdOnWQkpICJycnje/phQsX4OzsXC1m4FVncs/fioyMRFhYGCZMmABvb28IIZCUlISvv/4ac+fO1clqvnKLjo7G4MGDYWZmpnQrRFQNMONKgxmXGfdJMeMaNmZc6THjaofjEeiZVna5vhACpaWlku67bt266oHbr776KrZs2QJHR0fZhprLydfXFytWrICbm5usdRs1aoTbt29jz5496Ny5M8zNzdGhQwfJrybp1q0bFi9ejOXLlwN48O/m9u3bmDVrFnr27ClprTLx8fE62W9lZsyYgYSEBKSmpqJ169bo3Lkz/ve//6Fz586wtrbWSU0zM7NK58BlZGTofFVm0p7c87eWLFmCb7/9VuNW2759+8LNzQ0ff/xxtQi0b7/9Nm7cuIE1a9ZwBh4RaY0ZVxrMuNJjxiV9xowrPWZc7fBKW3rmlL91LDExEb169cI777yD7t27q89kS6FOnTo4cuQIXFxcYGRkhMuXL/MXtYSuXbuGQYMGIT4+HiqVCpmZmXB0dMTIkSNhbW2NiIgIyWr9/fff8PX1hbGxMTIzM9G+fXtkZmbCxsYGBw4cqLASpqExMjJCgwYNMHnyZPTt2xcuLi46rzlmzBjk5+cjNjYW9erVQ1paGoyNjdGvXz907twZixcv1nkPJA055m+ZmZnh9OnTaNGihcb2zMxMtGnTplpctfLfGXgZGRlwdHREWFgYZ+ARUZUw41YPzLjSYcYlbTDjSoMZVzs8aEvPlHfffRcbNmyAnZ0d3nnnHQwbNkxj6L6UBgwYgKSkJLi4uCAhIQEdO3Z86LwWqW79kdOUKVMwZ84c1KpV67GD2qWaR1VeYGAgrly5ghUrVsDFxUV969Hu3bsxefJknDlzRtJ6RUVF2LBhA44fP47S0lK0a9cOAQEBMDc3l7SOElJTU5GQkID9+/fj4MGDMDY2Vi/S4OPjo5OAe+vWLfTs2RNnzpzBv//+i+eeew6XLl2Cl5cXfv311wrzo0j/yDl/q3Xr1hg6dCg++OADje1z587Fxo0bcerUKclryq1sdhpn4BHR02DGlQ4zLjOuNphxDR8zrrSYcbXDg7b0TDEyMoKdnZ16JcOHkWIwdVFREaKjo5GVlYWIiAiMHj0aFhYWlb520aJFWteTm6+vL7Zu3Qpra+tHzqaSch5VeY0aNcKuXbvQtm1bjTf/nJwctGnTBrdv35as1oEDB9CxY0eNFS8B4P79+zh06BA6d+4sWS19kJqaisWLF2PNmjUoLS1FSUmJzmrt27dPPQOvXbt26Nq1q85qkXTknr+1efNmDB48GF27doW3tzdUKhUSExMRFxeH2NhY+Pv7S1pPCZyBR0TaYMaVDjMuM64UmHENEzOu9JhxtcOZtvRMCQwM1OntDeWZm5tj3LhxAIBjx47hs88+09nsJCWUn0cl52yqMgUFBZV+QLh69SpMTU0lreXr66ue3VbezZs34evrq9PAJ5cTJ06oF2c4ePAgbt26BQ8PjyovFvG0Xn31Vbz66qs6rUHSk3v+1oABA/Dbb79h0aJF2LZtG4QQcHV1RXJyMjw9PSWtpRTOwCMibTDjSocZlxlXCsy4hokZV3rMuNrhlbZEZJD8/PzQrl07zJkzB7Vr10ZaWhqaN2+OIUOGoLS0FJs2bZKs1sPmtZ0/fx7t27ev9JeQIalbty5u376Ntm3bqm8X69y5c4WVoaUUHByMFi1aIDg4WGP7V199hd9//53zvvTcszB/S26cgUdERAAzrpSYcelJMeNKjxlXOzxoSySDkpISREVFIS4uDleuXKmwiq8hzvsqr6CgAJ9++ulDv77s7GzJa6anp6NLly544YUXsG/fPvTp0wdnzpzB9evXkZSUBCcnJ61r9O/fHwCwfft2dO/eXePqhpKSEqSlpcHZ2Rk7d+7UupaSfv75Z50H2P9q0qQJfvzxR7zwwgsa21NSUtCnTx/8+eefsvVCT07u+VsP+9CoUqlgamr60FmKhuRhM/Befvll7NixgzPwiEgvMeMy4+ozZlx6Usy40mPG1Q7HIxDJICQkBFFRUfDz80Pr1q1lu31NLqNGjUJCQgKGDx+Oxo0b6/zrKy4uxrvvvosff/wRO3bsgLGxMQoKCtC/f3+89957aNy4sSR16tSpA+DByqG1a9fWWJDBxMQEL7/8MkaPHi1JLSX16tVL9prXrl1Tf3/Ls7KywtWrV2Xvh55MeHg4Bg8ejAMHDlQ6f0tq1tbWj3xfadq0KYKCgjBr1ixJV0iXk5WVFRITExEfH6+xGAxn4BGRPmPGlRYzrrSYcelJMeNKjxlXO7zSlkgGNjY2iImJQc+ePZVuRSesra3xyy+/wNvbW7aaDRo0wKFDh/D888/rvFZ4eDimTZv20EU26Mm1bt0a48aNw4QJEzS2l82ROnv2rEKdUVUdP34cixYtQnp6unr+VmhoqE7mb8XExODDDz9EUFAQXnzxRQghcPToUURHR+Ojjz5Cfn4+Fi5ciGnTplW4MsKQxMXFPfRqrlWrVinUFRHRwzHjSo8Z17Ax4xo+ZlzpMeM+PV5pSyQDExOTCnNxqpO6deuiXr16stYMDAzEypUr8emnn+q8VkJCAkJCQioE2lu3bqFfv34Gf+ufEqZMmYIJEyYgPz9fvUhDXFwcIiIiONfIQLzwwgtYs2aNLLWio6MRERGBQYMGqbf16dMHbdq0wbJlyxAXFwc7OzvMmzfPYANteHg4Zs+ejfbt28tyNRcRkRSYcaXHjGvYmHENHzOutJhxtcMrbYlkEBERgezsbHz11VfV8k1qzZo12L59O6Kjo2U7Uz9x4kTExMSgRYsWaN++fYVZOJGRkZLVMjY2rnRl3StXrqBJkyYoLi6WrNaz5Ntvv8W8efPw999/AwDs7e3x8ccfa6zWSvqrpKQEW7duRXp6OlQqFVxcXNC3b1/UqCH9+WALCwukpqZWuOooMzMTbdu2RWFhIXJycuDm5obCwkLJ68uhcePGWLBgAYYPH650K0REVcaMKz1mXMPHjGvYmHGlxYyrHV5pSySDshkuO3bsgJubG2rWrKnx/JYtWxTqTBoRERHIyspCw4YNYW9vX+HrS0lJkbzm6dOn0a5dOwAPVrgtT6oPDWlpaQAezPs6e/YsLl26pH6upKQEO3fuRJMmTSSp9SwaP348xo8fj/z8fJibm8PS0lLplqiKTp8+jb59++LSpUtwdnYG8ODnsEGDBvjxxx/Rpk0bSes1bdq00quOVq5ciWbNmgF4MEOubt26ktaV071799CxY0el2yAieiLMuMy4VBEzruFixpUeM652eNCWSAbW1tbw9/dXug2d6du3r+xXV8THx+u8hoeHB1QqFVQqlfr2pvLMzc2xZMkSnfdR3TVo0EDpFugJjRo1Cm5ubjh27Jg6RP7zzz8ICgrCmDFjcPjwYUnrLVy4EAMHDsSOHTvQoUMHqFQqHD16FOfOncOmTZsAAEePHsXgwYMlrSunUaNGYd26dQgLC1O6FSKiKmPGlR4zbvXBjGt4mHGlx4yrHY5HICJ6iAsXLkAIAUdHRyQnJ2sELxMTE9ja2sLY2FjBDg3X5cuXMXXqVPVA+v/+KiopKVGoM6oKc3NzHDt2DG5ubhrbT58+jQ4dOqCoqEjymrm5uVi6dCnOnz8PIQRatWqFsWPHwt7eXvJaSggJCUFMTAzc3d3h7u5e4WouKW+HJSKiZxszru4w4xo2ZlzpMeNqh1faEskoPz8fGRkZUKlUaNmypcGffTUyMqr06gMrKys4Oztj+vTp6N+/vwKdSaN58+YAoF7h8uzZs8jLy8O9e/c0XtenTx/ZezN0QUFByMvLQ1hYGAfSGyBnZ2dcvny5QqC9cuWKzhaksbe3l2VRFqWkpaXBw8MDwIMPBuXx54OI9B0zrmFhxtUdZlzDxowrPWZc7fBKWyIZFBQUqBcVKAtHxsbGCAwMxJIlS2Rb2EBq27dvr3T7jRs3kJycjNWrVyM6OhoDBw6UuTNp5eTkwN/fH2lpaVCpVOoz5mW/ZHjG/MnVrl0bBw8eVP8CJ/1369Yt9Z8TExMxffp0fPzxx3j55ZcBAEeOHMHs2bPx6aefomfPnlrXK5u3VxXu7u5a1yMioifHjMuMS5qYcQ0PMy7pMx60JZLB2LFjsXfvXnz11Vfw9vYG8OAXQnBwMLp164Zvv/1W4Q514+uvv0ZMTAx+++03pVvRSu/evWFsbIzvvvsOjo6O+O2333D9+nWEhoZi4cKF6NSpk9ItGhxXV1esXbsWnp6eSrdCVfTfq47++8Gu/N+l+JBXVu9xMUWqekRE9OSYcZlxSRMzruFhxiV9xoO2RDKwsbHBpk2b4OPjo7E9Pj4egwYNQn5+vjKN6VhmZiZefPFF/PPPP0q3ohUbGxvs27cP7u7uqFOnDpKTk+Hs7Ix9+/YhNDQUJ06cULpFg7N7925ERERg2bJl1WZeU3WXkJBQ5dd26dJF63oXLlyo8mvLbvMkIiJ5MeMy45ImZlzDw4xL+owzbYlkUFhYiIYNG1bYbmtri8LCQgU6kkdRURHMzMyUbkNrJSUlsLS0BPAg3P79999wdnZG8+bNkZGRoXB3hmnw4MEoLCyEk5MTLCwsKgykv379ukKd0cNIEVKfRGUhtbKZeyqVioGWiEghzLiGjRlXesy4hocZl/QZD9oSycDLywuzZs1CTEyMOuAVFRUhPDwcXl5eCnenO9999121uDWodevWSEtLg6OjI1566SUsWLAAJiYmWL58ORwdHZVuzyAtXrxY6RZIAoWFhZUuXCL1/K3s7Gz4+/vj1KlTnLlHRKRHmHENGzOu9JhxqwdmXNIXHI9AJINTp06hR48euHPnDtq2bQuVSoWTJ0/C1NQUu3fvrrA6paGYMmVKpdtv3ryJY8eOISsrCwcPHjT4ULtr1y4UFBSgf//+yM7ORq9evXDu3DnUr18fGzduxKuvvqp0i0Syys/PxzvvvIMdO3ZU+rzUAZMz94iI9BMzLjMuUXXCjEv6hgdtiWRSVFSENWvW4Ny5cxBCwNXVFQEBATA3N1e6tafm6+tb6XYrKyu0atUK7777brW9peP69euoW7euxtB6ejpFRUUoLi7W2GZlZaVQN1QVAQEByM3NxeLFi+Hr64utW7fi8uXLmDt3LiIiIuDn5ydpPc7cIyLSX8y41QszrnSYcQ0PMy7pG45HIJLB/Pnz0bBhQ4wePVpj+6pVq5Cfn48ZM2Yo1Jl24uPjlW5BMfXq1VO6BYNWUFCAGTNmIDY2FteuXavwPG8F0m/79u3D9u3b0aFDBxgZGaF58+bo1q0brKysMH/+fMkDLWfuERHpJ2bc6ocZVzvMuIaNGZf0jZHSDRA9C5YtW4ZWrVpV2O7m5oalS5cq0BGRsqZPn459+/bhm2++gampKVasWIHw8HA899xziImJUbo9eoyCggLY2toCePDhrmx18DZt2iAlJUXyemUz9wCoZ+4lJSVh9uzZnLlHRKQgZlwiTcy4ho0Zl/QNr7QlksGlS5fQuHHjCtsbNGiAixcvKtARkbJ++uknxMTEwMfHByNGjECnTp3QokULNG/eHGvXrkVAQIDSLdIjODs7IyMjA/b29vDw8MCyZctgb2+PpUuXVvpep62PPvoIBQUFAIC5c+eiV69e6NSpk3rmHhERKYMZl0gTM65hY8YlfcODtkQyaNasGZKSkuDg4KCxPSkpCc8995xCXREp5/r16+qfBysrK1y/fh0A8Morr2D8+PFKtkZVMGnSJPWH8VmzZuGNN97A2rVrYWJigqioKMnrvfHGG+o/Ozo64uzZs5y5R0SkB5hxiTQx4xo2ZlzSNzxoSySDUaNGYdKkSSguLlavwhoXF4fp06cjNDRU4e6I5Ofo6Ijc3Fw0b94crq6uiI2NxYsvvoiffvoJ1tbWSrdHj1H+KhFPT0/k5ubi3LlzsLOzg42NjSw9cOYeEZHymHGJNDHjGjZmXNI3KiGEULoJoupOCIH3338fX375Je7duwcAMDMzw4wZMzBz5kyFuyOS36JFi2BsbIzg4GDEx8fDz88PJSUluH//PiIjIxESEqJ0i0RERPQYzLhEmphxiUhKPGhLJKPbt28jPT0d5ubmeP7552Fqaqp0S0R6IS8vD8eOHYOTkxPatm2rdDtUiSlTplT5tZGRkTrshIiI9A0zLlHlmHH1HzMu6TMetCUiItnl5ubC3t5e6TboCfj6+lbpdSqVCvv27dNxN0RERET6hxnX8DDjkj7jQVsiIpKdkZEROnbsiOHDh2PgwIGc3UREREREBo8Zl4ikZKR0A0RE9Ow5duwYvLy8MHfuXDz33HPo27cvfvjhB9y9e1fp1oiIiIiIngozLhFJiVfaEhGRYoQQ2L9/P9atW4fNmzejpKQEAwYMwKpVq5Rujf6jf//+VX7tli1bdNgJERERkX5jxjUczLikz3jQloiI9EJKSgpGjhyJtLQ0lJSUKN0O/cc777xT5deuXr1ah50QERERGQ5mXP3GjEv6jAdtiYhIMX/88QfWr1+PdevW4dSpU/Dy8kJAQADGjx+vdGtERERERE+FGZeIpFBD6QaIiOjZs3z5cqxduxZJSUlwdnZGQEAAtm3bxtV2DUx+fj4yMjKgUqnQsmVLNGjQQOmWiIiIiBTDjFs9MOOSvuCVtkREJLtmzZphyJAhCAgIgIeHh9Lt0BMqKCjAxIkTERMTg9LSUgCAsbExAgMDsWTJElhYWCjcIREREZH8mHENGzMu6RsetCUiItkJIaBSqZRug57S2LFjsXfvXnz11Vfw9vYGACQmJiI4OBjdunXDt99+q3CHRERERPJjxjVszLikb3jQloiIZJGWllbl17q7u+uwE9KWjY0NNm3aBB8fH43t8fHxGDRoEPLz85VpjIiIiEhmzLjVBzMu6RvOtCUiIll4eHhApVKh7Fzho65C4Mq6+q2wsBANGzassN3W1haFhYUKdERERESkDGbc6oMZl/SNkdINEBHRsyEnJwfZ2dnIycnBli1b4ODggG+++QYnTpzAiRMn8M0338DJyQmbN29WulV6DC8vL8yaNQt37txRbysqKkJ4eDi8vLwU7IyIiIhIXsy41QczLukbjkcgIiLZvfjii/j444/Rs2dPje2//vorwsLCcPz4cYU6o6o4deoUevTogTt37qBt27ZQqVQ4efIkTE1NsXv3bri5uSndIhEREZHsmHENGzMu6RsetCUiItmZm5sjJSUFLi4uGtvT09PRrl07FBUVKdQZVVVRURHWrFmDc+fOQQgBV1dXBAQEwNzcXOnWiIiIiBTBjGv4mHFJn/CgLRERya5du3ZwcXHBypUrYWZmBgC4e/cuRowYgfT0dKSkpCjcIT3K/Pnz0bBhQ4wYMUJj+6pVq5Cfn48ZM2Yo1BkRERGRcphxDRszLukbHrQlIiLZJScno3fv3igtLUXbtm0BAKmpqVCpVPj555/x4osvKtwhPYq9vT3WrVuHjh07amz/7bffMGTIEOTk5CjUGREREZFymHENGzMu6RsetCUiIkUUFhZWuPVo6NChqFWrltKt0WOYmZkhPT0dDg4OGtuzs7Ph6uqqsXgDERER0bOEGddwMeOSvqmhdANERPRssrCwwCuvvAI7Ozvcu3cPABAXFwcA6NOnj5Kt0WM0a9YMSUlJFQJtUlISnnvuOYW6IiIiIlIeM67hYsYlfcODtkREJLvs7Gz4+/vj1KlTUKlUEEJApVKpny8pKVGwO3qcUaNGYdKkSSguLsarr74K4MGHkenTpyM0NFTh7oiIiIiUwYxr2JhxSd/woC0REckuJCQEDg4O2Lt3LxwdHfHbb7/h+vXrCA0NxcKFC5Vujx5j+vTpuH79Ot599131FSRmZmaYMWMG/ve//yncHREREZEymHENGzMu6RvOtCUiItnZ2Nhg3759cHd3R506dZCcnAxnZ2fs27cPoaGhOHHihNItUhXcvn0b6enpMDc3x/PPPw9TU1OlWyIiIiJSDDNu9cCMS/qCV9oSEZHsSkpKYGlpCeBBuP3777/h7OyM5s2bIyMjQ+HuqKosLS3RoUMHpdsgIiIi0gvMuNUDMy7pCx60JSIi2bVu3RppaWlwdHTESy+9hAULFsDExATLly+Ho6Oj0u0RERERET0xZlwikhLHIxARkex27dqFgoIC9O/fH9nZ2ejVqxfOnTuH+vXrY+PGjerB/0REREREhoIZl4ikxIO2RESkF65fv466detqrLBLRERERGTImHGJ6GnxoC0RERERERERERGRHjFSugEiIiIiIiIiIiIi+j88aEtERERERERERESkR3jQloiIiIiIiIiIiEiP8KAtERERERERERERkR7hQVsiIgOmUqmwbds2pdsgIiIiIpIMMy4REQ/aEhEpSqVSPfIRFBSkdItERERERE+EGZeISHs1lG6AiOhZdvHiRfWfN27ciJkzZyIjI0O9zdzcXIm2iIiIiIieGjMuEZH2eKUtEZGCGjVqpH7UqVMHKpVKY9u6devg5OQEExMTODs74/vvv3/k/mbPno2GDRvi5MmTAIBDhw6hc+fOMDc3R7NmzRAcHIyCggL16+3t7fHJJ59gxIgRqF27Nuzs7LB8+XL18/fu3cOECRPQuHFjmJmZwd7eHvPnz9fJ94KIiIiIqgdmXCIi7fGgLRGRntq6dStCQkIQGhqK06dPY+zYsXjnnXcQHx9f4bVCCISEhGDlypVITEyEh4cHTp06hTfeeAP9+/dHWloaNm7ciMTEREyYMEHj/xsREYH27dvjxIkTePfddzF+/HicO3cOAPDll1/ixx9/RGxsLDIyMrBmzRrY29vL8eUTERERUTXEjEtEVDUqIYRQugkiIgKioqIwadIk3LhxAwDg7e0NNzc3jasCBg0ahIKCAvzyyy8AHswL++GHH7B9+3YcO3YMe/bsQdOmTQEAgYGBMDc3x7Jly9T//8TERHTp0gUFBQXqqwo6deqkvrpBCIFGjRohPDwc48aNQ3BwMM6cOYO9e/dCpVLJ9J0gIiIiouqCGZeI6OnwSlsiIj2Vnp4Ob29vjW3e3t5IT0/X2DZ58mQcPnwYBw8eVIdZADh+/DiioqJgaWmpfrzxxhsoLS1FTk6O+nXu7u7qP5fdunblyhUAQFBQEE6ePAlnZ2cEBwdj9+7duvhSiYiIiOgZwYxLRFQ1PGhLRKTH/nvmXwhRYVu3bt3w119/YdeuXRrbS0tLMXbsWJw8eVL9SE1NRWZmJpycnNSvq1mzZoWapaWlAIB27dohJycHc+bMQVFREQYNGoQ333xTyi+RiIiIiJ4xzLhERI9XQ+kGiIioci4uLkhMTERgYKB626FDh+Di4qLxuj59+qB3794YOnQojI2NMWTIEAAPwuiZM2fQokULrfqwsrLC4MGDMXjwYLz55pvo3r07rl+/jnr16mm1XyIiIiJ69jDjEhFVDQ/aEhHpqWnTpmHQoEFo164dXnvtNfz000/YsmUL9u7dW+G1/v7++P777zF8+HDUqFEDb775JmbMmIGXX34Z7733HkaPHo1atWohPT0de/bswZIlS6rUw6JFi9C4cWN4eHjAyMgIP/zwAxo1agRra2uJv1oiIiIiehYw4xIRVQ0P2hIR6al+/frhiy++wOeff47g4GA4ODhg9erV8PHxqfT1b775JkpLSzF8+HAYGRmhf//+SEhIwIcffohOnTpBCAEnJycMHjy4yj1YWlris88+Q2ZmJoyNjdGhQwf8+uuvMDLidB0iIiIienLMuEREVaMSQgilmyAiIiIiIiIiIiKiB3gaiYiIiIiIiIiIiEiP8KAtERERERERERERkR7hQVsiIiIiIiIiIiIiPcKDtkRERERERERERER6hAdtiYiIiIiIiIiIiPQID9oSERERERERERER6REetCUiIiIiIiIiIiLSIzxoS0RERERERERERKRHeNCWiIiIiIiIiIiISI/woC0RERERERERERGRHuFBWyIiIiIiIiIiIiI9woO2RERERERERERERHrk/wFF8wAO/ODlHQAAAABJRU5ErkJggg==",
|
2362
|
-
"text/plain": [
|
2363
|
-
"<Figure size 1400x600 with 2 Axes>"
|
2364
|
-
]
|
2365
|
-
},
|
2366
|
-
"metadata": {},
|
2367
|
-
"output_type": "display_data"
|
2368
|
-
},
|
2369
|
-
{
|
2370
|
-
"data": {
|
2371
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmj0lEQVR4nOzdd3QV1drH8d8hlZZQkxBKCEUIHUFphiJNUCmCgqgUAS9iAQIWUN+AekUQMBcBsVBVigooCldAKVJVSKgiBgwEISEGlFAkhGTeP1g5l8NJQsqcnAG/n7VmLc6ePfvZEyA8eZjZ22YYhiEAAAAAAAAAgCUUcfcEAAAAAAAAAAD/Q9EWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RZAoZg/f75sNluWx5gxY9w9vVvK9V9rX19fBQUFqV27dpo4caKSkpKcrhk/frxsNlue4ly8eFHjx4/Xxo0b83RdVrGqVq2q++67L0/j3MiiRYsUFRWV5Tmbzabx48ebGg8AAPyzXJ9zeXp6qlKlSho0aJBOnDhhaiybzaann37atPGOHj0qm82mKVOm3LBv5n0ePXrU3jZw4EBVrVrVoV/VqlU1cOBA++eTJ09q/Pjx2r17tzmTvm4+5LrkusCtztPdEwDwzzJv3jzVrl3boS04ONhNs7m1ZX6t09LSlJSUpC1btmjSpEmaMmWKli5dqg4dOtj7DhkyRPfcc0+exr948aImTJggSWrbtm2ur8tPrPxYtGiR9u/fr5EjRzqd2759uypVquTyOQAAgFtfZs71999/6/vvv9fEiRO1adMm7du3T8WLF3f39Ars3nvv1fbt21WhQoUc+61YsUJ+fn72zydPntSECRNUtWpVNWrUyPR5keuS6wK3Ooq2AApVvXr11LRp01z1TUtLsz+1gLy7/mvdq1cvjRo1SnfddZceeOABxcbGKjAwUJJUqVIllyd2Fy9eVLFixQol1o00b97crfEBAMCt49qcq127dkpPT9drr72mL774Qo888kiW12TmRTeD8uXLq3z58jfs17hx40KYzf+Q62aPXBe4NbA8AgBL2Lhxo2w2mz766CONHj1aFStWlI+Pjw4fPixJ+vbbb9W+fXv5+fmpWLFiatWqlb777juncVatWqVGjRrJx8dHoaGhmjJlitMrSpmvg82fP9/p+qxeJYqNjVW/fv0UEBAgHx8fhYWFaebMmVnOf/HixXrppZcUHBwsPz8/dejQQYcOHXKK880336h9+/by9/dXsWLFFBYWpokTJ0qSPvroI9lsNm3fvt3puldffVVeXl46efLkDb+mWalSpYqmTp2qc+fO6b333rO3Z/Ua1/r169W2bVuVLVtWRYsWVZUqVdSrVy9dvHhRR48etSfvEyZMsL+elvlKXOZ40dHR6t27t0qXLq3q1atnGyvTihUr1KBBA/n6+qpatWqaPn26w/msXs+T/vf1z3x9rW3btlq1apWOHTvm8Ppcpqx+n/fv36/u3burdOnS8vX1VaNGjbRgwYIs4+T29xkAAPzzZBbMjh07JunqUgIlSpTQvn371KlTJ5UsWVLt27eXJJ05c0bDhw9XxYoV5e3trWrVqumll15SampqlmO/9957uu222+Tj46M6depoyZIlDuf/+OMPDR8+XHXq1FGJEiUUEBCgu+++W5s3b85yvIyMDP373/9WlSpV5Ovrq6ZNmzrl2NnlX9e7dnmEjRs36o477pAkDRo0yJ6LjR8/nlyXXBdALvH4GoBClZ6eritXrji0Xfsk7dixY9WiRQvNnj1bRYoUUUBAgD7++GP1799f3bt314IFC+Tl5aX33ntPnTt31po1a+xJ73fffafu3burRYsWWrJkidLT0zV58mSdOnUq3/P9+eef1bJlS3sCGBQUpDVr1ujZZ59VcnKyIiMjHfqPGzdOrVq10ocffqiUlBS98MILuv/++3Xw4EF5eHhIkubMmaOhQ4eqTZs2mj17tgICAvTrr79q//79kqQ+ffro+eef18yZM9WiRQv72FeuXNF7772nnj17FmhJia5du8rDw0Pff/99tn2OHj2qe++9V+Hh4Zo7d65KlSqlEydO6JtvvtHly5dVoUIFffPNN7rnnns0ePBgDRkyRJKcnsJ44IEH1LdvXw0bNkwXLlzIcV67d+/WyJEjNX78eAUFBemTTz7RiBEjdPny5Tyvezxr1iw98cQTOnLkiFasWHHD/ocOHVLLli0VEBCg6dOnq2zZsvr44481cOBAnTp1Ss8//7xD/9z8PgMAgH+mzIcOrs2LLl++rG7duulf//qXXnzxRV25ckWXLl1Su3btdOTIEU2YMEENGjTQ5s2bNXHiRO3evVurVq1yGHflypXasGGDXn31VRUvXlyzZs3Sww8/LE9PT/Xu3VvS1SKwJEVGRiooKEjnz5/XihUr1LZtW3333XdOr/nPmDFDISEhioqKUkZGhiZPnqwuXbpo06ZNDnloXt1+++2aN2+eBg0apJdffln33nuvpKtPvAYEBJDrkusCyA0DAArBvHnzDElZHmlpacaGDRsMSUbr1q0drrtw4YJRpkwZ4/7773doT09PNxo2bGjceeed9rZmzZoZwcHBxt9//21vS0lJMcqUKWNc++0uLi7OkGTMmzfPaZ6SjMjISPvnzp07G5UqVTLOnj3r0O/pp582fH19jTNnzhiGYdjn37VrV4d+n376qSHJ2L59u2EYhnHu3DnDz8/PuOuuu4yMjIxsv16RkZGGt7e3cerUKXvb0qVLDUnGpk2bsr3OMP73tf7pp5+y7RMYGGiEhYU5xLv2a/T5558bkozdu3dnO8Yff/zh9PW6frz/+7//y/bctUJCQgybzeYUr2PHjoafn59x4cIFh3uLi4tz6Jf59d+wYYO97d577zVCQkKynPv18+7bt6/h4+NjxMfHO/Tr0qWLUaxYMeOvv/5yiHOj32cAAHDry8xLduzYYaSlpRnnzp0zvv76a6N8+fJGyZIljcTERMMwDGPAgAGGJGPu3LkO18+ePduQZHz66acO7ZMmTTIkGWvXrrW3STKKFi1qH9MwDOPKlStG7dq1jRo1amQ7xytXrhhpaWlG+/btjZ49e9rbM/Ph7HLnDh06ON3ntfnXgAEDnPKskJAQY8CAAfbPP/30U7Y5N7nuVeS6AHLC8ggACtXChQv1008/ORzXPmnbq1cvh/7btm3TmTNnNGDAAF25csV+ZGRk6J577tFPP/2kCxcu6MKFC/rpp5/0wAMPyNfX1359yZIldf/99+drrpcuXdJ3332nnj17qlixYg7xu3btqkuXLmnHjh0O13Tr1s3hc4MGDST97/W4bdu2KSUlRcOHD89xB9snn3xSkvTBBx/Y22bMmKH69eurdevW+bqfaxmGkeP5Ro0aydvbW0888YQWLFig3377LV9xrv/9zEndunXVsGFDh7Z+/fopJSVF0dHR+YqfW+vXr1f79u1VuXJlh/aBAwfq4sWLTq/v3ej3GQAA/HM0b95cXl5eKlmypO677z4FBQXpv//9r3091UzX50Xr169X8eLF7U/JZsp8Bf/6ZQrat2/vMKaHh4f69Omjw4cP6/fff7e3z549W7fffrt8fX3l6ekpLy8vfffddzp48KDT3LPLnb///nulp6fn7QuRB+S6V5HrAsgJRVsAhSosLExNmzZ1OK51/a60mUsb9O7dW15eXg7HpEmTZBiGzpw5oz///FMZGRkKCgpyiplVW26cPn1aV65c0TvvvOMUu2vXrpKk5ORkh2vKli3r8NnHx0eS9Pfff0u6us6YpBtuThAYGKg+ffrovffeU3p6uvbu3avNmzfr6aefzte9XOvChQs6ffp0jq+dVa9eXd9++60CAgL01FNPqXr16qpevbr+85//5CnWjXYZvlZOv3enT5/OU9y8On36dJZzzfwaXR//Rr/PAADgnyPzoYSYmBidPHlSe/fuVatWrRz6FCtWTH5+fg5tp0+fVlBQkNN/5AcEBMjT09Mp/8hNrjRt2jQ9+eSTatasmZYtW6YdO3bop59+0j333JNlnpLdmJcvX9b58+dzcff5Q67r2EauCyArrGkLwFKuT1rLlSsnSXrnnXey3QU1MDBQaWlpstlsSkxMdDp/fVvm0wTXb/BwfbJSunRpeXh46LHHHtNTTz2VZezQ0NAc7sZZ5jpY1z4NkZ0RI0boo48+0pdffqlvvvlGpUqVynYH4rxYtWqV0tPTndY0u154eLjCw8OVnp6unTt36p133tHIkSMVGBiovn375ipWTk8TXy+n37vMxDG737vri+d5VbZsWSUkJDi1Z26CkfnnEAAA4HqZDyXkJKucqGzZsvrhhx9kGIbD+aSkJF25csUp/8hNrvTxxx+rbdu2evfddx36nTt3Lst5ZTemt7e3SpQokeM9FRS5LrkugJzxpC0AS2vVqpVKlSqln3/+2ekJ3czD29tbxYsX15133qnly5fr0qVL9uvPnTunr776ymHMwMBA+fr6au/evQ7tX375pcPnYsWKqV27doqJiVGDBg2yjH39/0LfSMuWLeXv76/Zs2ff8LWtJk2aqGXLlpo0aZI++eQTDRw4UMWLF89TvOvFx8drzJgx8vf317/+9a9cXePh4aFmzZpp5syZkmR/fcvs/3E/cOCA9uzZ49C2aNEilSxZUrfffrukq7sSS3L6vVu5cqXTeD4+PrmeW/v27bV+/XqnnYoXLlyoYsWKZfsfBgAAAPnVvn17nT9/Xl988YVD+8KFC+3nr/Xdd985bLCbnp6upUuXqnr16va3uGw2mz1Hy7R3716n198zZZc7h4eHF3jDqRvliuS65LoAcsaTtgAsrUSJEnrnnXc0YMAAnTlzRr1791ZAQID++OMP7dmzR3/88Yf9SYLXXntN99xzjzp27KjRo0crPT1dkyZNUvHixe076UpXk9lHH31Uc+fOVfXq1dWwYUP9+OOPWrRokVP8//znP7rrrrsUHh6uJ598UlWrVtW5c+d0+PBhffXVV1q/fn2e72fq1KkaMmSIOnTooKFDhyowMFCHDx/Wnj17NGPGDIf+I0aMUJ8+fWSz2TR8+PA8xdq/f799Dd6kpCRt3rxZ8+bNk4eHh1asWOG0++21Zs+erfXr1+vee+9VlSpVdOnSJc2dO1eS1KFDB0lX1zwLCQnRl19+qfbt26tMmTIqV66cPdnMq+DgYHXr1k3jx49XhQoV9PHHH2vdunWaNGmSihUrJkm64447VKtWLY0ZM0ZXrlxR6dKltWLFCm3ZssVpvPr162v58uV699131aRJExUpUiTbp2AiIyP19ddfq127dvq///s/lSlTRp988olWrVqlyZMny9/fP1/3BAAAkJ3+/ftr5syZGjBggI4ePar69etry5YteuONN9S1a1d7zpWpXLlyuvvuu/XKK6+oePHimjVrln755RctWbLE3ue+++7Ta6+9psjISLVp00aHDh3Sq6++qtDQUF25csVpDh4eHurYsaMiIiKUkZGhSZMmKSUlRRMmTCjw/VWvXl1FixbVJ598orCwMJUoUULBwcEOyxaQ65LrAsgeRVsAlvfoo4+qSpUqmjx5sv71r3/p3LlzCggIUKNGjewbNUhSx44d9cUXX+jll19Wnz59FBQUpOHDh+vvv/92SjynTp0qSZo8ebLOnz+vu+++W19//bVTElanTh1FR0frtdde08svv6ykpCSVKlVKNWvWtK9rm1eDBw9WcHCwJk2apCFDhsgwDFWtWlUDBgxw6tujRw/5+PioXbt2qlmzZp7iDBo0SJLk7e2tUqVKKSwsTC+88IKGDBmSYxIrXd2cYe3atYqMjFRiYqJKlCihevXqaeXKlerUqZO935w5c/Tcc8+pW7duSk1N1YABAzR//vw8zfPamIMGDVJkZKRiY2MVHBysadOmadSoUfY+Hh4e+uqrr/T0009r2LBh8vHxUd++fTVjxgzde++9DuONGDFCBw4c0Lhx43T27FkZhpHt0821atXStm3bNG7cOD311FP6+++/FRYWpnnz5jn8GQMAADCLr6+vNmzYoJdeeklvvfWW/vjjD1WsWFFjxoxRZGSkU/9u3bqpbt26evnllxUfH6/q1avrk08+UZ8+fex9XnrpJV28eFFz5szR5MmTVadOHc2ePVsrVqzQxo0bncZ8+umndenSJT377LNKSkpS3bp1tWrVKqc1efOjWLFimjt3riZMmKBOnTopLS1NkZGRGj9+vL0PuS65LoDs2YwbvZ8LADe58ePHa8KECTdcjsCKvvrqK3Xr1k2rVq3Kd5EYAAAAsCJyXQDIHk/aAoAF/fzzzzp27JhGjx6tRo0aqUuXLu6eEgAAAGAKcl0AuDE2IgMACxo+fLi6deum0qVLa/HixXnamRYAAACwMnJdALgxlkcAAAAAAAAAAAvhSVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCPN09ASvKyMjQyZMnVbJkSRZEBwAAcBPDMHTu3DkFBwerSBGeNSgoclwAAAD3y22OS9E2CydPnlTlypXdPQ0AAABIOn78uCpVquTuadz0yHEBAACs40Y5LkXbLJQsWVLS1S+en5+fm2cDAADwz5SSkqLKlSvbczMUDDkuAACA++U2x6Vom4XM18X8/PxIaAEAANyMV/nNQY4LAABgHTfKcVkcDAAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQT3dPAFe9GZPssrFfbFzOZWMDAAAA2UmbMNplY3tFTnXZ2AAAAO7Gk7YAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxK1F2++//17333+/goODZbPZ9MUXXzict9lsWR5vvfVWtmPOnz8/y2suXbrk4rsBAAAAAAAAgIJza9H2woULatiwoWbMmJHl+YSEBIdj7ty5stls6tWrV47j+vn5OV3r6+vrilsAAAAAAAAAAFN5ujN4ly5d1KVLl2zPBwUFOXz+8ssv1a5dO1WrVi3HcW02m9O1AAAAAAAAAHAzuGnWtD116pRWrVqlwYMH37Dv+fPnFRISokqVKum+++5TTExMIcwQAAAAAAAAAArupinaLliwQCVLltQDDzyQY7/atWtr/vz5WrlypRYvXixfX1+1atVKsbGx2V6TmpqqlJQUhwMAAAAAAAAA3OGmKdrOnTtXjzzyyA3Xpm3evLkeffRRNWzYUOHh4fr0009122236Z133sn2mokTJ8rf399+VK5c2ezpAwAAAAAAAECu3BRF282bN+vQoUMaMmRInq8tUqSI7rjjjhyftB07dqzOnj1rP44fP16Q6QIAAAAAAABAvrl1I7LcmjNnjpo0aaKGDRvm+VrDMLR7927Vr18/2z4+Pj7y8fEpyBQBAAAAAAAAwBRuLdqeP39ehw8ftn+Oi4vT7t27VaZMGVWpUkWSlJKSos8++0xTp07Ncoz+/furYsWKmjhxoiRpwoQJat68uWrWrKmUlBRNnz5du3fv1syZM11/QwAAAAAAAABQQG4t2u7cuVPt2rWzf46IiJAkDRgwQPPnz5ckLVmyRIZh6OGHH85yjPj4eBUp8r9VHv766y898cQTSkxMlL+/vxo3bqzvv/9ed955p+tuBAAAAAAAAABMYjMMw3D3JKwmJSVF/v7+Onv2rPz8/Aol5psxyS4b+8XG5Vw2NgAAgKu4Iye7lbnj65k2YbTLxvaKzPpNPAAAACvLbU52U2xEBgAAAAAAAAD/FBRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAABAHsyaNUuhoaHy9fVVkyZNtHnz5hz7b9q0SU2aNJGvr6+qVaum2bNnO5z/4IMPFB4ertKlS6t06dLq0KGDfvzxR4c+48ePl81mcziCgoJMvzcAAABYA0VbAAAAIJeWLl2qkSNH6qWXXlJMTIzCw8PVpUsXxcfHZ9k/Li5OXbt2VXh4uGJiYjRu3Dg9++yzWrZsmb3Pxo0b9fDDD2vDhg3avn27qlSpok6dOunEiRMOY9WtW1cJCQn2Y9++fS69VwAAALiPp7snAAAAANwspk2bpsGDB2vIkCGSpKioKK1Zs0bvvvuuJk6c6NR/9uzZqlKliqKioiRJYWFh2rlzp6