noshot 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.7.dist-info/RECORD +0 -216
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.7.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,93 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"metadata": {
|
6
|
-
"id": "0aZKJeRc2JQz"
|
7
|
-
},
|
8
|
-
"source": []
|
9
|
-
},
|
10
|
-
{
|
11
|
-
"cell_type": "code",
|
12
|
-
"execution_count": 2,
|
13
|
-
"metadata": {
|
14
|
-
"colab": {
|
15
|
-
"base_uri": "https://localhost:8080/"
|
16
|
-
},
|
17
|
-
"id": "G-jPBBIk1fPh",
|
18
|
-
"outputId": "1504bba6-85fd-4a1a-c051-293ce006813a"
|
19
|
-
},
|
20
|
-
"outputs": [
|
21
|
-
{
|
22
|
-
"name": "stderr",
|
23
|
-
"output_type": "stream",
|
24
|
-
"text": [
|
25
|
-
"[nltk_data] Downloading package punkt to /root/nltk_data...\n",
|
26
|
-
"[nltk_data] Unzipping tokenizers/punkt.zip.\n"
|
27
|
-
]
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"name": "stdout",
|
31
|
-
"output_type": "stream",
|
32
|
-
"text": [
|
33
|
-
"Words most similar to 'programming':\n",
|
34
|
-
"the: 0.1783\n",
|
35
|
-
"i: 0.1607\n",
|
36
|
-
"tool: 0.1056\n",
|
37
|
-
"great: 0.0922\n",
|
38
|
-
"python: 0.0270\n"
|
39
|
-
]
|
40
|
-
}
|
41
|
-
],
|
42
|
-
"source": [
|
43
|
-
"#Implement word2vec model to explore the semantic similarity between the words.\n",
|
44
|
-
"import gensim\n",
|
45
|
-
"from gensim.models import Word2Vec\n",
|
46
|
-
"import nltk\n",
|
47
|
-
"nltk.download('punkt')\n",
|
48
|
-
"from nltk.tokenize import word_tokenize\n",
|
49
|
-
"sentences = ['I love programming', 'Python is great', 'I enjoy machine learning',\n",
|
50
|
-
" 'TensorFlow is a powerful tool', 'AI is the future']\n",
|
51
|
-
"\n",
|
52
|
-
"tokenized_sentences = [word_tokenize(sentence.lower()) for sentence in sentences]\n",
|
53
|
-
"\n",
|
54
|
-
"\n",
|
55
|
-
"model_w2v = Word2Vec(sentences=tokenized_sentences, vector_size=100, window=5, min_count=1, workers=4)\n",
|
56
|
-
"\n",
|
57
|
-
"# word vectors (semantic similarity)\n",
|
58
|
-
"word = 'programming'\n",
|
59
|
-
"similar_words = model_w2v.wv.most_similar(word, topn=5)\n",
|
60
|
-
"print(f\"Words most similar to '{word}':\")\n",
|
61
|
-
"for sim_word, sim_score in similar_words:\n",
|
62
|
-
" print(f\"{sim_word}: {sim_score:.4f}\")\n",
|
63
|
-
"model_w2v.save(\"word2vec_model.bin\")\n",
|
64
|
-
"# loaded_model = Word2Vec.load(\"word2vec_model.bin\")\n"
|
65
|
-
]
|
66
|
-
},
|
67
|
-
{
|
68
|
-
"cell_type": "code",
|
69
|
-
"execution_count": null,
|
70
|
-
"metadata": {
|
71
|
-
"id": "ZjkrZu5411-K"
|
72
|
-
},
|
73
|
-
"outputs": [],
|
74
|
-
"source": []
|
75
|
-
}
|
76
|
-
],
|
77
|
-
"metadata": {
|
78
|
-
"accelerator": "GPU",
|
79
|
-
"colab": {
|
80
|
-
"gpuType": "T4",
|
81
|
-
"provenance": []
|
82
|
-
},
|
83
|
-
"kernelspec": {
|
84
|
-
"display_name": "Python 3",
|
85
|
-
"name": "python3"
