nexaai 1.0.19rc5__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
- nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
- nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
- nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
- nexaai/mlx_backend/vlm/interface.py +21 -4
- nexaai/mlx_backend/vlm/main.py +6 -2
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +221 -21
- {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
@@ -0,0 +1,276 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
import json
|
|
3
|
+
import sys
|
|
4
|
+
import os
|
|
5
|
+
import mlx.core as mx
|
|
6
|
+
import mlx.nn as nn
|
|
7
|
+
import time
|
|
8
|
+
from PIL import Image
|
|
9
|
+
import requests
|
|
10
|
+
import numpy as np
|
|
11
|
+
from pathlib import Path
|
|
12
|
+
from huggingface_hub import snapshot_download
|
|
13
|
+
|
|
14
|
+
# Add current directory to path for imports
|
|
15
|
+
curr_dir = os.path.dirname(os.path.abspath(__file__))
|
|
16
|
+
sys.path.append(curr_dir)
|
|
17
|
+
sys.path.append(os.path.dirname(curr_dir))
|
|
18
|
+
|
|
19
|
+
# Add the qwen3vl model directory to path
|
|
20
|
+
qwen3vl_dir = os.path.join(curr_dir, "modeling", "models", "qwen3vl_moe")
|
|
21
|
+
sys.path.append(qwen3vl_dir)
|
|
22
|
+
|
|
23
|
+
# Import required modules for quantized loading
|
|
24
|
+
from transformers import AutoTokenizer
|
|
25
|
+
|
|
26
|
+
# Try relative imports first, fallback to sys.path approach for Nuitka compatibility
|
|
27
|
+
try:
|
|
28
|
+
from .modeling.models.qwen3_vl_moe.llm_common.generate import nexa_generate_step
|
|
29
|
+
from .modeling.models.qwen3_vl_moe.llm_common.cache import make_prompt_cache
|
|
30
|
+
from .modeling.models.qwen3_vl_moe.qwen3vl_moe import (
|
|
31
|
+
VEGModel, LLMModel, ModelArgs, VisionConfig, TextConfig, handle_multimodal_embeds
|
|
32
|
+
)
|
|
33
|
+
from .modeling.models.qwen3_vl_moe.processor import Qwen3VLProcessor
|
|
34
|
+
except ImportError:
|
|
35
|
+
# Fallback for Nuitka compiled environment - use sys.path approach
|
|
36
|
+
from llm_common.generate import nexa_generate_step
|
|
37
|
+
from llm_common.cache import make_prompt_cache
|
|
38
|
+
from qwen3vl_moe import VEGModel, LLMModel, ModelArgs, VisionConfig, TextConfig, handle_multimodal_embeds
|
|
39
|
+
from processor import Qwen3VLProcessor
|
|
40
|
+
|
|
41
|
+
from ml import ChatMessage
|
|
42
|
+
from dataclasses import dataclass
|
|
43
|
+
from typing import Any, Generator, List, Optional, Sequence, Tuple, Union
|
|
44
|
+
from .generate import GenerationResult
|
|
45
|
+
|
|
46
|
+
@dataclass
|
|
47
|
+
class Qwen3VLBundledModel:
|
|
48
|
+
"""Container for Qwen3-VL MoE vision and language models."""
|
|
49
|
+
vision_model: VEGModel
|
|
50
|
+
llm_model: LLMModel
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _ensure_list(x: Union[str, List[str], None]) -> Optional[List[str]]:
|
|
54
|
+
if x is None:
|
|
55
|
+
return None
|
|
56
|
+
return x if isinstance(x, list) else [x]
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def load_qwen3_vl(
|
|
60
|
+
path_or_repo: str,
|
|
61
|
+
adapter_path: Optional[str] = None,
|
|
62
|
+
lazy: bool = False,
|
|
63
|
+
revision: Optional[str] = None,
|
|
64
|
+
**kwargs,
|
|
65
|
+
) -> Tuple[Qwen3VLBundledModel, Qwen3VLProcessor]:
|
|
66
|
+
"""Load Qwen3-VL MoE quantized models and processor.
|
|
67
|
+
|
|
68
|
+
Parameters are aligned with .generate.load for compatibility.
