noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,216 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 5,
|
6
|
-
"id": "b443a5d0-8fca-4594-948b-b0882a4d47cb",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"name": "stdout",
|
11
|
-
"output_type": "stream",
|
12
|
-
"text": [
|
13
|
-
"The preposition 'with' attaches to the 'VP'\n"
|
14
|
-
]
|
15
|
-
}
|
16
|
-
],
|
17
|
-
"source": [
|
18
|
-
"from collections import defaultdict\n",
|
19
|
-
"\n",
|
20
|
-
"class HindleRoothPPAttachment:\n",
|
21
|
-
" def __init__(self):\n",
|
22
|
-
" # Dictionary to store co-occurrence counts\n",
|
23
|
-
" self.np_p_counts = defaultdict(int)\n",
|
24
|
-
" self.vp_p_counts = defaultdict(int)\n",
|
25
|
-
" self.p_counts = defaultdict(int)\n",
|
26
|
-
" \n",
|
27
|
-
" def train(self, corpus):\n",
|
28
|
-
" \"\"\"\n",
|
29
|
-
" Train the model using a parsed corpus.\n",
|
30
|
-
" \n",
|
31
|
-
" :param corpus: A parsed corpus with tuples (NP, VP, P)\n",
|
32
|
-
" \"\"\"\n",
|
33
|
-
" for (np, vp, p) in corpus:\n",
|
34
|
-
" self.np_p_counts[(np, p)] += 1\n",
|
35
|
-
" self.vp_p_counts[(vp, p)] += 1\n",
|
36
|
-
" self.p_counts[p] += 1\n",
|
37
|
-
" \n",
|
38
|
-
" def calculate_probabilities(self, np, vp, p):\n",
|
39
|
-
" \"\"\"\n",
|
40
|
-
" Calculate the probabilities P(NP, P) and P(VP, P).\n",
|
41
|
-
" \n",
|
42
|
-
" :param np: Noun phrase\n",
|
43
|
-
" :param vp: Verb phrase\n",
|
44
|
-
" :param p: Preposition\n",
|
45
|
-
" :return: (P(NP, P), P(VP, P))\n",
|
46
|
-
" \"\"\"\n",
|
47
|
-
" p_count = self.p_counts[p]\n",
|
48
|
-
" \n",
|
49
|
-
" # Avoid division by zero\n",
|
50
|
-
" if p_count == 0:\n",
|
51
|
-
" return 0, 0\n",
|
52
|
-
" \n",
|
53
|
-
" p_np_p = self.np_p_counts[(np, p)] / p_count\n",
|
54
|
-
" p_vp_p = self.vp_p_counts[(vp, p)] / p_count\n",
|
55
|
-
" \n",
|
56
|
-
" return p_np_p, p_vp_p\n",
|
57
|
-
" \n",
|
58
|
-
" def decide_attachment(self, np, vp, p):\n",
|
59
|
-
" \"\"\"\n",
|
60
|
-
" Decide whether the preposition attaches to the NP or the VP.\n",
|
61
|
-
" \n",
|
62
|
-
" :param np: Noun phrase\n",
|
63
|
-
" :param vp: Verb phrase\n",
|
64
|
-
" :param p: Preposition\n",
|
65
|
-
" :return: 'NP' or 'VP' based on the attachment decision\n",
|
66
|
-
" \"\"\"\n",
|
67
|
-
" p_np_p, p_vp_p = self.calculate_probabilities(np, vp, p)\n",
|
68
|
-
" \n",
|
69
|
-
" if p_np_p > p_vp_p:\n",
|
70
|
-
" return 'NP'\n",
|
71
|
-
" else:\n",
|
72
|
-
" return 'VP'\n",
|
73
|
-
"\n",
|
74
|
-
"# Example usage\n",
|
75
|
-
"if __name__ == \"__main__\":\n",
|
76
|
-
" # Example corpus: List of tuples (NP, VP, P)\n",
|
77
|
-
" corpus = [\n",
|
78
|
-
" (\"the man\", \"saw\", \"with\"),\n",
|
79
|
-
" (\"the book\", \"is\", \"on\"),\n",