|
86
|
-
},
|
87
|
-
"language_info": {
|
88
|
-
"name": "python"
|
89
|
-
}
|
90
|
-
},
|
91
|
-
"nbformat": 4,
|
92
|
-
"nbformat_minor": 0
|
93
|
-
}
|
@@ -1,370 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"id": "e764270d",
|
6
|
-
"metadata": {},
|
7
|
-
"source": [
|
8
|
-
"Credits - **Geeks for Geeks**"
|
9
|
-
]
|
10
|
-
},
|
11
|
-
{
|
12
|
-
"cell_type": "code",
|
13
|
-
"execution_count": 1,
|
14
|
-
"id": "247f32b9",
|
15
|
-
"metadata": {},
|
16
|
-
"outputs": [
|
17
|
-
{
|
18
|
-
"name": "stdout",
|
19
|
-
"output_type": "stream",
|
20
|
-
"text": [
|
21
|
-
"hello\n"
|
22
|
-
]
|
23
|
-
}
|
24
|
-
],
|
25
|
-
"source": [
|
26
|
-
"print('hello')"
|
27
|
-
]
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"cell_type": "code",
|
31
|
-
"execution_count": 4,
|
32
|
-
"id": "33e4bd2e",
|
33
|
-
"metadata": {},
|
34
|
-
"outputs": [
|
35
|
-
{
|
36
|
-
"data": {
|
37
|
-
"text/plain": [
|
38
|
-
"'run'"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
"execution_count": 4,
|
42
|
-
"metadata": {},
|
43
|
-
"output_type": "execute_result"
|
44
|
-
}
|
45
|
-
],
|
46
|
-
"source": [
|
47
|
-
"import nltk\n",
|
48
|
-
"from nltk.stem import PorterStemmer\n",
|
49
|
-
"word_stemmer = PorterStemmer()\n",
|
50
|
-
"word_stemmer.stem('running')"
|
51
|
-
]
|
52
|
-
},
|
53
|
-
{
|
54
|
-
"cell_type": "code",
|
55
|
-
"execution_count": 5,
|
56
|
-
"id": "680512a3",
|
57
|
-
"metadata": {},
|
58
|
-
"outputs": [
|
59
|
-
{
|
60
|
-
"data": {
|
61
|
-
"text/plain": [
|
62
|
-
"['Any',\n",
|
63
|
-
" 'sentence',\n",
|
64
|
-
" 'in',\n",
|
65
|
-
" 'the',\n",
|
66
|
-
" 'world',\n",
|
67
|
-
" 'ca',\n",
|
68
|
-
" \"n't\",\n",
|
69
|
-
" 'end',\n",
|
70
|
-
" 'with',\n",
|
71
|
-
" 'because',\n",
|
72
|
-
" 'because',\n",
|
73
|
-
" 'because',\n",
|
74
|
-
" 'is',\n",
|
75
|
-
" 'an',\n",
|
76
|
-
" 'conjunction',\n",
|
77
|
-
" '.']"
|
78
|
-
]
|
79
|
-
},
|
80
|
-
"execution_count": 5,
|
81
|
-
"metadata": {},
|
82
|
-
"output_type": "execute_result"
|
83
|
-
}
|
84
|
-
],
|
85
|
-
"source": [
|
86
|
-
"import nltk\n",
|
87
|
-
"from nltk.tokenize import word_tokenize\n",
|
88
|
-
"word_tokenize(\"Any sentence in the world can't end with because because because is an conjunction.\")"
|
89
|
-
]
|
90
|
-
},
|
91
|
-
{
|
92
|
-
"cell_type": "code",
|
93
|
-
"execution_count": 6,
|
94
|
-
"id": "6cf8dab3",
|
95
|
-
"metadata": {},
|
96
|
-
"outputs": [
|
97
|
-
{
|
98
|
-
"data": {
|
99
|
-
"text/plain": [
|
100
|
-
"['Any',\n",
|
101
|
-
" 'sentence',\n",
|
102
|
-
" 'in',\n",
|
103
|
-
" 'the',\n",
|
104
|
-
" 'world',\n",
|
105
|
-
" 'ca',\n",
|
106
|
-
" \"n't\",\n",
|
107
|
-
" 'end',\n",
|
108
|
-
" 'with',\n",
|
109
|
-
" 'because',\n",
|
110
|
-
" 'because',\n",
|
111
|
-
" 'because',\n",
|
112
|
-
" 'is',\n",
|
113
|
-
" 'an',\n",
|
114
|
-
" 'conjunction',\n",
|
115
|
-
" '.']"