|
|
69
|
+
"""
|
|
70
|
+
model_path = Path(path_or_repo)
|
|
71
|
+
if not model_path.exists():
|
|
72
|
+
if "/" in path_or_repo:
|
|
73
|
+
model_path = Path(snapshot_download(
|
|
74
|
+
repo_id=path_or_repo, repo_type="model", revision=revision))
|
|
75
|
+
else:
|
|
76
|
+
# Fallback to local modelfiles directory
|
|
77
|
+
model_path = Path(qwen3vl_dir) / "modelfiles"
|
|
78
|
+
if not model_path.exists():
|
|
79
|
+
model_path = Path(curr_dir) / "modelfiles"
|
|
80
|
+
|
|
81
|
+
# Model configs - Updated to match Qwen3VL-MoE specifications
|
|
82
|
+
vision_config = VisionConfig(
|
|
83
|
+
hidden_size=1152,
|
|
84
|
+
intermediate_size=4304,
|
|
85
|
+
num_heads=16,
|
|
86
|
+
num_hidden_layers=27,
|
|
87
|
+
patch_size=16,
|
|
88
|
+
temporal_patch_size=2,
|
|
89
|
+
in_channels=3,
|
|
90
|
+
hidden_act="gelu_pytorch_tanh",
|
|
91
|
+
spatial_merge_size=2,
|
|
92
|
+
out_hidden_size=2048,
|
|
93
|
+
num_position_embeddings=2304,
|
|
94
|
+
deepstack_visual_indexes=[8, 16, 24],
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
text_config = TextConfig(
|
|
98
|
+
model_type="qwen3_vl_moe_text",
|
|
99
|
+
hidden_size=2048,
|
|
100
|
+
num_hidden_layers=48,
|
|
101
|
+
intermediate_size=6144,
|
|
102
|
+
num_attention_heads=32,
|
|
103
|
+
num_key_value_heads=4,
|
|
104
|
+
rms_norm_eps=1e-6,
|
|
105
|
+
vocab_size=152064,
|
|
106
|
+
max_position_embeddings=128000,
|
|
107
|
+
rope_theta=1000000.0,
|
|
108
|
+
head_dim=128,
|
|
109
|
+
tie_word_embeddings=False,
|
|
110
|
+
attention_bias=False,
|
|
111
|
+
attention_dropout=0.0,
|
|
112
|
+
rope_scaling={
|
|
113
|
+
"mrope_interleaved": True,
|
|
114
|
+
"mrope_section": [24, 20, 20],
|
|
115
|
+
"rope_type": "default"
|
|
116
|
+
},
|
|
117
|
+
# MoE specific parameters
|
|
118
|
+
num_experts=128,
|
|
119
|
+
num_experts_per_tok=8,
|
|
120
|
+
moe_intermediate_size=768,
|
|
121
|
+
shared_expert_intermediate_size=0,
|
|
122
|
+
norm_topk_prob=True,
|
|
123
|
+
decoder_sparse_step=1,
|
|
124
|
+
max_window_layers=48,
|
|
125
|
+
sliding_window=32768,
|
|
126
|
+
mlp_only_layers=[],
|
|
127
|
+
use_qk_norm=True,
|
|
128
|
+
layer_types=[],
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
vision_model = VEGModel(vision_config)
|
|
132
|
+
llm_model = LLMModel(text_config)
|
|
133
|
+
|
|
134
|
+
# Try to load LLM model from available files in order of preference
|
|
135
|
+
preferred_order = [
|
|
136
|
+
("qwen3vl-moe-llm-30B-A3B-q4_0.safetensors", 4),
|
|
137
|
+
("qwen3vl-moe-llm-30B-A3B-q8_0.safetensors", 8),
|
|
138
|
+
("qwen3vl-moe-llm-30B-A3B-f32.safetensors", 32),
|
|
139
|
+
]
|
|
140
|
+
|
|
141
|
+
llm_weights_path = None
|
|
142
|
+
quantization_bits = None
|
|
143
|
+
|
|
144
|
+
# Try loading in order of preference
|
|
145
|
+
for filename, bits in preferred_order:
|
|
146
|
+
candidate_path = model_path / filename
|
|
147
|
+
if candidate_path.exists():
|
|
148
|
+
llm_weights_path = candidate_path
|
|
149
|
+
quantization_bits = bits
|
|
150
|
+
break
|
|
151
|
+
|
|
152
|
+
if llm_weights_path is None:
|
|
153
|
+
# Fallback to original hardcoded path for backward compatibility
|
|
154
|
+
llm_weights_path = model_path / "qwen3vl-moe-llm-30B-A3B-q4_0.safetensors"
|
|
155
|
+
quantization_bits = 4
|
|
156
|
+
|
|
157
|
+
vision_weights_path = model_path / "qwen3vl-moe-vision-30B-A3B-f16.safetensors"
|
|
158
|
+
|
|
159
|
+
if not vision_weights_path.exists():
|
|
160
|
+
raise FileNotFoundError(
|
|
161
|
+
f"Missing vision weights: {vision_weights_path}"