|
80
|
-
" (\"the cat\", \"sat\", \"on\"),\n",
|
81
|
-
" (\"the dog\", \"barked\", \"at\"),\n",
|
82
|
-
" # More parsed sentences from a corpus...\n",
|
83
|
-
" ]\n",
|
84
|
-
" \n",
|
85
|
-
" hr_model = HindleRoothPPAttachment()\n",
|
86
|
-
" hr_model.train(corpus)\n",
|
87
|
-
" \n",
|
88
|
-
" # Test the model with a new sentence\n",
|
89
|
-
" np = \"soldiers\"\n",
|
90
|
-
" vp = \"saw\"\n",
|
91
|
-
" p = \"with\"\n",
|
92
|
-
" \n",
|
93
|
-
" attachment = hr_model.decide_attachment(np, vp, p)\n",
|
94
|
-
" print(f\"The preposition '{p}' attaches to the '{attachment}'\")"
|
95
|
-
]
|
96
|
-
},
|
97
|
-
{
|
98
|
-
"cell_type": "code",
|
99
|
-
"execution_count": 12,
|
100
|
-
"id": "47e7d4c7-1352-47a9-8625-270b1bacdc48",
|
101
|
-
"metadata": {},
|
102
|
-
"outputs": [
|
103
|
-
{
|
104
|
-
"name": "stdin",
|
105
|
-
"output_type": "stream",
|
106
|
-
"text": [
|
107
|
-
"Enter the verb: 1\n",
|
108
|
-
"Enter the noun: 2\n",
|
109
|
-
"Enter the preposition: 3\n",
|
110
|
-
"Enter the occurrence of the preposition '3' with the verb '1': 4\n",
|
111
|
-
"Enter the total occurrences of the verb '1': 5\n",
|
112
|
-
"Enter the occurrence of the preposition '3' with the noun '2': 6\n",
|
113
|
-
"Enter the total occurrences of the noun '2': 7\n"
|
114
|
-
]
|
115
|
-
},
|
116
|
-
{
|
117
|
-
"name": "stdout",
|
118
|
-
"output_type": "stream",
|
119
|
-
"text": [
|
120
|
-
"Lambda :(1, 2, 3) = -2.906890595608518\n",
|
121
|
-
"PP attaches with the Noun.\n"
|
122
|
-
]
|
123
|
-
}
|
124
|
-
],
|
125
|
-
"source": [
|
126
|
-
"import math\n",
|
127
|
-
"\n",
|
128
|
-
"# Step 1: Ask the user for occurrence counts\n",
|
129
|
-
"def get_user_input():\n",
|
130
|
-
" verb = input(\"Enter the verb: \").strip()\n",
|
131
|
-
" noun = input(\"Enter the noun: \").strip()\n",
|
132
|
-
" prep = input(\"Enter the preposition: \").strip()\n",
|
133
|
-
" \n",
|
134
|
-
" verb_prep_count = int(input(f\"Enter the occurrence of the preposition '{prep}' with the verb '{verb}': \"))\n",
|
135
|
-
" verb_total_count = int(input(f\"Enter the total occurrences of the verb '{verb}': \"))\n",
|
136
|
-
" \n",
|
137
|
-
" noun_prep_count = int(input(f\"Enter the occurrence of the preposition '{prep}' with the noun '{noun}': \"))\n",
|
138
|
-
" noun_total_count = int(input(f\"Enter the total occurrences of the noun '{noun}': \"))\n",
|
139
|
-
"\n",
|
140
|
-
" return verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count\n",
|
141
|
-
"\n",
|
142
|
-
"# Step 2: Calculate Probabilities and λ(v, n, p)\n",
|
143
|
-
"def calculate_lambda(verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count):\n",
|
144
|
-
" # Calculate P(VA_p = 1 | v)\n",
|
145
|
-
" P_VAp = verb_prep_count / verb_total_count\n",