ZMmaJevXpJkj755BOHaz744AN9/vnn+u6779S/f397u6enJ0/XAgAA/EPwpC0AAACQC5cvX9auXbvUqVMnh/ZOnTpp27ZtWV6zfft2p/6dO3fWzp07lZaWluU1Fy9eVFpamsqUKePQHhsbq+DgYIWGhqpv37767bffCnA3AAAAsDKKtgAAAEAuJCcnKz09XYGBgQ7tgYGBSkxMzPKaxMTELPtfuXJFycnJWV7z4osvqmLFiurQoYO9rVmzZlq4cKHWrFmjDz74QImJiWrZsqVOnz6d7XxTU1OVkpLicAAAAODmQNEWAAAAyAObzebw2TAMp7Yb9c+qXZImT56sxYsXa/ny5fL19bW3d+nSRb169VL9+vXVoUMHrVq1SpK0YMGCbONOnDhR/v7+9qNy5co3vjkAAABYAkVbAAAAIBfKlSsnDw8Pp6dqk5KSnJ6mzRQUFJRlf09PT5UtW9ahfcqUKXrjjTe0du1aNWjQIMe5FC9eXPXr11dsbGy2fcaOHauzZ8/aj+PHj+c4JgAAAKyDoi0AAACQC97e3mrSpInWrVvn0L5u3Tq1bNkyy2tatGjh1H/t2rVq2rSpvLy87G1vvfWWXnvtNX3zzTdq2rTpDeeSmpqqgwcPqkKFCtn28fHxkZ+fn8MBAACAmwNFWwAAACCXIiIi9OGHH2ru3Lk6ePCgRo0apfj4eA0bNkzS1adb+/fvb+8/bNgwHTt2TBERETp48KDmzp2rOXPmaMyYMfY+kydP1ssvv6y5c+eqatWqSkxMVGJios6fP2/vM2bMGG3atElxcXH64Ycf1Lt3b6WkpGjAgAGFd/MAAAAoNJ7ungAAAABws+jTp49Onz6tV199VQkJCapXr55Wr16tkJAQSVJCQoLi4+Pt/UNDQ7V69WqNGjVKM2fOVHBwsKZPn65evXrZ+8yaNUuXL19W7969HWJFRkZq/PjxkqTff/9dDz/8sJKTk1W+fHk1b95cO3bssMcFAADArcVmZO6EALuUlBT5+/vr7NmzhfYa2ZsxWe8ebIYXG5dz2dgAAACu4o6c7Fbmjq9n2oTRLhvbK3Kqy8YGAABwldzmZCyPAAAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBC3Fq0/f7773X//fcrODhYNptNX3zxhcP5gQMHymazORzNmze/4bjLli1TnTp15OPjozp16mjFihUuugMAAAAAAAAAMJdbi7YXLlxQw4YNNWPGjGz73HPPPUpISLAfq1evznHM7du3q0+fPnrssce0Z88ePfbYY3rooYf0ww8/mD19AAAAAAAAADCdpzuDd+nSRV26dMmxj4+Pj4KCgnI9ZlRUlDp27KixY8dKksaOHatNmzYpKipKixcvLtB8AQAAAAAAAMDVLL+m7caNGxUQEKDbbrtNQ4cOVVJSUo79t2/frk6dOjm0de7cWdu2bXPlNAEAAAAAAADAFG590vZGunTpogcffFAhISGKi4vTK6+8orvvvlu7du2Sj49PltckJiYqMDDQoS0wMFCJiYnZxklNTVVqaqr9c0pKijk3AAAAAAAAAAB5ZOmibZ8+fey/rlevnpo2baqQkBCtWrVKDzzwQLbX2Ww2h8+GYTi1XWvixImaMGFCwScMAAAAAAAAAAVk+eURrlWhQgWFhIQoNjY22z5BQUFOT9UmJSU5PX17rbFjx+rs2bP24/jx46bNGQAAAAAAAADy4qYq2p4+fVrHjx9XhQoVsu3TokULrVu3zqFt7dq1atmyZbbX+Pj4yM/Pz+EAAAAAAAAAAHdw6/II58+f1+HDh+2f4+LitHv3bpUpU0ZlypTR+PHj1atXL1WoUEFHjx7VuHHjVK5cOfXs2dN+Tf/+/VWxYkVNnDhRkjRixAi1bt1akyZNUvfu3fXll1/q22+/1ZYtWwr9/gAAAAAAAAAgr9xatN25c6fatWtn/xwRESFJGjBggN59913t27dPCxcu1F9//aUKFSqoXbt2Wrp0qUqWLGm/Jj4+XkWK/O+B4ZYtW2rJkiV6+eWX9corr6h69epaunSpmjVrVng3BgAAAAAAAAD55Naibdu2bWUYRrbn16xZc8MxNm7c6NTWu3dv9e7duyBTAwAAAAAAAAC3uKnWtAUAAAAAAACAWx1FWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAABAHsyaNUuhoaHy9fVVkyZNtHnz5hz7b9q0SU2aNJGvr6+qVaum2bNnO5z/4IMPFB4ertKlS6t06dLq0KGDfvzxxwLHBQAAwM2Loi0AAACQS0uXLtXIkSP10ksvKSYmRuHh4erSpYvi4+Oz7B8XF6euXbsqPDxcMTExGjdunJ599lktW7bM3mfjxo16+OGHtWHDBm3fvl1VqlRRp06ddOLEiXzHBQAAwM3NZhiG4e5JWE1KSor8/f119uxZ+fn5FUrMN2OSXTb2i43LuWxsAAAAV3FHTnYjzZo10+233653333X3hYWFqYePXpo4sSJTv1feOEFrVy5UgcPHrS3DRs2THv27NH27duzjJGenq7SpUtrxowZ6t+/f77iZsUdX8+0CaNdNrZX5FSXjQ0AAOAquc3JeNIWAAAAyIXLly9r165d6tSpk0N7p06dtG3btiyv2b59u1P/zp07a+fOnUpLS8vymosXLyotLU1lypTJd1wAAADc3DzdPQEAAADgZpCcnKz09HQFBgY6tAcGBioxMTHLaxITE7Psf+XKFSUnJ6tChQpO17z44ouqWLGiOnTokO+4kpSamqrU1FT755SUlJxvEAAAAJbBk7YAAABAHthsNofPhmE4td2of1btkjR58mQtXrxYy5cvl6+vb4HiTpw4Uf7+/vajcuXK2fYFAACAtVC0BQAAAHKhXLly8vDwcHq6NSkpyekp2ExBQUFZ9vf09FTZsmUd2qdMmaI33nhDa9euVYMGDQoUV5LGjh2rs2fP2o/jx4/n6j4BAADgfiyP8A/FxmcAAAB54+3trSZNmmjdunXq2bOnvX3dunXq3r17lte0aNFCX331lUPb2rVr1bRpU3l5ednb3nrrLb3++utas2aNmjZtWuC4kuTj4yMfH5883ePNjo3PAADArYKiLQAAAJBLEREReuyxx9S0aVO1aNFC77//vuLj4zVs2DBJV59uPXHihBYuXChJGjZsmGbMmKGIiAgNHTpU27dv15w5c7R48WL7mJMnT9Yrr7yiRYsWqWrVqvYnakuUKKESJUrkKi4AAABuLRRtAQAAgFzq06ePTp8+rVdffVUJCQmqV6+eVq9erZCQEElSQkKC4uPj7f1DQ0O1evVqjRo1SjNnzlRwcLCmT5+uXr162fvMmjVLly9fVu/evR1iRUZGavz48bmKCwAAgFsLRVsAAAAgD4YPH67hw4dneW7+/PlObW3atFF0dHS24x09erTAcQEAAHBrYSMyAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFuLVo+/333+v+++9XcHCwbDabvvjiC/u5tLQ0vfDCC6pfv76KFy+u4OBg9e/fXydPnsxxzPnz58tmszkdly5dcvHdAAAAAAAAAEDBubVoe+HCBTVs2FAzZsxwOnfx4kVFR0frlVdeUXR0tJYvX65ff/1V3bp1u+G4fn5+SkhIcDh8fX1dcQsAAAAAAAAAYCpPdwbv0qWLunTpkuU5f39/rVu3zqHtnXfe0Z133qn4+HhVqVIl23FtNpuCgoJMnSsAAAAAAAAAFIabak3bs2fPymazqVSpUjn2O3/+vEJCQlSpUiXdd999iomJybF/amqqUlJSHA4AAAAAAAAAcIebpmh76dIlvfjii+rXr5/8/Pyy7Ve7dm3Nnz9fK1eu1OLFi+Xr66tWrVopNjY222smTpwof39/+1G5cmVX3AIAAAAAAAAA3NBNUbRNS0tT3759lZGRoVmzZuXYt3nz5nr00UfVsGFDhYeH69NPP9Vtt92md955J9trxo4dq7Nnz9qP48ePm30LAAAAAAAAAJArbl3TNjfS0tL00EMPKS4uTuvXr8/xKdusFClSRHfccUeOT9r6+PjIx8enoFMFAAAAAAAAgAKz9JO2mQXb2NhYffvttypbtmyexzAMQ7t371aFChVcMEMAAAAAAAAAMJdbn7Q9f/68Dh8+bP8cFxen3bt3q0yZMgoODlbv3r0VHR2tr7/+Wunp6UpMTJQklSlTRt7e3pKk/v37q2LFipo4caIkacKECWrevLlq1qyplJQUTZ8+Xbt379bMmTML/wYBAAAAAAAAII/cWrTduXOn2rVrZ/8cEREhSRowYIDGjx+vlStXSpIaNWrkcN2GDRvUtm1bSVJ8fLyKFPnfA8N//fWXnnjiCSUmJsrf31+NGzfW999/rzvvvNO1NwMAAAAAAAAAJnBr0bZt27YyDCPb8zmdy7Rx40aHz2+//bbefvvtgk4NAAAAAAAAANzC0mvaAgAAAAAAAMA/DUVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFeLp7AvhneDMm2WVjv9i4XKHGzC4eAAAA/lnSJox22dhekVPdHg8AALgPT9oCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAgFve/PnzdfHiRXdPAwAAAMiVfBVt4+LizJ4HAAAA4DJjx45VUFCQBg8erG3btrl7OgAAAECO8lW0rVGjhtq1a6ePP/5Yly5dMntOAAAAgKl+//13ffzxx/rzzz/Vrl071a5dW5MmTVJiYqK7pwYAAAA4yVfRds+ePWrcuLFGjx6toKAg/etf/9KPP/5o9twAAAAAU3h4eKhbt25avny5jh8/rieeeEKffPKJqlSpom7duunLL79URkaGu6cJAAAASMpn0bZevXqaNm2aTpw4oXnz5ikxMVF33XWX6tatq2nTpumPP/4we54AAACAKQICAtSqVSu1aNFCRYoU0b59+zRw4EBVr15dGzdudPf0AAAAgIJtRObp6amePXvq008/1aRJk3TkyBGNGTNGlSpVUv/+/ZWQkGDWPAEAAIACOXXqlKZMmaK6deuqbdu2SklJ0ddff624uDidPHlSDzzwgAYMGODuaQIAAAAFK9ru3LlTw4cPV4UKFTRt2jSNGTNGR44c0fr163XixAl1797drHkCAAAA+Xb//fercuXKmj9/voYOHaoTJ05o8eLF6tChgySpaNGiGj16tI4fP+7mmQIAAACSZ34umjZtmubNm6dDhw6pa9euWrhwobp27aoiRa7WgENDQ/Xee++pdu3apk4WAAAAyI+AgABt2rRJLVq0yLZPhQoVFBcXV4izAgAAALKWrydt3333XfXr10/x8fH64osvdN9999kLtpmqVKmiOXPmmDJJAAAAoCDatGmj22+/3an98uXLWrhwoSTJZrMpJCSksKcGAAAAOMlX0TY2NlZjx45VUFBQtn28vb1ZEwwAAACWMGjQIJ09e9ap/dy5cxo0aJAbZgQAAABkL19F23nz5umzzz5zav/ss8+0YMGCAk8KAAAAMJNhGLLZbE7tv//+u/z9/d0wIwAAACB7+VrT9s0339Ts2bOd2gMCAvTEE0/whC0AAAAsoXHjxrLZbLLZbGrfvr08Pf+X/qanpysuLk733HOPG2cIAAAAOMtX0fbYsWMKDQ11ag8JCVF8fHyBJwUAAACYoUePHpKk3bt3q3PnzipRooT9nLe3t6pWrapevXq5aXYAAABA1vJVtA0ICNDevXtVtWpVh/Y9e/aobNmyZswLAAAAKLDIyEhJUtWqVdWnTx/5+vq6eUYAAADAjeWraNu3b189++yzKlmypFq3bi1J2rRpk0aMGKG+ffuaOkEAAACgoFi+CwAAADeTfBVtX3/9dR07dsxhXbCMjAz1799fb7zxhqkTBAAAAPKjTJky+vXXX1WuXDmVLl06y43IMp05c6YQZwYAAADkLF9FW29vby1dulSvvfaa9uzZo6JFi6p+/foKCQnJ0zjff/+93nrrLe3atUsJCQlasWKFfd0x6eouvxMmTND777+vP//8U82aNdPMmTNVt27dHMddtmyZXnnlFR05ckTVq1fXv//9b/Xs2TM/twoAAICb1Ntvv62SJUvaf51T0RYAAACwknwVbTPddtttuu222/J9/YULF9SwYUMNGjQoyw0gJk+erGnTpmn+/Pm67bbb9Prrr6tjx446dOiQPQG/3vbt29WnTx+99tpr6tmzp1asWKGHHnpIW7ZsUbNmzfI9VwAAANxcrl0SYeDAge6bCAAAAJBH+Srapqena/78+fruu++UlJSkjIwMh/Pr16/P1ThdunRRly5dsjxnGIaioqL00ksv6YEHHpAkLViwQIGBgVq0aJH+9a9/ZXldVFSUOnbsqLFjx0qSxo4dq02bNikqKkqLFy/O7S0CAADgJpeSkpLrvn5+fi6cCQAAAJA3+SrajhgxQvPnz9e9996revXqueRVs7i4OCUmJqpTp072Nh8fH7Vp00bbtm3Ltmi7fft2jRo1yqGtc+fOioqKMn2OAAAAsK5SpUrdME81DEM2m03p6emFNCsAAADgxvJVtF2yZIk+/fRTde3a1ez52CUmJkqSAgMDHdoDAwN17NixHK/L6prM8bKSmpqq1NRU++e8PJUBAAAAa9qwYYO7pwAAAADkS743IqtRo4bZc8nS9U9HZD4NYeY1EydO1IQJE/I/SUDSmzHJLhn3xcbl/pHxAAAoqDZt2rhk3FmzZumtt95SQkKC6tatq6ioKIWHh2fbf9OmTYqIiNCBAwcUHBys559/XsOGDbOfP3DggP7v//5Pu3bt0rFjx/T2229r5MiRDmOMHz/eKV+90YMJgBnSJox2ybhekVP/kfEAAMitIvm5aPTo0frPf/4jwzDMno9dUFCQJDkloklJSU5P0l5/XV6vGTt2rM6ePWs/jh8/XoCZAwAAwAr27t1r33th7969OR65tXTpUo0cOVIvvfSSYmJiFB4eri5duig+Pj7L/nFxceratavCw8MVExOjcePG6dlnn9WyZcvsfS5evKhq1arpzTfftOfAWalbt64SEhLsx759+3I9bwAAANxc8vWk7ZYtW7Rhwwb997//Vd26deXl5eVwfvny5QWeWGhoqIKCgrRu3To1btxYknT58mVt2rRJkyZNyva6Fi1aaN26dQ7r2q5du1YtW7bM9hofHx/5+PgUeM4AAACwjkaNGikxMVEBAQFq1KiRbDZblg8d5GVN22nTpmnw4MEaMmSIpKub4K5Zs0bvvvuuJk6c6NR/9uzZqlKlin1/hbCwMO3cuVNTpkxRr169JEl33HGH7rjjDknSiy++mG1sT0/PHIu6AAAAuHXkq2hbqlQp9ezZs8DBz58/r8OHD9s/x8XFaffu3SpTpoyqVKmikSNH6o033lDNmjVVs2ZNvfHGGypWrJj69etnv6Z///6qWLGiPUkeMWKEWrdurUmTJql79+768ssv9e2332rLli0Fni8AAABuHnFxcSpfvrz91wV1+fJl7dq1y6mw2qlTJ23bti3La7Zv3+6wsa50dZPcOXPmKC0tzenhh5zExsYqODhYPj4+atasmd544w1Vq1Yt2/7s2wAAAHDzylfRdt68eaYE37lzp9q1a2f/HBERIUkaMGCA5s+fr+eff15///23hg8frj///FPNmjXT2rVrVbJkSfs18fHxKlLkf6s8tGzZUkuWLNHLL7+sV155RdWrV9fSpUvVrFkzU+YMAACAm0NISEiWv86v5ORkpaen52nT2+w2yb1y5YqSk5NVoUKFXMVu1qyZFi5cqNtuu02nTp3S66+/rpYtW+rAgQMqW7ZsltewbwMAAMDNK19FW0m6cuWKNm7cqCNHjqhfv34qWbKkTp48KT8/P5UoUSJXY7Rt2zbHdXFtNpvGjx+v8ePHZ9tn48aNTm29e/dW7969czUHAAAA/DMcOnRI77zzjg4ePCibzabatWvrmWeeUa1atfI0Tl43vc2qf1btOenSpYv91/Xr11eLFi1UvXp1LViwwP7gw/XGjh3rcC4lJUWVK1fOdUwAAAC4T76KtseOHdM999yj+Ph4paamqmPHjipZsqQmT56sS5cuafbs2WbPEwAAAMi3zz//XA8//LCaNm2qFi1aSJJ27NihevXqadGiRXrwwQdvOEa5cuXk4eGRp01vs9sk19PTM9snZHOjePHiql+/vmJjY7Ptw74NAAAAN68iN+7ibMSIEWratKn+/PNPFS1a1N7es2dPfffdd6ZNDgAAADDD888/r7Fjx2r79u2aNm2apk2bpm3btmncuHF64YUXcjWGt7e3mjRponXr1jm0r1u3LttNbzM3yb3W2rVr1bRp0zytZ3u91NRUHTx4MNfLKwAAAODmkq+i7ZYtW/Tyyy/L29vboT0kJEQnTpwwZWIAAACAWRITE9W/f3+n9kcffTTb9WizEhERoQ8//FBz587VwYMHNWrUKMXHx2vYsGGSri5JcG2cYcOG6dixY4qIiNDBgwc1d+5czZkzR2PGjLH3uXz5snbv3q3du3fr8uXLOnHihHbv3u2wYe+YMWO0adMmxcXF6YcfflDv3r2VkpKiAQMG5OfLAQAAAIvL1/IIGRkZSk9Pd2r//fffHTYJAwAAAKygbdu22rx5s2rUqOHQvmXLFoWHh+d6nD59+uj06dN69dVXlZCQoHr16mn16tX2jc4SEhIUHx9v7x8aGqrVq1dr1KhRmjlzpoKDgzV9+nT16tXL3ufkyZNq3Lix/fOUKVM0ZcoUtWnTxr5/w++//66HH35YycnJKl++vJo3b64dO3aYssEaAAAArCdfRduOHTsqKipK77//vqSrmyicP39ekZGR6tq1q6kTBAAAAPJj5cqV9l9369ZNL7zwgnbt2qXmzZtLurqm7WeffaYJEybkadzhw4dr+PDhWZ6bP3++U1ubNm0UHR2d7XhVq1bNcXNeSVqyZEme5ggAAICbW76Ktm+//bbatWunOnXq6NKlS+rXr59iY2NVrlw5LV682Ow5AgAAAHnWo0cPp7ZZs2Zp1qxZDm1PPfWUfXkDAAAAwAryVbQNDg7W7t27tXjxYkVHRysjI0ODBw/WI4884rAxGQAAAOAuGRkZ7p4CAAAAkC/5KtpKUtGiRfX444/r8ccfN3M+AAAAAAAAAPCPlq+i7cKFC3M8n9XOvAAAAIA7XbhwQZs2bVJ8fLwuX77scO7ZZ59106wAAAAAZ/kq2o4YMcLhc1pami5evChvb28VK1aMoi0AAAAsJSYmRl27dtXFixd14cIFlSlTRsnJySpWrJgCAgIo2gIAAMBSiuTnoj///NPhOH/+vA4dOqS77rqLjcgAAABgOaNGjdL999+vM2fOqGjRotqxY4eOHTumJk2aaMqUKe6eHgAAAOAgX0XbrNSsWVNvvvmm01O4AAAAgLvt3r1bo0ePloeHhzw8PJSamqrKlStr8uTJGjdunLunBwAAADgwrWgrSR4eHjp58qSZQwIAAAAF5uXlJZvNJkkKDAxUfHy8JMnf39/+awAAAMAq8rWm7cqVKx0+G4ahhIQEzZgxQ61atTJlYgAAAIBZGjdurJ07d+q2225Tu3bt9H//939KTk7WRx99pPr167t7egAAAICDfBVte/To4fDZZrOpfPnyuvvuuzV16lQz5gUAAACY5o033tC5c+ckSa+99poGDBigJ598UjVq1NC8efPcPDsAAADAUb6KthkZGWbPAwAAAHCZpk2b2n9dvnx5rV692o2zAQAAAHKWr6ItAAAAcDNKSkrSoUOHZLPZVKtWLZUvX97dUwIAAACc5KtoGxERkeu+06ZNy08IAAAAwDQpKSl66qmntGTJEqWnp0u6uolunz59NHPmTPn7+7t5hgAAAMD/5KtoGxMTo+joaF25ckW1atWSJP3666/y8PDQ7bffbu+XuUMvAAAA4E5DhgzR7t279fXXX6tFixay2Wzatm2bRowYoaFDh+rTTz919xQBAAAAu3wVbe+//36VLFlSCxYsUOnSpSVJf/75pwYNGqTw8HCNHj3a1EkCAAAABbFq1SqtWbNGd911l72tc+fO+uCDD3TPPfe4cWYAAACAsyL5uWjq1KmaOHGivWArSaVLl9brr7+uqVOnmjY5AAAAwAxly5bNcgkEf39/h5wWAAAAsIJ8FW1TUlJ06tQpp/akpCSdO3euwJMCAAAAzPTyyy8rIiJCCQkJ9rbExEQ999xzeuWVV9w4MwAAAMBZvpZH6NmzpwYNGqSpU6eqefPmkqQdO3boueee0wMPPGDqBAEAAID8aNy4scMeC7GxsQoJCVGVKlUkSfHx8fLx8dEff/yhf/3rX+6aJgAAAOAkX0Xb2bNna8yYMXr00UeVlpZ2dSBPTw0ePFhvvfWWqRMEAAAA8qNHjx7ungIAAACQL/kq2hYrVkyzZs3SW2+9pSNHjsgwDNWoUUPFixc3e34AAABAvkRGRrp7CgAAAEC+5KtomykhIUEJCQlq3bq1ihYtKsMwHF5BAwAAAKxk165dOnjwoGw2m+rUqaPGjRu7e0oAAACAk3wVbU+fPq2HHnpIGzZskM1mU2xsrKpVq6YhQ4aoVKlSmjp1qtnzBAAAAPItKSlJffv21caNG1WqVCkZhqGzZ8+qXbt2WrJkicqXL+/uKQIAAAB2RfJz0ahRo+Tl5aX4+HgVK1bM3t6nTx998803pk0OAAAAMMMzzzyjlJQUHThwQGfOnNGff/6p/fv3KyUlRc8++6y7pwcAAAA4yNeTtmvXrtWaNWtUqVIlh/aaNWvq2LFjpkwMAAAAMMs333yjb7/9VmFhYfa2OnXqaObMmerUqZMbZwYAAAA4y9eTthcuXHB4wjZTcnKyfHx8CjwpAAAAwEwZGRny8vJyavfy8lJGRoYbZgQAAABkL19F29atW2vhwoX2zzabTRkZGXrrrbfUrl070yYHAAAAmOHuu+/WiBEjdPLkSXvbiRMnNGrUKLVv396NMwMAAACc5Wt5hLfeektt27bVzp07dfnyZT3//PP29cG2bt1q9hwBAACAApkxY4a6d++uqlWrqnLlyrLZbIqPj1f9+vX18ccfu3t6AAAAgIN8FW3r1KmjvXv36t1335WHh4cuXLigBx54QE899ZQqVKhg9hwBAACAAqlcubKio6O1bt06/fLLLzIMQ3Xq1FGHDh3cPTUAAADASZ6LtmlpaerUqZPee+89TZgwwRVzAgAAAExz5coV+fr6avfu3erYsaM6duzo7ikBAAAAOcrzmrZeXl7av3+/bDabK+YDAAAAmMrT01MhISFKT09391QAAACAXMnXRmT9+/fXnDlzzJ4LAAAA4BIvv/yyxo4dqzNnzrh7KgAAAMAN5WtN28uXL+vDDz/UunXr1LRpUxUvXtzh/LRp00yZHAAAAGCG6dOn6/DhwwoODlZISIhT/hodHe2mmQEAAADO8lS0/e2331S1alXt379ft99+uyTp119/dejDsgkAAACwmh49eshms8kwDHdPBQAAALihPBVta9asqYSEBG3YsEGS1KdPH02fPl2BgYEumRwAAABQEBcvXtRzzz2nL774QmlpaWrfvr3eeecdlStXzt1TAwAAALKVpzVtr38y4b///a8uXLhg6oQAAAAAs0RGRmr+/Pm699579fDDD+vbb7/Vk08+6e5pAQAAADnK15q2mXi9DAAAAFa2fPlyzZkzR3379pUkPfLII2rVqpXS09Pl4eHh5tkBAAAAWcvTk7Y2m81pzVrWsAUAAIBVHT9+XOHh4fbPd955pzw9PXXy5Ek3zgoAAADIWZ6etDUMQwMHDpSPj48k6dKlSxo2bJjT7rvLly83b4YA/pHejEl22dgvNnZex/BWjwcA/1Tp6eny9vZ2aPP09NSVK1fcNCMA/2RpE0a7bGyvyKn/uHgAcCvLU9F2wIABDp8fffRRUycDAAAAmOn6hw6krB884KEDAAAAWEmeirbz5s1z1TwAAAAA013/0IHEgwcAAACwvgJtRAYAAABYGQ8dAAAA4GaUp43IAAAAAAAAAACuRdEWAAAAAAAAACyEoi0AAAAAAAAAWIjli7ZVq1aVzWZzOp566qks+2/cuDHL/r/88kshzxwAAAAAAAAA8s7yG5H99NNPSk9Pt3/ev3+/OnbsqAcffDDH6w4dOiQ/Pz/75/Lly7tsjgAAAAAAAABgFssXba8vtr755puqXr262rRpk+N1AQEBKlWqlAtnBgAAAAAAAADms/zyCNe6fPmyPv74Yz3++OOy2Ww59m3cuLEqVKig9u3ba8OGDYU0QwAAAAAAAAAoGMs/aXutL774Qn/99ZcGDhyYbZ8KFSro/fffV5MmTZSamqqPPvpI7du318aNG9W6dessr0lNTVVqaqr9c0pKitlTBwAAAAAAAIBcuamKtnPmzFGXLl0UHBycbZ9atWqpVq1a9s8tWrTQ8ePHNWXKlGyLthMnTtSECRNMny8AAAAAAAAA5NVNszzCsWPH9O2332rIkCF5vrZ58+aKjY3N9vzYsWN19uxZ+3H8+PGCTBUAAAAAAAAA8u2medJ23rx5CggI0L333pvna2NiYlShQoVsz/v4+MjHx6cg0wMAAAAAAAAAU9wURduMjAzNmzdPAwYMkKen45THjh2rEydOaOHChZKkqKgoVa1aVXXr1rVvXLZs2TItW7bMHVMHAAAAAAAAgDy5KYq23377reLj4/X44487nUtISFB8fLz98+XLlzVmzBidOHFCRYsWVd26dbVq1Sp17dq1MKcMAAAAAAAAAPlyUxRtO3XqJMMwsjw3f/58h8/PP/+8nn/++UKYFQAAAAAAAACY76bZiAwAAAAAAAAA/gko2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYiKe7JwAAcL03Y5JdNvaLjcsVakyrxAMAAIB7pU0Y7bKxvSKnFmpMq8QDYB08aQsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAgDyYNWuWQkND5evrqyZNmmjz5s059t+0aZOaNGkiX19fVatWTbNnz3Y4f+DAAfXq1UtVq1aVzWZTVFSUKXEBAABw86JoCwAAAOTS0qVLNXLkSL300kuKiYlReHi4unTpovj4+Cz7x8XFqWvXrgoPD1dMTIzGjRunZ599VsuWLbP3uXjxoqpVq6Y333xTQUFBpsQFAADAzY2iLQAAAJBL06ZN0+DBgzVkyBCFhYUpKipKlStX1rvvvptl/9mzZ6tKlSqKiopSWFiYhgwZoscff1xTpkyx97njjjv01ltvqW/fvvLx8TElLgAAAG5uFG0BAACAXLh8+bJ27dqlTp06ObR36tRJ27Zty/Ka7du3O/Xv3Lmzdu7cqbS0NJfFlaTU1FSlpKQ4HAAAALg5ULQFAAAAciE5OVnp6ekKDAx0aA8MDFRiYmKW1yQmJmbZ/8qVK0pOTnZZXEmaOHGi/P397UflypVzFQ8AAADuR9EWAAAAyAObzebw2TAMp7Yb9c+q3ey4Y8eO1dmzZ+3H8ePH8xQPAAAA7uPp7gkAAAAAN4Ny5crJw8PD6enWpKQkp6dgMwUFBWXZ39PTU2XLlnVZXEny8fHJdo1cAAAAWBtP2gIAAAC54O3trSZNmmjdunUO7evWrVPLli2zvKZFixZO/deuXaumTZvKy8vLZXEBAABwc+NJWwAAACCXIiIi9Nhjj6lp06Zq0aKF3n//fcXHx2vYsGGSri5JcOLECS1cuFCSNGzYMM2YMUMREREaOnSotm/frjlz5mjx4sX2MS9fvqyff/7Z/usTJ05o9+7dKlGihGrUqJGruAAAALi1ULQFAAAAcqlPnz46ffq0Xn31VSUkJKhevXpavXq1QkJCJEkJCQmKj4+39w8NDdXq1as1atQozZw5U8HBwZo+fbp69epl73Py5Ek1btzY/nnKlCmaMmWK2rRpo40bN+YqLgAAAG4tFG0BAACAPBg+fLiGDx+e5bn58+c7tbVp00bR0dHZjle1alX75mT5jQsAAIBbC2vaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIZ7ungAAADejN2OSXTLui43LFWq87GIWdjwAAAC4X9qE0S4Z1yty6i0dL6eYQH7xpC0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBBLF23Hjx8vm83mcAQFBeV4zaZNm9SkSRP5+vqqWrVqmj17diHNFgAAAAAAAAAKztPdE7iRunXr6ttvv7V/9vDwyLZvXFycunbtqqFDh+rjjz/W1q1bNXz4cJUvX169evUqjOkCAAAAAAAAQIFYvmjr6el5w6drM82ePVtVqlRRVFSUJCksLEw7d+7UlClTKNoCAAAAAAAAuClYenkESYqNjVVwcLBCQ0PVt29f/fbbb9n23b59uzp16uTQ1rlzZ+3cuVNpaWnZXpeamqqUlBSHAwAAAAAAAADcwdJP2jZr1kwLFy7UbbfdplOnTun1119Xy5YtdeDAAZUtW9apf2JiogIDAx3aAgMDdeXKFSUnJ6tChQpZxpk4caImTJjgknsAAAA39mZMssvGfrFxObfHc2XM7OIBAADAvdImjHbZ2F6RU90ez5Uxs4v3T2LpJ227dOmiXr16qX79+urQoYNWrVolSVqwYEG219hsNofPhmFk2X6tsWPH6uzZs/bj+PHjJsweAAAAAAAAAPLO0k/aXq948eKqX7++YmNjszwfFBSkxMREh7akpCR5enpm+WRuJh8fH/n4+Jg6VwAAAAAAAADID0s/aXu91NRUHTx4MNtlDlq0aKF169Y5tK1du1ZNmzaVl5dXYUwRAAAAAAAAAArE0kXbMWPGaNOmTYqLi9MPP/yg3r17KyUlRQMGDJB0dVmD/v372/sPGzZMx44dU0REhA4ePKi5c+dqzpw5GjNmjLtuAQAAAAAAAADyxNLLI/z+++96+OGHlZycrPLly6t58+basWOHQkJCJEkJCQmKj4+39w8NDdXq1as1atQozZw5U8HBwZo+fbp69erlrlsAAAAAAAAAgDyxdNF2yZIlOZ6fP3++U1ubNm0UHR3tohkBAAAAAAAAgGtZenkEAAAAAAAAAPinoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC/F09wQAAABgvjdjkl0y7ouNy7lkXAAAAOBG0iaMdsm4XpFTXTJuQfCkLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAeTBr1iyFhobK19dXTZo00ebNm3Psv2nTJjVp0kS+vr6qVq2aZs+e7dRn2bJlqlOnjnx8fFSnTh2tWLHC4fz48eNls9kcjqCgIFPvCwAAANZB0RYAAADIpaVLl2rkyJF66aWXFBMTo/DwcHXp0kXx8fFZ9o+Li1PXrl0VHh6umJgYjRs3Ts8++6yWLVtm77N9+3b16dNHjz32mPbs2aPHHntMDz30kH744QeHserWrauEhAT7sW/fPpfeKwAAANyHoi0AAACQS9OmTdPgwYM1ZMgQhYWFKSoqSpUrV9a7776bZf/Zs2erSpUqioqKUlhYmIYMGaLHH39cU6ZMsfeJiopSx44dNXbsWNWuXVtjx45V+/btFRUV5TCWp6engoKC7Ef58uVdeasAAABwI4q2AAAAQC5cvnxZu3btUqdOnRzaO3XqpG3btmV5zfbt2536d+7cWTt37lRaWlqOfa4fMzY2VsHBwQoNDVXfvn3122+/FfSWAAAAYFEUbQEAAIBcSE5OVnp6ugIDAx3aAwMDlZiYmOU1iYmJWfa/cuWKkpOTc+xz7ZjNmjXTwoULtWbNGn3wwQdKTExUy5Ytdfr06Wznm5qaqpSUFIcDAAAANweKtgAAAEAe2Gw2h8+GYTi13aj/9e03GrNLly7q1auX6tevrw4dOmjVqlWSpAULFmQbd+LEifL397cflStXvsGdAQAAwCoo2gIAAAC5UK5cOXl4eDg9VZuUlOT0pGymoKCgLPt7enqqbNmyOfbJbkxJKl68uOrXr6/Y2Nhs+4wdO1Znz561H8ePH8/x/gAAAGAdFG0BAACAXPD29laTJk20bt06h/Z169apZcuWWV7TokULp/5r165V06ZN5eXllWOf7MaUri59cPDgQVWoUCHbPj4+PvLz83M4AAAAcHOgaAsAAADkUkREhD788EPNnTtXBw8e1KhRoxQfH69hw4ZJuvp0a//+/e39hw0bpmPHjikiIkIHDx7U3LlzNWfOHI0ZM8beZ8SIEVq7dq0mTZqkX375RZMmTdK3336rkSNH2vuMGTNGmzZtUlxcnH744Qf17t1bKSkpGjBgQKHdOwAAAAqPp7snAAAAANws+vTpo9OnT+vVV19VQkKC6tWrp9WrVyskJESSlJCQoPj4eHv/0NBQrV69WqNGjdLMmTMVHBys6dOnq1evXvY+LVu21JIlS/Tyyy/rlVdeUfXq1bV06VI1a9bM3uf333/Xww8/rOTkZJUvX17NmzfXjh077HEBAABwa6FoCwAAAOTB8OHDNXz48CzPzZ8/36mtTZs2io6OznHM3r17q3fv3tmeX7JkSZ7mCAAAgJsbyyMAAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIsXbSdOHGi7rjjDpUsWVIBAQHq0aOHDh06lOM1GzdulM1mczp++eWXQpo1AAAAAAAAAOSfpYu2mzZt0lNPPaUdO3Zo3bp1unLlijp16qQLFy7c8NpDhw4pISHBftSsWbMQZgwAAAAAAAAABePp7gnk5JtvvnH4PG/ePAUEBGjXrl1q3bp1jtcGBASoVKlSLpwdAAAAAAAAAJjP0k/aXu/s2bOSpDJlytywb+PGjVWhQgW1b99eGzZsyLFvamqqUlJSHA4AAAAAAAAAcIebpmhrGIYiIiJ01113qV69etn2q1Chgt5//30tW7ZMy5cvV61atdS+fXt9//332V4zceJE+fv724/KlSu74hYAAAAAAAAA4IYsvTzCtZ5++mnt3btXW7ZsybFfrVq1VKtWLfvnFi1a6Pjx45oyZUq2SyqMHTtWERER9s8pKSkUbgEAAAAAAAC4xU3xpO0zzzyjlStXasOGDapUqVKer2/evLliY2OzPe/j4yM/Pz+HAwAAAAAAAADcwdJP2hqGoWeeeUYrVqzQxo0bFRoamq9xYmJiVKFCBZNnBwAAAAAAAADms3TR9qmnntKiRYv05ZdfqmTJkkpMTJQk+fv7q2jRopKuLm1w4sQJLVy4UJIUFRWlqlWrqm7durp8+bI+/vhjLVu2TMuWLXPbfQAAAAAAAABAblm6aPvuu+9Kktq2bevQPm/ePA0cOFCSlJCQoPj4ePu5y5cva8yYMTpx4oSKFi2qunXratWqVeratWthTRsAAAAAAAAA8s3SRVvDMG7YZ/78+Q6fn3/+eT3//PMumhEAAAAAAAAAuNZNsREZAAAAAAAAAPxTULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQm6Kou2sWbMUGhoqX19fNWnSRJs3b86x/6ZNm9SkSRP5+vqqWrVqmj17diHNFAAAALc6V+Smy5YtU506deTj46M6depoxYoVBY4LAACAm5fli7ZLly7VyJEj9dJLLykmJkbh4eHq0qWL4uPjs+wfFxenrl27Kjw8XDExMRo3bpyeffZZLVu2rJBnDgAAgFuNK3LT7du3q0+fPnrssce0Z88ePfbYY3rooYf0ww8/5DsuAAAAbm6WL9pOmzZNgwcP1pAhQxQWFqaoqChVrlxZ7777bpb9Z8+erSpVqigqKkphYWEaMmSIHn/8cU2ZMqWQZw4AAIBbjSty06ioKHXs2FFjx45V7dq1NXbsWLVv315RUVH5jgsAAICbm6WLtpcvX9auXbvUqVMnh/ZOnTpp27ZtWV6zfft2p/6dO3fWzp07lZaW5rK5AgAA4Nbmqtw0uz6ZY+YnLgAAAG5unu6eQE6Sk5OVnp6uwMBAh/bAwEAlJiZmeU1iYmKW/a9cuaLk5GRVqFDB6ZrU1FSlpqbaP589e1aSlJKSUtBbyLVL58+5bOyUFO9/XDxXxiTezR0vu5jEMzeeK2MSr3BiEs/ceK6MaZV4rol1NRczDKPQYubEVblpdn0yx8xPXMkaOW7apdQbd8onryzug3jmxnNlTOIVTkzimRvPlTGJd3PHyy7mrR7PlTGtEs8Vcp3jGhZ24sQJQ5Kxbds2h/bXX3/dqFWrVpbX1KxZ03jjjTcc2rZs2WJIMhISErK8JjIy0pDEwcHBwcHBwcFhweP48ePmJJcF5Krc1MvLy1i0aJFDn48//tjw8fHJd1zDIMfl4ODg4ODg4LDycaMc19JP2pYrV04eHh5OTxAkJSU5PWmQKSgoKMv+np6eKlu2bJbXjB07VhEREfbPGRkZOnPmjMqWLSubzVbAuzBXSkqKKleurOPHj8vPz++WjEk84hHPvTGJRzwrx3NHTOK5j2EYOnfunIKDg909FUmuy02z65M5Zn7iSuS4VornjpjEI56V47kjJvGIRzz3xrzV4+VFbnNcSxdtvb291aRJE61bt049e/a0t69bt07du3fP8poWLVroq6++cmhbu3atmjZtKi8vryyv8fHxkY+Pj0NbqVKlCjZ5F/Pz8yv0P3SFHZN4xCOee2MSj3hWjueOmMRzD39/f3dPwc5VuWmLFi20bt06jRo1yqFPy5Yt8x1XIse1Yjx3xCQe8awczx0xiUc84rk35q0eL7dyk+NaumgrSREREXrsscfUtGlTtWjRQu+//77i4+M1bNgwSVefIDhx4oQWLlwoSRo2bJhmzJihiIgIDR06VNu3b9ecOXO0ePFid94GAAAAbgGuyE1HjBih1q1ba9KkSerevbu+/PJLffvtt9qyZUuu4wIAAODWYvmibZ8+fXT69Gm9+uqrSkhIUL169bR69WqFhIRIkhISEhQfH2/vHxoaqtWrV2vUqFGaOXOmgoODNX36dPXq1ctdtwAAAIBbhCty05YtW2rJkiV6+eWX9corr6h69epaunSpmjVrluu4AAAAuLVYvmgrScOHD9fw4cOzPDd//nyntjZt2ig6OtrFs3IPHx8fRUZGOr3qdivFJB7xiOfemMQjnpXjuSMm8XA9V+SmvXv3Vu/evfMd92b3T/hzf6vfI/GIZ/WYxCMe8dwb81aP5wo2wzAMd08CAAAAAAAAAHBVEXdPAAAAAAAAAADwPxRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoC7iYYRg6duyY/v77b3dPxWWOHz+e7bkdO3aYGistLU2DBg3Sb7/9Zuq4AOAOaWlpateunX799Vd3TwUA8oQclxwXALJDjmsOm2EYhrsnAWd79+5VvXr1VKRIEe3duzfHvg0aNChwvJUrV6pLly7y8vLSypUrc+zbrVu3AsfLjZ07d+rixYtq3bp1ocRzlYyMDPn6+urAgQOqWbOmu6fjErVr19bWrVtVtmxZh/atW7fq3nvv1V9//WVqvFKlSik6OlrVqlUzddycxMfHq3LlyrLZbA7thmHo+PHjqlKlSqHNBXn3zTffqESJErrrrrskSTNnztQHH3ygOnXqaObMmSpdurTpMf/66y99/vnnOnLkiJ577jmVKVNG0dHRCgwMVMWKFU2Pd/nyZXl7e2d5Ljk5WeXKlTMtVkRERJbtNptNvr6+qlGjhrp3764yZcqYEu/ZZ59VjRo19Oyzzzq0z5gxQ4cPH1ZUVJQpca6Vnp6uFStW6ODBg7LZbKpdu7Z69OghT09P02OVL19e27ZtK9R/IzIyMnT48GElJSUpIyPD4dzN/u8urI0clxz3ZkKOS45rdbd6jluY+a1Ejms2ctyCo2hrUUWKFFFiYqICAgJUpEgR2Ww2ZfVbZbPZlJ6ebnq87JgVLzfCwsL066+/mhZv+vTpue57/TfNgqpbt67mzJmj5s2bmzquVQwdOlTR0dHauHGjSpYsKUn6/vvvdf/992v8+PEaNWqUqfEGDRqk+vXrZ/uPqit4eHgoISFBAQEBDu2nT59WQECA6X8vgoOD1bZtW7Vt21Zt2rRRrVq1TB3/ehMmTNCjjz6q6tWruzROdlJSUrR+/XrVqlVLYWFhpo9fv359TZo0SV27dtW+fft0xx13KCIiQuvXr1dYWJjmzZtnary9e/eqQ4cO8vf319GjR3Xo0CFVq1ZNr7zyio4dO6aFCxeaGk+SevTooeXLlzt9Dz916pTat2+v/fv3mxarXbt2io6OVnp6umrVqiXDMBQbGysPDw/Vrl1bhw4dks1m05YtW1SnTp0Cx6tYsaJWrlypJk2aOLRHR0erW7du+v333wsc41r79+9X9+7dlZiYaP+79+uvv6p8+fJauXKl6tevb2q80aNHy8vLS2+++aap42Znx44d6tevn44dO+aUWxTmv/P4ZyLHJce9mZDjkuMWFDluwRRmfiuR45LjWg9FW4s6duyYqlSpIpvNpmPHjuXYNyQkpJBmZb60tDQ98cQTeuWVV5z+R/nkyZNKS0sz7f5CQ0Nz1c9ms5n+WtKqVav05ptv6t1331W9evVMHTsrp06d0pgxY/Tdd98pKSnJ6RuW2d+sDMPQgw8+qKSkJK1du1bbt29Xt27d9Prrr2vEiBGmxpKkf//735oyZYrat2+vJk2aqHjx4g7nzf6BRLr6Q9+pU6dUvnx5h/Zjx46pTp06unDhgqnxFi9erE2bNmnjxo369ddfFRgYqDZt2tgTXLOTvgYNGujAgQO644479Oijj6pPnz5O92qmhx56SK1bt9bTTz+tv//+Ww0bNtTRo0dlGIaWLFmiXr16mRqvRIkS2r9/v6pWrarx48dr//79+vzzzxUdHa2uXbsqMTHR1HgdOnTQ7bffrsmTJ6tkyZLas2ePqlWrpm3btqlfv346evSoqfEkqVmzZqpTp45Dcp6YmKh27dqpbt26+vzzz02LFRUVpc2bN2vevHny8/OTdPWHksGDB+uuu+7S0KFD1a9fP/39999as2ZNgeP5+vpq//79qlGjhkP74cOHVa9ePV26dKnAMa7VvHlzBQQEaMGCBfYnVP78808NHDhQSUlJ2r59u6nxnnnmGS1cuFA1atRQ06ZNnb6nTZs2zdR4jRo10m233aYJEyaoQoUKTk9X+fv7mxoPuBY5LjluQZDjkuPmFTnuzZ3jFmZ+K5HjkuNaD0Xbm8jPP/+s+Ph4Xb582d5ms9l0//33u3FWBeeO14AKW+nSpXXx4kVduXJF3t7eKlq0qMP5M2fOmBqvS5cuio+P19NPP53lN6vu3bubGk+6+sPJvffeqwsXLmjv3r2aOHGinn76adPjSDn/cGL2DySZTzr85z//0dChQ1WsWDH7ufT0dP3www/y8PDQ1q1bTYt5vVOnTmnDhg36+uuvtXTpUmVkZLjkfwkPHDigTz75REuWLNHvv/+uDh066NFHH1WPHj0c7tsMQUFBWrNmjRo2bKhFixYpMjJSe/bs0YIFC/T+++8rJibG1HhlypSx/4/4XXfdpf79++uJJ57Q0aNHVadOHV28eNHUeP7+/oqOjlb16tUdEtpjx46pVq1apidg0tUnYlq3bq1OnTrp7bff1okTJ3T33XerYcOGWrJkSY5PmOVVxYoVtW7dOqcnDA4cOKBOnTrpxIkTio6OVqdOnZScnFzgePXq1dOwYcOcvqe88847evfdd/Xzzz8XOMa1ihYtqp07d6pu3boO7fv379cdd9xh+vqN7dq1y/aczWbT+vXrTY1XvHhx7dmzx+kHBMBdyHFvXuS45iLHJcfNq1s9xy3M/FYixyXHtR7zF62A6X777Tf17NlT+/btc3iFLDNJMeMfNne+VtWzZ0998cUXhfoaUKbLly8rLi5O1atXd8kaLplcsRZNTrZs2aLNmzerUaNGLouR1Tp0kZGRevjhh/Xoo4+qdevW9j5mrEl3rbi4OFPHy0lmYmUYhvbt2+ewppK3t7caNmyoMWPGuCT2+fPntWXLFvvTCDExMapfv77atGnjknh169bVG2+8oTfeeENbt27VokWLNHLkSA0bNkwpKSmmxjp79qx9LahvvvlGvXr1UrFixXTvvffqueeeMzWWJN11112KiIhQq1at9OOPP2rp0qWSrr4OVKlSJdPj+fr6Zvk1O3TokMue7ihbtqzWrFljX9Ns1apVuv322/XJJ5+YntCePXtWSUlJTgntH3/8Yb/vUqVKORRgCiIiIkJPP/20/vjjD919992SpO+++05Tp051yffXWrVq6dSpU04JbVJSkkuSwA0bNpg+Zk6aNWumw4cP31IJLW5O5LiuQ46bf+S45LgFQY5rrsLMbyVyXLOR45rAgOXdd999Rvfu3Y2kpCSjRIkSxoEDB4zNmzcbd955p/H999+bEqNq1aq5OkJDQ02Jd63XX3/dKFWqlNGrVy/jjTfeMP7zn/84HK5w4cIF4/HHHzc8PDwMDw8P48iRI4ZhGMYzzzxjTJw40SUxC1NYWJgRHR3t0hg2m80oUqSIYbPZ7Me1nzN/XaRIEZfOIyMjw8jIyHBpDMMwjIEDBxpnz551eZxMd955p+Hr62s0bdrUGDNmjLFy5Urjzz//LLT4MTExxujRo42KFSsavr6+po9fs2ZNY+nSpcb58+eN8uXLG999951hGIaxe/duo2zZsqbHO3bsmHHvvfcaDRo0MD788EN7+8iRI41nnnnG9HhDhw41evToYVy+fNkoUaKE8dtvvxnHjh0zGjdubIwYMcL0eNf69ddfjYCAAOORRx5x2d+Nfv36GaGhocby5cuN48ePG7///ruxfPlyo1q1asajjz5qGIZhLF682GjSpIlpMWfNmmVUrFjR/j0mNDTUWLBggWnjX2vVqlVG3bp1jc8++8w4fvy4cfz4ceOzzz4z6tevb6xatco4e/as/bhZ7Nmzx34sX77cqFOnjjFv3jxj586dDuf27Nnj7qniH4Qc13zkuAVHjuta5Ljm+qfkuIWR3xoGOS45rvWwPMJNoFy5clq/fr0aNGggf39//fjjj6pVq5bWr1+v0aNHm/6KRWErzNeAMo0YMUJbt25VVFSU7rnnHu3du1fVqlXTypUrFRkZ6ZKv6ZEjRzRv3jwdOXJE//nPfxQQEKBvvvlGlStXdvqfroJau3atpk6dqvfee09Vq1Y1dexMN1qH7lquWJNu4cKFeuuttxQbGytJuu222/Tcc8/pscceMz2WdPV/XdPT0512Cj1z5ow8PT3tax6ZpUyZMrLZbOrQoYN9swZXbF5wrbi4OC1atEiffPKJfv31V7Vu3Vr9+vXTgw8+aPr6P7NmzdKIESNUokQJhYSEKDo6WkWKFNE777yj5cuXF/r/ypotJSVFXbt21YEDB3Tu3DkFBwcrMTFRLVq00OrVq53Wc8qv0qVLO70aKkkXL16Uj4+PPDw87G1mvqJ6/vx5jRo1SgsXLtSVK1ckSZ6enhowYIDefvttFS9eXLt375Yk05+G+uOPP1S0aFGVKFHC1HGvde2TG5lfX+O6JwANwzBtQ4N27dpl+fuYyYxXx3La8EmS/dzNukkDbk7kuOS4eUWOaz5yXHLcvCiMHNdd+a1Ejpv5mRzXOlge4SaQnp5u/4tbrlw5nTx5UrVq1VJISIgOHTrk5tkVXGG+BpTpiy++0NKlS9W8eXOHbyJ16tTRkSNHTI+3adMmdenSRa1atdL333+vf//73woICNDevXv14YcfmrKA+vX/uF24cEHVq1dXsWLF5OXl5dDXjH/cMpPUnDbacJVp06bplVde0dNPP61WrVrJMAxt3bpVw4YNU3Jysuk7+UpS3759df/992v48OEO7Z9++qlWrlyp1atXmxrvzJkz2rt3rzZu3Khvv/1WkZGRKlKkiNq0aaN27dpp2LBhpsZr0aKFfvzxR9WvX1+DBg1Sv379VLFiRVNjXGv48OFq1qyZ4uPj1bFjR3sCUa1aNb3++uumx4uOjpaXl5d9R9Qvv/xS8+bNU506dTR+/HiHVwLN4Ofnpy1btmj9+vWKjo5WRkaGbr/9dnXo0MHUOIX9WmqmEiVK6IMPPtDbb7+t3377TYZhqHr16g5JpqteXXXl5iGZCvsHquu/Vmlpadq9e7f279+vAQMGmBLDHf/WAjdCjms+clxy3LwixzUXOW7BuSu/lchxzUaOW3A8aXsTCA8P1+jRo9WjRw/169dPf/75p15++WW9//772rVrl/bv31/gGBEREXrttddUvHjxG667ZcYOf7ld28tms2nq1KkFjne9YsWKaf/+/apWrZrDAup79uxR69atdfbsWVPjtWjRQg8++KAiIiIc4v3000/q0aOHTpw4UeAYCxYsyHVfs75BZirsjTZCQ0M1YcIE9e/f36F9wYIFGj9+vEu+cZcpU0Zbt251ehLgl19+UatWrXT69GnTY15r165dmjFjhj7++GOXbNIwbtw4PfLII6Y/EZOVtLQ01apVS19//bXTelGucscdd+jFF19Ur1699Ntvv6lu3brq2bOnfvrpJ917771uTQ7NcOXKFX3yySfq3LmzgoKCCjX277//LpvN5tIfgAp7t3CrGD9+vM6fP68pU6a4eyqAS5DjkuPmBjkuOW5BkONGFco8XMGd+a1EjutK5Li5x5O2N4GXX35ZFy5ckCS9/vrruu+++xQeHq6yZcvaFxovqJiYGKWlpdl/nZ2cHm3Pa7xr7dq1S+np6apVq5akqwune3h4qEmTJqbEu94dd9yhVatW6ZlnnpH0v/v64IMP1KJFC9Pj7du3T4sWLXJqL1++vGmJkNlJal4U9kYbCQkJatmypVN7y5YtlZCQ4JKYqamp9ldkrpWWlmb6LpvS1b8jGzdu1MaNG7V582adO3dODRs21IgRI3LchTO/3njjDfuvr39FxmxeXl5KTU112fhZ+fXXX+3/0/vZZ5+pdevWWrRokbZu3aq+ffuaktC6c7MbT09PPfnkkzp48KCp42YnIyNDr7/+uqZOnarz589LkkqWLKnRo0frpZdeMn1jiIEDByo+Pl6vvPJKlruFu8Jff/2lOXPm6ODBg7LZbKpTp44ef/xx01+jzMmjjz6qO++80/SEduLEiQoMDNTjjz/u0D537lz98ccfeuGFF0yNB2SHHNd85LjmIsclx80Lclxzc9zCzm8lctzCQo6bB4W7hC7Mcvr06UJZmL4wTJ061bj//vuNM2fO2NvOnDljdO/e3ZgyZYpLYm7dutUoWbKkMWzYMMPX19cYMWKE0aFDB6N48eLGzp07TY9XsWJFY+vWrYZhGEaJEiXsm0JkLmputlWrVhnffPONU/uaNWuM1atXmx6vsDfaqFu3rvHvf//bqf21114z6tWrZ3o8wzCMNm3aGE8//bRT+/Dhw4277rrL9HgeHh5G06ZNjdGjRxtfffVVoSwGv2DBAqNevXqGj4+P4ePjY9SvX99YuHChS2JNnDjRGDBggJGWluaS8a9XsmRJ49dffzUMwzA6dOhgREVFGYZxdfMGszahuH5Tm+LFixs2m80oXbq0Ubp0acNmsxnFixd3yWY3hmEYbdu2NVasWOGSsa/34osvGuXLlzdmzZpl7Nmzx9i9e7cxc+ZMo3z58sa4ceNMj1eiRAkjJibG9HGz89NPPxllypQxKlasaPTs2dPo0aOHUalSJaNs2bLGrl27Cm0eCxcuNCpUqGD6uCEhIfZ/k661Y8cOo2rVqqbHA/KCHLdgyHHNRY5LjptX5LjmKsz81jDIcQsLOW7uUbSF2wUHBxv79+93at+3b59L/iJn2rt3r9G/f3+jbt26RlhYmPHII48Ye/fudUms5557zrjrrruMhIQEo2TJkkZsbKyxZcsWo1q1asb48eNNj5e5++P1/vvf/xoNGjQwPV5h78b8+eefGx4eHkbnzp2NV1991XjttdeMzp07G56ensby5ctNj2cYhrFlyxbD19fXCA8PN8aPH2+MHz/eCA8PN3x9fU3b4fpahb1j59SpU41ixYoZzz//vPHll18aX3zxhfHcc88ZxYoVM6ZNm2Z6vB49ehglS5Y0KlSoYHTq1Mno2bOnw2G2du3aGf379zcWLlxoeHl5GbGxsYZhGMbGjRuNkJAQ0+N98sknRqtWrYxffvnF3vbLL78Y4eHhxscff2x6PMMwjE8//dSoVq2a8c477xjbtm1z6W6pFSpUML788kun9i+++MIIDg42NZZhFM5u4de66667jIEDBzr8wJWWlmYMGDDACA8PNz3e9X/+e/ToYTRr1szw8PBwyb8RPj4+xm+//ebUfuTIEcPHx8f0eMA/FTkuOW5ekeOajxzXXIWd4xZmfmsY5LhmI8ctONa0hZNLly7pnXfe0YYNG5SUlKSMjAyH89HR0abGK1mypL788kvdfffdDu3r169X9+7dde7cOVPjuUNaWpoGDhyoJUuWyDAMeXp6Kj09Xf369dP8+fMddsA0Q9GiRXXw4EGnXXWPHj2qunXr2l9FvJnt2rVLb7/9tg4ePCjDMFSnTh2NHj1ajRs3dlnM3bt3a/LkydqzZ4+KFi2qBg0aaOzYsapZs6ZL4v3111/6/PPPdeTIET333HMqU6aMoqOjFRgYaPraSoW9htqgQYNyPD9v3jxT4+3du1ePPPKI4uPjFRERocjISEnSM888o9OnT2f5amdBVK9eXZ9//rnTn8ddu3apd+/eLlmTLqvXtVy1W6qvr6/27t2r2267zaH90KFDatSokemvUxbGbuHXKlq0qGJiYlS7dm2H9p9//llNmzbVxYsXTY03cOBAh9fhihQpovLly+vuu+9Wp06dTI0lSTVr1lRkZKQeffRRh/aPPvpIkZGRLtnRHrACclzzkeOajxyXHDcvbvUctzDzW4kclxzXeljTFk4ef/xxrVu3Tr1799add97p8nVVevbsqUGDBmnq1Klq3ry5JGnHjh167rnn9MADD7g0tiT9/fff9rXOMvn5+RV43JSUFPs4Xl5e+uSTT/Taa6/Zd9ls3LixyxIhf39//fbbb07f+A8fPqzixYu7JGYmw8VrRWVq0qSJPv74Y5fGuF6jRo1MT3yys3fvXrVv316lSpXS0aNHNXToUJUpU0YrVqzQsWPHtHDhQlPjFfYaamYnrDfSoEED7du3z6n9rbfeMv0HSunq1/P67yvS1c0ETp06ZXo8qXB3Tm3YsKFmzJjhtMbZjBkz1LBhQ9Pj9enTRxcvXnTpbuHX8vPzU3x8vFNCe/z4cZUsWdLUWJI0f/5808fMyZAhQzRy5EilpaXZi0nfffednn/+eY0ePbpQ5wIUJnJcctyCIMc1BzmuuW71HLcw81uJHNds5LgmcNcjvrAuPz8/Y8uWLYUW78KFC8aTTz5p+Pj4GEWKFDGKFClieHt7G08++aRx/vx5l8V86qmnjPLly9tjXnuYoUiRIsapU6cMw7j62sqff/5pyri5MXToUKN+/frG4cOH7W2xsbFGgwYNjMGDB7skZmGuFWUYhnHlyhXjs88+s7869vnnn7t87ajDhw8bL730kvHwww/bf2//+9//ZvnqY0G1b9/eeO655wzDcFwjbuvWrS551ckda6ilpaUZ69atM2bPnm2kpKQYhmEYJ06cMM6dO+eSeIXpvvvuMxo0aGD89NNP9rUZf/rpJ6NRo0bG/fff7+bZFdzGjRuN4sWLG2FhYcbjjz9uDB482AgLCzNKlCjhklcp58+fn+NhtmeeecaoVKmSsWTJEiM+Pt44fvy4sXjxYqNSpUrGiBEjTI8XGhpqJCcnO7X/+eefLnn9NiMjw3j++ecNX19f+797xYoVMyZMmGB6LMBKyHHJcfODHNdc5Lg3N3Jcc5HjmutWzHEp2sJJWFiYS9aHuZHz58/bF/t2VSKbafjw4UZYWJjx2WefGUWLFjXmzp1rvPbaa0alSpVMW4vHz8/P+Pnnnw3DMAybzWYkJSWZMm5u/PXXX0bz5s0NT09P+7pbnp6eLkusC3utqH379hnVqlUzihUrZjRu3Nho3LixUbx4caNq1aouW7Nt48aNRtGiRY0OHToY3t7e9gRz0qRJRq9evUyP5+fnZ/+B5NqE9ujRoy5Zj6ew11A7evSoUbt2baNYsWKGh4eH/f5GjBhh/Otf/zI9ns1my/KHVzN/iL1WUlKS0aVLF8Nmsxne3t6Gt7e3UaRIEaNLly72H4Zc4fDhw8bTTz9ttG/f3ujQoYPxzDPPOPxga6YTJ04Y48aNMx544AGjZ8+exksvvWScOHHCJbEKW2pqqvHss8/af9+KFCli+Pj4GCNHjjQuXbpkejybzZbln4vExETD29vb9HiZzp07Z/z444/Gvn37XHJfgNWQ45Lj5hU5LjluXpHjmq8w81vDIMc1EzluwbGmLZz897//1fTp0zV79myFhIS4ezouUaVKFS1cuFBt27aVn5+foqOjVaNGDX300UdavHixVq9eXeAYvXr10tatWxUWFqZNmzapZcuW8vb2zrLv+vXrCxzvehkZGfr2228d1qZq3bq16XGkwl8rqnnz5goICNCCBQtUunRpSdKff/6pgQMHKikpSdu3bzc1niS1aNFCDz74oCIiIlSyZEnt2bNH1apV008//aQePXroxIkTpsYLDAzUN998o8aNGzvEW7t2rQYPHqzjx4+bGk8q3DXUevTooZIlS2rOnDkqW7as/f42bdqkIUOGKDY21tR4X375pcPntLQ0xcTEaMGCBZowYYIGDx5sarxMv/76q3755RcZhqGwsDCn9bHMtGbNGnXr1k2NGjVSq1atZBiGtm3bpj179uirr75Sx44dXRa7MLnqdd+sXLx4UUeOHJFhGKpRo4aKFStm6vgrV66UdPXvw4IFC+Tv728/l56eru+++07r1q3ToUOHTI2b6fDhwzpy5Ihat26tokWL2teHA25V5LjkuHlFjkuOm1fkuOb6p+S3EjmumW6lHJeiLZz88ccfeuihh/T9998Xyroq7lCiRAkdOHBAISEhqlSpkpYvX64777xTcXFxql+/vs6fP1/gGH///bcWLFigI0eOaOrUqRo6dGi23wzffvvtAsfLdOXKFfn6+mr37t2qV6+eaePmxNfXV/v371eNGjUc2mNjY1W/fn1dunTJ1HhFixbVzp07VbduXYf2/fv364477jB9gXjp6p+Zffv2KTQ01CHBPHr0qGrXrm36PT7xxBP6448/9Omnn6pMmTLau3evPDw81KNHD7Vu3VpRUVGmxits5cqV09atW1WrVi2nr2edOnVMXwQ/O4sWLdLSpUudEt6bUePGjdW5c2e9+eabDu0vvvii1q5dW+ANdvbu3Zvrvg0aNChQrOtduHBBL7zwgj799FOdPn3a6bzZm1AUlszNNTI31LiWl5eXqlatqqlTp+q+++4zNe7p06f10EMPacOGDbLZbIqNjVW1atU0ePBglSpVSlOnTjU1HmAV5LjkuHlFjkuOm1fkuOZydX4rkeO6AjmuediIDE4efvhhnThxQm+88YYCAwNv2v+RyEnmP5whISGqU6eOPv30U91555366quvVKpUKVNiFC1aVMOGDZMk7dy5U5MmTTJt7Jx4enoqJCSkUL/B16hRQ59++qnGjRvn0L506VKXbERRq1YtnTp1yimhTUpKckqqzVKqVCklJCQoNDTUoT0mJsb0XW4lacqUKeratasCAgL0999/q02bNkpMTFTz5s3173//2/R40tUnVw4fPpzljtpmP8GSkZGR5Z/R33//3SWL4GenWbNmGjp0qOnjpqen/397dx4e47n3Afw7SUR2SxZiy2IPIomlPVIRa7VqSxFvQghVisYSEU5LaykHJ2J7W0vt+1K06iBFkkpQS2RBEBFJe1BqaUgQMvf7hyvzJiZUmvuZmSTfz3XN1bhn+vxuIzPznee5F6xbtw5Hjhwp9vlUYuRRamoqduzYodU+bNgwKV+APDw8ig1eL1NiJ9/JkycjOjoaX3/9NYKCgvC///u/+O9//4sVK1Zohfi/qySbAu3evVtKzYLfCxcXF5w+fRp2dnZSjvtXJkyYgEqVKiErKwtNmzbVtPv7+2PChAllMtASvQlm3KpSajDjMuOWBjOubpSXjKt0vgWYcQtjxjU8PGlLWo4fP44TJ04osjuioQgODkZSUhI6dOiAqVOnokePHli6dCmeP3+OhQsXSq8XHR0t/Ziv8/nnn2Pq1KnYtGkTqlevrni9GTNmwN/fHz///DO8vb2hUqkQFxeHI0eOFPsh+3dkZ2drfp4zZw5CQkLw5ZdfFtmNeebMmZg3b56Uei8LCAhAeHg4du7cCZVKBbVajfj4eEyaNElrypwMNjY2iIuLQ3R0NM6ePQu1Wg0vLy906dJFei3gxfMXEBCAzMxMrcCiREDp2rUrFi1ahJUrV2pqPHr0CF988QXef/99qbVe5fHjx1i6dCnq1Kkj/djjxo3DunXr0KNHDzRv3lwnJwbs7e2RmJio9SUyMTERDg4OpT6+rnfvLWzfvn2a6b7Dhg1D+/bt0aBBAzg5OWHz5s0IDAwsdY3C07Z0TdfPbVRUFA4dOqT1u9+wYUNkZmbqtC9EusSMy4xbUsy4zLglxYwrl9L5FmDGVRIzbulxeQTS4uXlha+//loTFCqCrKwsnDlzBvXr11ckyOv6iqSnpyeuXr2KZ8+ewcnJCZaWlkXulzGN5GUJCQlYuHChYmtFGRkZFQkFBW9dBW2F/6zECIxnz55h6NCh2LZtG4QQMDExQX5+PgICArBu3ToYGxtLr3nkyJFX/s6sWbNGai0PDw80atQIM2bMgKOjo1YAk/1hf+PGDXTs2BHGxsZIS0tD69atkZaWBjs7O/z888/SQliBatWqaf3+PHz4EBYWFti0aRN69eoltZ6dnR02bNigs3AOADNnzkRkZCSmTJmCdu3aab5Yzps3D6Ghofj888911hfZdDHdV59mzpz52vunT58utZ61tTUSEhLQsGFDrfULu3fvXuz0PKLygBmXGffvYMZlxi0JZly5ynO+BZhxmXH/GkfakpZ//etfCA0NxVdffYUWLVporfel1GLY+lSvXj3Uq1dPsePr+opknz59FD3+ywIDA+Hr64vp06crtgi9rkdyvKxSpUrYvHkzZs6ciXPnzkGtVsPT01ORqXHAi5EdM2fOROvWrYsNmLKlpaVh165dik29e1mtWrWQmJiIrVu3IiEhAWq1GsOHD0dgYCDMzc2l14uMjCzyHBoZGcHe3h5vvfWWZqMPmUxNTXX2XBaYNm0arK2tERERgalTpwJ48Tx/+eWXCAkJkV4vPT0dixYtQmpqKlQqFZo2bYpx48ahfv360mvpYrrvy54/f46YmBikp6cjICAA1tbWuHHjBmxsbGBlZSW11p49e4r8+dmzZ8jIyICJiQnq168vPdD6+Phgw4YNmDVrFgBoRlYtWLAAHTt2lFqLyJAw48rHjFt6zLjMuKVR3jOurvMtwIwrEzNu6XGkLWkpWDQagNZVO6Wu8OqDLq/w6mPUnS6NHDkSsbGxSEtLQ40aNdChQwd06NABvr6+aNKkib67VyY5Ojpi/vz5GDx4sE7qderUCZMnT0b37t11Ui83N1f6LqWGJCIiAteuXcOyZcv0smbiw4cPAUCxtdN0vZNvZGQkjI2NERISgujoaPTo0QP5+fma6b7jxo2TWi8zMxPdu3dHVlYWnj59iitXrsDV1RXjx4/HkydPsHz5cqn1ipOdnY2hQ4eib9++0t8HLl68CF9fX7Rq1QpHjx5Fr169cOHCBdy7dw/x8fGKfCkhMgTMuMy4JcWMKx8zbtmmz4yrdL4FmHGZcQ0PT9qSltjY2Nfe36FDBx31RDl/dYX35StCpVWrVi3ExMQodoXeUNy6dQsxMTGIiYlBbGwsrly5AgcHB9y8eVORerm5ucjKykJeXl6Rdlm7ek6cOBGzZs2CpaUlJk6c+NrHWllZoVmzZujXr5+UaWS2trY4deqUzj5Y9uzZg88//xxhYWHFjj6SvVOqlZUV+vTpg8GDB6Nr165FvkgrYe3atbCyskL//v2LtO/cuRO5ubkYMmSI1Hp9+/ZFdHQ0qlevjmbNmmk9n7IW+S9s1apV8PX1VWxkTGG62Mn3dZSe7tunTx9YW1tj9erVsLW11Uytio2NxUcffYS0tDTpNYtz/vx5fPDBB7h+/brU42ZlZcHExAQrVqwosp7gmDFj8OzZM0VH5RHpEzMuM+7fxYzLjPummHHlZlxd5luAGZcZ1/DwpC0V69ixY1ixYgXS09Oxa9cu1K5dGxs3boSLiwveeecdfXev1HR9hVfXVyTz8/MRGRmJHTt2FBv47t27p0jdnJwcxMXFaUJtQkIC3NzccO7cOal17ty5g+DgYBw4cKDY+2WNlOnYsSP27NmDqlWr/uV0iqdPn+LChQvo3bs3NmzYUOra4eHhsLKywrRp00p9rDdRXKAs2EVVidFHu3fvxtatW7F//37Y2NjA398fgwYNQps2baTWKdC4cWMsX75c698xNjYWH3/8MS5fviy1XnBw8GvvX7t2rdR6ANCkSRNcuXIFNWvW1IwC6tChgyIjgczMzJCSkqIVoK9cuQJ3d3c8efJEar3r16/D2dlZ6jFfx87ODvHx8WjcuHGR9bCuX78ONzc35Obm6qQfcXFx6NmzJ+7fvy/1uMbGxrh586bWunp3796Fg4NDuRltSFQcZly5mHGZcUuKGVeu8p5xdZlvAWZcZlzDwzVtSct3332HwYMHIzAwEOfOncPTp08BvJiOMGfOHPznP//Rcw9LLy8vD+3atdNZvYIdUg8cOKCTK5IzZszAt99+i4kTJ2LatGn47LPPcP36dezdu1f6ujHAi/AVGxuLpKQkNG/eHD4+Ppg6dSp8fHwUWYtn/PjxuH//Pk6ePKkJnb///jtmz56NiIgIaXUKrzH2JuuNnTlzBp07d5ZS+8mTJ1i5ciUOHz4Md3d3rd8Z2TtA63pnTz8/P/j5+eHhw4fYtWsXtm7dinbt2sHFxQWDBg2S/nuamZkJFxcXrXYnJydkZWVJrQUoc1L2r1y6dAm3bt1CdHQ0YmNjERkZidGjR8Pe3h6+vr7Ytm2btFq62Mm3MFdXV7Rr1w6DBw9G//79Fd8xXK1WFxvqfvvtN0Wm5C1ZsqTIn4UQuHnzJjZu3KjIdM5XXa9/9OgRzMzMpNcjMhTMuPIx48rFjMuMW1LlPePqMt8CzLiyMeOWHkfakhZPT09MmDABQUFBRa6+JCYmonv37rh165a+u1hqur7Cq+srkvXr18eSJUvQo0cPWFtbIzExUdN28uRJbNmyRWq9ggXvJ0yYgN69e6Np06ZSj/8yR0dHfP/992jbti1sbGxw5swZNGrUCD/88APmz5+PuLg4Reu/vKtvgby8PBw4cAC9e/cudY3XjXpQqVTSd2M2BBcvXkRgYCCSk5OlXwWtV68eli1bprWD7vfff48xY8bgt99+k1oP0O0i/y8rGBG0bds2bNq0CUIIPH/+XNrxdb2Tb0JCArZu3Ypt27bhzp07ePfddzFo0CD06tULlStXlloLAPz9/VGlShWsXLkS1tbWSE5Ohr29PXr37o169epJec9OTk5G8+bNYWRkpPVlq+A9tVOnTpg6daq0EF0wBXbx4sUYMWJEkTX38vPz8csvv8DY2Bjx8fFS6hEZGmZc+Zhx5WLGZcYtqYqUcZXOtwAzLjOu4eFJW9JiYWGBixcvwtnZuUigvXbtGtzc3KRPCdCVwus1qdVqrF+/Hu7u7jq5wqtrlpaWSE1NRb169eDo6Ij9+/fDy8sL165dg6enJ/7880+p9ZKSkhAbG4uYmBgcO3YMxsbGmukrvr6+0gOujY0NkpOT4ezsDGdnZ2zevBne3t7IyMhAs2bNFJvWsWHDBixYsECz1k+jRo0QFhamsymISrty5QpiYmKK3bhEidErwIvRFj/88AO2bNmCgwcPwsHBAf/zP/+DefPmSa0zefJk7NixA2vXroWPjw+AF9PGhg0bhn79+uHf//631Hr6WOT/wIEDmtdhUlISmjVrBh8fH/j6+qJ9+/ZSdxAWQmDRokWIiIjAjRs3ALxY1zAsLAwhISGKTZEVQiAmJgZbtmzBd999h/z8fHz44YfSN9a5ceMGOnbsCGNjY6SlpaF169ZIS0uDnZ0dfv75ZykjLQpP33JxccHp06dhZ2cnofevVvBFOTY2Fv/4xz9gamqquc/U1BTOzs6YNGmSztaNI9I1Zlxm3JJixmXG/buYceXQZb4FmHGZcQ2QIHqJq6ur+Omnn4QQQlhZWYn09HQhhBDr168XTZs21WfXSsXX1/eNbh07dlSsD7dv3xbHjh0TcXFx4vbt24rVadSokTh58qQQQoh33nlHzJ07VwghxLZt24S9vb1idQskJiaKoUOHChMTE2FkZCT9+K1btxYHDx4UQgjRu3dvMXjwYPHbb7+JyZMnC1dXV+n1hBAiIiJCWFhYiMmTJ4vvv/9e7N27V4SFhQkLCwuxcOFCRWrq0sqVK4WxsbGoUaOGaNmypfDw8NDcPD09pdc7dOiQCAoKEjY2NqJatWpixIgRIiYmRnqdAk+fPhUDBgwQKpVKVKpUSVSqVEkYGxuL4OBg8fTpU+n1evfuLQYNGiSePn1a5H00JiZGNGjQQHo9IYRQqVTCwcFBzJs3Tzx48ECRGsXJzs4W2dnZOqtX4OzZs8LDw0OR9xghhMjNzRWrV68WY8aMEZ988olYtWqVyM3NlXb86tWra96njYyMFP1MeNnQoUPFn3/+qbN6RIaCGZcZt7SYccseZly5dJ1x9ZVvhWDG/buYceXiSVvSMm/ePOHm5iZOnjwprK2txbFjx8SmTZuEvb29WLp0qb67VyY9evRIBAcHC2NjY6FSqYRKpRImJiZi2LBhIicnR3q98PBw8dVXXwkhhNi5c6cwMTERDRo0EKampiI8PFx6PSGESEhIEAsXLhS9evUS1apVE8bGxqJVq1Zi0qRJ0mtt2rRJrF27VlPX3t5eGBkZCTMzM7Ft2zbp9YQQwtnZWaxfv16rfd26dcLZ2VmRmrpUr1498a9//Utn9czNzUW/fv3Enj17RF5ens7qXrlyRezYsUPs27dPXL9+XbE6tra24tKlS0KIoicGMjIyhLm5uSI1IyMjRd++fYWdnZ2oUaOGGDBggPj666/FxYsXFamnD1lZWWLevHmiZcuWwsjISHh7e4uvv/5aeh0l3pdfNmLECFG5cmXh7OwsjIyMRL169YSLi0uxNyKSgxlXPmZcuZhx5WPGlUvXGbci5FshmHHp1bg8AhXrs88+Q2RkpGaaWOXKlTFp0iTMmjVLzz2T488//0R+fr7WQt/37t2DiYkJbGxspNYbOXIkDh8+jGXLlsHb2xvAi40bQkJC0LVrV3zzzTdS673s5MmTOH78OBo0aKC13pEM1apVw6NHj9CyZUvNdDEfHx/pz+Or5Obm4tKlS6hXr55iUy/MzMxw/vx5NGjQoEh7WloaWrRoUWanVBawsbFBYmIiXF1ddVIvOztbZ78fxcnPz0dKSgqcnJykT6sCgOrVqyMuLg5ubm5FpuDGxcXhww8/xO+//y69ZmEpKSmIjY1FdHQ09u3bB1tbW9y8eVPa8X///XdMmjQJR44cwe3bt7UW/Ze9XtvKlSuxefNmzW63gYGBCAgIUGy3XSsrK/Tp0weDBw9G165di915WoaDBw/i6tWrCAkJwcyZM1+5rte4ceMUqU9UETHjMuOWBDMuM25JMeMql3GVzrcAM64szLjy8KQtvVJubi4uXrwItVoNNzc3xTfO0aX33nsPPXv2xOjRo4u0L1++HD/88IP03YPt7Oywa9cu+Pr6FmmPjo7GgAEDcOfOHan1dO3HH3/UaYDVh+bNmyMgIAD//Oc/i7TPnj0b27dvR0pKip56Jsfw4cPRpk0bjBo1SrEahUNsdnb2ax8r+3dp/PjxaNGiBYYPH478/Hx06NABx48fh4WFBX788Uet12Zp6WKR/1c5d+4cYmJiEB0djWPHjuHhw4fw9PTE6dOnpdV47733kJWVhbFjx8LR0VFrfS8ZG5UUVrduXQwcOBCBgYHw8PCQeuzi7N69G1u3bsX+/fthY2MDf39/DBo0CG3atFGkXnBwMJYsWaLIrr1EpI0ZVx5m3LKPGbf0mHGVz7i6yLcAM65szLilx5O2VCFVr14d8fHxWpsHXLp0Cd7e3rh7967UehYWFjh79qxWvQsXLqBt27bIycmRWg8ANm7ciOXLlyMjIwMnTpyAk5MTFi1aBBcXF+kfNrpQeJONv6LEJhvfffcd/P390aVLF3h7e2t2Ej1y5Ah27NiBvn37Sq+pS3PnzsXChQvRo0cPtGjRQmvjkpCQkFLXKLwovZGRUbEL+QshoFKppF/FrlOnDvbu3YvWrVtj7969GD16NGJiYrBhwwZER0dL30lUF4v8v6xXr16Ii4tDdnY2PDw8FB0RZG1tjWPHjukkXAL//3uhaw8fPsSuXbuwdetWREdHw8XFBYMGDVJs0xIiotJixmXGLSlmXGbcktB1xtVlvgWYcZlxDQ9P2lKFZGlpiZMnT6JFixZF2lNSUvDWW29J35m1c+fOsLW1xYYNG2BmZgYAePz4MYYMGYJ79+7h8OHDUut98803mD59OsaPH4+vvvoK58+fh6urK9atW4f169cjOjpaaj1dKNgR8q+oVCocPXpUkT4kJCRg4cKFSE1NhRACbm5uCA0NhaenpyL1dMnFxeWV96lUKly7dq3UNWJjY+Ht7Q0TExPExsa+9rEdOnQodb3CzMzMcPXqVdSpUwcff/wxLCwssGjRImRkZKBly5Z/OSri73j8+DG2bduGs2fPQq1Ww8vLC4GBgTA3N5deCwAmTZqks2mbbm5u2Lx5s6K/+8nJyW/8WHd3d8X6UeDixYsIDAxEcnKy9C9cRESyMOMy4/4dzLilw4yrXMbVZb4FmHGZcQ2Q7pfRJdK/Dh06iLFjx2q1jx49WrzzzjvS6yUnJ4vatWsLW1tb0alTJ9G5c2dha2sratWqJc6fPy+9XtOmTcWePXuEEEUXiE9JSRG2trbS65V3eXl5YujQoZrnkcqeevXqiUOHDonnz5+LunXrin379gkhhDh//ryoWrWq9HqxsbHi2bNnWu3Pnj0TsbGx0usJ8WL38ydPnmi1P336tNgNRkrj0KFDolu3biIjI0PqcQtTqVTCyMhIs7GNkZHRK29Kefz4sdi+fbvo3bu3qFy5sqhbt66YPHmyYvWIiEqLGZdKghm37CvvGVeX+VYIZlwyPBxpSxVSfHw8unTpgjZt2qBz584AgCNHjuD06dOIiopC+/btpdd8/PgxNm3ahEuXLmmuYCt1RdLc3ByXLl2Ck5NTkQXi09LS4O7ujsePH0uvWd5VrVoVCQkJOtvEQBcmTpyIWbNmwdLS8rVT81QqFSIiIqTXf/DgAU6dOoXbt29DrVYXuS8oKEhqrS+//BKLFi2Co6MjcnNzceXKFVSuXBlr1qzBqlWrcOLECan1Ck+TK+zu3btwcHBQ5Cq2LmtWq1YNubm5eP78OSwsLLSmGt67d6/UNTIzMzU/nzt3DpMmTUJYWBj+8Y9/AABOnDiBiIgIzJ8/H3369Cl1vcKioqKwefNm7N27F8bGxujXrx8CAwOlj44hIpKNGZcZt6SYcZlxS0LXGVfX9ZhxydCY6LsDRPrg7e2NEydOYMGCBdixYwfMzc3h7u6O1atXo2HDhtLrzZ07FzVq1MCIESOKtK9ZswZ37txBeHi41HouLi5ITEyEk5NTkfYDBw7Azc1Nai1d8fPze+PH7t69W3r9vn37Yu/evSVad8zQnTt3Ds+ePdP8/CpKrLO0b98+BAYGIicnB9bW1kVqqFQqRQJt8+bN8euvv6J///6oXLkygBdBcMqUKVJrAa9en+ru3buwtLSUXu91NX/77TdUqVJFaq1FixZJPV5xCr9/9e/fH0uWLMH777+vaXN3d0fdunUxbdo06YG2T58+6NGjB9avX48ePXpoBXYiIkPFjFv2MOPKx4xbfjKuLvMtwIxLhocnbanC8vDwwObNm3VSa8WKFdiyZYtWe7NmzTBw4EDpgTYsLAxjxozBkydPIITAqVOnsHXrVsydOxfffvut1Fq6osSHckk0aNAAs2bNwvHjx9GqVSutUCJjEwNdK7zum67XgAsNDcWwYcMwZ84cWFhY6KRmv379tNqGDBkitUbBFy+VSoWhQ4dqgjMA5OfnIzk5Ge3atZNa09PTEyqVCiqVCp07d4aJyf9/tOfn5yMjIwPdu3eXWlP28/ZXUlJSil2TzsXFBRcvXpRe79atW+V6p3AiKt+YccsWZlz5mHHLfsbVR74FmHHJ8HB5BKowsrOzNW9Qf7Ugu+w3MjMzM6Smpmq9IV+7dg1ubm548uSJ1HoAsGrVKsyePRu//vorAKB27dr48ssvMXz4cOm1KgJdbGJQkVhaWiIlJUXRqXhLlizBxx9/DDMzMyxZsuS1j5X1hSQ4OBgAsH79egwYMKDI1FBTU1M4OztjxIgRsLOzk1IPAGbMmKH5b2hoKKysrLRqfvjhhzA1NZVWEwDUajWuXr1a7NQ/Hx8fqbW8vLzQtGlTrF69WrPRzdOnTzFs2DCkpqYiISFBaj0ASE9Px9q1a5Geno7FixfDwcEBBw8eRN26ddGsWTPp9YiI/i5mXGbc0mDGlYsZV07G1Ve+BZhxybDwpC1VGIXXwzEyMip2mkXB9AvZa+M0bNgQX3zxBQYNGlSkfePGjfjiiy8UDUN//PEH1Gq11jpA5cGdO3dw+fJlqFQqNGrUCPb29jqpW/C2qcSUqorCz88PAwcOxIABAxSr4eLigjNnzsDW1lbnX0hmzJiBsLAwnY2wAF6EaH9/f03gU9LJkycREBCAzMxMvBwjlHgPPXXqFHr27Am1Wo2WLVsCAJKSkqBSqfDjjz+ibdu2UuvFxsbivffeg7e3N37++WekpqbC1dUV8+fPx6lTp7Br1y6p9YiISoMZlxlXFmbc0mPGlUuX+RZgxmXGNTxcHoEqjKNHj6J69eoAdD9N5qOPPsL48ePx7NkzdOrUCcCLTSEmT56M0NBQ6fUeP34MIQQsLCxgZ2eHzMxMLFq0CG5ubujWrZv0erqWk5ODTz/9FBs2bNBc/TQ2NkZQUBCWLl2qWIhYvXo1IiMjkZaWBuDFF5Xx48fjo48+UqReedajRw+EhYXh4sWLaNGihdZ6Sr169Sp1jYyMjGJ/1oXY2FiMGzdO63cxOzsbffr0wdGjR6XXHDJkCB48eIBNmzYhPT0dYWFhqF69OhISElCjRg3Url1bWq1Ro0ahdevW2L9/PxwdHRX/cte2bVtkZGQU2ejG398fAQEBiqyfNmXKFMyePRsTJ06EtbW1pr1jx45YvHix9HpERKXBjMuMW1rMuPIw48rNuLrMtwAzLhkejrSlCuvJkydITk4udtqDjA/TwoQQmDJlCpYsWYK8vDwAL6aThYeHY/r06VJrAUC3bt3g5+eHUaNG4cGDB2jcuDFMTU3xxx9/YOHChfjkk0+k19SlkSNH4vDhw1i2bBm8vb0BAHFxcQgJCUHXrl3xzTffSK85bdo0REZG4tNPPy2ys+eyZcswbtw4zJ49W3rN8szIyOiV98m6iv2mG2oosXPwq3a6vX37NmrXrq3ZHEOm5ORkdOnSBVWqVMH169dx+fJluLq6Ytq0acjMzMSGDRuk1bK0tERSUhIaNGgg7Zhv4uLFi8jKytK8jxaQ/Z5tZWWlWWOs8O7k169fR5MmTRSZ7ktEJAszbtnFjFv2MePKzbi6zLcAMy4zrgESRBXQgQMHhL29vVCpVFo3IyMjxeo+fPhQnDp1SqSkpIgnT54oVsfW1lacP39eCCHEqlWrhLu7u8jPzxc7duwQTZo0Uayurtja2oro6Git9qNHjwo7OzvFam7ZskWrfcuWLcLW1laRmlQ6vr6+RW7W1tbCwsJCeHp6Ck9PT2FpaSlsbGxEx44dpdVMSkoSSUlJQqVSiejoaM2fk5KSREJCgpgzZ45wcnKSVq+wTp06ibCwMCGEEFZWViI9PV0IIUR8fLz0mh07dhQHDhyQeszXSU9PF+7u7pr36IL/Ftxkq127toiPjxdCFH0ud+/eLVxdXaXXIyKShRm3bGPGpTdRkTKuLvOtEMy4ZHi4PAJVSGPHjkX//v0xffp01KhRQ2d1rays0KZNG8Xr5ObmaqY7REVFwc/PD0ZGRnj77beRmZmpeH2l5ebmFvvv5uDggNzcXEVq5ufno3Xr1lrtrVq1wvPnzxWpWZ7NnDnzlfepVCpMmzat1DUKTxFduHAhrK2tsX79elSrVg0AcP/+fQQHB6N9+/alrlXAw8NDs9NtwTTRwszNzbF06VJp9Qo7c+YMVq5cqdVeu3Zt3Lp1q9THT05O1vz86aefIjQ0FLdu3Sp26p+7u3up6xU2btw4uLi44PDhw3B1dcUvv/yCe/fuITQ0FP/+97+l1gKAgIAAhIeHY+fOnVCpVFCr1YiPj8ekSZMQFBQkvR4RkSzMuGUbM27Zx4wrl9L5FmDGZcY1cPo+a0ykD9bW1uLq1av67oZiWrRoIRYvXiyysrKEjY2NOH78uBBCiDNnzogaNWrouXel16lTJ9G/f3/x+PFjTVtubq7o37+/6Ny5syI1x44dKyZMmKDVHhoaKkaPHq1IzfLMw8OjyK1Zs2bCwsJC2NjYCE9PT+n1atWqpRmZU1hKSopwdHSUVuf69esiIyNDqFQqcfr0aXH9+nXN7caNG+L58+fSar3MwcFBJCQkCCGKXjk/dOiQqFOnTqmPX3gEwKtGcCk1ksvW1lYkJSUJIYSwsbERly5dEkIIceTIEeHh4SG9Xl5enggICND8nSpVqiRUKpUYNGiQov+GRESlxYxbtjHjln3MuHIpnW+FYMZlxjVsHGlLFVK/fv0QExOD+vXr67sripg+fToCAgIwYcIEdOrUSbM+VVRUFDw9PfXcu9JbtGgR3nvvPdSpUwctW7aESqVCYmIiKleujKioKMXqrl69GlFRUXj77bcBvNhd9Ndff0VQUFCRtaUWLlyoWB/Ki3Pnzmm1ZWdnY+jQoejbt6/0etnZ2fj999/RrFmzIu23b9/Gw4cPpdVxcnICAM0agrpanwoAevfujZkzZ2LHjh0AXozmyMrKwpQpU/Dhhx+W+vi63uiisPz8fFhZWQEA7OzscOPGDTRu3BhOTk64fPmy9HqVKlXC5s2bMWvWLCQkJECtVsPT0xMNGzaUXouISCZm3LKNGbfsY8aVm3GVzrcAMy4zrmHjRmRUIeXm5qJ///6wt7cvdtpDSEiInnomz61bt3Dz5k20bNlSsyD+qVOnYGNjgyZNmui5d6X3+PHjIrtsurm5ITAwEObm5orU69ix4xs9TqVSSd81tSI5f/48PvjgA1y/fl3qcYOCghAbG4uIiIgiX0jCwsLg4+OD9evXS62XkZGBvn37Ijk5GSqVCgUftQU70MrYhOJl2dnZeP/993HhwgU8fPgQtWrVwq1bt/D222/jwIEDiuxAqyvt27dHaGgo+vTpg4CAANy/fx+ff/45Vq5cibNnz+L8+fOlrvGmm3oA/NJKRIaLGZcZt6SYcXWDGffvKc/5FmDGpb/Gk7ZUIX377bcYNWoUzM3NYWtrq/mQAV584Fy7dk2PvZPn6tWrSE9Ph4+PD8zNzSGEKPJ3Lavmzp2LGjVqYNiwYUXa16xZgzt37iA8PFxPPaPSiouLQ8+ePXH//n2px83NzcWkSZOwZs0aza62JiYmGD58OBYsWCA98PXs2RPGxsZYtWpVsetTyVxj7GXR0dE4e/Ys1Go1vLy80KVLF+k1dP0aPHToEHJycuDn54dr167hgw8+wKVLl2Bra4vt27cXu7ZaSb38pfXs2bPIz89H48aNAQBXrlyBsbExWrVqxS+tRGSwmHHLNmbc8osZt3R0kW8BZlxmXMPDk7ZUIdWsWRMhISGYMmWK5gp9eXL37l0MGDAA0dHRUKlUSEtLg6urK4YPH46qVasiIiJC310sFWdnZ2zZsgXt2rUr0v7LL79g4MCBep3iQm9myZIlRf4shMDNmzexceNG+Pj4YOvWrYrUzcnJQXp6OoQQaNCggWJX5+3s7HD06FG4u7ujSpUqOHXqFBo3boyjR48iNDS02KlzMhw5cgRHjhzB7du3NdPXCqxZs0ZaHUN4Dd67dw/VqlVT5Ev6woULERMT88pNPUJDQ6XXJCKSgRmXGZf0ixlXfsbVVb4FDOM1yIxLhXFNW6qQ8vLy4O/vXy7DLABMmDABlSpVQlZWFpo2bapp9/f3x4QJE8p8oL116xYcHR212u3t7XHz5k099IhKKjIyssifjYyMYG9vjyFDhmDq1KmK1bW0tJS+62txdL0+FQDMmDEDM2fOROvWreHo6KjoiCNDeA1Wr15dsWNHREQgKipKE2YBoFq1apg9eza6devGQEtEBosZlxmX9IsZVy5d5lvAMF6DzLhUGE/aUoU0ZMgQbN++Hf/85z/13RVFREVF4dChQ6hTp06R9oYNGyIzM1NPvZKnbt26iI+Ph4uLS5H2+Ph41KpVS0+9opIo7yNFmjdvjuTkZLi6uuKtt97C/PnzYWpqipUrV8LV1VWRmsuXL8e6deswePBgRY5fWHl/DepqUw8iItmYccu28v75WhEw48qly3wLlP/XIDNu2cOTtlQh5efnY/78+Th06BDc3d21Nmko6wtw5+TkwMLCQqv9jz/+QOXKlfXQI7k++ugjjB8/Hs+ePdOs83PkyBFMnjyZVwfJIHz++efIyckBAMyePRsffPAB2rdvr1mfSgl5eXlaU7mUUt5fg3379kVwcHCxm3r4+fnpuXdERK/GjFu2lffPVyr7dJ1xdZlvgfL/GmTGLXu4pi1VSK/bJbU87Izao0cPeHl5YdasWbC2tkZycjKcnJwwcOBAqNVq7Nq1S99dLBUhBKZMmYIlS5YgLy8PAGBmZobw8HBMnz5dz70jKp6S61MBQHh4OKysrDBt2jRFjl9YeX8N6npTDyIiWZhxmXGJdE3JjKvLfAuU/9cgM27Zw5O2ROVQamoqOnTooNkBslevXrhw4QLu3buH+Ph41K9fX99dlOLRo0dITU2Fubk5GjZsWC5GWBD9XePGjcOGDRvg7u6us9FV5f01qKtNPYiI6M0w4xJVLPrIt0D5fw0y45YdPGlLVM48e/YM3bp1w9y5c3HgwAGcPXsWarUaXl5eGDNmTLELqxNR2aeP0VVXr15Feno6fHx8YG5uDiGE4htEEBFRxcSMS1Tx6Gv2ADMuGQqetCUqh+zt7XH8+HE0bNhQ310honLo7t27GDBgAKKjo6FSqZCWlgZXV1cMHz4cVatWLfO7dxMRkWFixiUiJTHjkqEx0ncHiEi+oKAgrF69Wt/dIKJyasKECahUqRKysrKKbAjj7++PgwcP6rFnRERUnjHjEpGSmHHJ0JjouwNEJF9eXh6+/fZb/PTTT2jdurXWGjVlfedgItKvqKgoHDp0CHXq1CnS3rBhQ2RmZuqpV0REVN4x4xKRkphxydDwpC1ROXT+/Hl4eXkBAK5cuVLkPq7FQ0SllZOTU2T0QYE//vij3G3UQEREhoMZl4iUxIxLhoZr2hIREVGJ9OjRA15eXpg1axasra2RnJwMJycnDBw4EGq1Grt27dJ3F4mIiIiISoQZlwwNT9oSERFRiVy8eBG+vr5o1aoVjh49il69euHChQu4d+8e4uPjUb9+fX13kYiIiIioRJhxydBwIzIiIiIqESsrKyQmJqJt27bo2rUrcnJy4Ofnh3PnzqFSpUr67h4RERERUYkx45Kh4UhbIiIiKhFjY2PcvHkTDg4ORdrv3r0LBwcH5Ofn66lnRERERER/DzMuGRqOtCUiIqISedX13kePHsHMzEzHvSEiIiIiKj1mXDI0JvruABEREZUNEydOBPBih+7p06cX2V03Pz8fv/zyCzw8PPTUOyIiIiKikmPGJUPFk7ZERET0Rs6dOwfgxSiElJQUmJqaau4zNTVFy5YtMWnSJH11j4iIiIioxJhxyVBxTVsiIiIqkeDgYCxevBg2Njb67goRERERkRTMuGRoeNKWiIiIiIiIiIiIyIBwIzIiIiIiIiIiIiIiA8KTtkREREREREREREQGhCdtiYiIiIiIiIiIiAwIT9oSERERERERERERGRCetCUiKsNUKhX27t2r724QEREREUnDjEtExJO2RER6pVKpXnsbOnSovrtIRERERFQizLhERKVnou8OEBFVZDdv3tT8vH37dkyfPh2XL1/WtJmbm+ujW0REREREfxszLhFR6XGkLRGRHtWsWVNzq1KlClQqVZG2LVu2oH79+jA1NUXjxo2xcePG1x5v5syZqFGjBhITEwEAx48fh4+PD8zNzVG3bl2EhIQgJydH83hnZ2fMmTMHw4YNg7W1NerVq4eVK1dq7s/Ly8PYsWPh6OgIMzMzODs7Y+7cuYo8F0RERERUPjDjEhGVHk/aEhEZqD179mDcuHEIDQ3F+fPnMXLkSAQHByM6OlrrsUIIjBs3DqtXr0ZcXBw8PDyQkpKCd999F35+fkhOTsb27dsRFxeHsWPHFvl/IyIi0Lp1a5w7dw6jR4/GJ598gkuXLgEAlixZgh9++AE7duzA5cuXsWnTJjg7O+vir09ERERE5RAzLhHRm1EJIYS+O0FERMC6deswfvx4PHjwAADg7e2NZs2aFRkVMGDAAOTk5GD//v0AXqwXtnPnTnz//fc4c+YMfvrpJ9SpUwcAEBQUBHNzc6xYsULz/8fFxaFDhw7IycnRjCpo3769ZnSDEAI1a9bEjBkzMGrUKISEhODChQs4fPgwVCqVjp4JIiIiIiovmHGJiP4ejrQlIjJQqamp8Pb2LtLm7e2N1NTUIm0TJkzAiRMncOzYMU2YBYCzZ89i3bp1sLKy0tzeffddqNVqZGRkaB7n7u6u+blg6trt27cBAEOHDkViYiIaN26MkJAQREVFKfFXJSIiIqIKghmXiOjN8KQtEZEBe/nKvxBCq61r167473//i0OHDhVpV6vVGDlyJBITEzW3pKQkpKWloX79+prHVapUSaumWq0GAHh5eSEjIwOzZs3C48ePMWDAAPTr10/mX5GIiIiIKhhmXCKiv2ai7w4QEVHxmjZtiri4OAQFBWnajh8/jqZNmxZ5XK9evdCzZ08EBATA2NgYAwcOBPAijF64cAENGjQoVT9sbGzg7+8Pf39/9OvXD927d8e9e/dQvXr1Uh2XiIiIiCoeZlwiojfDk7ZERAYqLCwMAwYMgJeXFzp37ox9+/Zh9+7dOHz4sNZj+/bti40bN2Lw4MEwMTFBv379EB4ejrfffhtjxozBiBEjYGlpidTUVPz0009YunTpG/UhMjISjo6O8PDwgJGREXbu3ImaNWuiatWqkv+2RERERFQRMOMSEb0ZnrQlIjJQffr0weLFi7FgwQKEhITAxcUFa9euha+vb7GP79evH9RqNQYPHgwjIyP4+fkhNjYWn332Gdq3bw8hBOrXrw9/f/837oOVlRXmzZuHtLQ0GBsbo02bNvjPf/4DIyOurkNEREREJceMS0T0ZlRCCKHvThARERERERERERHRC7yMRERERERERERERGRAeNKWiIiIiIiIiIiIyIDwpC0RERERERERERGRAeFJWyIiIiIiIiIiIiIDwpO2RERERERERERERAaEJ22JiIiIiIiIiIiIDAhP2hIREREREREREREZEJ60JSIiIiIiIiIiIjIgPGlLREREREREREREZEB40paIiIiIiIiIiIjIgPCkLREREREREREREZEB4UlbIiIiIiIiIiIiIgPyfwDUZJy0PzYRAAAAAElFTkSuQmCC",
|
2372
|
-
"text/plain": [
|
2373
|
-
"<Figure size 1400x600 with 2 Axes>"
|
2374
|
-
]
|
2375
|
-
},
|
2376
|
-
"metadata": {},
|
2377
|
-
"output_type": "display_data"
|
2378
|
-
},
|
2379
|
-
{
|
2380
|
-
"data": {
|
2381
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxyklEQVR4nOzdeXhN1/7H8c+RRGJKjJlaIqh5qNISGkMRjdbQ0tIJNbRKryG0leIaOhiKpq2p7UWoFm3Rark1UyodSEL1p4qGKAmlrRgqiWT//vDkXEcGSeyTs+n79Tz7eZy1117ftROO7/mevde2GYZhCAAAAAAAAABgCcVcPQEAAAAAAAAAwP9QtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BVAkoqOjZbPZctxGjRrl6undUq79WXt5ecnf319t27bV5MmTderUqWzHTJgwQTabrUBxLl68qAkTJmjr1q0FOi6nWFWrVtWDDz5YoHGu56OPPlJUVFSO+2w2myZMmGBqPAAA8M9ybc7l7u6u22+/XU8//bSOHz9uaiybzabnn3/etPGOHDkim82m6dOnX7dv1nkeOXLE3ta3b19VrVrVoV/VqlXVt29f++sTJ05owoQJio+PN2fS18yHXJdcF7jVubt6AgD+WRYuXKjatWs7tAUGBrpoNre2rJ91enq6Tp06pR07dmjq1KmaPn26li9frvbt29v7DhgwQPfff3+Bxr948aImTpwoSWrTpk2+jytMrML46KOPtG/fPg0fPjzbvpiYGN1+++1OnwMAALj1ZeVcf//9t77++mtNnjxZ27Zt048//qhSpUq5eno37IEHHlBMTIwCAgLy7Ldq1Sp5e3vbX584cUITJ05U1apVdeedd5o+L3Jdcl3gVkfRFkCRql+/vpo2bZqvvunp6farFlBw1/6su3fvrhEjRujee+/Vww8/rIMHD8rPz0+SdPvttzs9sbt48aJKlixZJLGup3nz5i6NDwAAbh1X51xt27ZVRkaGXnnlFX322Wd64okncjwmKy+6GVSqVEmVKlW6br/GjRsXwWz+h1w3d+S6wK2B5REAWMLWrVtls9n0wQcfaOTIkbrtttvk6empQ4cOSZI2btyodu3aydvbWyVLllTLli21adOmbOOsWbNGd955pzw9PRUcHKzp06dnu0Up63aw6OjobMfndCvRwYMH9fjjj8vX11eenp6qU6eOZs+eneP8ly5dqjFjxigwMFDe3t5q3769Dhw4kC3OV199pXbt2snHx0clS5ZUnTp1NHnyZEnSBx98IJvNppiYmGzHTZo0SR4eHjpx4sR1f6Y5qVKlimbMmKFz587p3XfftbfndBvX5s2b1aZNG1WoUEElSpRQlSpV1L17d128eFFHjhyxJ+8TJ060356WdUtc1nixsbHq0aOHypUrp+rVq+caK8uqVavUsGFDeXl5qVq1anr77bcd9ud0e570v59/1u1rbdq00Zo1a3T06FGH2+ey5PR73rdvn7p27apy5crJy8tLd955pxYtWpRjnPz+ngEAwD9PVsHs6NGjkq4sJVC6dGn9+OOPCgsLU5kyZdSuXTtJ0h9//KHBgwfrtttuU/HixVWtWjWNGTNGqampOY797rvvqmbNmvL09FTdunW1bNkyh/2///67Bg8erLp166p06dLy9fXVfffdp+3bt+c4XmZmpl577TVVqVJFXl5eatq0abYcO7f861pXL4+wdetW3X333ZKkp59+2p6LTZgwgVyXXBdAPnH5GoAilZGRocuXLzu0XX0lbWRkpEJCQjRv3jwVK1ZMvr6+WrJkiXr37q2uXbtq0aJF8vDw0LvvvquOHTtq3bp19qR306ZN6tq1q0JCQrRs2TJlZGRo2rRpOnnyZKHn+3//939q0aKFPQH09/fXunXrNHToUJ0+fVrjx4936P/yyy+rZcuW+s9//qOUlBS99NJL6ty5s/bv3y83NzdJ0vz58zVw4EC1bt1a8+bNk6+vr3755Rft27dPktSzZ0+9+OKLmj17tkJCQuxjX758We+++64eeuihG1pSolOnTnJzc9PXX3+da58jR47ogQceUGhoqBYsWKCyZcvq+PHj+uqrr5SWlqaAgAB99dVXuv/++9W/f38NGDBAkrJdhfHwww+rV69eGjRokC5cuJDnvOLj4zV8+HBNmDBB/v7++vDDDzVs2DClpaUVeN3jOXPm6JlnntHhw4e1atWq6/Y/cOCAWrRoIV9fX7399tuqUKGClixZor59++rkyZN68cUXHfrn5/cMAAD+mbIuOrg6L0pLS1OXLl307LPPavTo0bp8+bIuXbqktm3b6vDhw5o4caIaNmyo7du3a/LkyYqPj9eaNWscxl29erW2bNmiSZMmqVSpUpozZ44ee+wxubu7q0ePHpKuFIElafz48fL399f58+e1atUqtWnTRps2bcp2m/+sWbMUFBSkqKgoZWZmatq0aQoPD9e2bdsc8tCCuuuuu7Rw4UI9/fTTGjt2rB544AFJV6549fX1Jdcl1wWQHwYAFIGFCxcaknLc0tPTjS1bthiSjFatWjkcd+HCBaN8+fJG586dHdozMjKMRo0aGffcc4+9rVmzZkZgYKDx999/29tSUlKM8uXLG1e/3SUkJBiSjIULF2abpyRj/Pjx9tcdO3Y0br/9duPs2bMO/Z5//nnDy8vL+OOPPwzDMOzz79Spk0O/jz/+2JBkxMTEGIZhGOfOnTO8vb2Ne++918jMzMz15zV+/HijePHixsmTJ+1ty5cvNyQZ27Zty/U4w/jfz/qHH37ItY+fn59Rp04dh3hX/4w+/fRTQ5IRHx+f6xi///57tp/XteP9+9//znXf1YKCggybzZYtXocOHQxvb2/jwoULDueWkJDg0C/r579lyxZ72wMPPGAEBQXlOPdr592rVy/D09PTSExMdOgXHh5ulCxZ0vjrr78c4lzv9wwAAG59WXnJt99+a6Snpxvnzp0zvvzyS6NSpUpGmTJljOTkZMMwDKNPnz6GJGPBggUOx8+bN8+QZHz88ccO7VOnTjUkGevXr7e3STJKlChhH9MwDOPy5ctG7dq1jRo1auQ6x8uXLxvp6elGu3btjIceesjenpUP55Y7t2/fPtt5Xp1/9enTJ1ueFRQUZPTp08f++ocffsg15ybXvYJcF0BeWB4BQJFavHixfvjhB4ft6ittu3fv7tB/586d+uOPP9SnTx9dvnzZvmVmZur+++/XDz/8oAsXLujChQv64Ycf9PDDD8vLy8t+fJkyZdS5c+dCzfXSpUvatGmTHnroIZUsWdIhfqdOnXTp0iV9++23Dsd06dLF4XXDhg0l/e/2uJ07dyolJUWDBw/O8wm2zz33nCTp/ffft7fNmjVLDRo0UKtWrQp1PlczDCPP/XfeeaeKFy+uZ555RosWLdKvv/5aqDjX/j7zUq9ePTVq1Mih7fHHH1dKSopiY2MLFT+/Nm/erHbt2qly5coO7X379tXFixez3b53vd8zAAD452jevLk8PDxUpkwZPfjgg/L399d///tf+3qqWa7NizZv3qxSpUrZr5LNknUL/rXLFLRr185hTDc3N/Xs2VOHDh3Sb7/9Zm+fN2+e7rrrLnl5ecnd3V0eHh7atGmT9u/fn23uueXOX3/9tTIyMgr2gygAct0ryHUB5IWiLYAiVadOHTVt2tRhu9q1T6XNWtqgR48e8vDwcNimTp0qwzD0xx9/6M8//1RmZqb8/f2zxcypLT/OnDmjy5cv65133skWu1OnTpKk06dPOxxToUIFh9eenp6SpL///lvSlXXGJF334QR+fn7q2bOn3n33XWVkZGjv3r3avn27nn/++UKdy9UuXLigM2fO5HnbWfXq1bVx40b5+vpqyJAhql69uqpXr6633nqrQLGu95Thq+X1uztz5kyB4hbUmTNncpxr1s/o2vjX+z0DAIB/jqyLEuLi4nTixAnt3btXLVu2dOhTsmRJeXt7O7SdOXNG/v7+2b7I9/X1lbu7e7b8Iz+50syZM/Xcc8+pWbNmWrFihb799lv98MMPuv/++3PMU3IbMy0tTefPn8/H2RcOua5jG7kugJywpi0AS7k2aa1YsaIk6Z133sn1Kah+fn5KT0+XzWZTcnJytv3XtmVdTXDtAx6uTVbKlSsnNzc3PfXUUxoyZEiOsYODg/M4m+yy1sG6+mqI3AwbNkwffPCBPv/8c3311VcqW7Zsrk8gLog1a9YoIyMj25pm1woNDVVoaKgyMjK0a9cuvfPOOxo+fLj8/PzUq1evfMXK62ria+X1u8tKHHP73V1bPC+oChUqKCkpKVt71kMwsv4eAgAAXCvrooS85JQTVahQQd99950Mw3DYf+rUKV2+fDlb/pGfXGnJkiVq06aN5s6d69Dv3LlzOc4rtzGLFy+u0qVL53lON4pcl1wXQN640haApbVs2VJly5bV//3f/2W7QjdrK168uEqVKqV77rlHK1eu1KVLl+zHnzt3Tl988YXDmH5+fvLy8tLevXsd2j///HOH1yVLllTbtm0VFxenhg0b5hj72m+hr6dFixby8fHRvHnzrnvbVpMmTdSiRQtNnTpVH374ofr27atSpUoVKN61EhMTNWrUKPn4+OjZZ5/N1zFubm5q1qyZZs+eLUn227fM/sb9p59+0p49exzaPvroI5UpU0Z33XWXpCtPJZaU7Xe3evXqbON5enrme27t2rXT5s2bsz2pePHixSpZsmSuXxgAAAAUVrt27XT+/Hl99tlnDu2LFy+277/apk2bHB6wm5GRoeXLl6t69er2u7hsNps9R8uyd+/ebLe/Z8ktdw4NDb3hB05dL1ck1yXXBZA3rrQFYGmlS5fWO++8oz59+uiPP/5Qjx495Ovrq99//1179uzR77//br+S4JVXXtH999+vDh06aOTIkcrIyNDUqVNVqlQp+5N0pSvJ7JNPPqkFCxaoevXqatSokb7//nt99NFH2eK/9dZbuvfeexUaGqrnnntOVatW1blz53To0CF98cUX2rx5c4HPZ8aMGRowYIDat2+vgQMHys/PT4cOHdKePXs0a9Ysh/7Dhg1Tz549ZbPZNHjw4ALF2rdvn30N3lOnTmn79u1auHCh3NzctGrVqmxPv73avHnztHnzZj3wwAOqUqWKLl26pAULFkiS2rdvL+nKmmdBQUH6/PPP1a5dO5UvX14VK1a0J5sFFRgYqC5dumjChAkKCAjQkiVLtGHDBk2dOlUlS5aUJN19992qVauWRo0apcuXL6tcuXJatWqVduzYkW28Bg0aaOXKlZo7d66aNGmiYsWK5XoVzPjx4/Xll1+qbdu2+ve//63y5cvrww8/1Jo1azRt2jT5+PgU6pwAAABy07t3b82ePVt9+vTRkSNH1KBBA+3YsUOvv/66OnXqZM+5slSsWFH33Xefxo0bp1KlSmnOnDn6+eeftWzZMnufBx98UK+88orGjx+v1q1b68CBA5o0aZKCg4N1+fLlbHNwc3NThw4dFBERoczMTE2dOlUpKSmaOHHiDZ9f9erVVaJECX344YeqU6eOSpcurcDAQIdlC8h1yXUB5I6iLQDLe/LJJ1WlShVNmzZNzz77rM6dOydfX1/deeed9gc1SFKHDh302WefaezYserZs6f8/f01ePBg/f3339kSzxkzZkiSpk2bpvPnz+u+++7Tl19+mS0Jq1u3rmJjY/XKK69o7NixOnXqlMqWLas77rjDvq5tQfXv31+BgYGaOnWqBgwYIMMwVLVqVfXp0ydb327dusnT01Nt27bVHXfcUaA4Tz/9tCSpePHiKlu2rOrUqaOXXnpJAwYMyDOJla48nGH9+vUaP368kpOTVbp0adWvX1+rV69WWFiYvd/8+fP1wgsvqEuXLkpNTVWfPn0UHR1doHleHfPpp5/W+PHjdfDgQQUGBmrmzJkaMWKEvY+bm5u++OILPf/88xo0aJA8PT3Vq1cvzZo1Sw888IDDeMOGDdNPP/2kl19+WWfPnpVhGLle3VyrVi3t3LlTL7/8soYMGaK///5bderU0cKFCx3+jgEAAJjFy8tLW7Zs0ZgxY/TGG2/o999/12233aZRo0Zp/Pjx2fp36dJF9erV09ixY5WYmKjq1avrww8/VM+ePe19xowZo4sXL2r+/PmaNm2a6tatq3nz5mnVqlXaunVrtjGff/55Xbp0SUOHDtWpU6dUr149rVmzJtuavIVRsmRJLViwQBMnTlRYWJjS09M1fvx4TZgwwd6HXJdcF0DubMb17s8FgJvchAkTNHHixOsuR2BFX3zxhbp06aI1a9YUukgMAAAAWBG5LgDkjittAcCC/u///k9Hjx7VyJEjdeeddyo8PNzVUwIAAABMQa4LANfHg8gAwIIGDx6sLl26qFy5clq6dGmBnkwLAAAAWBm5LgBcH8sjAAAAAAAAAICFcKUtAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIe6unoAVZWZm6sSJEypTpgwLogMAALiIYRg6d+6cAgMDVawY1xrcKHJcAAAA18tvjkvRNgcnTpxQ5cqVXT0NAAAASDp27Jhuv/12V0/jpkeOCwAAYB3Xy3Ep2uagTJkykq788Ly9vV08GwAAgH+mlJQUVa5c2Z6b4caQ4wIAALhefnNcirY5yLpdzNvbm4QWAADAxbiV3xzkuAAAANZxvRyXxcEAAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIW4u3oCuGJK3GmnjT26cUWnjQ0AAADkJn3iSKeN7TF+htPGBgAAcDWutAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEJcWbb/++mt17txZgYGBstls+uyzzxz222y2HLc33ngj1zGjo6NzPObSpUtOPhsAAAAAAAAAuHEuLdpeuHBBjRo10qxZs3Lcn5SU5LAtWLBANptN3bt3z3Ncb2/vbMd6eXk54xQAAAAAAAAAwFTurgweHh6u8PDwXPf7+/s7vP7888/Vtm1bVatWLc9xbTZbtmMBAAAAAAAA4GZw06xpe/LkSa1Zs0b9+/e/bt/z588rKChIt99+ux588EHFxcUVwQwBAAAAAAAA4MbdNEXbRYsWqUyZMnr44Yfz7Fe7dm1FR0dr9erVWrp0qby8vNSyZUsdPHgw12NSU1OVkpLisAEAAAAAAACAK9w0RdsFCxboiSeeuO7atM2bN9eTTz6pRo0aKTQ0VB9//LFq1qypd955J9djJk+eLB8fH/tWuXJls6cPAAAAAAAAAPlyUxRtt2/frgMHDmjAgAEFPrZYsWK6++6787zSNjIyUmfPnrVvx44du5HpAgAAAAAAAEChufRBZPk1f/58NWnSRI0aNSrwsYZhKD4+Xg0aNMi1j6enpzw9PW9kigAAAAAAAABgCpcWbc+fP69Dhw7ZXyckJCg+Pl7ly5dXlSpVJEkpKSn65JNPNGPGjBzH6N27t2677TZNnjxZkjRx4kQ1b95cd9xxh1JSUvT2228rPj5es2fPdv4JAQAAAAAAAMANcmnRdteuXWrbtq39dUREhCSpT58+io6OliQtW7ZMhmHosccey3GMxMREFSv2v1Ue/vrrLz3zzDNKTk6Wj4+PGjdurK+//lr33HOP804EAAAAAAAAAExiMwzDcPUkrCYlJUU+Pj46e/asvL29iyTmlLjTTht7dOOKThsbAADAWVyRk93KXPHzTJ840mlje4zP+U48AAAAK8tvTnZTPIgMAAAAAAAAAP4pKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAABAAcyZM0fBwcHy8vJSkyZNtH379jz7b9u2TU2aNJGXl5eqVaumefPmOex///33FRoaqnLlyqlcuXJq3769vv/+e4c+EyZMkM1mc9j8/f1NPzcAAABYA0VbAAAAIJ+WL1+u4cOHa8yYMYqLi1NoaKjCw8OVmJiYY/+EhAR16tRJoaGhiouL08svv6yhQ4dqxYoV9j5bt27VY489pi1btigmJkZVqlRRWFiYjh8/7jBWvXr1lJSUZN9+/PFHp54rAAAAXMfd1RMAAAAAbhYzZ85U//79NWDAAElSVFSU1q1bp7lz52ry5MnZ+s+bN09VqlRRVFSUJKlOnTratWuXpk+fru7du0uSPvzwQ4dj3n//fX366afatGmTevfubW93d3fn6loAAIB/CK60BQAAAPIhLS1Nu3fvVlhYmEN7WFiYdu7cmeMxMTEx2fp37NhRu3btUnp6eo7HXLx4Uenp6SpfvrxD+8GDBxUYGKjg4GD16tVLv/76a57zTU1NVUpKisMGAACAmwNFWwAAACAfTp8+rYyMDPn5+Tm0+/n5KTk5OcdjkpOTc+x/+fJlnT59OsdjRo8erdtuu03t27e3tzVr1kyLFy/WunXr9P777ys5OVktWrTQmTNncp3v5MmT5ePjY98qV66c31MFAACAi1G0BQAAAArAZrM5vDYMI1vb9frn1C5J06ZN09KlS7Vy5Up5eXnZ28PDw9W9e3c1aNBA7du315o1ayRJixYtyjVuZGSkzp49a9+OHTt2/ZMDAACAJbCmLQAAAJAPFStWlJubW7arak+dOpXtatos/v7+OfZ3d3dXhQoVHNqnT5+u119/XRs3blTDhg3znEupUqXUoEEDHTx4MNc+np6e8vT0zHMcAAAAWBNX2gIAAAD5ULx4cTVp0kQbNmxwaN+wYYNatGiR4zEhISHZ+q9fv15NmzaVh4eHve2NN97QK6+8oq+++kpNmza97lxSU1O1f/9+BQQEFOJMAAAAYHUUbQEAAIB8ioiI0H/+8x8tWLBA+/fv14gRI5SYmKhBgwZJurIkQe/eve39Bw0apKNHjyoiIkL79+/XggULNH/+fI0aNcreZ9q0aRo7dqwWLFigqlWrKjk5WcnJyTp//ry9z6hRo7Rt2zYlJCTou+++U48ePZSSkqI+ffoU3ckDAACgyLA8AgAAAJBPPXv21JkzZzRp0iQlJSWpfv36Wrt2rYKCgiRJSUlJSkxMtPcPDg7W2rVrNWLECM2ePVuBgYF6++231b17d3ufOXPmKC0tTT169HCINX78eE2YMEGS9Ntvv+mxxx7T6dOnValSJTVv3lzffvutPS4AAABuLTYj60kIsEtJSZGPj4/Onj0rb2/vIok5JS7npwebYXTjik4bGwAAwFlckZPdylzx80yfONJpY3uMn+G0sQEAAJwlvzkZyyMAAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAsxKVF26+//lqdO3dWYGCgbDabPvvsM4f9ffv2lc1mc9iaN29+3XFXrFihunXrytPTU3Xr1tWqVaucdAYAAAAAAAAAYC6XFm0vXLigRo0aadasWbn2uf/++5WUlGTf1q5dm+eYMTEx6tmzp5566int2bNHTz31lB599FF99913Zk8fAAAAAAAAAEzn7srg4eHhCg8Pz7OPp6en/P398z1mVFSUOnTooMjISElSZGSktm3bpqioKC1duvSG5gsAAAAAAAAAzmb5NW23bt0qX19f1axZUwMHDtSpU6fy7B8TE6OwsDCHto4dO2rnzp25HpOamqqUlBSHDQAAAAAAAABcwdJF2/DwcH344YfavHmzZsyYoR9++EH33XefUlNTcz0mOTlZfn5+Dm1+fn5KTk7O9ZjJkyfLx8fHvlWuXNm0cwAAAAAAAACAgnDp8gjX07NnT/uf69evr6ZNmyooKEhr1qzRww8/nOtxNpvN4bVhGNnarhYZGamIiAj765SUFAq3AAAAAAAAAFzC0kXbawUEBCgoKEgHDx7MtY+/v3+2q2pPnTqV7erbq3l6esrT09O0eQIAAAAAAABAYVl6eYRrnTlzRseOHVNAQECufUJCQrRhwwaHtvXr16tFixbOnh4AAAAAAAAA3DCXXml7/vx5HTp0yP46ISFB8fHxKl++vMqXL68JEyaoe/fuCggI0JEjR/Tyyy+rYsWKeuihh+zH9O7dW7fddpsmT54sSRo2bJhatWqlqVOnqmvXrvr888+1ceNG7dixo8jPDwAAAAAAAAAKyqVF2127dqlt27b211nryvbp00dz587Vjz/+qMWLF+uvv/5SQECA2rZtq+XLl6tMmTL2YxITE1Ws2P8uGG7RooWWLVumsWPHaty4capevbqWL1+uZs2aFd2JAQAAAAAAAEAhubRo26ZNGxmGkev+devWXXeMrVu3Zmvr0aOHevTocSNTAwAAAAAAAACXuKnWtAUAAAAAAACAWx1FWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAogDlz5ig4OFheXl5q0qSJtm/fnmf/bdu2qUmTJvLy8lK1atU0b948h/3vv/++QkNDVa5cOZUrV07t27fX999/f8NxAQAAcPOiaAsAAADk0/LlyzV8+HCNGTNGcXFxCg0NVXh4uBITE3Psn5CQoE6dOik0NFRxcXF6+eWXNXToUK1YscLeZ+vWrXrssce0ZcsWxcTEqEqVKgoLC9Px48cLHRcAAAA3N5thGIarJ2E1KSkp8vHx0dmzZ+Xt7V0kMafEnXba2KMbV3Ta2AAAAM7iipzsepo1a6a77rpLc+fOtbfVqVNH3bp10+TJk7P1f+mll7R69Wrt37/f3jZo0CDt2bNHMTExOcbIyMhQuXLlNGvWLPXu3btQcXPiip9n+sSRThvbY/wMp40NAADgLPnNybjSFgAAAMiHtLQ07d69W2FhYQ7tYWFh2rlzZ47HxMTEZOvfsWNH7dq1S+np6Tkec/HiRaWnp6t8+fKFjgsAAICbm7urJwAAAADcDE6fPq2MjAz5+fk5tPv5+Sk5OTnHY5KTk3Psf/nyZZ0+fVoBAQHZjhk9erRuu+02tW/fvtBxJSk1NVWpqan21ykpKXmfIAAAACyDK20BAACAArDZbA6vDcPI1na9/jm1S9K0adO0dOlSrVy5Ul5eXjcUd/LkyfLx8bFvlStXzrUvAAAArIWiLQAAAJAPFStWlJubW7arW0+dOpXtKtgs/v7+OfZ3d3dXhQoVHNqnT5+u119/XevXr1fDhg1vKK4kRUZG6uzZs/bt2LFj+TpPAAAAuB7LI/xD8eAzAACAgilevLiaNGmiDRs26KGHHrK3b9iwQV27ds3xmJCQEH3xxRcObevXr1fTpk3l4eFhb3vjjTf06quvat26dWratOkNx5UkT09PeXp6Fugcb3Y8+AwAANwqKNoCAAAA+RQREaGnnnpKTZs2VUhIiN577z0lJiZq0KBBkq5c3Xr8+HEtXrxYkjRo0CDNmjVLERERGjhwoGJiYjR//nwtXbrUPua0adM0btw4ffTRR6patar9itrSpUurdOnS+YoLAACAWwtFWwAAACCfevbsqTNnzmjSpElKSkpS/fr1tXbtWgUFBUmSkpKSlJiYaO8fHBystWvXasSIEZo9e7YCAwP19ttvq3v37vY+c+bMUVpamnr06OEQa/z48ZowYUK+4gIAAODWQtEWAAAAKIDBgwdr8ODBOe6Ljo7O1ta6dWvFxsbmOt6RI0duOC4AAABuLTyIDAAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCXFm2//vprde7cWYGBgbLZbPrss8/s+9LT0/XSSy+pQYMGKlWqlAIDA9W7d2+dOHEizzGjo6Nls9mybZcuXXLy2QAAAAAAAADAjXNp0fbChQtq1KiRZs2alW3fxYsXFRsbq3Hjxik2NlYrV67UL7/8oi5dulx3XG9vbyUlJTlsXl5ezjgFAAAAAAAAADCVuyuDh4eHKzw8PMd9Pj4+2rBhg0PbO++8o3vuuUeJiYmqUqVKruPabDb5+/ubOlcAAAAAAAAAKAo31Zq2Z8+elc1mU9myZfPsd/78eQUFBen222/Xgw8+qLi4uDz7p6amKiUlxWEDAAAAAAAAAFe4aYq2ly5d0ujRo/X444/L29s71361a9dWdHS0Vq9eraVLl8rLy0stW7bUwYMHcz1m8uTJ8vHxsW+VK1d2xikAAAAAAAAAwHXdFEXb9PR09erVS5mZmZozZ06efZs3b64nn3xSjRo1UmhoqD7++GPVrFlT77zzTq7HREZG6uzZs/bt2LFjZp8CAAAAAAAAAOSLS9e0zY/09HQ9+uijSkhI0ObNm/O8yjYnxYoV0913353nlbaenp7y9PS80akCAAAAAAAAwA2z9JW2WQXbgwcPauPGjapQoUKBxzAMQ/Hx8QoICHDCDAEAAAAAAADAXC690vb8+fM6dOiQ/XVCQoLi4+NVvnx5BQYGqkePHoqNjdWXX36pjIwMJScnS5LKly+v4sWLS5J69+6t2267TZMnT5YkTZw4Uc2bN9cdd9yhlJQUvf3224qPj9fs2bOL/gQBAAAAAAAAoIBcWrTdtWuX2rZta38dEREhSerTp48mTJig1atXS5LuvPNOh+O2bNmiNm3aSJISExNVrNj/Lhj+66+/9Mwzzyg5OVk+Pj5q3Lixvv76a91zzz3OPRkAAAAAAAAAMIFLi7Zt2rSRYRi57s9rX5atW7c6vH7zzTf15ptv3ujUAAAAAAAAAMAlLL2mLQAAAAAAAAD801C0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALMSlDyLDP8eUuNNOG3t044pFGjO3eAAAAPhnSZ840mlje4yf4fJ4AADAdbjSFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAIBbXnR0tC5evOjqaQAAAAD5UqiibUJCgtnzAAAAAJwmMjJS/v7+6t+/v3bu3Onq6QAAAAB5KlTRtkaNGmrbtq2WLFmiS5cumT0nAAAAwFS//fablixZoj///FNt27ZV7dq1NXXqVCUnJ7t6agAAAEA2hSra7tmzR40bN9bIkSPl7++vZ599Vt9//73ZcwMAAABM4ebmpi5dumjlypU6duyYnnnmGX344YeqUqWKunTpos8//1yZmZmuniYAAAAgqZBF2/r162vmzJk6fvy4Fi5cqOTkZN17772qV6+eZs6cqd9//93seQIAAACm8PX1VcuWLRUSEqJixYrpxx9/VN++fVW9enVt3brV1dMDAAAAbuxBZO7u7nrooYf08ccfa+rUqTp8+LBGjRql22+/Xb1791ZSUpJZ8wQAAABuyMmTJzV9+nTVq1dPbdq0UUpKir788kslJCToxIkTevjhh9WnTx9XTxMAAAC4saLtrl27NHjwYAUEBGjmzJkaNWqUDh8+rM2bN+v48ePq2rWrWfMEAAAACq1z586qXLmyoqOjNXDgQB0/flxLly5V+/btJUklSpTQyJEjdezYMRfPFAAAAJDcC3PQzJkztXDhQh04cECdOnXS4sWL1alTJxUrdqUGHBwcrHfffVe1a9c2dbIAAABAYfj6+mrbtm0KCQnJtU9AQIASEhKKcFYAAABAzgp1pe3cuXP1+OOPKzExUZ999pkefPBBe8E2S5UqVTR//nxTJgkAAADciNatW+uuu+7K1p6WlqbFixdLkmw2m4KCgop6agAAAEA2hSraHjx4UJGRkfL398+1T/HixVkTDAAAAJbw9NNP6+zZs9naz507p6efftoFMwIAAAByV6ii7cKFC/XJJ59ka//kk0+0aNGiG54UAAAAYCbDMGSz2bK1//bbb/Lx8XHBjAAAAIDcFWpN2ylTpmjevHnZ2n19ffXMM89whS0AAAAsoXHjxrLZbLLZbGrXrp3c3f+X/mZkZCghIUH333+/C2cIAAAAZFeoou3Ro0cVHBycrT0oKEiJiYk3PCkAAADADN26dZMkxcfHq2PHjipdurR9X/HixVW1alV1797dRbMDAAAAclaooq2vr6/27t2rqlWrOrTv2bNHFSpUMGNeAAAAwA0bP368JKlq1arq2bOnvLy8XDwjAAAA4PoKVbTt1auXhg4dqjJlyqhVq1aSpG3btmnYsGHq1auXqRMEAAAAbhTLdwEAAOBmUqii7auvvqqjR486rAuWmZmp3r176/XXXzd1ggAAAEBhlC9fXr/88osqVqyocuXK5fggsix//PFHEc4MAAAAyFuhirbFixfX8uXL9corr2jPnj0qUaKEGjRooKCgILPnBwAAABTKm2++qTJlytj/nFfRFgAAALCSQhVts9SsWVM1a9Ys9PFff/213njjDe3evVtJSUlatWqV/WERkmQYhiZOnKj33ntPf/75p5o1a6bZs2erXr16eY67YsUKjRs3TocPH1b16tX12muv6aGHHir0PAEAAHDzuXpJhL59+7puIgAAAEABFapom5GRoejoaG3atEmnTp1SZmamw/7Nmzfna5wLFy6oUaNGevrpp3N8au+0adM0c+ZMRUdHq2bNmnr11VfVoUMHHThwwH7VxLViYmLUs2dPvfLKK3rooYe0atUqPfroo9qxY4eaNWtW8JMFAADATSklJSXffb29vZ04EwAAAKBgClW0HTZsmKKjo/XAAw+ofv36hb7VLDw8XOHh4TnuMwxDUVFRGjNmjB5++GFJ0qJFi+Tn56ePPvpIzz77bI7HRUVFqUOHDoqMjJQkRUZGatu2bYqKitLSpUsLNU8AAADcfMqWLXvdPNUwDNlsNmVkZBTRrAAAAIDrK1TRdtmyZfr444/VqVMns+djl5CQoOTkZIWFhdnbPD091bp1a+3cuTPXom1MTIxGjBjh0NaxY0dFRUXlGis1NVWpqan21wW5KgMAAADWtGXLFldPAQAAACiUQj+IrEaNGmbPxUFycrIkyc/Pz6Hdz89PR48ezfO4nI7JGi8nkydP1sSJE29gtoA0Je60U8Yd3biiU8YFAOBW17p1a6eMO2fOHL3xxhtKSkpSvXr1FBUVpdDQ0Fz7b9u2TREREfrpp58UGBioF198UYMGDbLv/+mnn/Tvf/9bu3fv1tGjR/Xmm29q+PDhDmNMmDAhW756vRwXMEP6xJFOGddj/AynjAsAwK2iWGEOGjlypN566y0ZhmH2fLK59pa2rFvYzDwmMjJSZ8+etW/Hjh0r/IQBAABgCXv37rU/e2Hv3r15bvm1fPlyDR8+XGPGjFFcXJxCQ0MVHh6uxMTEHPsnJCSoU6dOCg0NVVxcnF5++WUNHTpUK1assPe5ePGiqlWrpilTpsjf3z/X2PXq1VNSUpJ9+/HHH/M9bwAAANxcCnWl7Y4dO7Rlyxb997//Vb169eTh4eGwf+XKlTc8sayENTk5WQEBAfb2U6dOZbuS9trjrr3i4HrHeHp6ytPT8wZnDAAAACu58847lZycLF9fX915552y2Ww5XnRQkDVtZ86cqf79+2vAgAGSrjxPYd26dZo7d64mT56crf+8efNUpUoV+1JdderU0a5duzR9+nT7g3jvvvtu3X333ZKk0aNH5xrb3d09z6IuAAAAbh2FKtqWLVtWDz30kNlzcRAcHCx/f39t2LBBjRs3liSlpaVp27Ztmjp1aq7HhYSEaMOGDQ7r2q5fv14tWrRw6nwBAABgLQkJCapUqZL9zzcqLS1Nu3fvzlZYDQsL086dO3M8JiYmxuEZDdKV5y3Mnz9f6enp2S5+yMvBgwcVGBgoT09PNWvWTK+//rqqVauWa3+e2wAAAHDzKlTRduHChaYEP3/+vA4dOmR/nZCQoPj4eJUvX15VqlTR8OHD9frrr+uOO+7QHXfcoddff10lS5bU448/bj+md+/euu222+xXNgwbNkytWrXS1KlT1bVrV33++efauHGjduzYYcqcAQAAcHMICgrK8c+Fdfr0aWVkZBTo+Qm5PW/h8uXLOn36tMMdZXlp1qyZFi9erJo1a+rkyZN69dVX1aJFC/3000+qUKFCjsfw3AYAAICbV6GKtpJ0+fJlbd26VYcPH9bjjz+uMmXK6MSJE/L29lbp0qXzNcauXbvUtm1b++uIiAhJUp8+fRQdHa0XX3xRf//9twYPHqw///xTzZo10/r161WmTBn7MYmJiSpW7H9L87Zo0ULLli3T2LFjNW7cOFWvXl3Lly9Xs2bNCnuqAAAAuAUcOHBA77zzjvbv3y+bzabatWvrX//6l2rVqlWgcQr6/ISc+ufUnpfw8HD7nxs0aKCQkBBVr15dixYtsufQ14qMjHTYl5KSosqVK+c7JgAAAFynUEXbo0eP6v7771diYqJSU1PVoUMHlSlTRtOmTdOlS5c0b968fI3Tpk2bPB9mZrPZNGHCBE2YMCHXPlu3bs3W1qNHD/Xo0SNfcwAAAMCt79NPP9Vjjz2mpk2bKiQkRJL07bffqn79+vroo4/0yCOPXHeMihUrys3NrUDPT8jteQvu7u65XiGbH6VKlVKDBg108ODBXPvw3AYAAICbV7Hrd8lu2LBhatq0qf7880+VKFHC3v7QQw9p06ZNpk0OAAAAMMOLL76oyMhIxcTEaObMmZo5c6Z27typl19+WS+99FK+xihevLiaNGmiDRs2OLRv2LAh1+cnZD1v4Wrr169X06ZNC7Se7bVSU1O1f//+fC+vAAAAgJtLoYq2O3bs0NixY1W8eHGH9qCgIB0/ftyUiQEAAABmSU5OVu/evbO1P/nkk7muR5uTiIgI/ec//9GCBQu0f/9+jRgxQomJiRo0aJCkK0sSXB1n0KBBOnr0qCIiIrR//34tWLBA8+fP16hRo+x90tLSFB8fr/j4eKWlpen48eOKj493ePbDqFGjtG3bNiUkJOi7775Tjx49lJKSoj59+hTmxwEAAACLK9TyCJmZmcrIyMjW/ttvvzmsNwsAAABYQZs2bbR9+3bVqFHDoX3Hjh0KDQ3N9zg9e/bUmTNnNGnSJCUlJal+/fpau3at/UFnSUlJSkxMtPcPDg7W2rVrNWLECM2ePVuBgYF6++231b17d3ufEydOqHHjxvbX06dP1/Tp09W6dWv7UmC//fabHnvsMZ0+fVqVKlVS8+bN9e2335rygDUAAABYT6GKth06dFBUVJTee+89SVfWnj1//rzGjx+vTp06mTpBAAAAoDBWr15t/3OXLl300ksvaffu3WrevLmkK2vafvLJJ5o4cWKBxh08eLAGDx6c477o6Ohsba1bt1ZsbGyu41WtWjXP5zxI0rJlywo0RwAAANzcClW0ffPNN9W2bVvVrVtXly5d0uOPP66DBw+qYsWKWrp0qdlzBAAAAAqsW7du2drmzJmjOXPmOLQNGTLEvrwBAAAAYAWFKtoGBgYqPj5eS5cuVWxsrDIzM9W/f3898cQTDg8mAwAAAFwlMzPT1VMAAAAACqVQRVtJKlGihPr166d+/fqZOR8AAAAAAAAA+EcrVNF28eLFee7P6cm8AAAAgCtduHBB27ZtU2JiotLS0hz2DR061EWzAgAAALIrVNF22LBhDq/T09N18eJFFS9eXCVLlqRoCwAAAEuJi4tTp06ddPHiRV24cEHly5fX6dOnVbJkSfn6+lK0BQAAgKUUK8xBf/75p8N2/vx5HThwQPfeey8PIgMAAIDljBgxQp07d9Yff/yhEiVK6Ntvv9XRo0fVpEkTTZ8+3dXTAwAAABwUqmibkzvuuENTpkzJdhUuAAAA4Grx8fEaOXKk3Nzc5ObmptTUVFWuXFnTpk3Tyy+/7OrpAQAAAA5MK9pKkpubm06cOGHmkAAAAMAN8/DwkM1mkyT5+fkpMTFRkuTj42P/MwAAAGAVhVrTdvXq1Q6vDcNQUlKSZs2apZYtW5oyMQAAAMAsjRs31q5du1SzZk21bdtW//73v3X69Gl98MEHatCggaunBwAAADgoVNG2W7duDq9tNpsqVaqk++67TzNmzDBjXgAAAIBpXn/9dZ07d06S9Morr6hPnz567rnnVKNGDS1cuNDFswMAAAAcFapom5mZafY8AAAAAKdp2rSp/c+VKlXS2rVrXTgbAAAAIG+FKtoCAAAAN6NTp07pwIEDstlsqlWrlipVquTqKQEAAADZFKpoGxERke++M2fOLEwIAAAAwDQpKSkaMmSIli1bpoyMDElXHqLbs2dPzZ49Wz4+Pi6eIQAAAPA/hSraxsXFKTY2VpcvX1atWrUkSb/88ovc3Nx011132ftlPaEXAAAAcKUBAwYoPj5eX375pUJCQmSz2bRz504NGzZMAwcO1Mcff+zqKQIAAAB2hSradu7cWWXKlNGiRYtUrlw5SdKff/6pp59+WqGhoRo5cqSpkwQAAABuxJo1a7Ru3Trde++99raOHTvq/fff1/333+/CmQEAAADZFSvMQTNmzNDkyZPtBVtJKleunF599VXNmDHDtMkBAAAAZqhQoUKOSyD4+Pg45LQAAACAFRSqaJuSkqKTJ09maz916pTOnTt3w5MCAAAAzDR27FhFREQoKSnJ3pacnKwXXnhB48aNc+HMAAAAgOwKtTzCQw89pKefflozZsxQ8+bNJUnffvutXnjhBT388MOmThAAAAAojMaNGzs8Y+HgwYMKCgpSlSpVJEmJiYny9PTU77//rmeffdZV0wQAAACyKVTRdt68eRo1apSefPJJpaenXxnI3V39+/fXG2+8YeoEAQAAgMLo1q2bq6cAAAAAFEqhirYlS5bUnDlz9MYbb+jw4cMyDEM1atRQqVKlzJ4fAAAAUCjjx4939RQAAACAQilU0TZLUlKSkpKS1KpVK5UoUUKGYTjcggYAAABYye7du7V//37ZbDbVrVtXjRs3dvWUAAAAgGwKVbQ9c+aMHn30UW3ZskU2m00HDx5UtWrVNGDAAJUtW1YzZswwe54AAABAoZ06dUq9evXS1q1bVbZsWRmGobNnz6pt27ZatmyZKlWq5OopAgAAAHbFCnPQiBEj5OHhocTERJUsWdLe3rNnT3311VemTQ4AAAAww7/+9S+lpKTop59+0h9//KE///xT+/btU0pKioYOHerq6QEAAAAOCnWl7fr167Vu3TrdfvvtDu133HGHjh49asrEAAAAALN89dVX2rhxo+rUqWNvq1u3rmbPnq2wsDAXzgwAAADIrlBX2l64cMHhCtssp0+flqen5w1PCgAAADBTZmamPDw8srV7eHgoMzPTBTMCAAAAcleoom2rVq20ePFi+2ubzabMzEy98cYbatu2rWmTAwAAAMxw3333adiwYTpx4oS97fjx4xoxYoTatWvnwpkBAAAA2RVqeYQ33nhDbdq00a5du5SWlqYXX3zRvj7YN998Y/YcAQAAgBsya9Ysde3aVVWrVlXlypVls9mUmJioBg0aaMmSJa6eHgAAAOCgUEXbunXrau/evZo7d67c3Nx04cIFPfzwwxoyZIgCAgLMniMAAABwQypXrqzY2Fht2LBBP//8swzDUN26ddW+fXtXTw0AAADIpsBF2/T0dIWFhendd9/VxIkTnTEnAAAAwDSXL1+Wl5eX4uPj1aFDB3Xo0MHVUwIAAADyVOA1bT08PLRv3z7ZbDZnzAcAAAAwlbu7u4KCgpSRkeHqqQAAAAD5UqgHkfXu3Vvz5883ey4AAACAU4wdO1aRkZH6448/XD0VAAAA4LoKtaZtWlqa/vOf/2jDhg1q2rSpSpUq5bB/5syZpkwOAAAAMMPbb7+tQ4cOKTAwUEFBQdny19jYWBfNDAAAAMiuQEXbX3/9VVWrVtW+fft01113SZJ++eUXhz4smwAAAACr6datm2w2mwzDcPVUAAAAgOsqUNH2jjvuUFJSkrZs2SJJ6tmzp95++235+fk5ZXIAAADAjbh48aJeeOEFffbZZ0pPT1e7du30zjvvqGLFiq6eGgAAAJCrAhVtr70y4b///a8uXLhg6oQA5M+UuNNOGXd045w/xN4q8fKKCQC49YwfP17R0dF64oknVKJECX300Ud67rnn9Mknn7h6agBykD5xpFPG9Rg/45aOl1dMAMDNqVBr2mbh9jIAAABY2cqVKzV//nz16tVLkvTEE0+oZcuWysjIkJubm4tnBwAAAOSsWEE622y2bGvWsoYtAAAArOrYsWMKDQ21v77nnnvk7u6uEydOuHBWAAAAQN4KvDxC37595enpKUm6dOmSBg0alO3puytXrjRvhgAAAEAhZWRkqHjx4g5t7u7uunz5sotmBAAAAFxfgYq2ffr0cXj95JNPmjoZAAAAwEzXXnQg5XzhARcdAAAAwEoKVLRduHChs+YBAAAAmO7aiw4kLjwAAACA9d3Qg8gAAAAAK+OiAwAAANyMCvQgMleoWrWq/QFoV29DhgzJsf/WrVtz7P/zzz8X8cwBAAAAAAAAoOAsf6XtDz/8oIyMDPvrffv2qUOHDnrkkUfyPO7AgQPy9va2v65UqZLT5ggAAAAAAAAAZrF80fbaYuuUKVNUvXp1tW7dOs/jfH19VbZsWSfODAAAAAAAAADMZ/nlEa6WlpamJUuWqF+/frLZbHn2bdy4sQICAtSuXTtt2bKliGYIAAAAAAAAADfG8lfaXu2zzz7TX3/9pb59++baJyAgQO+9956aNGmi1NRUffDBB2rXrp22bt2qVq1a5XhMamqqUlNT7a9TUlLMnjoAAAAAAAAA5MtNVbSdP3++wsPDFRgYmGufWrVqqVatWvbXISEhOnbsmKZPn55r0Xby5MmaOHGi6fMFAAAAAAAAgIK6aZZHOHr0qDZu3KgBAwYU+NjmzZvr4MGDue6PjIzU2bNn7duxY8duZKoAAAAAAAAAUGg3zZW2CxculK+vrx544IECHxsXF6eAgIBc93t6esrT0/NGpgcAAAAAAAAAprgpiraZmZlauHCh+vTpI3d3xylHRkbq+PHjWrx4sSQpKipKVatWVb169ewPLluxYoVWrFjhiqkDAAAAAAAAQIHcFEXbjRs3KjExUf369cu2LykpSYmJifbXaWlpGjVqlI4fP64SJUqoXr16WrNmjTp16lSUUwYAAAAAAACAQrkpirZhYWEyDCPHfdHR0Q6vX3zxRb344otFMCsAAAAAAAAAMN9N8yAyAAAAAAAAAPgnoGgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQd1dPAACsYErcaaeNPbpxRZfHAwAAwD9P+sSRThvbY/wMl8cDgFsZV9oCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAABQAHPmzFFwcLC8vLzUpEkTbd++Pc/+27ZtU5MmTeTl5aVq1app3rx5Dvt/+uknde/eXVWrVpXNZlNUVJQpcQEAAHDzomgLAAAA5NPy5cs1fPhwjRkzRnFxcQoNDVV4eLgSExNz7J+QkKBOnTopNDRUcXFxevnllzV06FCtWLHC3ufixYuqVq2apkyZIn9/f1PiAgAA4OZG0RYAAADIp5kzZ6p///4aMGCA6tSpo6ioKFWuXFlz587Nsf+8efNUpUoVRUVFqU6dOhowYID69eun6dOn2/vcfffdeuONN9SrVy95enqaEhcAAAA3N4q2AAAAQD6kpaVp9+7dCgsLc2gPCwvTzp07czwmJiYmW/+OHTtq165dSk9Pd1pcAAAA3NzcXT0BAAAA4GZw+vRpZWRkyM/Pz6Hdz89PycnJOR6TnJycY//Lly/r9OnTCggIcEpcSUpNTVVqaqr9dUpKynVjAQAAwBq40hYAAAAoAJvN5vDaMIxsbdfrn1O72XEnT54sHx8f+1a5cuUCxQMAAIDrULQFAAAA8qFixYpyc3PLdnXrqVOnsl0Fm8Xf3z/H/u7u7qpQoYLT4kpSZGSkzp49a9+OHTuWr3gAAABwPYq2AAAAQD4UL15cTZo00YYNGxzaN2zYoBYtWuR4TEhISLb+69evV9OmTeXh4eG0uJLk6ekpb29vhw0AAAA3B9a0BQAAAPIpIiJCTz31lJo2baqQkBC99957SkxM1KBBgyRdubr1+PHjWrx4sSRp0KBBmjVrliIiIjRw4EDFxMRo/vz5Wrp0qX3MtLQ0/d///Z/9z8ePH1d8fLxKly6tGjVq5CsuAAAAbi0UbQEAAIB86tmzp86cOaNJkyYpKSlJ9evX19q1axUUFCRJSkpKUmJior1/cHCw1q5dqxEjRmj27NkKDAzU22+/re7du9v7nDhxQo0bN7a/nj59uqZPn67WrVtr69at+YoLAACAWwtFWwAAAKAABg8erMGDB+e4Lzo6Oltb69atFRsbm+t4VatWtT+crLBxAQAAcGthTVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAW4u7qCQAAnG9K3GmnjT26ccUijZlbPAAAAPyzpE8c6bSxPcbPKNKYucUD8M/FlbYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhli7aTpgwQTabzWHz9/fP85ht27apSZMm8vLyUrVq1TRv3rwimi0AAAAAAAAA3Dh3V0/geurVq6eNGzfaX7u5ueXaNyEhQZ06ddLAgQO1ZMkSffPNNxo8eLAqVaqk7t27F8V0AQAAAAAAAOCGWL5o6+7uft2ra7PMmzdPVapUUVRUlCSpTp062rVrl6ZPn07RFgAAAAAAAMBNwdLLI0jSwYMHFRgYqODgYPXq1Uu//vprrn1jYmIUFhbm0NaxY0ft2rVL6enpzp4qAAAAAAAAANwwSxdtmzVrpsWLF2vdunV6//33lZycrBYtWujMmTM59k9OTpafn59Dm5+fny5fvqzTp0/nGic1NVUpKSkOGwAAAAAAAAC4gqWXRwgPD7f/uUGDBgoJCVH16tW1aNEiRURE5HiMzWZzeG0YRo7tV5s8ebImTpxowowBAK4yJS73L+duxOjGFW/peHnFBAAAgGulTxzplHE9xs/4R8YDbiaWvtL2WqVKlVKDBg108ODBHPf7+/srOTnZoe3UqVNyd3dXhQoVch03MjJSZ8+etW/Hjh0zdd4AAAAAAAAAkF+WvtL2Wqmpqdq/f79CQ0Nz3B8SEqIvvvjCoW39+vVq2rSpPDw8ch3X09NTnp6eps4VAAAAAAAAAArD0lfajho1Stu2bVNCQoK+++479ejRQykpKerTp4+kK1fI9u7d295/0KBBOnr0qCIiIrR//34tWLBA8+fP16hRo1x1CgAAAAAAAABQIJa+0va3337TY489ptOnT6tSpUpq3ry5vv32WwUFBUmSkpKSlJiYaO8fHBystWvXasSIEZo9e7YCAwP19ttvq3v37q46BQAAAAAAAAAoEEsXbZctW5bn/ujo6GxtrVu3VmxsrJNmBAAAAAAAAADOZenlEQAAAAAAAADgn4aiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAW4u7qCQAAAOuZEnfaaWOPblzxHxfPmTGtEg8AAMDq0ieOdNrYHuNn/OPiOTOmVeK5ElfaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAKIA5c+YoODhYXl5eatKkibZv355n/23btqlJkyby8vJStWrVNG/evGx9VqxYobp168rT01N169bVqlWrHPZPmDBBNpvNYfP39zf1vAAAAGAdFG0BAACAfFq+fLmGDx+uMWPGKC4uTqGhoQoPD1diYmKO/RMSEtSpUyeFhoYqLi5OL7/8soYOHaoVK1bY+8TExKhnz5566qmntGfPHj311FN69NFH9d133zmMVa9ePSUlJdm3H3/80annCgAAANehaAsAAADk08yZM9W/f38NGDBAderUUVRUlCpXrqy5c+fm2H/evHmqUqWKoqKiVKdOHQ0YMED9+vXT9OnT7X2ioqLUoUMHRUZGqnbt2oqMjFS7du0UFRXlMJa7u7v8/f3tW6VKlZx5qgAAAHAhirYAAABAPqSlpWn37t0KCwtzaA8LC9POnTtzPCYmJiZb/44dO2rXrl1KT0/Ps8+1Yx48eFCBgYEKDg5Wr1699Ouvv97oKQEAAMCiKNoCAAAA+XD69GllZGTIz8/Pod3Pz0/Jyck5HpOcnJxj/8uXL+v06dN59rl6zGbNmmnx4sVat26d3n//fSUnJ6tFixY6c+ZMrvNNTU1VSkqKwwYAAICbA0VbAAAAoABsNpvDa8MwsrVdr/+17dcbMzw8XN27d1eDBg3Uvn17rVmzRpK0aNGiXONOnjxZPj4+9q1y5crXOTMAAABYBUVbAAAAIB8qVqwoNze3bFfVnjp1KtuVsln8/f1z7O/u7q4KFSrk2Se3MSWpVKlSatCggQ4ePJhrn8jISJ09e9a+HTt2LM/zAwAAgHVQtAUAAADyoXjx4mrSpIk2bNjg0L5hwwa1aNEix2NCQkKy9V+/fr2aNm0qDw+PPPvkNqZ0ZemD/fv3KyAgINc+np6e8vb2dtgAAABwc6BoCwAAAORTRESE/vOf/2jBggXav3+/RowYocTERA0aNEjSlatbe/fube8/aNAgHT16VBEREdq/f78WLFig+fPna9SoUfY+w4YN0/r16zV16lT9/PPPmjp1qjZu3Kjhw4fb+4waNUrbtm1TQkKCvvvuO/Xo0UMpKSnq06dPkZ07AAAAio67qycAAAAA3Cx69uypM2fOaNKkSUpKSlL9+vW1du1aBQUFSZKSkpKUmJho7x8cHKy1a9dqxIgRmj17tgIDA/X222+re/fu9j4tWrTQsmXLNHbsWI0bN07Vq1fX8uXL1axZM3uf3377TY899phOnz6tSpUqqXnz5vr222/tcQEAAHBroWgLAAAAFMDgwYM1ePDgHPdFR0dna2vdurViY2PzHLNHjx7q0aNHrvuXLVtWoDkCAADg5sbyCAAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWIili7aTJ0/W3XffrTJlysjX11fdunXTgQMH8jxm69atstls2baff/65iGYNAAAAAAAAAIVn6aLttm3bNGTIEH377bfasGGDLl++rLCwMF24cOG6xx44cEBJSUn27Y477iiCGQMAAAAAAADAjXF39QTy8tVXXzm8XrhwoXx9fbV79261atUqz2N9fX1VtmxZJ84OAAAAAAAAAMxn6Sttr3X27FlJUvny5a/bt3HjxgoICFC7du20ZcuWPPumpqYqJSXFYQMAAAAAAAAAV7hpiraGYSgiIkL33nuv6tevn2u/gIAAvffee1qxYoVWrlypWrVqqV27dvr6669zPWby5Mny8fGxb5UrV3bGKQAAAAAAAADAdVl6eYSrPf/889q7d6927NiRZ79atWqpVq1a9tchISE6duyYpk+fnuuSCpGRkYqIiLC/TklJoXALAAAAAAAAwCVuiitt//Wvf2n16tXasmWLbr/99gIf37x5cx08eDDX/Z6envL29nbYAAAAAAAAAMAVLH2lrWEY+te//qVVq1Zp69atCg4OLtQ4cXFxCggIMHl2AAAAAAAAAGA+SxdthwwZoo8++kiff/65ypQpo+TkZEmSj4+PSpQoIenK0gbHjx/X4sWLJUlRUVGqWrWq6tWrp7S0NC1ZskQrVqzQihUrXHYeAAAAAAAAAJBfli7azp07V5LUpk0bh/aFCxeqb9++kqSkpCQlJiba96WlpWnUqFE6fvy4SpQooXr16mnNmjXq1KlTUU0bAAAAAAAAAArN0kVbwzCu2yc6Otrh9YsvvqgXX3zRSTMCAAAAAAAAAOe6KR5EBgAAAAAAAAD/FBRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFkLRFgAAAAAAAAAshKItAAAAAAAAAFgIRVsAAAAAAAAAsBCKtgAAAAAAAABgIRRtAQAAAAAAAMBCKNoCAAAAAAAAgIVQtAUAAAAAAAAAC6FoCwAAAAAAAAAWQtEWAAAAAAAAACyEoi0AAAAAAAAAWAhFWwAAAAAAAACwEIq2AAAAAAAAAGAhFG0BAAAAAAAAwEIo2gIAAAAAAACAhVC0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAAAAAAABYCEVbAAAAAAAAALAQirYAAAAAAAAAYCEUbQEAAAAAAADAQijaAgAAAAAAAICFULQFAAAAAAAAAAuhaAsAAAAAAAAAFnJTFG3nzJmj4OBgeXl5qUmTJtq+fXue/bdt26YmTZrIy8tL1apV07x584popgAAALjVOSM3XbFiherWrStPT0/VrVtXq1atuuG4AAAAuHlZvmi7fPlyDR8+XGPGjFFcXJxCQ0MVHh6uxMTEHPsnJCSoU6dOCg0NVVxcnF5++WUNHTpUK1asKOKZAwAA4FbjjNw0JiZGPXv21FNPPaU9e/boqaee0qOPPqrvvvuu0HEBAABwc7N80XbmzJnq37+/BgwYoDp16igqKkqVK1fW3Llzc+w/b948ValSRVFRUapTp44GDBigfv36afr06UU8cwAAANxqnJGbRkVFqUOHDoqMjFTt2rUVGRmpdu3aKSoqqtBxAQAAcHNzd/UE8pKWlqbdu3dr9OjRDu1hYWHauXNnjsfExMQoLCzMoa1jx46aP3++0tPT5eHhke2Y1NRUpaam2l+fPXtWkpSSknKjp5Bvl86fc9rYKSnF/3HxnBmTeDd3vNxiEs/ceM6MSbyiiUk8c+M5M6ZV4jkn1pVczDCMIouZF2flpjExMRoxYkS2PllF28LElayR46ZfSr1+p0LyyOE8iGduPGfGJF7RxCSeufGcGZN4N3e83GLe6vGcGdMq8Zwh3zmuYWHHjx83JBnffPONQ/trr71m1KxZM8dj7rjjDuO1115zaPvmm28MScaJEydyPGb8+PGGJDY2NjY2NjY2Ngtux44dMye5vEHOyk09PDyMDz/80KHPhx9+aBQvXrzQcQ2DHJeNjY2NjY2Nzcrb9XJcS19pm8Vmszm8NgwjW9v1+ufUniUyMlIRERH215mZmfrjjz9UoUKFPOO4QkpKiipXrqxjx47J29v7loxJPOIRz7UxiUc8K8dzRUziuY5hGDp37pwCAwNdPRUHzshN8zNmQeOS41onnitiEo94Vo7nipjEIx7xXBvzVo9XEPnNcS1dtK1YsaLc3NyUnJzs0H7q1Cn5+fnleIy/