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
# Load weights (vision fp16, llm with detected quantization)
|
|
165
|
+
vision_model.set_dtype(mx.float16)
|
|
166
|
+
vision_model.load_weights(str(vision_weights_path), strict=True)
|
|
167
|
+
|
|
168
|
+
# Apply quantization if needed and load LLM weights
|
|
169
|
+
if quantization_bits in [4, 8]:
|
|
170
|
+
nn.quantize(llm_model, bits=quantization_bits, group_size=64,
|
|
171
|
+
class_predicate=quant_predicate)
|
|
172
|
+
# For f32 (32-bit), no quantization needed
|
|
173
|
+
|
|
174
|
+
llm_model.load_weights(str(llm_weights_path), strict=True)
|
|
175
|
+
|
|
176
|
+
# Tokenizer and processor
|
|
177
|
+
tokenizer = AutoTokenizer.from_pretrained(path_or_repo)
|
|
178
|
+
processor = Qwen3VLProcessor(tokenizer=tokenizer)
|
|
179
|
+
|
|
180
|
+
return Qwen3VLBundledModel(vision_model=vision_model, llm_model=llm_model), processor
|
|
181
|
+
|
|
182
|
+
def apply_chat_template_qwen3_vl(messages: Sequence[ChatMessage], num_images: int = 0, num_audios: int = 0, tools: Optional[str] = None, enable_thinking: bool = False) -> str:
|
|
183
|
+
"""Apply chat template: serialize messages with content as a list of typed items."""
|
|
184
|
+
messages_dict = []
|
|
185
|
+
for msg in messages:
|
|
186
|
+
content_items = [{"type": "text", "text": msg.content}]
|
|
187
|
+
messages_dict.append({"role": msg.role, "content": content_items})
|
|
188
|
+
return json.dumps(messages_dict)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def stream_generate_qwen3_vl(
|
|
192
|
+
model: Qwen3VLBundledModel,
|
|
193
|
+
processor: Qwen3VLProcessor,
|
|
194
|
+
prompt: str,
|
|
195
|
+
image: Union[str, List[str]] = None,
|
|
196
|
+
audio: Union[str, List[str]] = None,
|
|
197
|
+
max_tokens: int = 512,
|
|
198
|
+
**kwargs,
|
|
199
|
+
|
|
200
|
+
) -> Generator[Any, None, None]:
|
|
201
|
+
"""Stream generation yielding .generate.GenerationResult-compatible chunks."""
|
|
202
|
+
messages = json.loads(prompt)
|
|
203
|
+
if image is not None:
|
|
204
|
+
image_list = image if isinstance(image, list) else [image]
|
|
205
|
+
pil_images = []
|
|
206
|
+
for p in image_list:
|
|
207
|
+
try:
|
|
208
|
+
pil_images.append(Image.open(p))
|
|
209
|
+
except Exception:
|
|
210
|
+
continue
|
|
211
|
+
contents = [{"type": "image", "image": img} for img in pil_images]
|
|
212
|
+
if messages:
|
|
213
|
+
if "content" not in messages[-1] or not isinstance(messages[-1]["content"], list):
|
|
214
|
+
messages[-1]["content"] = []
|
|
215
|
+
messages[-1]["content"].extend(contents)
|
|
216
|
+
|
|
217
|
+
raw_text, processed_images = processor.messages_to_text(
|
|
218
|
+
messages, add_generation_prompt=True)
|
|
219
|
+
|
|
220
|
+
inputs = processor.text_to_input_ids(
|
|
221
|
+
raw_text, images=processed_images, return_tensors="mlx")
|
|
222
|
+
|
|
223
|
+
input_ids = inputs["input_ids"]
|
|
224
|
+
pixel_values = inputs.get("pixel_values")
|
|
225
|
+
image_grid_thw = inputs.get("image_grid_thw")
|
|
226
|
+
|
|
227
|
+
inputs_embeds, deepstack_visual_embeds, visual_pos_masks, cos, sin, rope_deltas = handle_multimodal_embeds(
|
|
228
|
+
model.vision_model, model.llm_model, input_ids, pixel_values, image_grid_thw
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
prompt_cache = make_prompt_cache(model.llm_model, max_kv_size=4096)
|
|
232
|
+
tokenizer = processor.tokenizer
|
|
233
|
+
|
|
234
|
+
# Rough prompt TPS estimation based on input size
|
|
235
|
+
prompt_start = time.perf_counter()
|
|
236
|
+