|
146
|
-
" \n",
|
147
|
-
" # Calculate P(NA_p = 1 | n)\n",
|
148
|
-
" P_NAp = noun_prep_count / noun_total_count\n",
|
149
|
-
" \n",
|
150
|
-
" # Calculate P(NA_p = 0 | n)\n",
|
151
|
-
" P_NAp_0 = 1 - P_NAp\n",
|
152
|
-
"\n",
|
153
|
-
" # Handle case where probabilities might cause division by zero\n",
|
154
|
-
" if P_NAp == 0:\n",
|
155
|
-
" return None, \"Error: Division by zero in log-ratio calculation due to insufficient data.\"\n",
|
156
|
-
" \n",
|
157
|
-
" # Calculate λ(v, n, p)\n",
|
158
|
-
" lambda_value = math.log2((P_VAp * P_NAp_0) / P_NAp)\n",
|
159
|
-
" \n",
|
160
|
-
" return lambda_value, None\n",
|
161
|
-
"\n",
|
162
|
-
"# Step 3: Determine the attachment\n",
|
163
|
-
"def determine_attachment(lambda_value):\n",
|
164
|
-
" if lambda_value > 0:\n",
|
165
|
-
" return \"PP attaches with the Verb.\"\n",
|
166
|
-
" else:\n",
|
167
|
-
" return \"PP attaches with the Noun.\"\n",
|
168
|
-
"\n",
|
169
|
-
"# Step 4: Interactive User Input\n",
|
170
|
-
"def hindle_rooth_algorithm():\n",
|
171
|
-
" verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count = get_user_input()\n",
|
172
|
-
"\n",
|
173
|
-
" lambda_value, error_message = calculate_lambda(verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count)\n",
|
174
|
-
" \n",
|
175
|
-
" if error_message:\n",
|
176
|
-
" print(error_message)\n",
|
177
|
-
" else:\n",
|
178
|
-
" result = determine_attachment(lambda_value)\n",
|
179
|
-
" print(f\"Lambda :({verb}, {noun}, {prep}) = {lambda_value}\")\n",
|
180
|
-
" print(result)\n",
|
181
|
-
"\n",
|
182
|
-
"# Run the interactive algorithm\n",
|
183
|
-
"hindle_rooth_algorithm()"
|
184
|
-
]
|
185
|
-
},
|
186
|
-
{
|
187
|
-
"cell_type": "code",
|
188
|
-
"execution_count": null,
|
189
|
-
"id": "0cc09162-7ca1-431b-bc2f-923fd94904a5",
|
190
|
-
"metadata": {},
|
191
|
-
"outputs": [],
|
192
|
-
"source": []
|
193
|
-
}
|
194
|
-
],
|
195
|
-
"metadata": {
|
196
|
-
"kernelspec": {
|
197
|
-
"display_name": "Python 3 (ipykernel)",
|
198
|
-
"language": "python",
|
199
|
-
"name": "python3"
|
200
|
-
},
|
201
|
-
"language_info": {
|
202
|
-
"codemirror_mode": {
|
203
|
-
"name": "ipython",
|
204
|
-
"version": 3
|
205
|
-
},
|
206
|
-
"file_extension": ".py",
|
207
|
-
"mimetype": "text/x-python",
|
208
|
-
"name": "python",
|
209
|
-
"nbconvert_exporter": "python",
|
210
|
-
"pygments_lexer": "ipython3",
|
211
|
-
"version": "3.11.7"
|
212
|
-
}
|
213
|
-
},
|
214
|
-
"nbformat": 4,
|
215
|
-
"nbformat_minor": 5
|
216
|
-
}
|
@@ -1,216 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "b443a5d0-8fca-4594-948b-b0882a4d47cb",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"name": "stdout",
|
11
|
-
"output_type": "stream",