v3+O/d3d3VWhQoUcj/H09JSnp6dDW9myZQs/8SLg7e1d5H/pijom8YhHPNfGJB7xrBzPFTGJ5xo+Pj6unoKds3LT3PpkjVmYuBI5rhXjuSIm8Yhn5XiuiEk84hHPtTFv9Xj5lZ8c19IPIitevLiaNGmiDRs2OLRv2LBBLVq0yPGYkJCQbP3Xr1+vpk2b5rieLQAAAJAfzspNc+uTNWZh4gIAAODmZukrbSUpIiJCTz31lJo2baqQkBC99957SkxM1KBBgyRdue3r+PHjWrx4sSRp0KBBmjVrliIiIjRw4EDFxMRo/vz5Wrp0qStPAwAAALcAZ+Smw4YNU6tWrTR16lR17dpVn3/+uTZu3KgdO3bkOy4AAABuLZYv2vbs2VNnzpzRpEmTlJSUpPr162vt2rUKCgqSJCUlJSkxMdHePzg4WGvXrtWIESM0e/ZsBQYG6u2331b37t1ddQqm8vT01Pjx47Pd6nYrxSQe8Yjn2pjEI56V47kiJvFwNWfkpi1atNCyZcs0duxYjRs3TtWrV9fy5cvVrFmzfMe92f0T/t7f6udIPOJZPSbxiEc818a81eM5g83IehICAAAAAAAAAMDlLL2mLQAAAAAAAAD801C0BQAAAAAAAAALoWgLAAAAAAAAABZC0RYAAAAAAAAALISiLQAAJktMTFROz/k0DMPhqfI3q1v9/AAAAJDdrZ4D3urnh5uPzcjpbyRcbu/evfnq17BhQyfPBGY4duyYKleunOO+b7/9Vs2bNzc1XmJioipXriybzebQbhiGjh07pipVqpgaT5L++usvffrppzp8+LBeeOEFlS9fXrGxsfLz89Ntt91mejw4z6VLl+Tl5eW08SdMmKCnn35aQUFBTovham5ubkpKSpKvr69D+5kzZ+Tr66uMjAynxD106JAOHz6sVq1aqUSJEjIMI9v7gBlcdX6ucv78eWVmZjq0eXt7u2g25khLS1Px4sVz3Hf69GlVrFixiGeEfwpy3FtHUee3Ejkubgw57o0jx711ctxbMb+Vbr0cl6KtRRUrVkw2my3Hb3my2Gw2p71p9O3bV/369VOrVq2cMv4/Te3atfXNN9+oQoUKDu3ffPONHnjgAf3111+mxivq/2z27t2r9u3by8fHR0eOHNGBAwdUrVo1jRs3TkePHtXixYtNjecKt3oSlpmZqddee03z5s3TyZMn9csvv9h/h1WrVlX//v1Ni9WkSRPt2bNHrVu3Vv/+/fXwww87NYGWpIyMDEVHR2vTpk06depUtgRl8+bNpsYrVqyYTp48qUqVKjm0Hz16VHXr1tWFCxdMjXfmzBn17NlTmzdvls1m08GDB1WtWjX1799fZcuW1YwZM0yNV9Tn5woJCQl6/vnntXXrVl26dMnenvUh4UbfRxs3bpzvDxuxsbE3FCsn3bp108qVK1WsmONNVydPnlS7du20b98+02MCEjnuraSo81uJHNcZyHHJcQuCHPfmznGdnd9K5Lhmc3f1BJCzhISE6/b5888/nRb/3LlzCgsLU+XKlfX000+rT58+LvkmOSkpSenp6aZ8a16uXLl8v3n88ccfNxzvaqGhoQoLC9PWrVtVpkwZSdLXX3+tzp07a8KECabGkpTrN4/nz593SuIQERGhvn37atq0afbzk6Tw8HA9/vjjpseTpMDAQLVp00Zt2rRR69atVatWLafEyfLFF1/o1VdfLbIk7OTJkxo1apQ9Abv2w63ZH0peffVVLVq0SNOmTdPAgQPt7Q0aNNCbb75pakK7e/du7d27VwsXLtSIESM0ZMgQ9erVS/369dPdd99tWpyrDRs2TNHR0XrggQdUv359p3wzL135tyBdKTiMGzdOJUuWtO/LyMjQd999pzvvvNP0uCNGjJC7u7sSExNVp04de3vPnj01YsQI0xJaV51flt9++02rV69WYmKi0tLSHPbNnDnT1FhPPPGEJGnBggXy8/Mz/e9Mt27d7H++dOmS5syZo7p16yokJETSlavUfvrpJw0ePNjUuFmSkpLUv39/LVy40N6WnJystm3bql69ek6JCUjkuFluhRy3qPNbiRzXGchxyXHzgxz31shxnZ3fSuS4ZuNK25vM2bNn9eGHH2r+/PmKj4936uX5Z86c0ZIlSxQdHa19+/apffv26t+/v7p27SoPDw+nxb1anTp19Msvv5hynosWLcp33z59+txwvKsZhqFHHnlEp06d0vr16xUTE6MuXbro1Vdf1bBhw0yLk/WfzVtvvaWBAwfm+J+Nm5ubvvnmG9NiSpKPj49iY2NVvXp1lSlTRnv27FG1atV09OhR1apVy+FbPLMsXbpU27Zt09atW/XLL7/Iz89PrVu3tie4V/+nbpasJOyjjz5SWlqaU5Ow8PBwJSYm6vnnn1dAQEC2/1C7du1qarwaNWro3XffVbt27Rx+hz///LNCQkKc9gH68uXL+uKLL7Rw4UJ99dVXqlWrlgYMGKC+ffvKx8fHtDgVK1bU4sWL1alTJ9PGzEnbtm0lSdu2bVNISIjDrTnFixdX1apVNWrUKN1xxx2mxvX399e6devUqFEjh99fQkKCGjRooPPnz5sSx1XnJ0mbNm1Sly5dFBwcrAMHDqh+/fo6cuSIDMPQXXfdZfqVJKVLl9bu3bud/mFZkgYMGKCAgAC98sorDu3jx4/XsWPHtGDBAtNjnjlzRq1atVJYWJjefPNNHT9+XPfdd58aNWqkZcuWZbs6AXA2ctzCc1WOW1T5rUSOS45beOS45iDHvTVy3KLMbyVyXFMYuCls2rTJeOKJJ4wSJUoYtWvXNsaMGWPExsYWWfzY2Fjj+eefN7y8vIyKFSsaw4cPN3755RdTxk5PTzcmTJhgJCYmZtv3/fffG1u3bjUljqulpaUZHTp0MFq0aGGULl3aeOedd0yP0aZNG6NNmzaGzWYzWrRoYX/dpk0bIywszHjmmWdM+71dzdfX1/73sXTp0sbhw4cNwzCMdevWGbfffrvp8a6VnJxsLF261HjiiScMd3d3o1ixYk6Nl56ebqxcudLo3Lmz4eHhYdSvX9+Iiooy/vrrL9NilC5d2oiLizNtvOvx8vIyjhw5Yo+d9Tv86aefjFKlSjktbmpqqrFs2TIjLCzMcHd3N1q1amXUqlXLKFOmjLFs2TLT4gQEBBgHDhwwbbzr6du3r3H27Nkii1e6dGn7v+2rf3/ff/+9Ub58edPjFfX5GYZh3H333ca4ceMMw/jfOZ47d87o0qWLMWfOHNPjtWnTxtiwYYPp4+bE29s7x/fmX375xfD29nZa3GPHjhlBQUHG8OHDjTvuuMPo2bOncfnyZafFA3JCjntzK4r81jDIcclxC48c11zkuOYryhy3KPNbwyDHNQNFWws7duyY8corrxjBwcGGr6+v8fzzzxvu7u7GTz/9VKTzOHHihDFlyhSjZs2aRqlSpYzevXsbHTp0MNzd3Y2ZM2eaEqNUqVJGQkKCKWPl16FDh4wxY8YYvXr1Mk6ePGkYhmH897//Nfbt22fK+Hv27Mm27dixw6hcubIxaNAgh3azFfV/NgMHDjS6detmpKWlGaVLlzZ+/fVX4+jRo0bjxo2NYcOGOS3uuXPnjP/+97/G6NGjjebNmxuenp5G48aNjeHDhzstpmEUTRJWp06dIv3Q2qRJE+ODDz4wDMMxIZowYYJx7733mh5v165dxpAhQ4zy5csbAQEBxksvvWQcPHjQvn/69OmGr6+vafGmT59uDB482MjMzDRtTCvp1KmTMXbsWMMwDPu/wYyMDOORRx4xunfv7uLZmaN06dLGoUOHDMMwjLJly9rfq+Pj442goCDT4x06dMho3769ER0dbezatSvb+7mZ/Pz8jAULFmRrX7Bggan/DnLyyy+/GL6+vsYTTzxxy/77gPWQ4zqXM3NcV+a3hkGOS45bcOS4Nzdy3CBTYxVlfmsY5LhmoGhrUeHh4UaZMmWMxx57zPjyyy/t3woUVUKblpZmfPrpp8YDDzxgeHh4GE2aNDHmzp1rpKSk2PssXbrUKFu2rCnxunbtaixcuNCUsfJj69atRokSJYz27dsbxYsXt//nPXXqVNPe/G02m1GsWDHDZrPZt6tfZ/3ZGd+Y//XXX8aZM2eytZ85c8Ypie7Zs2eNli1bGmXLljXc3NyMypUrGx4eHkarVq2M8+fPmx7PMAzjnnvuMby8vIymTZsao0aNMlavXm38+eefTomVpSiTsHXr1hlhYWFF9kFv9erVho+PjzFlyhSjZMmSxhtvvGEMGDDAKF68uLF+/XpTYzVo0MBwd3c3OnXqZKxatSrHbz1PnTpl2Gw202J269bN8PHxMYKDg40HH3zQeOihhxw2s50/f94YO3asERISYlSvXt0IDg522Mz2008/GZUqVTLuv/9+o3jx4kaPHj2MOnXqGH5+fvYk0ExFfX6GcSXpy/r/r27dusbnn39uGMaVhNYZV8rExMQYwcHBOb6Hm/2+PXnyZMPT09MYMmSI8cEHHxgffPCBMWTIEKNEiRLG5MmTTYtTtmxZo1y5ctk2T09Pw9vb26ENcBZyXOdydo7ryvzWMMhxnYUc1xzkuOS4hVGUOW5R5reGQY5rBh5EZlHr16/X0KFD9dxzzzll3ZTrCQgIUGZmph577DF9//33OS663bFjR5UtW9aUeOHh4YqMjNS+ffvUpEkTlSpVymF/ly5dTImTZfTo0Xr11VcVERHh8FCBtm3b6q233jIlRn4etOEsvXr1UufOnbMt7v3xxx9r9erVWrt2ranxvL29tWPHDm3evFmxsbHKzMzUXXfdpfbt25sa52oHDx5UyZIlVa1aNVWrVk01atQw7e9jTho2bKj9+/crLCxM8+fPV+fOneXm5ubQp3fv3nrhhRcKHePaB4lcuHBB1atXV8mSJbOtsWf2w/I6d+6s5cuX6/XXX5fNZtO///1v3XXXXfriiy/UoUMHU2M98sgj6tevX54PfqlUqVK2p9/eiLJly+qhhx4ybbzrGTBggLZt26annnoqx/XazFa3bl3t3btXc+fOlZubmy5cuKCHH35YQ4YMUUBAgOnxivr8JKl58+b65ptvVLduXT3wwAMaOXKkfvzxR61cuVLNmzc3PV6/fv3UuHFjLV261GkPasgyevRoVatWTW+99ZY++ugjSVfWu4yOjtajjz5qWpyoqCjTxgIKixz35s5xXZnfSuS4zkCOax5yXPOR45qb4xZlfiuR45qBB5FZVExMjBYsWKCPP/5YtWvX1lNPPaWePXsqMDBQe/bsUd26dZ0a/4MPPtAjjzzi1CeHXi2vxaBtNpvpD6MoXbq0fvzxRwUHBzssaH7kyBHVrl3b1IcKpKen65lnntG4ceNUrVo108bNS/ny5fXNN99ke1DBzz//rJYtW+rMmTNFMg9n27t3r7Zu3apt27Zp+/btKlasmFq3bq22bdtq0KBBpsZ65ZVXrpuE3ShXPiwP5ipbtqzWrFmjli1bOj1Wenq6wsLC9O6776pmzZpOjycV7fll+fXXX3X+/Hk1bNhQFy9e1KhRo7Rjxw7VqFFDb775poKCgkyNV6pUKe3Zs0c1atQwdVwruHz5sj788EN17NhR/v7+rp4O/mHIcf/nZs5xXZHfSuS45LhwNXJc8xVljnsr57fSrZnjcqWtRYWEhCgkJERvvfWWli1bpgULFigiIkKZmZnasGGDKleu7PDtudmeeuopp42dEzO/bcyPsmXLKikpScHBwQ7tcXFxpicsHh4eWrVqlcaNG2fquHlJTU3V5cuXs7Wnp6fr77//Nj3e0KFDVaNGDQ0dOtShfdasWTp06JDTvvlq2LChGjZsqKFDh2r37t2aNWuWlixZok8//dT0hNYwDJUrVy5b+99//6033nhD//73v284hquT1L/++kuffvqpfv31V40aNUrly5dXbGys/Pz8TP13kfUE6GvZbDZ5eXmpRo0a6tq1q8qXL29azCy///67Dhw4IJvNppo1a6pSpUqmx5CuXFHijPnnxMPDQ/v27SuSKwGyFOX5Zbm6KFCyZEnNmTPHqfHuu+++WzapdXd313PPPaf9+/e7eir4ByLHda6iynFdkd9K5LjkuIVDjmseclzzFWWOeyvnt9KtmeNype1N5MCBA5o/f74++OAD/fXXX+rQoYNWr15t2vgPP/xwvvuuXLnStLiZmZmKjo7WypUrdeTIEdlsNlWrVk3du3fXU0895ZQ36RdffFExMTH65JNPVLNmTcXGxurkyZPq3bu3evfurfHjx5sa7+mnn1aDBg1y/Y/cbG3atFGDBg30zjvvOLQPGTJEe/fu1fbt202Nd9ttt2n16tVq0qSJQ3tsbKy6dOmi3377zdR40pUPH1u3btXWrVu1fft2nTt3To0aNVKbNm3Utm1bPfDAA6bGc3NzU1JSknx9fR3az5w5I19fX9OvlFm7dq3c3NzUsWNHh/b169crIyND4eHhpsbbu3ev2rdvLx8fHx05ckQHDhxQtWrVNG7cOB09elSLFy82LVbbtm0VGxurjIwM1apVS4Zh6ODBg3Jzc1Pt2rXtCeeOHTtMu+LqwoUL+te//qXFixfbP0C7ubmpd+/eeuedd1SyZElT4mRZsmSJPv/8cy1atMj0sXMycuRIeXh4aMqUKU6PJRX9+WXJ+tB1+PBhvfDCC0770CVJ7733nl599VX169dPDRo0yHb75o3e0nztraJ5MftWUenKv8Nhw4apW7dupo8NFBQ5rnmKMsct6vxWIsclxy04clxy3IK41XNcZ+e3Ejmu2Sja3oQyMjL0xRdfaMGCBaYmtE8//XS++y5cuNCUmIZhqHPnzlq7dq0aNWqk2rVryzAM7d+/Xz/++KO6dOmizz77zJRYV0tPT1ffvn21bNkyGYYhd3d3ZWRk6PHHH1d0dHS2dZxu1Guvvabp06erXbt2Oa5ndu239zfqm2++Ufv27XX33XerXbt2kqRNmzbphx9+0Pr16xUaGmpqPC8vL+3bty/bN3aHDh1S/fr1TV1uIou7u7saN26s1q1bq02bNmrVqpW8vb1Nj5OlWLFiOnnyZLZvrTdv3qyePXvq999/NzVew4YNNWXKFHXq1Mmh/auvvtJLL72kPXv2mBqvffv2uuuuuzRt2jSH2yl37typxx9/XEeOHDEtVlRUlLZv366FCxfaf2cpKSnq37+/7r33Xg0cOFCPP/64/v77b61bt86UmM8++6w2btyoWbNm2W932rFjh4YOHaoOHTpo7ty5psTJ0rhxYx0+fFiGYahq1arZEqLY2FhT42Ul6zVq1FDTpk2zvcfMnDnT1HhFfX5S0X7okpx/S7OrbxX95JNPNHr0aI0YMSLH/5caNmxoekzgeshxb1xR5rhFnd9K5LjOQI57xLRY5LjkuIVRlDluUSzZQ45rLoq2cKmFCxdq2LBh+vzzz9W2bVuHfZs3b1a3bt00a9Ys9e7d2ynxDx8+rLi4OGVmZqpx48ZOeyDGtbeoXc1ms+nXX381PWZ8fLymTZumPXv2qESJEmrYsKEiIyOdco7169fXoEGD9Pzzzzu0v/POO5o7d67+7//+z/SYKSkpTk1gs2R9U3j27Fl5e3s7fGuYkZGh8+fPa9CgQZo9e7apcUuUKKH9+/eratWqDu1HjhxRvXr1dOHCBVPj+fj4KDY2VtWrV3dIaI8ePapatWqZ+qHktttu04YNG7JdYfDTTz8pLCxMx48fV2xsrMLCwnT69GlTYlasWFGffvqp2rRp49C+ZcsWPfroo6Z/IJk4cWKe+82+mv/a98+r2Ww2bd682dR4RX1+UtF+6PonyClpt9lsMgzDKetsAv80/4Qc1xX5rUSOaxZyXHLcwiDHJce1ulstx2VNW7jU0qVL9fLLL+f4Znzfffdp9OjR+vDDD52W0FavXl3Vq1d3ythXc8WTdu+88077ExqdLSIiQs8//7x+//133XfffZKuXPUwY8YMp6315e3tXSS3kURFRckwDPXr108TJ06Uj4+PfV/x4sVVtWpVhYSEmBLraj4+Pvr111+zJbSHDh3K9m2hGby8vJSSkpKt/cCBA6aviXX27FmdOnUqW0L7+++/2+dQtmxZpaWlmRbz4sWL8vPzy9bu6+urixcvmhYnizMSurxs2bKlSOMV9flJ0g8//KB33303W/ttt92m5OTkIp+P2Q4fPqyFCxfq8OHDeuutt+Tr66uvvvpKlStXVr169UyP5+onwAO3un9Cjuuq9xFyXHLcgiDHNRc5rvnIcc11q+W4FG1hd9ddd2nTpk0qV66cGjdunOc6JGbdFrB3715NmzYt1/3h4eF6++23TYl1rd9++02rV69WYmJitv84zb7N4mpZF7c7e0H1rDfHX3/9VVFRUU59c+zXr59SU1P12muv6ZVXXpEkVa1aVXPnznXah5G9e/eqXbt2Klu2rI4cOaKBAweqfPnyWrVqlam3kWTdshEcHKwWLVpku0XGWbp06aLhw4dr1apV9g9dhw4d0siRI01Za+haXbt21aRJk/Txxx9LuvL3MzExUaNHj1b37t1Nj9WvXz/NmDFDd999t2w2m77//nuNGjXKvvbQ999/b+pTYkNCQjR+/HgtXrzY/sTwv//+WxMnTnTKBxKpaNdfdYWiPr+i/NCVZdOmTdq0aZNOnTqV7WFCCxYsMC3Otm3bFB4erpYtW+rrr7/Wa6+9Jl9fX+3du1f/+c9/9Omnn5oWK4uZTyIGrI4c93+cleMWVX4rkeOS4xYMOa75yHHNVdQ5blHltxI5rhlYHgF2EydO1AsvvKCSJUsW2W0BxYsX19GjRxUQEJDj/hMnTig4OFipqammxMuyadMmdenSRcHBwTpw4IDq16+vI0eOyDAM3XXXXabfZiFJixcv1htvvKGDBw9KkmrWrKkXXnjBKU8xvvbNcf/+/apWrZqmTZum77//3ilvjll+//13lShRQqVLl3ZaDKlobiO5+va0nP4jvZrZt7GdPXtW999/v3bt2qXbb79d0pUPYaGhoVq5cqXKli1raryUlBR16tRJP/30k86dO6fAwEAlJycrJCREa9euNfXKh/Pnz2vEiBFavHix/QnQ7u7u6tOnj958802VKlVK8fHxkq5cTWOGffv26f7779elS5fUqFEj2Ww2xcfHy8vLS+vWrTP9Q15Rr7/atm3bPD8om/2eVtTnJ0nPPPOMfv/9d3388ccqX7689u7dKzc3N3Xr1k2tWrUy/YqniRMnatKkSWratKkCAgKy/XxXrVplWqyQkBA98sgjioiIcHg/++GHH9StWzcdP37ctFhXO3z4sKKiorR//37ZbDbVqVNHw4YNK5I7UICiRI7rvBy3KPNbiRyXHLfgyHHJcQviVs9xizK/lchxzUDRFi7l5uam5OTkXL9BOnnypAIDA01fd+See+7R/fffr0mTJtnfPHx9ffXEE0/o/vvv13PPPWdqvJkzZ2rcuHF6/vnn1bJlSxmGoW+++UazZ8/Wq6++qhEjRpgaz1VvjkWpKNanuvppusWKFcsxYXDm2jiZmZnauHGjw5ptrVq1Mj3O1TZv3qzY2FhlZmbqrrvuUvv27Z0W6/z58/r1119lGIaqV6/u9A9Bf//9t5YsWaKff/5ZhmGobt26euKJJ1SiRAnTYxX12lTXvoekp6crPj5e+/btU58+ffTWW2+ZGs8Va28V5YcuSQoICNC0adOcVni4WunSpfXjjz8qODjY4ed55MgR1a5d2ykPulm3bp26dOmiO++80/7/0s6dO7Vnzx598cUX6tChg+kxgX+Sf0KOW9T5rUSOS45beOS45iDHPWJqPKloc9yizG8lclwzsDwCruv8+fPZLps36xtXwzDUt29feXp65rjf7KsPsuzfv19Lly6VdOXbz7///lulS5fWpEmT1LVrV9OLtlkPK7j6NqquXbuqXr16mjBhgulJ7Y8//pjjWl+VKlXSmTNnTI0lXfngMWrUKPttFtd+F+SMZK8obiPZvHmzypcvL6lo11O6fPmyvLy8FB8fr7CwMIWFhRVZ7Pvuu8++ZpuzlS5dWuXLl5fNZnN6MitdefDFwIEDnR5HKvq1qd58880c2ydMmKDz58+bHs8Va295e3trx44dRfahKy0tTS1atHDK2NcqW7askpKSsj3UJy4uzmm3GWY9VXfKlCnZ2l966aWbLqEFCoMc98YUdX4rkeOS4xYeOa45yHHNV5Q5blHmtxI5rhko2iJHCQkJev7557V161aHbz/M/sY1ay2lvDhjvahSpUrZk+XAwEAdPnzYfuuIWU/yvFpSUlKOb44tWrRQUlKS6fGK+s2xb9++SkxM1Lhx43K8zcIZimJ9qtatW+f4Z2dzd3dXUFCQ059sWZC19IYOHWpa3MzMTL366quaMWOGPdkqU6aMRo4cqTFjxuT4xM/CWL16tcLDw+Xh4aHVq1fn2dfsNdRcsf5qTp588kndc889mj59uqnjuvL8iupD14ABA/TRRx9p3LhxTo/1+OOP66WXXtInn3wim82mzMxMffPNNxo1apTT1kzcv3+//f3zav369XPaw3UAKyDHNU9R57cSOS45bv6Q4/4POW7B3Oo5blHmtxI5rhko2iJHTzzxhKQrC1H7+fk5LUFZuHChU8a9nubNm+ubb75R3bp19cADD2jkyJH68ccftXLlSjVv3tz0eDVq1NDHH3+sl19+2aF9+fLluuOOO0yPV9Rvjjt27ND27dtNW5spP6ZPn65OnTrJ19dXf//9t1q3bq3k5GQ1b95cr732munxvvrqK5UuXVr33nuvJGn27Nl6//33VbduXc2ePVvlypUzNd7YsWMVGRmpJUuW2K+EMNu131z//vvvunjxon0tsb/++kslS5aUr6+vqQntmDFjNH/+fE2ZMsXhdsoJEybo0qVLpv3+unXrpuTkZPn6+tof/pATZ9z6V5QPvchLTEyM/aEUZiqq8yvqD10RERH2P2dmZuq9997Txo0b1bBhw2wPaDHzYT6vvfaa+vbtq9tuu81+W2NGRoYef/xxjR071rQ4V6tUqZLi4+Oz/R8UHx8vX19fp8QErIAc1zxFnd9K5LjkuPlDjnsFOW7B3Yo5rqvyW4kc1wysaYsclS5dWrt371atWrVcPRWn+PXXX3X+/Hk1bNhQFy9e1KhRo7Rjxw7VqFFDb775pulPHFyxYoV69uyp9u3bq2XLlrLZbNqxY4c2bdqkjz/+WA899JCp8dLT09W3b18tW7ZMhmHI3d3d/uYYHR0tNzc3U+PVrVtXH374oRo3bmzquPmxZcsW7d692+m3Sjdo0EBTp05Vp06d9OOPP6pp06YaOXKkNm/erDp16pj+4axx48Y6dOiQ0tPTFRQUlG0tI7Oebp3lo48+0pw5czR//nz7v/sDBw5o4MCBevbZZ+0fcs0QGBioefPmZfvm//PPP9fgwYNvifXoinr91YcfftjhtWEYSkpK0q5duzRu3DjTHqyTpajO79orqfL60PXrr7/ecLy2bdvmu68zbic9fPiw4uLilJmZqcaNGzut6CFJkyZN0ptvvqnRo0erRYsW9v+Xpk6dqpEjRzotkQZcjRzXvBy3qPNbiRzXGchxyXELghz35stxXZ3fSuS4N4KiLXLUtm1bjRkzxqkLtP/TxMbGaubMmdq/f7/9W6aRI0c6NQksqjfH9evXa8aMGXr33XdVtWpVp8TIyaZNm+xrjF27Jt2CBQtMjVW6dGnt27dPVatW1YQJE7Rv3z59+umnio2NVadOnUxf46ionm6dpXr16vr000+z/X3cvXu3evTooYSEBNNieXl5ae/evapZs6ZD+4EDB3TnnXfq77//Ni1WlsWLF6tnz57Z1hZMS0vTsmXLnHZ7TlGtv9q3b1+Hq8WKFSumSpUq6b777nPqenFF+VCPovzQ9U9gGIaioqI0Y8YMnThxQtKVD5svvPCChg4dWiS3AAOuQI5rLlfktxI5rpnIcclxC4Mc1zzkuOa61XJcirbI0eHDhzVo0CA9+eSTql+/frbL5hs2bOiimZkrLS0tx2SoSpUqpsZ54okn1KZNG7Vu3Trbf+K3gnLlyunixYu6fPmySpYsme3vyx9//GF6zIkTJ2rSpElq2rRpjmuMrVq1ytR45cuX144dO1S3bl3de++96t27t5555hkdOXJEdevW1cWLF02NV9RKliyprVu36p577nFo//7779WmTRtTz69Zs2Zq1qxZttuC/vWvf+mHH37Qt99+a1qsLFc/JflqZ86cka+vr9PXVrvVHDlypEg/vEpF+6FLurLu1VtvvaUyZco4tF+4cEH/+te/bvhDc0REhF555RWVKlXK4ba1nJh9q9q1zp07J0nZzhW4FZHjmpfj3ur5rUSOS45bMOS4N79bPcd1dn4rkeOajaItcvTtt9/q8ccf15EjR+xtNpvN9Ic0uMovv/yi/v37a+fOnQ7tzjq/Z599Vtu2bdPBgwfl5+en1q1bq3Xr1mrTpo1q165tSoyCvDmWLl1a9erVU48ePUy5jWzRov9v787Doqz6N4DfMyCLAqKyiMquIiAqaG7kgmWa+5JLoqRmZWqiomJv7muZJGVlmguQC5q59ZaogaJgSgoCKQoBQosLymsmaiKc3x9ezM8JNHHOzMBwf66LKzjz+HwPxDD3c+Y550Q+8fGn2YyjshwcHLBy5UqMGTNG+rkr0r9/fxQXF8Pf3x9LlixBbm4uGjdujEOHDmHKlCnIzMzUST+0pX///sjPz8fGjRvRtm1bKBQKnD59Gm+88QYcHR3/dZODyoiPj0ffvn3h5OSETp06QaFQ4MSJE/j111/x/fffo0uXLtJqlVEqlbh69Wq5DQRSU1MREBCglYuupKQkHD16tMKLZtkBxc3NDT/99BMaNGig1n7z5k34+flJWTrgUUqlEp07d8aYMWMwbNgwra1J9yhdXnQBj78Iun79Oho2bIgHDx5odP769esjMzMTNjY2T5y2plAoEBcXp1Gtinz55Zfo3r27VqenEVVFzLjyvj9d5FuAGVfbmHGZcSuLGVcuXWZcbedbgBlXNg7aUoW8vLzg6emJ2bNnV7hJg+w1X3XN398fxsbGmDNnToXvYLdu3Vorda9cuYKjR4/i6NGjiI+PR2ZmJuzs7KTssBsQEIA9e/bA2tr6X9et+fvvv3Hu3DkMHDgQUVFRGtfWhwYNGiApKQnu7u46qZefn4/JkycjPz8fU6dOxeuvvw4AmD59OkpKSiq1mPzTKCkpwerVq7Fz507k5+fj/v37ao/LDmAFBQV47bXXEBMTo7qL5MGDB+jVqxciIiKkL9r+xx9/4LPPPsOFCxdU0yknTZqERo0aSa3j6+sLhUKB1NRUeHt7w9j4//ffLCkpQW5uLnr37l3hDqOaWL58OebOnQsPD49yf0O1EVCUSqVqQ4pHXb16FU5OTqqdxGVJTk7G9u3bER0djYKCAvTq1QujR4/GgAEDyk3Pk0VXF123bt2CEAL16tVDVlaW2kVQSUkJvv32W8yZM0c13epZPfr/7HEXJNrUokULZGZmomHDhqpBlm7dukkdaCGqiphx5WdcbeZbgBlX25hxmXErgxlXPl1kXF3lW4AZVzYO2lKF6tSpg9TUVDRt2lTfXdGKOnXq4MyZMzp/4hYVFSEhIUEVbJOTk+Hl5YWUlBSd9gMATp8+jRdeeAF//vmnlPNlZ2dj8+bNyM7Oxscffww7OzvExMTA0dER3t7eUmo8KjQ0FBYWFpg3b570c//TgwcPsHXrVrz00ktwcHDQej0AmD9/PjZs2IAZM2Zg3rx5eO+993Dp0iXs3bsX8+fPl7rT7aMyMzNVIdPT07PaT3csWzdt0aJFCAkJgYWFheoxExMTuLi4YOjQoTAxMZFa197eHh988AHGjh0r9bz/VBbiBg0ahMjISNStW1f1WElJCWJjY3H48GFcvHhRK/WFEDh69Ci2bduGb775BiUlJRg6dKj09faAii+6iouL0bt3b2zevBn29vZS6iiVyieudaVQKLBo0SK89957GtVp0KABvv/+e3To0OGxd8lo25UrV3DkyBHEx8fj6NGjqhDfvXt3REdH67QvRLrCjCtfVcq3ADNuZTDjVl/MuMy4laGrfAsw48rGQVuqUP/+/TF27FgMHTpU313Riueeew6rV6/G888/r5N6oaGhiI+PR2pqKlq2bImuXbuiW7du6Nq1q2qHSG0pe4r/84/0/fv3ceDAAQwcOFDjGvHx8Xj55Zfh7++PY8eOISMjA25ubli5ciWSkpKwa9cujWv8U3BwMKKiotCqVSu0atWq3Bpjsqfm1K5dGxkZGTq7A8fd3R2ffPIJ+vbtC0tLS5w9e1bVdvLkSWzbtk0n/ZAlLS3tqY/VxnqCkZGRGDFiBMzMzKSfuyIODg44duyY1qflKJVKAP8/tfdRtWrVgouLC8LCwtCvXz+t9gN4eGfC66+/jrS0NK1OL87KylJteKONi674+HgIIdCjRw988803atPiTExM4OzsLOVumTfffBNRUVFwcHBAfn4+mjRp8tipvLKn/v1T2YBLdHQ0tmzZAiGElOlxRFURM648+sy3ADOuLMy4mmHG1Q5mXLkZV1f5FmDGlY2DtlSh9evXY+nSpRg/fjx8fHzKhYUBAwboqWfP7tatW6rPT58+jblz52L58uUVfn9WVlZSa5ftcjl9+nQMHDgQnp6eUs9fkaioKHz44YfIysoCADRv3hyzZs3SyvpYnTp1wrBhwzBjxgxYWloiNTVVNRVi0KBB+P3336XX1PX6OAEBAQgODsagQYOknvdx6tSpg4yMDDg5OcHBwQHfffedat0mX19faXePlCkpKUFERMRjdyrW9OdZ9u7uv73kGMJ6ggCwcuVK/PHHHwgPD9dJPVdXV/z000+wsbHRSb0yv/76K7Zv345t27YhPT0dnTp1QmBgIN5++20p59fnRgZ5eXlwcnLS6g6zMTEx+OWXXzB16lQsXrz4sZskBAcHS6994MAB1d0HZVMru3btiu7du6NLly6oV6+e9JpEVQEzrryMq498CzDjMuNWDjOuXMy41Tvj6iLfAsy4Mhn/+yFUE02cOBEAsHjx4nKPVdcXHGtra7U/TkIIvPDCC2rHaGsTipSUFNUfjrCwMBgZGanWV+nevbv0kPvRRx9h3rx5mDJlCvz9/SGEQGJiIiZOnIjr169j+vTpUuulp6dX+K64ra0tbty4IbVWmSNHjmjlvI8zadIkhISE4LfffkPbtm1Rp04dtcdlv3PepEkTXL58GU5OTmjatCkOHToEPz8//PTTT1pZTyk4OBgRERHo27cvWrZsKf2FXOaup89C1+unzZw5E3379oW7uzu8vLzKXTTv3r1baj1d/3zXr1+PrVu3IiEhAS1atEBgYCD27t0rfbfdlJQUFBcXqz5/HFm/r2lpaWjZsiWUSiX+/PNPpKenP/ZYGc/53r17A3i4O3BwcLBOd7bt27cvbG1tERISgoMHD6pNOyQyZMy48r4/XedbgBlXG5hxNcOMy4z7LHSZcXWdbwFmXJl4py3VGPHx8U99bLdu3bTYk4e7eYaHh2PLli0oLS2VfoHg6uqKRYsWISgoSK09MjISCxculP7i16RJE+zcuROdO3dWuwthz549mDlzJrKzs6XW04eyKTqP0uZu03PmzIGVlRX+85//YNeuXXj11Vfh4uKC/Px8TJ8+He+//77UejY2NoiKikKfPn2knreq0PX6aZMnT8bGjRsREBBQ4UY3mzdvllqvosGHR82fP19qPUdHR4wcORKBgYFo06aN1HPr06MbJzzpzpnqOrDzqPDwcBw7dgzHjx/XyUALEWlPVcm42s63ADOuNjDjVm/MuMy4/6Ym5VvA8DIuB21JTZ8+fbB9+3bVuxHLli3D5MmTVetS3bhxA126dMH58+f12MvqKSUlRbVBw/Hjx3Hr1i20adMGAQEB+PDDD6XWMjMzw88//1xuk42srCz4+Pjg3r17UuvNnj0bP/74I77++ms0b94cycnJuHr1KoKCghAUFIQFCxZIracPeXl5T3xc2+uAnTx5EidOnEDTpk21MnWzUaNGOHr0qM42ZcjOzkZ4eDgyMjKgUCjg6emJ4OBgre2UrOv10ywtLREdHY2+fftKPe/j+Pr6qn1dXFyM3NxcGBsbw93dHcnJyVLrCSGQkJCAdevWIScnB19//TUaN26Mr776Cq6urjpbL1y2R6eM6fs5r0vp6emIj4/HkSNH8O2336JBgwbSdn0nqiqYcbVDl/kWYMbVBn2/3jHjaoYZlxn339TUfAsYSMYVRI9QKpXi6tWrqq8tLS1Fdna26usrV64IpVKpj65JtWnTJrFz585y7Tt37hQRERHS61lbWwtjY2PRtm1bERISIr799lvx559/Sq9TxtvbWyxbtqxc+5IlS0TLli2l17t//74YNWqUUCqVQqFQiFq1agmlUilGjx4tHjx4IL0eybdq1SoxadIkUVpaqvVaMTExwsTERLRv315Mnz5dTJs2TbRv316YmpqKQ4cOaaVm7dq1RV5enhBCiIYNG4ozZ84IIYTIzs4WVlZW0us5OTmJjIwM6eetjD///FMMHjxYREVFST/3rl27hLm5uZgwYYIwNTVVvU589tln4uWXX5ZeT9fu378vxo4dq/b6Z6iSk5PFRx99JPr37y+sra2FkZGRaNeunb67RSQdM678jKvrfCsEMy5VHjOuXMy41VdNyrdCGE7G5aAtqVEoFGqB1sLCwiADbfPmzUVcXFy59qNHj4rmzZtLr6eLEPuoXbt2CSMjI9GrVy+xePFisWTJEtGrVy9hbGwsdu/eLbVWaWmpuHTpkigqKhLZ2dni66+/Fjt27BCZmZlS61QFUVFRonPnzsLBwUFcunRJCCHE6tWrxd69e6t9vUGDBom6desKV1dX0a9fPzF48GC1D5natGkjQkNDy7WHhoYKX19fqbXKNG/eXJw8eVIIIcTzzz8vVqxYIYQQIjo6Wtja2kqvt2nTJjF8+HBRVFQk/dyVkZ6eLpydnaWft02bNiIyMlIIof46kZKSIuzt7aXX04e6desadKjt37+/qFevnjAyMtLpgAuRvjDjys+4+vibwYyrHcy4cjDj6g4z7rMx9HwrhOFlXG5ERjVSXl4eXF1dy7U7OzsjPz9fer1+/fpJP+eTDB06FElJSfjoo4+wd+9eCCHg5eWFpKSkclNMNCWEQLNmzXDu3Dk0a9YMbm5uUs9fVaxduxbz58/HtGnTsGzZMtV6P9bW1ggPD8fAgQOrdT1ra2sMHjxY6jkfJyMjAzt37izXPn78eK3tRDt48GDExsaiQ4cOCA4OxquvvoqNGzeq1k+T7ZNPPkF2djbs7e3h4uJSbpMG2VO5HufmzZvSd2EGgIsXL6Jr167l2q2srHDz5k3p9fRh8ODB2Lt377/u6FtdNW/eHG+++Sa6du0qdTd5ItIvXWZcXedbgBlXG5hx5WHGZcat6gw93wKGl3E5aEtqFApFucXEZe+wWRXY2dkhLS2t3C6QqampaNCggX46JUlxcTHefPNNzJs3D1u2bNF6PaVSiWbNmuHGjRto1qyZ1uvpy5o1a/Dll19i0KBBahsktGvXDjNnzqz29WRvGvAktra2OHv2bLnfl7Nnz8LOzk4rNR/9Gb7yyitwdHREYmKi1tZPGzRokPRzPsknn3yi9rUQApcvX8ZXX32l2r1VJgcHB/zyyy/l/oYmJCQYzEVt06ZNsWTJEpw4caLC3bRlb+yha61atULPnj3L7dR9//59REdHl9vkh6i6Y8Zlxq0sZlxm3MpixpWPGVcuQ8+3gAFmXH3e5ktVj0KhEH369FFNFzE2NhYvvfSS6us+ffoYxNSxWbNmCWdnZxEXFycePHggHjx4IGJjY4Wzs7MICQnRd/c0putpD//973/F888/L9LT03VWU9fMzMxU07cenSqTmZkpzMzMqn09IYQoLi4Whw8fFl988YW4deuWEEKI33//Xfz1119S6yxatEhYW1uL999/Xxw7dkwcP35crFixQlhbW4slS5ZIrSWE4a7flJqaKkpKSoQQQri4uKh9uLm5iQ4dOoh3331X9f9Spg8++EB4eXmJkydPCktLS3H8+HGxZcsWYWtrK9asWSO9nj7882f66Ierq6u+u6exf67vWeb69esG8TpP9E/MuMy4z4IZlxm3Mphx5WDG1R5Dz7dCGF7G5Z22pOa1115T+3r06NHljql270xUYOnSpcjLy8MLL7wAY+OHT4PS0lIEBQVh+fLleu6d5nQ97WH06NG4c+cOWrduDRMTE5ibm6s9XlhYqJN+aJOrqyvOnj1bbkfNAwcOwMvLq9rXy8vLQ+/evZGfn4+///4bPXv2hKWlJVauXIl79+7hiy++kFZr3rx5sLS0RFhYGN59910AD3f2XbhwoVbe3a1Vqxb27NmDefPmST/3k9y8eRO7du1CdnY2Zs2ahfr16yM5ORn29vZo3Lixxuf39fXF5cuXVXdu/PTTT7CxsdH4vE9j9uzZ+PPPPxEQEIB79+6ha9euMDU1xcyZMzFlyhSd9EHbcnNz9d0FrRJCVHiX4W+//Ya6devqoUdE2sWMy4z7LJhxmXErgxmXGbeqM/R8CxhexuWgLanR5fQRfTIxMcGOHTuwZMkSpKamwtzcHD4+PuXCQ3Wl62kP2lqjqSqZNWsWJk+ejHv37kEIgaSkJGzfvh0rVqzAhg0bqn294OBgtGvXrtz0ycGDB2PChAlSaykUCkyfPh3Tp0/HX3/9BQCwtLSUWuOfdH2Rl5aWhhdffBF169bFpUuX8MYbb6B+/frYs2cP8vLyEBUVpXENa2tr5Obmws7ODvn5+RBCSOj501u2bBnee+89nD9/HqWlpfDy8oKFhYVO+6ArZT9bQ5hK7evrq5om/uigDgCUlJQgNzdXK9MNifSNGZcZ91kw4zLjVgYzLjNudWJI+RYw3IyrELp+BhCR1lW0AUUZhUKBnJwcHfbGcHz55ZdYunQpfv31VwBA48aNsXDhQrz++uvVvp6NjQ0SExPh4eEBS0tLpKamws3NDZcuXYKXlxfu3LkjvaYuLVu2DKtWrcILL7ygk4u8F198EX5+fli5cqXaz/PEiRMYNWoULl26pHGNN998E1FRUXBwcEB+fj6aNGkCIyOjCo/lc/7ZREVF4cMPP0RWVhaAhxsbzJo1C2PGjNFzz57dokWLVP8NCQlRuwgxMTGBi4sLhg4dChMTE311kYjosZhxtYMZt/pixuVzvrIMMd8ChptxOWhLNcaMGTOwZMkS1KlT51/fifzoo4901Cvt09U7aNnZ2di8eTOys7Px8ccfw87ODjExMXB0dIS3t7dWa+va9evXUVpaqrUNBfRRr379+khISICXl5daAEtISMDQoUNx9epVabWuXr2KmTNnIjY2FteuXSv37nnZLsIy6foir27dukhOToa7u7vazzMvLw8eHh64d++elDoxMTH45ZdfMHXqVCxevPixd3MEBwdLqVeTfPTRR5g3bx6mTJkCf39/CCGQmJiIzz77DEuXLtXKjsy6FBkZiREjRsDMzEzfXSEiDTHjMuPKwoyrGWZcZtyqztDzLWB4GZfLI1CNkZKSguLiYtXnhm7jxo1YvXq16h20Zs2aYdq0adKnAQFAfHw8Xn75Zfj7++PYsWNYtmyZavfiDRs2YNeuXdJr6tqiRYswevRouLu762RNpbt370IIgdq1a8PGxgZ5eXkIDw+Hl5cXXnrpJen1evbsifDwcKxfvx7Aw5B3+/ZtLFiwAH369JFaa+zYscjPz8e8efPg4OCgkyk5ul6/yczMDLdu3SrXfvHiRdja2kqrUzbF58yZMwgODtb6FLyaZM2aNVi7dq3aGpcDBw6Et7c3Fi5cWO1D7WuvvYabN29iy5YtWluTjoh0gxmXGVcTzLjyMOMy41Z1hp5vAQPMuLrc9YyIdGPu3LmiTp06Ys6cOWLfvn1i3759Ys6cOcLCwkK899570ut17NhRhIWFCSHUd4FNSkoSjRo1kl5PH3x8fIRSqRQdOnQQa9asEdeuXdNqvZ49e4q1a9cKIYT43//+J+zs7ESTJk2EmZmZ+Pzzz6XX+/3330Xz5s2Fp6enMDY2Fh07dhQNGjQQHh4eFe6+qQkLCwuRkpIi9ZyVUVpaKkpLS7Va44033hCDBg0S9+/fFxYWFiInJ0fk5eUJX19fERwcrNXaJIepqanIysoq156ZmSlMTU310CO5UlNTha2trWjatKkwNjZW/d2eO3euGDNmjJ57R0RUMWZc+Zhx5WHGDdZqbdKcoedbIQwv43J5BKpRxo8f/6/HKBQKbNy4UQe90R4bGxusWbMGr776qlr79u3b8c477+D69etS61lYWCA9PR2urq7l1opq0aKFtGky+nbu3Dls3boV0dHR+O233/Diiy9i9OjRGDRoEGrXri21lo2NDeLj4+Ht7Y0NGzZgzZo1SElJwTfffIP58+cjIyNDaj3g4Z0P0dHROHPmDEpLS+Hn54fAwMByOyVrysvLC1u3boWvr6/U8/4bXa7fdOvWLfTp0wfnzp3DX3/9hUaNGuHKlSvo1KkTvv/++3LrjVHV07JlS4waNQr/+c9/1NqXLl2KHTt2ID09XU89k6Ns7TttrklHRLrDjMuMqwlmXDmYcZlxqzpDz7eA4WVcLo9ANUpERAScnZ3h6+ur810odamkpATt2rUr1962bVs8ePBAej1ra2tcvny53JpKKSkp1W/6wRN4e3tj+fLlWL58ORITE7Ft2zZMmzYNEydOrHCakCbu3LmjmgZ06NAhDBkyBEqlEh07dkReXp7UWgBw7NgxdO7cGePGjcO4ceNU7Q8ePMCxY8fQtWtXabXCw8MxZ84crFu3Di4uLtLO+ySPW79p4sSJuH79uvSpQFZWVkhISEBcXBySk5NVFwgvvvii1DqkPYsWLcKIESNw7Ngx+Pv7Q6FQICEhAbGxsdi5c6e+u6ex06dPq6aKPqpx48a4cuWKHnpERJpgxmXG1QQzrhzMuFTVGXq+BQww4+rzNl8iXXv77bdFvXr1ROvWrcXHH38sbty4oe8uacWUKVPE9OnTy7WHhISISZMmSa83a9Ys8fzzz4vLly8LS0tLkZWVJRISEoSbm5tYuHCh9HpVQUpKiggJCRGNGzcWZmZm0s/v4+MjPv74Y5Gfny+srKzEiRMnhBBCnD59Wtjb20uvp1QqK5widv36daFUKqXWsra2FiYmJkKpVAoLCwtRr149tQ9tcHFxEZGRkeXaIyIihIuLi1ZqUvV3+vRpERgYKPz8/ISvr68IDAwUycnJ+u6WFHZ2dqrv5dEpvwcPHhRNmjTRZ9eI6Bkw4zLjysKM++yYcak6MOR8K4ThZVwuj0A1zt9//43du3dj06ZNOHHiBPr27YvXX38dL730kk4Wi9eFd955B1FRUXB0dETHjh0BACdPnsSvv/6KoKAg1KpVS3WsjF2Ei4uLMXbsWERHR0MIAWNjY5SUlGDUqFGIiIiAkZGRxjWqgtzcXGzbtg1bt25FZmYmunbtilGjRmHYsGGoW7eu1Fq7du3CqFGjUFJSgh49euDw4cMAgBUrVuDYsWM4cOCA1HpKpRJXr14tt4FAZmYm2rVrJ/Uui8jIyCc+/tprr0mrVcbMzAw///wzmjZtqtaelZUFHx8f6dMbp06diqZNm2Lq1Klq7Z9++il++eUXhIeHS61HVFlvvvkmCgoKsHPnTtSvXx9paWkwMjLCoEGD0LVrV/6OElVDzLjMuM+KGVcOZlxmXNI/Q8u4HLSlGi0vLw8RERGIiopCcXExzp8/DwsLC313S2MBAQFPdZxCoUBcXNwz1bh16xasrKzU2nJyclTTZHx9fdGsWbNnOndV1KlTJyQlJcHHxweBgYEYNWqU1qfFXblyBZcvX0br1q2hVCoBAElJSbCyskKLFi2k1BgyZAgAYN++fejduzdMTU1Vj5WUlCAtLQ0eHh6IiYmRUk9fdL1+U+PGjbF//360bdtWrT05ORkDBgzAb7/9JrUeyfe4iziFQgFTU1OYmJjouEdyPW5Nuo4dO+LAgQNck46ommPGZcZ9Wsy4zLiVwYxbvRl6vgUML+NyTVuq0RQKBRQKBYQQKC0t1Xd3pDly5IjWa9SrVw+XL1+GnZ0devTogd27d8PNzQ1ubm5ar60PAQEB2LBhA7y9vXVWs2HDhrh9+zYOHz6Mrl27wtzcHM8995zUu2XK7p4QQsDS0lJtQwYTExN07NgRb7zxhrR6ZUpLS/HLL7/g2rVr5Z57MtcWK6Pr9Ztu3LhR4Z0pVlZW0jdJIe2wtrZ+4nOtSZMmGDt2LBYsWKC64KxOytakO3LkiNrGLFyTjsgwMOM+O2Zc7WPGlYcZlyrD0PMtYHgZl4O2VOM8OnUsISEB/fr1w6efforevXtX2z9M+mBhYYEbN27Azs4OR48eRXFxsb67pFXLly/Xab0bN25g+PDhOHLkCBQKBbKysuDm5oYJEybA2toaYWFhUups3rwZAODi4oJZs2ZJ3yG4IidPnsSoUaOQl5dXbrMUhUKBkpIS6TWHDh2KU6dOYfXq1di7dy+EEPDy8kJSUpJWdvht2rQpYmJiMGXKFLX2AwcOGOxFn6GJiIjAe++9h7Fjx6J9+/YQQuCnn35CZGQk5s6di4KCAqxatQqmpqbl7m6pLmJjYxEbG6u6sLxw4QK2bdsGANi0aZOee0dElcWMKwczrnYx48rFjEuVURPyLWBYGZeDtlSjTJo0CdHR0XBycsK4ceMQHR2NBg0a6Ltb1dKLL76IgIAAeHp6AgAGDx782OkUzzo9Td9mzJiBJUuWoE6dOpgxY8YTj5Wxbtqjpk+fjlq1aiE/P1/1MwaAESNGYPr06dICbZn4+HgEBweXC7S3bt3CoEGDpP4/nDhxItq1a4fvvvsODg4OOltnr23bttiyZYtOas2YMQNTpkxBQUEBevToAeBheAgLC6t26yjVVJGRkQgLC8Pw4cNVbQMGDICPjw/WrVuH2NhYODk5YdmyZdUy1C5atAiLFy9Gu3btdPo8JCLtYMaVhxlXHTPu02PGDddJH+jZGXq+BQwv43JNW6pRlEolnJyc4Ovr+8Qn7+7du3XYq+rp7t27iIyMRHZ2NsLCwvDGG2889h3s1atX67h3cgQEBGDPnj2wtrZ+4hpqmqyb9jgNGzbEwYMH0bp1a1haWiI1NRVubm7Izc2Fj48Pbt++LbWekZGRairgo65du4bGjRtLvcukTp06SE1NLbdhgraVlJRgz549yMjIgEKhgKenJwYOHAhjY+28f7l27VosW7YMf/zxB4CHd3osXLgQQUFBWqlHctWuXRupqanl1i3MyspC69atcefOHeTm5sLb2xt37tzRUy+fnYODA1auXIkxY8bouytEJAEzrjzMuP+PGbdymHGZcas6Q8+3gOFlXN5pSzVKUFBQtX+npaowNzfHxIkTAQCnT5/GBx98AGtra/12SrJH103TxRpqjyoqKqrwAuH69etqGyloKi0tDcDD9b7Onz+PK1euqB4rKSlBTEyM9M0oOnTogF9++UWngfbnn3/GwIEDceXKFXh4eAB4uGuwra0t9u/fDx8fH+k13377bbz99tsoKCiAubm5QWwAU5M0adIEGzduxPvvv6/WvnHjRjg6OgJ4OMWzXr16+uiexu7fv4/OnTvruxtEJAkzrjzMuNrFjCsXMy5VhqHnW8DwMi7vtCUiqoL69u0LPz8/LFmyBJaWlkhLS4OzszNGjhyJ0tJS7Nq1S0odpVKpusir6OXA3Nwca9aswfjx4zWqUxacASA7Oxtz587FrFmz4OPjg1q1aqkd26pVK41qVaRjx46ws7NDZGSkKoT873//w9ixY3Ht2jX8+OOP0mtS9bZ//34MGzYMLVq0UG2O8tNPP+HChQvYtWsX+vXrh7Vr1yIrK0v61FFdCA0NhYWFBebNm6fvrhARUQ3CjCsXMy5VhqHnW8DwMi4HbYlIYyUlJYiIiFBb7PtR1XW9r0cVFRXh/ffff+z3mJOTI7VeRkYGunXrhrZt2yIuLg4DBgzAuXPnUFhYiMTERLi7u0upU7ZRgpubG5KSkmBra6t6zMTEBHZ2djAyMtK4TllwftxLTtlj2tqkwdzcHKdPny63M/LPP/+M5557Dnfv3pVa7+rVq5g5c6bq9+Wf37c2vkeS79KlS/jiiy+QmZkJIQRatGiBt956Cy4uLvrumsaCg4MRFRWFVq1aoVWrVuUuLKtrUCcikokZlxn33zDjMuNWN4acbwHDy7hcHoGINBYcHIyIiAj07dsXLVu2NMjpeRMmTEB8fDzGjBmj9QXNi4uLMWnSJOzfvx8HDhyAkZERioqKMGTIEEyePBkODg7Sajk7OwOAKqCfP38e+fn5uH//vtpxAwYM0KhObm6uRv9eUx4eHrh69Wq5QHvt2jWtTGEbO3Ys8vPzMW/ePINYAL+mcnFxKTd9zFCkpaWhTZs2AB5e2D2Kv69ERA8x48rFjCsfMy5VliHnW8DwMi7vtCUijdnY2CAqKgp9+vTRd1e0xtraGt999x38/f11Us/W1hYnTpwot0i8tuTm5mLw4MFIS0tTu1ug7IWtOr5rfuvWLdXnCQkJmD17NhYuXIiOHTsCAE6ePInFixfj/fffl/67a2lpiePHj6sCA1UPj05x/DfamOJIRERVCzOufMy4mmPGpcpgvq3eeKctEWnMxMRE57uk6lq9evVQv359ndULCgqqcJF4bZk6dSpcXFxw+PBhuLm54dSpUygsLERISAhWrVoltdaKFStgb29fbg2xTZs2oaCgAKGhoVLqWFtbq72bKoTA8OHDy61v1r9/f+mB3dHR8bHT5KjqatOmzROnOJbR1hRHIiKqWphx5WPG1RwzLlUG8231xjttiUhjYWFhyMnJwaefflotpxw8jS1btmDfvn2IjIyscMdb2d555x1ERUWhadOmaNeuHerUqaP2uOy1eGxsbBAXF4dWrVqhbt26SEpKgoeHB+Li4hASEoKUlBRptVxcXLBt27Zyu3qeOnUKI0eOlDbNLD4+/qmP7datm5SaZQ4dOoSwsDCsW7fOYNaHqgny8vKe+tiyaZdERGS4mHHlY8bVHDMuVQbzbfXGO22JSGMJCQk4cuQIDhw4AG9v73KLfe/evVtPPZMnLCwM2dnZsLe3h4uLS7nvMTk5WWq9n3/+GX5+fgCAzMxMtce0cdFQUlICCwsLAA/D7R9//AEPDw84Ozvj4sWLUmtduXKlwjXLbG1tcfnyZWl1ZIfUyhgxYgTu3LkDd3d31K5du9zvS2FhoZ56Rk9SUVCtaA08hULBUEtEVAMw4zLjVgYzLjNuVcR8W71x0JaINGZtbY3BgwfruxtaNXDgQJ3eYXHkyBGd1QKAli1bIi0tDW5ubujQoQNWrlwJExMTrF+/Hm5ublJrOTo6IjExEa6urmrtiYmJaNSokdRa/3Tnzp0KN6GQvX5TeHi41POR7uXk5GDw4MFIT083mDXwiIiocphx5WPG1Q5mXHoazLfVD5dHICIiHDx4ULV7b05ODvr164cLFy6gQYMG2LFjB3r06CGt1gcffIAPP/wQH374oeq8sbGxmD17NkJCQvDuu+9Kq1WmoKAA48aNw4EDByp8nAGF/ql///4wMjLCl19+WeEaeF26dNF3F4mIiOhfMOMy49L/Y76tfjhoS0TSFBQU4OLFi1AoFGjevDlsbW313SWNKZXKCu8+sLKygoeHB2bPno0hQ4booWfaV1hYiHr16km/+0IIgTlz5uCTTz5R3Q1gZmaG0NBQzJ8/X2qtMoGBgbh06RLCw8MREBCAPXv24OrVq1i6dCnCwsLQt29frdQFgLt376K4uFitzcrKSmv1SA5droFHRERVGzOuYWHGlYMZt/phvq1+OGhLRBorKipSbSpQWloKADAyMkJQUBDWrFmjk00NtGXfvn0Vtt+8eRNJSUnYvHkzIiMjMWzYMB33rPq7ffs2MjIyYG5ujmbNmsHU1FRrtRwcHLBv3z60b98eVlZWOH36NJo3b479+/dj5cqVSEhIkFqvqKgIoaGh2LlzJ27cuFHucd71UPXVq1cPZ86cgZubG9zd3bFhwwYEBAQgOzsbPj4+uHPnjr67SEREWsaMy4z7LJhxqapivq1+uKYtEWlsxowZiI+Px7fffgt/f38ADzdumDp1KkJCQrB27Vo99/DZDRw48LGPvfbaa/Dy8sKqVasYaJ/BlStXUFhYiK5du8LU1BRCCK2tqVZUVAQ7OzsAQP369VFQUIDmzZvDx8dH+gYbADB79mwcOXIEn3/+OYKCgvDZZ5/h999/x7p16/D+++9Lr0fy6XINPCIiqpqYcZlxnwUzLlVVzLfVkCAi0lCDBg3EkSNHyrXHxcUJGxsb3XdIhzIzM4W1tbW+u1GtXL9+XfTo0UMoFAqhVCpFdna2EEKI8ePHixkzZmilZrt27URMTIwQQoiBAweKMWPGiN9++03Mnj1buLm5Sa/n6Oioek5YWlqKrKwsIYQQUVFR4uWXX5Zej+SLiYkR33zzjRBCiOzsbOHp6SkUCoWwsbERsbGxeu4dERHpAjMuM25lMOMy41Z1zLfVj1Lfg8ZEVP3duXMH9vb25drt7OwMforF3bt3YWZmpu9uVCvTp09HrVq1kJ+frzatcMSIEYiJidFKzWnTpuHy5csAgAULFiAmJgZOTk745JNPsHz5cun1CgsLVTsHW1lZobCwEADw/PPP49ixY9LrkXy9evVSreXn5uaG8+fP4/r167h27ZrUTUuIiKjqYsZlxq0MZlxm3KqO+bb64fIIRKSxTp06YcGCBYiKilKFu7t372LRokXo1KmTnnunXV9++SV8fX313Y1q5dChQzh48CCaNGmi1t6sWTPk5eVppWZgYKDqc19fX1y6dAkXLlyAk5MTbGxspNdzc3PDpUuX4OzsDC8vL+zcuRPt27fHt99+C2tra+n1SDfq16+v7y4QEZEOMeMy41YGM6619Hqkfcy3VRsHbYlIY+Hh4Xj55ZfRpEkTtG7dGgqFAmfPnoWpqSkOHTqk7+5pZMaMGRW2//nnnzh9+jSys7Nx/PhxHfeqeisqKqpw447r169rdaOGR9WuXRt+fn5aO/+4ceOQmpqKbt264d1330Xfvn2xZs0aPHjwAB999JHW6hIREZE8zLjMuJXBjMuMSySbQggh9N0JIqr+7t69iy1btuDChQsQQsDLywuBgYEwNzfXd9c0EhAQUGG7lZUVWrRogUmTJsHZ2VnHvare+vbtCz8/PyxZsgSWlpZIS0uDs7MzRo4cidLSUuzatUtKncddjFRE2yEzPz8fp0+fhru7O1q3bq3VWkRERCQPMy49LWZcZlwi2ThoS0QaW7FiBezt7TF+/Hi19k2bNqGgoAChoaF66hlVRefPn0f37t3Rtm1bxMXFYcCAATh37hwKCwuRmJgId3d3KXUedzHyTwqFAnFxcVJqlrl06RJcXFyknpOIiIh0ixmXKoMZl4hk46AtEWnMxcUF27ZtQ+fOndXaT506hZEjRyI3N1dPPaOqKD8/H8bGxli3bh3OnDmD0tJS+Pn5YfLkySguLoaTk5O+u6gxpVKJzp07Y8yYMRg2bBjXiiIiIqqGmHGpMphxiUg2DtoSkcbMzMyQkZGh2km0TE5ODry8vHDv3j099YyqIiMjI1y+fBl2dnZq7Tdu3ICdnR1KSkr01DN5kpOTsX37dkRHR6OgoAC9evXC6NGjMWDAAJ2taUZERESaYcalymDGZcYlko0bkRGRxhwdHZGYmFgu0CYmJqJRo0Z66hVVVY97r/D27duqnZllGDJkyFMfu3v3bml1AcDPzw9+fn5YuXIljh49im3btuGtt97ChAkTMHToUGzatElqPSIiIpKPGZcqgxmXGZdINg7aEpHGJkyYgGnTpqG4uBg9evQAAMTGxmL27NkICQnRc++oqijbNEGhUGD+/Plqu+uWlJTg1KlTaNOmjbR6devWlXauZ6VQKBAQEICAgAC8/fbbeP311xEZGclAS0REVA0w49LTYMZlxiXSFg7aEpHGZs+ejcLCQkyaNAn3798H8HA6WWhoKN599109946qipSUFAAP70JIT0+HiYmJ6jETExO0bt0aM2fOlFZv8+bN0s71rH799Vds374d27ZtQ3p6Ojp16oRPP/1U390iIiKip8CMS0+DGZcZl0hbuKYtEUlz+/ZtZGRkwNzcHM2aNeO6RlShcePG4eOPP4aVlZXOaxcUFODixYtQKBRo3rw5bG1ttVJn/fr12Lp1KxITE+Hh4YHAwECMGjWKu+0SERFVQ8y49DSYcYlINg7aEhGRwSsqKsI777yDqKgolJaWAni4WURQUBDWrFmjNo1NBkdHR4wcORKBgYFSp8MREREREZVhxiUybBy0JSIig/fWW2/hhx9+wKeffgp/f38AQEJCAqZOnYqePXti7dq1UusJIaBQKKSek4iIiIjoUcy4RIaNg7ZERGTwbGxssGvXLnTv3l2t/ciRIxg+fDgKCgo0rpGWlvbUx7Zq1UrjekRERERUszHjEhk2bkRGREQG786dO7C3ty/Xbmdnhzt37kip0aZNGygUCpS9F/qkuxBKSkqk1CQiIiKimosZl8iwKfXdASIiIm3r1KkTFixYgHv37qna7t69i0WLFqFTp05SauTm5iInJwe5ubnYvXs3XF1d8fnnnyMlJQUpKSn4/PPP4e7ujm+++UZKPSIiIiKq2ZhxiQwbl0cgIiKDl56ejpdffhn37t1D69atoVAocPbsWZiamuLQoUPw9vaWWq99+/ZYuHAh+vTpo9b+/fffY968eThz5ozUekRERERU8zDjEhk2DtoSEVGNcPfuXWzZsgUXLlyAEAJeXl4IDAyEubm59Frm5uZITk6Gp6enWntGRgb8/Pxw9+5d6TWJiIiIqOZhxiUyXBy0JSIig7dixQrY29tj/Pjxau2bNm1CQUEBQkNDpdbz8/ODp6cnNm7cCDMzMwDA33//jfHjxyMjIwPJyclS6xERERFRzcOMS2TYOGhLREQGz8XFBdu2bUPnzp3V2k+dOoWRI0ciNzdXar2kpCT0798fpaWlaN26NQAgNTUVCoUC//3vf9G+fXup9YiIiIio5mHGJTJsHLQlIiKDZ2ZmhoyMDLi6uqq15+TkwMvLS23zBlnu3LlTbqraqFGjUKdOHem1iIiIiKjmYcYlMmzG+u4AERGRtjk6OiIxMbFcoE1MTESjRo20UrN27dp4/vnn4eTkhPv37wMAYmNjAQADBgzQSk0iIiIiqjmYcYkMGwdtiYjI4E2YMAHTpk1DcXExevToAeBhuJw9ezZCQkKk18vJycHgwYORnp4OhUIBIQQUCoXq8ZKSEuk1iYiIiKhmYcYlMmwctCUiIoM3e/ZsFBYWYtKkSao7AszMzBAaGop3331Xer3g4GC4urrihx9+gJubG06dOoXCwkKEhIRg1apV0usRERERUc3DjEtk2LimLRER1Ri3b99GRkYGzM3N0axZM5iammqljo2NDeLi4tCqVSvUrVsXSUlJ8PDwQFxcHEJCQpCSkqKVukRERERU8zDjEhkm3mlLREQ1hoWFBZ577jmt1ykpKYGFhQWAh+H2jz/+gIeHB5ydnXHx4kWt1yciIiKimoMZl8gwcdCWiIhIspYtWyItLQ1ubm7o0KEDVq5cCRMTE6xfvx5ubm767h4RERERUaUx4xLpFpdHICIikuzgwYMoKirCkCFDkJOTg379+uHChQto0KABduzYodoogoiIiIioumDGJdItDtoSERHpQGFhIerVq6e2wy4RERERUXXGjEukPRy0JSIiIiIiIiIiIqpClPruABERERERERERERH9Pw7aEhEREREREREREVUhHLQlIiIiIiIiIiIiqkI4aEtERERERERERERUhXDQloioGlMoFNi7d6++u0FEREREJA0zLhERB22JiPRKoVA88WPs2LH67iIRERERUaUw4xIRac5Y3x0gIqrJLl++rPp8x44dmD9/Pi5evKhqMzc310e3iIiIiIieGTMuEZHmeKctEZEeNWzYUPVRt25dKBQKtbZt27bB3d0dJiYm8PDwwFdfffXE8y1evBj29vY4e/YsAODEiRPo2rUrzM3N4ejoiKlTp6KoqEh1vIuLC5YvX47x48fD0tISTk5OWL9+verx+/fvY8qUKXBwcICZmRlcXFywYsUKrfwsiIiIiMgwMOMSEWmOg7ZERFXUnj17EBwcjJCQEPz888946623MG7cOBw5cqTcsUIIBAcHY+PGjUhISECbNm2Qnp6OXr16YciQIUhLS8OOHTuQkJCAKVOmqP3bsLAwtGvXDikpKZg0aRLefvttXLhwAQDwySefYP/+/di5cycuXryILVu2wMXFRRffPhEREREZIGZcIqKnoxBCCH13goiIgIiICEybNg03b94EAPj7+8Pb21vtroDhw4ejqKgI3333HYCH64V9/fXX2LdvH06fPo3Dhw+jSZMmAICgoCCYm5tj3bp1qn+fkJCAbt26oaioSHVXQZcuXVR3Nwgh0LBhQyxatAgTJ07E1KlTce7cOfzwww9QKBQ6+kkQERERkaFgxiUieja805aIqIrKyMiAv7+/Wpu/vz8yMjLU2qZPn44ff/wRx48fV4VZADhz5gwiIiJgYWGh+ujVqxdKS0uRm5urOq5Vq1aqz8umrl27dg0AMHbsWJw9exYeHh6YOnUqDh06pI1vlYiIiIhqCGZcIqKnw0FbIqIq7J/v/AshyrX17NkTv//+Ow4ePKjWXlpairfeegtnz55VfaSmpiIrKwvu7u6q42rVqlWuZmlpKQDAz88Pubm5WLJkCe7evYvhw4fjlVdekfktEhEREVENw4xLRPTvjPXdASIiqpinpycSEhIQFBSkajtx4gQ8PT3VjhswYAD69++PUaNGwcjICCNHjgTwMIyeO3cOTZs21agfVlZWGDFiBEaMGIFXXnkFvXv3RmFhIerXr6/ReYmIiIio5mHGJSJ6Ohy0JSKqombNmoXhw4fDz88PL7zwAr799lvs3r0bP/zwQ7ljBw8ejK+++gpjxoyBsbExXnnlFYSGhqJjx46YPHky3njjDdSpUwcZGRk4fPgw1qxZ81R9WL16NRwcHNCmTRsolUp8/fXXaNiwIaytrSV/t0RERERUEzDjEhE9HQ7aEhFVUYMGDcLHH3+MDz/8EFOnToWrqys2b96M7t27V3j8K6+8gtLSUowZMwZKpRJDhgxBfHw83nvvPXTp0gVCCLi7u2PEiBFP3QcLCwt88MEHyMrKgpGREZ577jl8//33UCq5ug4RERERVR4zLhHR01EIIYS+O0FERERERERERERED/FtJCIiIiIiIiIiIqIqhIO2RERERERERERERFUIB22JiIiIiIiIiIiIqhAO2hIRERERERERERFVIRy0JSIiIiIiIiIiIqpCOGhLREREREREREREVIVw0JaIiIiIiIiIiIioCuGgLREREREREREREVEVwkFbIiIiIiIiIiIioiqEg7ZEREREREREREREVQgHbYmIiIiIiIiIiIiqEA7aEhEREREREREREVUh/wft0bzeQONovAAAAABJRU5ErkJggg==",
|
2382
|
-
"text/plain": [
|
2383
|
-
"<Figure size 1400x600 with 2 Axes>"
|
2384
|
-
]
|
2385
|
-
},
|
2386
|
-
"metadata": {},
|
2387
|
-
"output_type": "display_data"
|
2388
|
-
}
|
2389
|
-
],
|
2390
|
-
"source": [
|
2391
|
-
"import matplotlib.pyplot as plt# Plotting the frequency and probability distributions\n",
|
2392
|
-
"def plot_freq_and_prob_dist(freq_dist, total_tokens, title):\n",
|
2393
|
-
" plt.figure(figsize=(14, 6))\n",
|
2394
|
-
"\n",
|
2395
|
-
" # Plot Frequency Distribution\n",
|
2396
|
-
" plt.subplot(1, 2, 1)\n",
|
2397
|
-
" words, frequencies = zip(*freq_dist.most_common(20)) # Top 20 most common words\n",
|
2398
|
-
" plt.bar(words, frequencies, color='skyblue')\n",
|
2399
|
-
" plt.xlabel('Tokens')\n",
|
2400
|
-
" plt.ylabel('Frequency')\n",
|
2401
|
-
" plt.title('Frequency Distribution')\n",
|
2402
|
-
" plt.xticks(rotation=90)\n",
|
2403
|
-
"\n",
|
2404
|
-
" # Plot Probability Distribution\n",
|
2405
|
-
" plt.subplot(1, 2, 2)\n",
|
2406
|
-
" probabilities = [frequency / total_tokens for _, frequency in freq_dist.most_common(20)]\n",
|
2407
|
-
" plt.bar(words, probabilities, color='salmon')\n",
|
2408
|
-
" plt.xlabel('Tokens')\n",
|
2409
|
-
" plt.ylabel('Probability')\n",
|
2410
|
-
" plt.title('Probability Distribution')\n",
|
2411
|
-
" plt.xticks(rotation=90)\n",
|
2412
|
-
"\n",
|
2413
|
-
" plt.tight_layout()\n",
|
2414
|
-
" plt.show()\n",
|
2415
|
-
"\n",
|
2416
|
-
"# Plot frequency and probability distributions\n",
|
2417
|
-
"plot_freq_and_prob_dist(freq_dist_original, total_original_tokens, 'Original Tokens')\n",
|
2418
|
-
"plot_freq_and_prob_dist(freq_dist_stemmed, total_stemmed_tokens, 'Stemmed Tokens')\n",
|
2419
|
-
"plot_freq_and_prob_dist(freq_dist_lemmatized, total_lemmatized_tokens, 'Lemmatized Tokens')"
|
2420
|
-
]
|
2421
|
-
},
|
2422
|
-
{
|
2423
|
-
"cell_type": "code",
|
2424
|
-
"execution_count": 92,
|
2425
|
-
"id": "1844a467-c338-4310-a08f-928f4cf96478",
|
2426
|
-
"metadata": {},
|
2427
|
-
"outputs": [
|
2428
|
-
{
|
2429
|
-
"name": "stdout",
|
2430
|
-
"output_type": "stream",
|
2431
|
-
"text": [
|
2432
|
-
"\n",
|
2433
|
-
"Named Entities:\n",
|
2434
|
-
"(S\n",
|
2435
|
-
" bustling/VBG\n",
|
2436
|
-
" city/NN\n",
|
2437
|
-
" (PERSON San/NNP Francisco/NNP)\n",
|
2438
|
-
" tech/NN\n",
|
2439
|
-
" enthusiasts/VBZ\n",
|
2440
|
-
" world/NN\n",
|
2441
|
-
" gathered/VBD\n",
|
2442
|
-
" annual/JJ\n",
|
2443
|
-
" (ORGANIZATION Tech/NNP Innovators/NNP Conference/NNP)\n",
|
2444
|
-
" event/NN\n",
|
2445
|
-
" melting/VBG\n",
|
2446
|
-
" pot/NN\n",
|
2447
|
-
" ideas/NNS\n",
|
2448
|
-
" innovations/NNS\n",
|
2449
|
-
" collaborations/NNS\n",
|
2450
|
-
" Among/IN\n",
|
2451
|
-
" attendees/NNS\n",
|
2452
|
-
" Emily/RB\n",
|
2453
|
-
" (PERSON Chen/NNP)\n",
|
2454
|
-
" renowned/VBD\n",
|
2455
|
-
" AI/NNP\n",
|
2456
|
-
" researcher/NN\n",
|
2457
|
-
" (ORGANIZATION MIT/NNP)\n",
|
2458
|
-
" eager/JJ\n",
|
2459
|
-
" present/JJ\n",
|
2460
|
-
" latest/JJS\n",
|
2461
|
-
" findings/NNS\n",
|
2462
|
-
" machine/NN\n",
|
2463
|
-
" learning/VBG\n",
|
2464
|
-
" algorithms/JJ\n",
|
2465
|
-
" (PERSON Emily/NNP)\n",
|
2466
|
-
" colleague/NN\n",
|
2467
|
-
" Dr./NNP\n",
|
2468
|
-
" (PERSON Michael/NNP Thompson/NNP)\n",
|
2469
|
-
" also/RB\n",
|
2470
|
-
" well-respected/JJ\n",
|
2471
|
-
" figure/NN\n",
|
2472
|
-
" field/NN\n",
|
2473
|
-
" artificial/JJ\n",
|
2474
|
-
" intelligence/NN\n",
|
2475
|
-
" accompanied/VBN\n",
|
2476
|
-
" duo/NN\n",
|
2477
|
-
" working/VBG\n",
|
2478
|
-
" groundbreaking/VBG\n",
|
2479
|
-
" project/NN\n",
|
2480
|
-
" aimed/VBN\n",
|
2481
|
-
" revolutionize/VB\n",
|
2482
|
-
" way/NN\n",
|
2483
|
-
" neural/JJ\n",
|
2484
|
-
" networks/NNS\n",
|
2485
|
-
" process/NN\n",
|
2486
|
-
" information/NN\n",
|
2487
|
-
" conference/NN\n",
|
2488
|
-
" commenced/VBD\n",
|
2489
|
-
" (PERSON Emily/RB Michael/NNP)\n",
|
2490
|
-
" greeted/VBD\n",
|
2491
|
-
" host/NN\n",
|
2492
|
-
" familiar/JJ\n",
|
2493
|
-
" faces/VBZ\n",
|
2494
|
-
" (PERSON Jennifer/NNP Lee/NNP)\n",
|
2495
|
-
" data/NNS\n",
|
2496
|
-
" scientist/NN\n",
|
2497
|
-
" (PERSON Google/NNP)\n",
|
2498
|
-
" showcase/NN\n",
|
2499
|
-
" team/NN\n",
|
2500
|
-
" advancements/NNS\n",
|
2501
|
-
" quantum/VBP\n",
|
2502
|
-
" computing/VBG\n",
|
2503
|
-
" joined/VBD\n",
|
2504
|
-
" mentor/NN\n",
|
2505
|
-
" Dr./NNP\n",
|
2506
|
-
" (PERSON Robert/NNP Lang/NNP)\n",
|
2507
|
-
" pioneer/VBD\n",
|
2508
|
-
" field/NN\n",
|
2509
|
-
" computational/JJ\n",
|
2510
|
-
" neuroscience/NN\n",
|
2511
|
-
" (PERSON Jennifer/NNP)\n",
|
2512
|
-
" introduced/VBD\n",
|
2513
|
-
" (PERSON Emily/RB Michael/NNP)\n",
|
2514
|
-
" friend/VBP\n",
|
2515
|
-
" (PERSON Carlos/NNP Mendez/NNP)\n",
|
2516
|
-
" software/NN\n",
|
2517
|
-
" engineer/NN\n",
|
2518
|
-
" (PERSON Facebook/NNP)\n",
|
2519
|
-
" specialized/VBD\n",
|
2520
|
-
" developing/VBG\n",
|
2521
|
-
" algorithms/JJ\n",
|
2522
|
-
" social/JJ\n",
|
2523
|
-
" media/NNS\n",
|
2524
|
-
" analytics/NNS\n",
|
2525
|
-
" keynote/VBP\n",
|
2526
|
-
" speaker/NN\n",
|
2527