|
116
|
-
]
|
117
|
-
},
|
118
|
-
"execution_count": 6,
|
119
|
-
"metadata": {},
|
120
|
-
"output_type": "execute_result"
|
121
|
-
}
|
122
|
-
],
|
123
|
-
"source": [
|
124
|
-
"import nltk\n",
|
125
|
-
"from nltk.tokenize import TreebankWordTokenizer\n",
|
126
|
-
"Tokenizer_wrd = TreebankWordTokenizer()\n",
|
127
|
-
"Tokenizer_wrd.tokenize(\n",
|
128
|
-
" \"Any sentence in the world can't end with because because because is an conjunction.\"\n",
|
129
|
-
")"
|
130
|
-
]
|
131
|
-
},
|
132
|
-
{
|
133
|
-
"cell_type": "code",
|
134
|
-
"execution_count": 7,
|
135
|
-
"id": "b82ec031",
|
136
|
-
"metadata": {},
|
137
|
-
"outputs": [
|
138
|
-
{
|
139
|
-
"data": {
|
140
|
-
"text/plain": [
|
141
|
-
"['won', '’', 't']"
|
142
|
-
]
|
143
|
-
},
|
144
|
-
"execution_count": 7,
|
145
|
-
"metadata": {},
|
146
|
-
"output_type": "execute_result"
|
147
|
-
}
|
148
|
-
],
|
149
|
-
"source": [
|
150
|
-
"import nltk\n",
|
151
|
-
"from nltk.tokenize import word_tokenize\n",
|
152
|
-
"word_tokenize('won’t')"
|
153
|
-
]
|
154
|
-
},
|
155
|
-
{
|
156
|
-
"cell_type": "code",
|
157
|
-
"execution_count": 8,
|
158
|
-
"id": "3f19ab5e",
|
159
|
-
"metadata": {},
|
160
|
-
"outputs": [
|
161
|
-
{
|
162
|
-
"data": {
|
163
|
-
"text/plain": [
|
164
|
-
"['I', 'can', \"'\", 't', 'allow', 'you', 'to', 'go', 'home', 'early']"
|
165
|
-
]
|
166
|
-
},
|
167
|
-
"execution_count": 8,
|
168
|
-
"metadata": {},
|
169
|
-
"output_type": "execute_result"
|
170
|
-
}
|
171
|
-
],
|
172
|
-
"source": [
|
173
|
-
"from nltk.tokenize import WordPunctTokenizer\n",
|
174
|
-
"tokenizer = WordPunctTokenizer()\n",
|
175
|
-
"tokenizer.tokenize(\" I can't allow you to go home early\")"
|
176
|
-
]
|
177
|
-
},
|
178
|
-
{
|
179
|
-
"cell_type": "code",
|
180
|
-
"execution_count": 11,
|
181
|
-
"id": "d24a533b",
|
182
|
-
"metadata": {},
|
183
|
-
"outputs": [
|
184
|
-
{
|
185
|
-
"data": {
|
186
|
-
"text/plain": [
|
187
|
-
"['Let us understand the difference between sentence & word tokenizer.',\n",
|
188
|
-
" 'It is going to be a simple example.']"