|
12
|
-
"text": [
|
13
|
-
"The preposition 'with' attaches to the 'VP'\n"
|
14
|
-
]
|
15
|
-
}
|
16
|
-
],
|
17
|
-
"source": [
|
18
|
-
"from collections import defaultdict\n",
|
19
|
-
"\n",
|
20
|
-
"class HindleRoothPPAttachment:\n",
|
21
|
-
" def __init__(self):\n",
|
22
|
-
" # Dictionary to store co-occurrence counts\n",
|
23
|
-
" self.np_p_counts = defaultdict(int)\n",
|
24
|
-
" self.vp_p_counts = defaultdict(int)\n",
|
25
|
-
" self.p_counts = defaultdict(int)\n",
|
26
|
-
" \n",
|
27
|
-
" def train(self, corpus):\n",
|
28
|
-
" \"\"\"\n",
|
29
|
-
" Train the model using a parsed corpus.\n",
|
30
|
-
" \n",
|
31
|
-
" :param corpus: A parsed corpus with tuples (NP, VP, P)\n",
|
32
|
-
" \"\"\"\n",
|
33
|
-
" for (np, vp, p) in corpus:\n",
|
34
|
-
" self.np_p_counts[(np, p)] += 1\n",
|
35
|
-
" self.vp_p_counts[(vp, p)] += 1\n",
|
36
|
-
" self.p_counts[p] += 1\n",
|
37
|
-
" \n",
|
38
|
-
" def calculate_probabilities(self, np, vp, p):\n",
|
39
|
-
" \"\"\"\n",
|
40
|
-
" Calculate the probabilities P(NP, P) and P(VP, P).\n",
|
41
|
-
" \n",
|
42
|
-
" :param np: Noun phrase\n",
|
43
|
-
" :param vp: Verb phrase\n",
|
44
|
-
" :param p: Preposition\n",
|
45
|
-
" :return: (P(NP, P), P(VP, P))\n",
|
46
|
-
" \"\"\"\n",
|
47
|
-
" p_count = self.p_counts[p]\n",
|
48
|
-
" \n",
|
49
|
-
" # Avoid division by zero\n",
|
50
|
-
" if p_count == 0:\n",
|
51
|
-
" return 0, 0\n",
|
52
|
-
" \n",
|
53
|
-
" p_np_p = self.np_p_counts[(np, p)] / p_count\n",
|
54
|
-
" p_vp_p = self.vp_p_counts[(vp, p)] / p_count\n",
|
55
|
-
" \n",
|
56
|
-
" return p_np_p, p_vp_p\n",
|
57
|
-
" \n",
|
58
|
-
" def decide_attachment(self, np, vp, p):\n",
|
59
|
-
" \"\"\"\n",
|
60
|
-
" Decide whether the preposition attaches to the NP or the VP.\n",
|
61
|
-
" \n",
|
62
|
-
" :param np: Noun phrase\n",
|
63
|
-
" :param vp: Verb phrase\n",
|
64
|
-
" :param p: Preposition\n",
|
65
|
-
" :return: 'NP' or 'VP' based on the attachment decision\n",
|
66
|
-
" \"\"\"\n",
|
67
|
-
" p_np_p, p_vp_p = self.calculate_probabilities(np, vp, p)\n",
|
68
|
-
" \n",
|
69
|
-
" if p_np_p > p_vp_p:\n",
|
70
|
-
" return 'NP'\n",
|
71
|
-
" else:\n",
|
72
|
-
" return 'VP'\n",
|
73
|
-
"\n",
|
74
|
-
"# Example usage\n",
|
75
|
-
"if __name__ == \"__main__\":\n",
|
76
|
-
" # Example corpus: List of tuples (NP, VP, P)\n",
|
77
|
-
" corpus = [\n",
|
78
|
-
" (\"the man\", \"saw\", \"with\"),\n",
|
79
|
-
" (\"the book\", \"is\", \"on\"),\n",
|
80
|
-
" (\"the cat\", \"sat\", \"on\"),\n",
|
81
|
-
" (\"the dog\", \"barked\", \"at\"),\n",
|
82
|
-
" # More parsed sentences from a corpus...\n",
|
83
|
-
" ]\n",
|
84
|
-
" \n",
|
85
|
-
" hr_model = HindleRoothPPAttachment()\n",
|
86
|
-
" hr_model.train(corpus)\n",