prompt_tps = input_ids.size / max(1e-6, (time.perf_counter() - prompt_start))
|
|
237
|
+
|
|
238
|
+
gen_count = 0
|
|
239
|
+
tic = time.perf_counter()
|
|
240
|
+
|
|
241
|
+
for token, logprobs in nexa_generate_step(
|
|
242
|
+
model=model.llm_model,
|
|
243
|
+
prompt=None,
|
|
244
|
+
input_embeddings=inputs_embeds,
|
|
245
|
+
max_tokens=max_tokens,
|
|
246
|
+
max_kv_size=4096,
|
|
247
|
+
prompt_cache=prompt_cache,
|
|
248
|
+
visual_pos_masks=visual_pos_masks,
|
|
249
|
+
deepstack_visual_embeds=deepstack_visual_embeds,
|
|
250
|
+
cos=cos,
|
|
251
|
+
sin=sin,
|
|
252
|
+
rope_deltas=rope_deltas,
|
|
253
|
+
):
|
|
254
|
+
if token == tokenizer.eos_token_id:
|
|
255
|
+
break
|
|
256
|
+
|
|
257
|
+
text_piece = tokenizer.decode([token])
|
|
258
|
+
gen_count += 1
|
|
259
|
+
|
|
260
|
+
yield GenerationResult(
|
|
261
|
+
text=text_piece,
|
|
262
|
+
token=token,
|
|
263
|
+
logprobs=logprobs,
|
|
264
|
+
prompt_tokens=int(input_ids.size),
|
|
265
|
+
generation_tokens=gen_count,
|
|
266
|
+
prompt_tps=float(prompt_tps),
|
|
267
|
+
generation_tps=float(
|
|
268
|
+
gen_count / max(1e-6, (time.perf_counter() - tic))),
|
|
269
|
+
peak_memory=float(mx.get_peak_memory() / 1e9),
|
|
270
|
+
)
|
|
271
|
+
|
|
272
|
+
def quant_predicate(path: str, mod: nn.Module) -> bool:
|
|
273
|
+
"""Quantization predicate to exclude certain layers from quantization."""
|
|
274
|
+
if path.endswith("lm_head") or "norm" in path.lower() or "embed" in path.lower():
|
|
275
|
+
return False
|
|
276
|
+
return isinstance(mod, (nn.Linear, nn.Embedding))
|
|
@@ -27,6 +27,10 @@ from profiling import ProfilingMixin, ProfilingData, StopReason
|
|
|
27
27
|
from .generate import generate, stream_generate, load
|
|
28
28
|
from .generate_qwen3_vl import apply_chat_template_qwen3_vl, stream_generate_qwen3_vl, load_qwen3_vl, ContextLengthExceededError
|
|
29
29
|
|
|
30
|
+
from .generate_qwen3_vl_moe import apply_chat_template_qwen3_vl as apply_chat_template_qwen3_vl_moe
|
|
31
|
+
from .generate_qwen3_vl_moe import stream_generate_qwen3_vl as stream_generate_qwen3_vl_moe
|
|
32
|
+
from .generate_qwen3_vl_moe import load_qwen3_vl as load_qwen3_vl_moe
|
|
33
|
+
|
|
30
34
|
from .modeling.prompt_utils import apply_chat_template
|
|
31
35
|
|
|
32
36
|
# --------------------------------------------------------------------------------------
|
|
@@ -75,7 +79,13 @@ class VLM(ProfilingMixin):
|
|
|
75
79
|
self.context_length = context_length
|
|
76
80
|
self.device = device
|
|
77
81
|
|
|
78
|
-
|
|
82
|
+
if model_name == "qwen3vl-moe":
|
|
83
|
+
load_impl = load_qwen3_vl_moe
|
|
84
|
+
elif model_name == "qwen3vl":
|
|
85
|
+
load_impl = load_qwen3_vl
|
|
86
|
+
else:
|
|
87
|
+
load_impl = load
|
|
88
|
+
|
|
79
89
|
self.model, self.processor = load_impl(str(model_path))
|
|
80
90
|
|
|
81
91
|
# Init deafutl sampler config with defualt.
|
|
@@ -284,7 +294,13 @@ class VLM(ProfilingMixin):
|
|
|
284
294
|
text = ""
|
|
285
295
|
last_result = None
|
|
286
296
|
first_token = True
|
|
287
|
-
|
|
297
|
+
|
|
298
|
+
if self.model_name == "qwen3vl-moe":
|
|
299
|
+
stream_generate_impl = stream_generate_qwen3_vl_moe
|
|
300
|
+
elif self.model_name == "qwen3vl":
|
|
301
|
+
stream_generate_impl = stream_generate_qwen3_vl
|
|
302
|
+
else:
|
|
303
|
+
stream_generate_impl = stream_generate
|
|
288
304
|
|
|
289
305
|
try:
|
|
290
306
|
token_count = 0
|
|
@@ -430,8 +446,9 @@ class VLM(ProfilingMixin):
|
|
|
430
446
|
"""Apply chat template to messages with proper image/audio token insertion and optional tools support."""