|
189
|
-
]
|
190
|
-
},
|
191
|
-
"execution_count": 11,
|
192
|
-
"metadata": {},
|
193
|
-
"output_type": "execute_result"
|
194
|
-
}
|
195
|
-
],
|
196
|
-
"source": [
|
197
|
-
"import nltk\n",
|
198
|
-
"from nltk.tokenize import sent_tokenize\n",
|
199
|
-
"text = '''Let us understand the difference between sentence & word tokenizer. \n",
|
200
|
-
"It is going to be a simple example.'''\n",
|
201
|
-
"sent_tokenize(text)"
|
202
|
-
]
|
203
|
-
},
|
204
|
-
{
|
205
|
-
"cell_type": "code",
|
206
|
-
"execution_count": 16,
|
207
|
-
"id": "ac9fa608",
|
208
|
-
"metadata": {},
|
209
|
-
"outputs": [
|
210
|
-
{
|
211
|
-
"data": {
|
212
|
-
"text/plain": [
|
213
|
-
"[\"won't is a contraction.\"]"
|
214
|
-
]
|
215
|
-
},
|
216
|
-
"execution_count": 16,
|
217
|
-
"metadata": {},
|
218
|
-
"output_type": "execute_result"
|
219
|
-
}
|
220
|
-
],
|
221
|
-
"source": [
|
222
|
-
"import nltk\n",
|
223
|
-
"from nltk.tokenize import RegexpTokenizer\n",
|
224
|
-
"tokenizer = RegexpTokenizer('/s+' , gaps = True)\n",
|
225
|
-
"tokenizer.tokenize(\"won't is a contraction.\")"
|
226
|
-
]
|
227
|
-
},
|
228
|
-
{
|
229
|
-
"cell_type": "code",
|
230
|
-
"execution_count": 22,
|
231
|
-
"id": "e82b05b3",
|
232
|
-
"metadata": {},
|
233
|
-
"outputs": [
|
234
|
-
{
|
235
|
-
"name": "stdout",
|
236
|
-
"output_type": "stream",
|
237
|
-
"text": [
|
238
|
-
"Guy: How old are you?\n"
|
239
|
-
]
|
240
|
-
}
|
241
|
-
],
|
242
|
-
"source": [
|
243
|
-
"from nltk.tokenize import PunktSentenceTokenizer\n",
|
244
|
-
"from nltk.corpus import webtext\n",
|
245
|
-
"text = webtext.raw('C://Users/admin/Downloads/Lab1/training_tokenizer.txt')\n",
|
246
|
-
"sent_tokenizer = PunktSentenceTokenizer(text)\n",
|
247
|
-
"sents_1 = sent_tokenizer.tokenize(text)\n",
|
248
|
-
"print(sents_1[0])"
|
249
|
-
]
|
250
|
-
},
|
251
|
-
{
|
252
|
-
"cell_type": "code",
|
253
|
-
"execution_count": 23,
|
254
|
-
"id": "cebb3ff8",
|
255
|
-
"metadata": {},
|
256
|
-
"outputs": [
|
257
|
-
{
|
258
|
-
"name": "stdout",
|
259
|
-
"output_type": "stream",
|
260
|
-
"text": [
|
261
|
-
"Guy: How old are you?\n"
|
262
|
-
]
|
263
|
-
}
|
264
|
-
],
|
265
|
-
"source": [
|
266
|
-
"from nltk.tokenize import PunktSentenceTokenizer\n",
|
267
|
-
"from nltk.corpus import webtext\n",
|
268
|
-
"text = webtext.raw('C://Users/admin/Downloads/Lab1/training_tokenizer.txt')\n",
|
269
|
-
"sent_tokenizer = PunktSentenceTokenizer(text)\n",
|
270
|
-
"sents_1 = sent_tokenizer.tokenize(text)\n",
|
271
|
-
"print(sents_1[0])"
|
272
|
-
]
|
273
|
-
},
|
274
|
-
{
|
275
|
-
"cell_type": "code",
|
276
|
-
"execution_count": 25,
|
277
|
-
"id": "58aebec1",
|
278
|
-
"metadata": {},
|
279
|
-
"outputs": [
|
280
|
-
{
|
281
|
-
"data": {
|
282
|
-