|
87
|
-
" \n",
|
88
|
-
" # Test the model with a new sentence\n",
|
89
|
-
" np = \"the man\"\n",
|
90
|
-
" vp = \"saw\"\n",
|
91
|
-
" p = \"with\"\n",
|
92
|
-
" \n",
|
93
|
-
" attachment = hr_model.decide_attachment(np, vp, p)\n",
|
94
|
-
" print(f\"The preposition '{p}' attaches to the '{attachment}'\")"
|
95
|
-
]
|
96
|
-
},
|
97
|
-
{
|
98
|
-
"cell_type": "code",
|
99
|
-
"execution_count": 3,
|
100
|
-
"id": "47e7d4c7-1352-47a9-8625-270b1bacdc48",
|
101
|
-
"metadata": {},
|
102
|
-
"outputs": [
|
103
|
-
{
|
104
|
-
"name": "stdin",
|
105
|
-
"output_type": "stream",
|
106
|
-
"text": [
|
107
|
-
"Enter the verb: send\n",
|
108
|
-
"Enter the noun: soldiers\n",
|
109
|
-
"Enter the preposition: into\n",
|
110
|
-
"Enter the occurrence of the preposition 'into' with the verb 'send': 86\n",
|
111
|
-
"Enter the total occurrences of the verb 'send': 1742\n",
|
112
|
-
"Enter the occurrence of the preposition 'into' with the noun 'soldiers': 1\n",
|
113
|
-
"Enter the total occurrences of the noun 'soldiers': 1478\n"
|
114
|
-
]
|
115
|
-
},
|
116
|
-
{
|
117
|
-
"name": "stdout",
|
118
|
-
"output_type": "stream",
|
119
|
-
"text": [
|
120
|
-
"λ(send, soldiers, into) = 6.1881899568680225\n",
|
121
|
-
"PP attaches with the Verb.\n"
|
122
|
-
]
|
123
|
-
}
|
124
|
-
],
|
125
|
-
"source": [
|
126
|
-
"import math\n",
|
127
|
-
"\n",
|
128
|
-
"# Step 1: Ask the user for occurrence counts\n",
|
129
|
-
"def get_user_input():\n",
|
130
|
-
" verb = input(\"Enter the verb: \").strip()\n",
|
131
|
-
" noun = input(\"Enter the noun: \").strip()\n",
|
132
|
-
" prep = input(\"Enter the preposition: \").strip()\n",
|
133
|
-
" \n",
|
134
|
-
" verb_prep_count = int(input(f\"Enter the occurrence of the preposition '{prep}' with the verb '{verb}': \"))\n",
|
135
|
-
" verb_total_count = int(input(f\"Enter the total occurrences of the verb '{verb}': \"))\n",
|
136
|
-
" \n",
|
137
|
-
" noun_prep_count = int(input(f\"Enter the occurrence of the preposition '{prep}' with the noun '{noun}': \"))\n",
|
138
|
-
" noun_total_count = int(input(f\"Enter the total occurrences of the noun '{noun}': \"))\n",
|
139
|
-
"\n",
|
140
|
-
" return verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count\n",
|
141
|
-
"\n",
|
142
|
-
"# Step 2: Calculate Probabilities and λ(v, n, p)\n",
|
143
|
-
"def calculate_lambda(verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count):\n",
|
144
|
-
" # Calculate P(VA_p = 1 | v)\n",
|
145
|
-
" P_VAp = verb_prep_count / verb_total_count\n",
|
146
|
-
" \n",
|
147
|
-
" # Calculate P(NA_p = 1 | n)\n",
|
148
|
-
" P_NAp = noun_prep_count / noun_total_count\n",
|
149
|
-
" \n",
|
150
|
-
" # Calculate P(NA_p = 0 | n)\n",
|
151
|
-