|
-
" event/NN\n",
|
2528
|
-
" none/NN\n",
|
2529
|
-
" Dr./NNP\n",
|
2530
|
-
" (PERSON Elizabeth/NNP Warren/NNP)\n",
|
2531
|
-
" distinguished/VBD\n",
|
2532
|
-
" professor/NN\n",
|
2533
|
-
" (PERSON Stanford/NNP University/NNP)\n",
|
2534
|
-
" Dr./NNP\n",
|
2535
|
-
" Warren/NNP\n",
|
2536
|
-
" speech/NN\n",
|
2537
|
-
" focused/VBD\n",
|
2538
|
-
" ethical/JJ\n",
|
2539
|
-
" implications/NNS\n",
|
2540
|
-
" AI/VBP\n",
|
2541
|
-
" importance/NN\n",
|
2542
|
-
" developing/VBG\n",
|
2543
|
-
" technologies/NNS\n",
|
2544
|
-
" benefit/VBP\n",
|
2545
|
-
" humanity/NN\n",
|
2546
|
-
" whole/JJ\n",
|
2547
|
-
" insights/NNS\n",
|
2548
|
-
" sparked/VBD\n",
|
2549
|
-
" lively/JJ\n",
|
2550
|
-
" discussion/NN\n",
|
2551
|
-
" among/IN\n",
|
2552
|
-
" attendees/NNS\n",
|
2553
|
-
" including/VBG\n",
|
2554
|
-
" (PERSON Sarah/NNP Johnson/NNP)\n",
|
2555
|
-
" policy/NN\n",
|
2556
|
-
" advisor/NN\n",
|
2557
|
-
" (ORGANIZATION United/NNP Nations/NNP Ahmed/NNP Khan/NNP)\n",
|
2558
|
-
" cybersecurity/NN\n",
|
2559
|
-
" expert/NN\n",
|
2560
|
-
" (ORGANIZATION Microsoft/NNP)\n",
|
2561
|
-
" breaks/NNS\n",
|
2562
|
-
" sessions/NNS\n",
|
2563
|
-
" attendees/NNS\n",
|
2564
|
-
" mingled/VBD\n",
|
2565
|
-
" exchanged/VBN\n",
|
2566
|
-
" ideas/NNS\n",
|
2567
|
-
" Emily/RB\n",
|
2568
|
-
" caught/VBD\n",
|
2569
|
-
" former/JJ\n",
|
2570
|
-
" classmate/NN\n",
|
2571
|
-
" (PERSON David/NNP Kim/NNP)\n",
|
2572
|
-
" works/VBZ\n",
|
2573
|
-
" data/NNS\n",
|
2574
|
-
" analyst/NN\n",
|
2575
|
-
" (PERSON Amazon/NNP David/NNP)\n",
|
2576
|
-
" introduced/VBD\n",
|
2577
|
-
" colleague/NN\n",
|
2578
|
-
" (PERSON Jessica/NNP Brown/NNP)\n",
|
2579
|
-
" machine/NN\n",
|
2580
|
-
" learning/VBG\n",
|
2581
|
-
" engineer/JJ\n",
|
2582
|
-
" knack/NN\n",
|
2583
|
-
" developing/VBG\n",
|
2584
|
-
" innovative/JJ\n",
|
2585
|
-
" solutions/NNS\n",
|
2586
|
-
" complex/JJ\n",
|
2587
|
-
" problems/NNS\n",
|
2588
|
-
" Emily/RB\n",
|
2589
|
-
" particularly/RB\n",
|
2590
|
-
" interested/JJ\n",
|
2591
|
-
" (ORGANIZATION Jessica/NNP)\n",
|
2592
|
-
" work/NN\n",
|
2593
|
-
" natural/JJ\n",
|
2594
|
-
" language/NN\n",
|
2595
|
-
" processing/NN\n",
|
2596
|
-
" invited/JJ\n",
|
2597
|
-
" collaborate/NN\n",
|
2598
|
-
" future/NN\n",
|
2599
|
-
" project/NN\n",
|
2600
|
-
" another/DT\n",
|
2601
|
-
" corner/NN\n",
|
2602
|
-
" room/NN\n",
|
2603
|
-
" (PERSON Michael/NNP)\n",
|
2604
|
-
" deep/JJ\n",
|
2605
|
-
" conversation/NN\n",
|
2606
|
-
" (PERSON Raj/NNP Patel/NNP)\n",
|
2607
|
-
" roboticist/NN\n",
|
2608
|
-
" (PERSON Carnegie/NNP Mellon/NNP University/NNP Raj/NNP)\n",
|
2609
|
-
" recently/RB\n",
|
2610
|
-
" developed/VBD\n",
|
2611
|
-
" new/JJ\n",
|
2612
|
-
" type/NN\n",
|
2613
|
-
" robotic/JJ\n",
|
2614
|
-
" arm/NN\n",
|
2615
|
-
" could/MD\n",
|
2616
|
-
" perform/VB\n",
|
2617
|
-
" delicate/JJ\n",
|
2618
|
-
" surgical/JJ\n",
|
2619
|
-
" procedures/NNS\n",
|
2620
|
-
" unprecedented/JJ\n",
|
2621
|
-
" precision/NN\n",
|
2622
|
-
" accompanied/VBN\n",
|
2623
|
-
" research/NN\n",
|
2624
|
-
" assistant/NN\n",
|
2625
|
-
" (PERSON Maria/NNP Gonzalez/NNP)\n",
|
2626
|
-
" instrumental/JJ\n",
|
2627
|
-
" project/NN\n",
|
2628
|
-
" success/NN\n",
|
2629
|
-
" (PERSON Michael/NNP)\n",
|
2630
|
-
" fascinated/VBD\n",
|
2631
|
-
" work/NN\n",
|
2632
|
-
" proposed/VBN\n",
|
2633
|
-
" partnership/NN\n",
|
2634
|
-
" integrate/NN\n",
|
2635
|
-
" technology/NN\n",
|
2636
|
-
" AI/NNP\n",
|
2637
|
-
" algorithms/VBD\n",
|
2638
|
-
" day/NN\n",
|
2639
|
-
" progressed/VBD\n",
|
2640
|
-
" conference/NN\n",
|
2641
|
-
" attendees/NNS\n",
|
2642
|
-
" treated/VBD\n",
|
2643
|
-
" series/NN\n",
|
2644
|
-
" insightful/JJ\n",
|
2645
|
-
" presentations/NNS\n",
|
2646
|
-
" Dr./NNP\n",
|
2647
|
-
" (PERSON James/NNP Clark/NNP Harvard/NNP University/NNP)\n",
|
2648
|
-
" shared/VBD\n",
|
2649
|
-
" research/NN\n",
|
2650
|
-
" deep/NN\n",
|
2651
|
-
" learning/NN\n",
|
2652
|
-
" applications/NNS\n",
|
2653
|
-
" healthcare/VBP\n",
|
2654
|
-
" followed/VBN\n",
|
2655
|
-
" (PERSON Lisa/NNP Robinson/NNP)\n",
|
2656
|
-
" computer/NN\n",
|
2657
|
-
" vision/NN\n",
|
2658
|
-
" expert/JJ\n",
|
2659
|
-
" (PERSON Nvidia/NNP)\n",
|
2660
|
-
" demonstrated/VBD\n",
|
2661
|
-
" latest/JJS\n",
|
2662
|
-
" advancements/NNS\n",
|
2663
|
-
" image/NN\n",
|
2664
|
-
" recognition/NN\n",
|
2665
|
-
" technology/NN\n",
|
2666
|
-
" audience/NN\n",
|
2667
|
-
" particularly/RB\n",
|
2668
|
-
" impressed/JJ\n",
|
2669
|
-
" presentation/NN\n",
|
2670
|
-
" Dr./NNP\n",
|
2671
|
-
" (PERSON Ananya/NNP Singh/NNP AI/NNP)\n",
|
2672
|
-
" ethicist/NN\n",
|
2673
|
-
" (PERSON Oxford/NNP University/NNP)\n",
|
2674
|
-
" discussed/VBD\n",
|
2675
|
-
" societal/JJ\n",
|
2676
|
-
" impacts/NNS\n",
|
2677
|
-
" AI/NNP\n",
|
2678
|
-
" importance/NN\n",
|
2679
|
-
" responsible/JJ\n",
|
2680
|
-
" innovation/NN\n",
|
2681
|
-
" evening/VBG\n",
|
2682
|
-
" attendees/NNS\n",
|
2683
|
-
" gathered/VBN\n",
|
2684
|
-
" gala/NN\n",
|
2685
|
-
" dinner/NN\n",
|
2686
|
-
" (PERSON Grand/NNP Hyatt/NNP Hotel/NNP)\n",
|
2687
|
-
" event/NN\n",
|
2688
|
-
" perfect/JJ\n",
|
2689
|
-
" opportunity/NN\n",
|
2690
|
-
" networking/VBG\n",
|
2691
|
-
" fostering/VBG\n",
|
2692
|
-
" new/JJ\n",
|
2693
|
-
" collaborations/NNS\n",
|
2694
|
-
" Emily/RB\n",
|
2695
|
-
" found/VBD\n",
|
2696
|
-
" seated/VBN\n",
|
2697
|
-
" next/JJ\n",
|
2698
|
-
" (PERSON Henry/NNP Zhang/NNP)\n",
|
2699
|
-
" venture/NN\n",
|
2700
|
-
" capitalist/NN\n",
|
2701
|
-
" (PERSON Sequoia/NNP Capital/NNP)\n",
|
2702
|
-
" keen/JJ\n",
|
2703
|
-
" invest/JJS\n",
|
2704
|
-
" promising/VBG\n",
|
2705
|
-
" AI/NNP\n",
|
2706
|
-
" startups/NNS\n",
|
2707
|
-
" joined/VBD\n",
|
2708
|
-
" (PERSON Priya/NNP Sharma/NNP)\n",
|
2709
|
-
" legal/JJ\n",
|
2710
|
-
" expert/NN\n",
|
2711
|
-
" (PERSON Electronic/NNP Frontier/NNP Foundation/NNP)\n",
|
2712
|
-
" provided/VBD\n",
|
2713
|
-
" valuable/JJ\n",
|
2714
|
-
" insights/NNS\n",
|
2715
|
-
" regulatory/JJ\n",
|
2716
|
-
" landscape/NN\n",
|
2717
|
-
" emerging/VBG\n",
|
2718
|
-
" technologies/NNS\n",
|
2719
|
-
" table/JJ\n",
|
2720
|
-
" (PERSON Michael/NNP)\n",
|
2721
|
-
" struck/VBD\n",
|
2722
|
-
" conversation/NN\n",
|
2723
|
-
" (PERSON Laura/NNP Martinez/NNP)\n",
|
2724
|
-
" bioinformatics/NNS\n",
|
2725
|
-
" researcher/VBP\n",
|
2726
|
-
" (ORGANIZATION University/NNP California/NNP Berkeley/NNP)\n",
|
2727
|
-
" Laura/NNP\n",
|
2728
|
-
" working/VBG\n",
|
2729
|
-
" project/NN\n",
|
2730
|
-
" use/NN\n",
|
2731
|
-
" AI/NNP\n",
|
2732
|
-
" predicting/VBG\n",
|
2733
|
-
" genetic/JJ\n",
|
2734
|
-
" disorders/NNS\n",
|
2735
|
-
" interested/JJ\n",
|
2736
|
-
" (PERSON Michael/NNP)\n",
|
2737
|
-
" expertise/NN\n",
|
2738
|
-
" neural/JJ\n",
|
2739
|
-
" networks/NNS\n",
|
2740
|
-
" exchanged/VBD\n",
|
2741
|
-
" contact/JJ\n",
|
2742
|
-
" information/NN\n",
|
2743
|
-
" planned/VBN\n",
|
2744
|
-
" meet/NN\n",
|
2745
|
-
" conference/NN\n",
|
2746
|
-
" discuss/VBP\n",
|
2747
|
-
" potential/JJ\n",
|
2748
|
-
" collaborations/NNS\n",
|
2749
|
-
" Meanwhile/RB\n",
|
2750
|
-
" (PERSON Jennifer/NNP Carlos/NNP)\n",
|
2751
|
-
" deep/JJ\n",
|
2752
|
-
" discussion/NN\n",
|
2753
|
-
" (PERSON Ethan/NNP Liu/NNP)\n",
|
2754
|
-
" blockchain/VBP\n",
|
2755
|
-
" developer/NN\n",
|
2756
|
-
" (ORGANIZATION IBM/NNP)\n",
|
2757
|
-
" potential/JJ\n",
|
2758
|
-
" combining/NN\n",
|
2759
|
-
" AI/NNP\n",
|
2760
|
-
" blockchain/NN\n",
|
2761
|
-
" technology/NN\n",
|
2762
|
-
" enhance/NN\n",
|
2763
|
-
" data/NNS\n",
|
2764
|
-
" security/NN\n",
|
2765
|
-
" (PERSON Ethan/NNP)\n",
|
2766
|
-
" colleague/NN\n",
|
2767
|
-
" Dr./NNP\n",
|
2768
|
-
" (PERSON Olivia/NNP Parker/NNP)\n",
|
2769
|
-
" joined/VBD\n",
|
2770
|
-
" conversation/NN\n",
|
2771
|
-
" bringing/VBG\n",
|
2772
|
-
" expertise/NN\n",
|
2773
|
-
" cryptography/NN\n",
|
2774
|
-
" table/NN\n",
|
2775
|
-
" group/NN\n",
|
2776
|
-
" brainstormed/VBD\n",
|
2777
|
-
" various/JJ\n",
|
2778
|
-
" applications/NNS\n",
|
2779
|
-
" decided/VBD\n",
|
2780
|
-
" form/NN\n",
|
2781
|
-
" working/VBG\n",
|
2782
|
-
" group/NN\n",
|
2783
|
-
" explore/VBD\n",
|
2784
|
-
" ideas/NNS\n",
|
2785
|
-
" next/IN\n",
|
2786
|
-
" morning/NN\n",
|
2787
|
-
" conference/NN\n",
|
2788
|
-
" resumed/VBD\n",
|
2789
|
-
" panel/NN\n",
|
2790
|
-
" discussion/NN\n",
|
2791
|
-
" featuring/VBG\n",
|
2792
|
-
" several/JJ\n",
|
2793
|
-
" industry/NN\n",
|
2794
|
-
" leaders/NNS\n",
|
2795
|
-
" Among/IN\n",
|
2796
|
-
" Dr./NNP\n",
|
2797
|
-
" (PERSON William/NNP Harris/NNP)\n",
|
2798
|
-
" CEO/NNP\n",
|
2799
|
-
" AI/NNP\n",
|
2800
|
-
" Inc./NNP\n",
|
2801
|
-
" Dr./NNP\n",
|
2802
|
-
" (PERSON Katherine/NNP Adams/NNP)\n",
|
2803
|
-
" senior/JJ\n",
|
2804
|
-
" researcher/NN\n",
|
2805
|
-
" (ORGANIZATION OpenAI/NNP)\n",
|
2806
|
-
" discussed/VBD\n",
|
2807
|
-
" future/JJ\n",
|
2808
|
-
" AI/NNP\n",
|
2809
|
-
" potential/JJ\n",
|
2810
|
-
" transform/NN\n",
|
2811
|
-
" industries/NNS\n",
|
2812
|
-
" ranging/VBG\n",
|
2813
|
-
" healthcare/NN\n",
|
2814
|
-
" finance/NN\n",
|
2815
|
-
" panel/NN\n",
|
2816
|
-
" also/RB\n",
|
2817
|
-
" included/VBD\n",
|
2818
|
-
" Dr./NNP\n",
|
2819
|
-
" Mei/NNP\n",
|
2820
|
-
" Ling/NNP\n",
|
2821
|
-
" professor/NN\n",
|
2822
|
-
" (ORGANIZATION University/NNP Tokyo/NNP)\n",
|
2823
|
-
" highlighted/VBD\n",
|
2824
|
-
" advancements/NNS\n",
|
2825
|
-
" AI/NNP\n",
|
2826
|
-
" research/NN\n",
|
2827
|
-
" (GPE Asia/NNP)\n",
|
2828
|
-
" audience/NN\n",
|
2829
|
-
" Emily/RB\n",
|
2830
|
-
" (PERSON Michael/NNP)\n",
|
2831
|
-
" sat/VBD\n",
|
2832
|
-
" new/JJ\n",
|
2833
|
-
" acquaintances/NNS\n",
|
2834
|
-
" eager/JJ\n",
|
2835
|
-
" absorb/JJ\n",
|
2836
|
-
" wealth/NN\n",
|
2837
|
-
" knowledge/NN\n",
|
2838
|
-
" shared/VBD\n",
|
2839
|
-
" particularly/RB\n",
|
2840
|
-
" inspired/JJ\n",
|
2841
|
-
" talk/NN\n",
|
2842
|
-
" Dr./NNP\n",
|
2843
|
-
" (PERSON Samuel/NNP Green/NNP)\n",
|
2844
|
-
" cognitive/JJ\n",
|
2845
|
-
" scientist/NN\n",
|
2846
|
-
" (ORGANIZATION Yale/NNP University/NNP)\n",
|
2847
|
-
" discussed/VBD\n",
|
2848
|
-
" intersection/NN\n",
|
2849
|
-
" AI/NNP\n",
|
2850
|
-
" human/JJ\n",
|
2851
|
-
" cognition/NN\n",
|
2852
|
-
" research/NN\n",
|
2853
|
-
" AI/NNP\n",
|
2854
|
-
" augment/JJ\n",
|
2855
|
-
" human/JJ\n",
|
2856
|
-
" decision-making/NN\n",
|
2857
|
-
" resonated/VBD\n",
|
2858
|
-
" deeply/RB\n",
|
2859
|
-
" audience/NN\n",
|
2860
|
-
" conference/NN\n",
|
2861
|
-
" drew/VBD\n",
|
2862
|
-
" close/JJ\n",
|
2863
|
-
" attendees/NNS\n",
|
2864
|
-
" reflected/VBD\n",
|
2865
|
-
" valuable/JJ\n",
|
2866
|
-
" connections/NNS\n",
|
2867
|
-
" made/VBD\n",
|
2868
|
-
" new/JJ\n",
|
2869
|
-
" knowledge/NN\n",
|
2870
|
-
" gained/VBN\n",
|
2871
|
-
" (PERSON Emily/RB Michael/NNP)\n",
|
2872
|
-
" felt/VBD\n",
|
2873
|
-
" energized/VBN\n",
|
2874
|
-
" excited/JJ\n",
|
2875
|
-
" future/JJ\n",
|
2876
|
-
" research/NN\n",
|
2877
|
-
" formed/VBD\n",
|
2878
|
-
" new/JJ\n",
|
2879
|
-
" collaborations/NNS\n",
|
2880
|
-
" (PERSON Jessica/NNP Raj/NNP Laura/NNP)\n",
|
2881
|
-
" eager/JJ\n",
|
2882
|
-
" start/VBP\n",
|
2883
|
-
" working/VBG\n",
|
2884
|
-
" joint/JJ\n",
|
2885
|
-
" projects/NNS\n",
|
2886
|
-
" leaving/VBG\n",
|
2887
|
-
" took/VBD\n",
|
2888
|
-
" moment/NN\n",
|
2889
|
-
" thank/NN\n",
|
2890
|
-
" conference/NN\n",
|
2891
|
-
" organizers/NNS\n",
|
2892
|
-
" including/VBG\n",
|
2893
|
-
" Dr./NNP\n",
|
2894
|
-
" (PERSON Karen/NNP Wilson/NNP)\n",
|
2895
|
-
" director/NN\n",
|
2896
|
-
" (PERSON Tech/NNP Innovators/NNP Network/NNP)\n",
|
2897
|
-
" team/NN\n",
|
2898
|
-
" event/NN\n",
|
2899
|
-
" resounding/VBG\n",
|
2900
|
-
" success/NN\n",
|
2901
|
-
" bringing/VBG\n",
|
2902
|
-
" together/RB\n",
|
2903
|
-
" brightest/JJS\n",
|
2904
|
-
" minds/NNS\n",
|
2905
|
-
" field/NN\n",
|
2906
|
-
" AI/NNP\n",
|
2907
|
-
" fostering/VBG\n",
|
2908
|
-
" spirit/JJ\n",
|
2909
|
-
" innovation/NN\n",
|
2910
|
-
" collaboration/NN\n",
|
2911
|
-
" boarded/VBD\n",
|
2912
|
-
" flight/NN\n",
|
2913
|
-
" back/RB\n",
|
2914
|
-
" (PERSON Boston/NNP Emily/NNP Michael/NNP)\n",
|
2915
|
-
" could/MD\n",
|
2916
|
-
" n't/RB\n",
|
2917
|
-
" help/VB\n",
|
2918
|
-
" feel/VB\n",
|
2919
|
-
" optimistic/JJ\n",
|
2920
|
-
" future/NN\n",
|
2921
|
-
" knew/VBD\n",
|
2922
|
-
" connections/NNS\n",
|
2923
|
-
" made/VBN\n",
|
2924
|
-
" conference/NN\n",
|
2925
|
-
" would/MD\n",
|
2926
|
-
" lead/VB\n",
|
2927
|
-
" exciting/VBG\n",
|
2928
|
-
" new/JJ\n",
|
2929
|
-
" opportunities/NNS\n",
|
2930
|
-
" advancements/NNS\n",
|
2931
|
-
" research/NN\n",
|
2932
|
-
" determined/VBD\n",
|
2933
|
-
" ever/RB\n",
|
2934
|
-
" push/JJ\n",
|
2935
|
-
" boundaries/NNS\n",
|
2936
|
-
" AI/NNP\n",
|
2937
|
-
" could/MD\n",
|
2938
|
-
" achieve/VB\n",
|
2939
|
-
" ensure/VB\n",
|
2940
|
-
" work/NN\n",
|
2941
|
-
" would/MD\n",
|
2942
|
-
" positive/JJ\n",
|
2943
|
-
" impact/NN\n",
|
2944
|
-
" world/NN\n",
|
2945
|
-
" weeks/NNS\n",
|
2946
|
-
" followed/VBD\n",
|
2947
|
-
" (PERSON Emily/RB Michael/NNP)\n",
|
2948
|
-
" stayed/VBD\n",
|
2949
|
-
" touch/JJ\n",
|
2950
|
-
" new/JJ\n",
|
2951
|
-
" collaborators/NNS\n",
|
2952
|
-
" began/VBD\n",
|
2953
|
-
" working/VBG\n",
|
2954
|
-
" joint/JJ\n",
|
2955
|
-
" projects/NNS\n",
|
2956
|
-
" sharing/VBG\n",
|
2957
|
-
" ideas/JJ\n",
|
2958
|
-
" resources/NNS\n",
|
2959
|
-
" push/NN\n",
|
2960
|
-
" boundaries/NNS\n",
|
2961
|
-
" AI/NNP\n",
|
2962
|
-
" research/NN\n",
|
2963
|
-
" (PERSON Emily/NNP)\n",
|
2964
|
-
" collaborated/VBD\n",
|
2965
|
-
" (PERSON Jessica/NNP)\n",
|
2966
|
-
" project/NN\n",
|
2967
|
-
" enhance/NN\n",
|
2968
|
-
" natural/JJ\n",
|
2969
|
-
" language/NN\n",
|
2970
|
-
" processing/NN\n",
|
2971
|
-
" algorithms/NN\n",
|
2972
|
-
" (PERSON Michael/NNP)\n",
|
2973
|
-
" worked/VBD\n",
|
2974
|
-
" (PERSON Raj/NNP Maria/NNP)\n",
|
2975
|
-
" integrate/VBP\n",
|
2976
|
-
" robotic/JJ\n",
|
2977
|
-
" technology/NN\n",
|
2978
|
-
" neural/JJ\n",
|
2979
|
-
" networks/NNS\n",
|
2980
|
-
" (PERSON Laura/NNP Emily/NNP)\n",
|
2981
|
-
" started/VBD\n",
|
2982
|
-
" project/NN\n",
|
2983
|
-
" using/VBG\n",
|
2984
|
-
" (ORGANIZATION AI/NNP)\n",
|
2985
|
-
" predict/JJ\n",
|
2986
|
-
" genetic/JJ\n",
|
2987
|
-
" disorders/NNS\n",
|
2988
|
-
" combining/VBG\n",
|
2989
|
-
" expertise/NN\n",
|
2990
|
-
" tackle/NN\n",
|
2991
|
-
" complex/JJ\n",
|
2992
|
-
" biological/JJ\n",
|
2993
|
-
" problems/NNS\n",
|
2994
|
-
" conference/NN\n",
|
2995
|
-
" expanded/VBD\n",
|
2996
|
-
" professional/JJ\n",
|
2997
|
-
" networks/NNS\n",
|
2998
|
-
" also/RB\n",
|
2999
|
-
" enriched/VBD\n",
|
3000
|
-
" understanding/JJ\n",
|
3001
|
-
" diverse/JJ\n",
|
3002
|
-
" applications/NNS\n",
|
3003
|
-
" AI/VBP\n",
|
3004
|
-
" grateful/JJ\n",
|
3005
|
-
" opportunity/NN\n",
|
3006
|
-
" connect/VBP\n",
|
3007
|
-
" many/JJ\n",
|
3008
|
-
" talented/JJ\n",
|
3009
|
-
" individuals/NNS\n",
|
3010
|
-
" looked/VBD\n",
|
3011
|
-
" forward/RB\n",
|
3012
|
-
" future/JJ\n",
|
3013
|
-
" renewed/VBN\n",
|
3014
|
-
" enthusiasm/NN\n",
|
3015
|
-
" sense/NN\n",
|
3016
|
-
" purpose/NN\n",
|
3017
|
-
" (PERSON Tech/NNP Innovators/NNP Conference/NNP)\n",
|
3018
|
-
" transformative/JJ\n",
|
3019
|
-
" experience/NN\n",
|
3020
|
-
" setting/VBG\n",
|
3021
|
-
" stage/NN\n",
|
3022
|
-
" new/JJ\n",
|
3023
|
-
" discoveries/NNS\n",
|
3024
|
-
" groundbreaking/VBG\n",
|
3025
|
-
" advancements/NNS\n",
|
3026
|
-
" field/NN\n",
|
3027
|
-
" artificial/JJ\n",
|
3028
|
-
" intelligence/NN)\n"
|
3029
|
-
]
|
3030
|
-
}
|
3031
|
-
],
|
3032
|
-
"source": [
|
3033
|
-
"from nltk import ne_chunk\n",
|
3034
|
-
"\n",
|
3035
|
-
"# Perform Named Entity Recognition (NER)\n",
|
3036
|
-
"named_entities = ne_chunk(tagged_tokens)\n",
|
3037
|
-
"\n",
|
3038
|
-
"print(\"\\nNamed Entities:\")\n",
|
3039
|
-
"print(named_entities)"
|
3040
|
-
]
|
3041
|
-
},
|
3042
|
-
{
|
3043
|
-
"cell_type": "code",
|
3044
|
-
"execution_count": 93,
|
3045
|
-
"id": "3e569e76-e1b7-4284-a029-e2ca46bf0c15",
|
3046
|
-
"metadata": {},
|
3047
|
-
"outputs": [
|
3048
|
-
{
|
3049
|
-
"name": "stdout",
|
3050
|
-
"output_type": "stream",
|
3051
|
-
"text": [
|
3052
|
-
"\n",
|
3053
|
-
"Faculty:\n",
|
3054
|
-
"{'Ethan Liu', 'San Francisco', 'James Clark Harvard University', 'Boston Emily Michael', 'Electronic Frontier Foundation', 'Jennifer', 'Michael', 'Karen Wilson', 'Nvidia', 'Grand Hyatt Hotel', 'Carlos Mendez', 'Jessica Raj Laura', 'Laura Martinez', 'Ethan', 'Raj Patel', 'Tech Innovators Network', 'David Kim', 'Chen', 'Oxford University', 'Jennifer Carlos', 'Michael Thompson', 'Google', 'Carnegie Mellon University Raj', 'Samuel Green', 'Katherine Adams', 'Henry Zhang', 'Sequoia Capital', 'Stanford University', 'Facebook', 'Ananya Singh AI', 'Tech Innovators Conference', 'Maria Gonzalez', 'Jessica', 'Emily', 'Emily Michael', 'Lisa Robinson', 'Jennifer Lee', 'Jessica Brown', 'Laura Emily', 'Robert Lang', 'Priya Sharma', 'William Harris', 'Sarah Johnson', 'Elizabeth Warren', 'Amazon David', 'Olivia Parker', 'Raj Maria'}\n"
|
3055
|
-
]
|
3056
|
-
}
|
3057
|
-
],
|
3058
|
-
"source": [
|
3059
|
-
"# Extract names (proper nouns identified by NE chunking)\n",
|
3060
|
-
"names = []\n",
|
3061
|
-
"for subtree in named_entities:\n",
|
3062
|
-
" if isinstance(subtree, nltk.Tree) and subtree.label() == 'PERSON':\n",
|
3063
|
-
" name = \" \".join([leaf[0] for leaf in subtree.leaves()])\n",
|
3064
|
-
" names.append(name)\n",
|
3065
|
-
"\n",
|
3066
|
-
"# Group names as \"faculty\"\n",
|
3067
|
-
"faculty = set(names)\n",
|
3068
|
-
"\n",
|
3069
|
-
"print(\"\\nFaculty:\")\n",
|
3070
|
-
"print(faculty)"
|
3071
|
-
]
|
3072
|
-
}
|
3073
|
-
],
|
3074
|
-
"metadata": {
|
3075
|
-
"kernelspec": {
|
3076
|
-
"display_name": "Python 3 (ipykernel)",
|
3077
|
-
"language": "python",
|
3078
|
-
"name": "python3"
|
3079
|
-
},
|
3080
|
-
"language_info": {
|
3081
|
-
"codemirror_mode": {
|
3082
|
-
"name": "ipython",
|
3083
|
-
"version": 3
|
3084
|
-
},
|
3085
|
-
"file_extension": ".py",
|
3086
|
-
"mimetype": "text/x-python",
|
3087
|
-
"name": "python",
|
3088
|
-
"nbconvert_exporter": "python",
|
3089
|
-
"pygments_lexer": "ipython3",
|
3090
|
-
"version": "3.11.7"
|
3091
|
-
}
|
3092
|
-
},
|
3093
|
-
"nbformat": 4,
|
3094
|
-
"nbformat_minor": 5
|
3095
|
-
}
|