"text/plain": [
|
283
|
-
"['I', 'writer']"
|
284
|
-
]
|
285
|
-
},
|
286
|
-
"execution_count": 25,
|
287
|
-
"metadata": {},
|
288
|
-
"output_type": "execute_result"
|
289
|
-
}
|
290
|
-
],
|
291
|
-
"source": [
|
292
|
-
"from nltk.corpus import stopwords\n",
|
293
|
-
"english_stops = set(stopwords.words('english'))\n",
|
294
|
-
"words = ['I', 'am', 'a', 'writer']\n",
|
295
|
-
"[word for word in words if word not in english_stops]"
|
296
|
-
]
|
297
|
-
},
|
298
|
-
{
|
299
|
-
"cell_type": "code",
|
300
|
-
"execution_count": 26,
|
301
|
-
"id": "6ce95d73",
|
302
|
-
"metadata": {},
|
303
|
-
"outputs": [
|
304
|
-
{
|
305
|
-
"data": {
|
306
|
-
"text/plain": [
|
307
|
-
"['arabic',\n",
|
308
|
-
" 'azerbaijani',\n",
|
309
|
-
" 'basque',\n",
|
310
|
-
" 'bengali',\n",
|
311
|
-
" 'catalan',\n",
|
312
|
-
" 'chinese',\n",
|
313
|
-
" 'danish',\n",
|
314
|
-
" 'dutch',\n",
|
315
|
-
" 'english',\n",
|
316
|
-
" 'finnish',\n",
|
317
|
-
" 'french',\n",
|
318
|
-
" 'german',\n",
|
319
|
-
" 'greek',\n",
|
320
|
-
" 'hebrew',\n",
|
321
|
-
" 'hinglish',\n",
|
322
|
-
" 'hungarian',\n",
|
323
|
-
" 'indonesian',\n",
|
324
|
-
" 'italian',\n",
|
325
|
-
" 'kazakh',\n",
|
326
|
-
" 'nepali',\n",
|
327
|
-
" 'norwegian',\n",
|
328
|
-
" 'portuguese',\n",
|
329
|
-
" 'romanian',\n",
|
330
|
-
" 'russian',\n",
|
331
|
-
" 'slovene',\n",
|
332
|
-
" 'spanish',\n",
|
333
|
-
" 'swedish',\n",
|
334
|
-
" 'tajik',\n",
|
335
|
-
" 'turkish']"
|
336
|
-
]
|
337
|
-
},
|
338
|
-
"execution_count": 26,
|
339
|
-
"metadata": {},
|
340
|
-
"output_type": "execute_result"
|
341
|
-
}
|
342
|
-
],
|
343
|
-
"source": [
|
344
|
-
"from nltk.corpus import stopwords\n",
|
345
|
-
"stopwords.fileids()"
|
346
|
-
]
|
347
|
-
}
|
348
|
-
],
|
349
|
-
"metadata": {
|
350
|
-
"kernelspec": {
|
351
|
-
"display_name": "Python 3",
|
352
|
-
"language": "python",
|
353
|
-
"name": "python3"
|
354
|
-
},
|
355
|
-
"language_info": {
|
356
|
-
"codemirror_mode": {
|
357
|
-
"name": "ipython",
|
358
|
-
"version": 3
|
359
|
-
},
|
360
|
-
"file_extension": ".py",
|
361
|
-
"mimetype": "text/x-python",
|
362
|
-
"name": "python",
|
363
|
-
"nbconvert_exporter": "python",
|
364
|
-
"pygments_lexer": "ipython3",
|
365
|
-
"version": "3.8.8"
|
366
|
-
}
|
367
|
-
},
|
368
|
-
"nbformat": 4,
|
369
|
-
"nbformat_minor": 5
|
370
|
-
}
|
@@ -1,6 +0,0 @@
|
|
1
|
-
Guy: How old are you?
|
2
|
-
Hipster girl: You know, I never answer that question. Because to me, it's about
|
3
|
-
how mature you are, you know? I mean, a fourteen year old could be more mature
|
4
|
-
than a twenty-five year old, right? I'm sorry, I just never answer that question.
|
5
|
-
Guy: But, uh, you're older than eighteen, right?
|
6
|
-
Hipster girl: Oh, yeah.
|