" P_NAp_0 = 1 - P_NAp\n",
|
152
|
-
"\n",
|
153
|
-
" # Handle case where probabilities might cause division by zero\n",
|
154
|
-
" if P_NAp == 0:\n",
|
155
|
-
" return None, \"Error: Division by zero in log-ratio calculation due to insufficient data.\"\n",
|
156
|
-
" \n",
|
157
|
-
" # Calculate λ(v, n, p)\n",
|
158
|
-
" lambda_value = math.log2((P_VAp * P_NAp_0) / P_NAp)\n",
|
159
|
-
" \n",
|
160
|
-
" return lambda_value, None\n",
|
161
|
-
"\n",
|
162
|
-
"# Step 3: Determine the attachment\n",
|
163
|
-
"def determine_attachment(lambda_value):\n",
|
164
|
-
" if lambda_value > 0:\n",
|
165
|
-
" return \"PP attaches with the Verb.\"\n",
|
166
|
-
" else:\n",
|
167
|
-
" return \"PP attaches with the Noun.\"\n",
|
168
|
-
"\n",
|
169
|
-
"# Step 4: Interactive User Input\n",
|
170
|
-
"def hindle_rooth_algorithm():\n",
|
171
|
-
" verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count = get_user_input()\n",
|
172
|
-
"\n",
|
173
|
-
" lambda_value, error_message = calculate_lambda(verb, noun, prep, verb_prep_count, verb_total_count, noun_prep_count, noun_total_count)\n",
|
174
|
-
" \n",
|
175
|
-
" if error_message:\n",
|
176
|
-
" print(error_message)\n",
|
177
|
-
" else:\n",
|
178
|
-
" result = determine_attachment(lambda_value)\n",
|
179
|
-
" print(f\"λ({verb}, {noun}, {prep}) = {lambda_value}\")\n",
|
180
|
-
" print(result)\n",
|
181
|
-
"\n",
|
182
|
-
"# Run the interactive algorithm\n",
|
183
|
-
"hindle_rooth_algorithm()"
|
184
|
-
]
|
185
|
-
},
|
186
|
-
{
|
187
|
-
"cell_type": "code",
|
188
|
-
"execution_count": null,
|
189
|
-
"id": "0cc09162-7ca1-431b-bc2f-923fd94904a5",
|
190
|
-
"metadata": {},
|
191
|
-
"outputs": [],
|
192
|
-
"source": []
|
193
|
-
}
|
194
|
-
],
|
195
|
-
"metadata": {
|
196
|
-
"kernelspec": {
|
197
|
-
"display_name": "Python 3 (ipykernel)",
|
198
|
-
"language": "python",
|
199
|
-
"name": "python3"
|
200
|
-
},
|
201
|
-
"language_info": {
|
202
|
-
"codemirror_mode": {
|
203
|
-
"name": "ipython",
|
204
|
-
"version": 3
|
205
|
-
},
|
206
|
-
"file_extension": ".py",
|
207
|
-
"mimetype": "text/x-python",
|
208
|
-
"name": "python",
|
209
|
-
"nbconvert_exporter": "python",
|
210
|
-
"pygments_lexer": "ipython3",
|
211
|
-
"version": "3.11.7"
|
212
|
-
}
|
213
|
-
},
|
214
|
-
"nbformat": 4,
|
215
|
-
"nbformat_minor": 5
|
216
|
-
}
|
@@ -1,6 +0,0 @@
|
|
1
|
-
Guy: How old are you?
|
2
|
-
Hipster girl: You know, I never answer that question. Because to me, it's about
|
3
|
-
how mature you are, you know? I mean, a fourteen year old could be more mature
|
4
|
-
than a twenty-five year old, right? I'm sorry, I just never answer that question.
|
5
|
-
Guy: But, uh, you're older than eighteen, right?
|
6
|
-
Hipster girl: Oh, yeah.
|