|
|
431
447
|
if self.model_name == "qwen3vl":
|
|
432
448
|
return apply_chat_template_qwen3_vl(messages, num_images=num_images, num_audios=num_audios, tools=tools, enable_thinking=enable_thinking)
|
|
433
|
-
|
|
434
|
-
|
|
449
|
+
if self.model_name == "qwen3vl-moe":
|
|
450
|
+
return apply_chat_template_qwen3_vl_moe(messages, num_images=num_images, num_audios=num_audios, tools=tools, enable_thinking=enable_thinking)
|
|
451
|
+
# Convert ChatMessage objects to dictionaries for the processor
|
|
435
452
|
messages_dict = [{"role": msg.role, "content": msg.content} for msg in messages]
|
|
436
453
|
|
|
437
454
|
parsed_tools = None
|
nexaai/mlx_backend/vlm/main.py
CHANGED
|
@@ -55,7 +55,7 @@ def parse_arguments():
|
|
|
55
55
|
"--model_name",
|
|
56
56
|
type=str,
|
|
57
57
|
default="",
|
|
58
|
-
help="Specific model name/type (e.g., 'qwen3vl', 'gemma3'). If empty, auto-detect from model_path."
|
|
58
|
+
help="Specific model name/type (e.g., 'qwen3vl', 'qwen3vl-moe', 'gemma3'). If empty, auto-detect from model_path."
|
|
59
59
|
)
|
|
60
60
|
parser.add_argument(
|
|
61
61
|
"--context_length",
|
|
@@ -89,8 +89,12 @@ def main():
|
|
|
89
89
|
|
|
90
90
|
# Auto-detect model name if not provided
|
|
91
91
|
model_name = args.model_name
|
|
92
|
+
|
|
93
|
+
# TODO: avoid such hardcoded model name detection
|
|
92
94
|
if not model_name:
|
|
93
|
-
if "
|
|
95
|
+
if "qwen3vl-30B" in args.model_path.lower():
|
|
96
|
+
model_name = "qwen3vl-moe"
|
|
97
|
+
elif "qwen3" in args.model_path.lower():
|
|
94
98
|
model_name = "qwen3vl"
|
|
95
99
|
elif "gemma" in args.model_path.lower():
|
|
96
100
|
model_name = "gemma3"
|
|
File without changes
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Any, Optional
|
|
4
|
+
|
|
5
|
+
import mlx.core as mx
|
|
6
|
+
from mlx.utils import tree_map
|
|
7
|
+
|
|
8
|
+
from .cache import QuantizedKVCache
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@dataclass
|
|
12
|
+
class BaseModelArgs:
|
|
13
|
+
@classmethod
|
|
14
|
+
def from_dict(cls, params):
|
|
15
|
+
return cls(**{k: v for k, v in params.items() if k in inspect.signature(cls).parameters})
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def create_causal_mask(
|
|
19
|
+
N: int,
|
|
20
|
+
offset: int = 0,
|
|
21
|
+
window_size: Optional[int] = None,
|
|
22
|
+
lengths: Optional[mx.array] = None,
|
|
23
|
+
):
|
|
24
|
+
rinds = mx.arange(offset + N)
|
|
25
|
+
linds = mx.arange(offset, offset + N) if offset else rinds
|
|
26
|
+
linds = linds[:, None]
|
|
27
|
+
rinds = rinds[None]
|
|
28
|
+
mask = linds >= rinds
|
|
29
|
+
if window_size is not None:
|
|
30
|
+
mask = mask & (linds <= rinds + window_size)
|
|
31
|
+
if lengths is not None:
|
|
32
|
+
lengths = lengths[:, None, None, None]
|
|
33
|
+
mask = mask & (rinds < lengths)
|
|
34
|
+
return mask
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def create_attention_mask(h: mx.array, cache: Optional[Any] = None, return_array: bool = False):
|
|
38
|
+
T = h.shape[1]
|
|
39
|
+
if T > 1:
|
|
40
|
+
offset = 0
|
|
41
|
+
window_size = None
|
|
42
|
+
if cache is not None and cache[0] is not None:
|
|
43
|
+
c = cache[0]
|
|
44
|
+
offset = c.offset
|
|
45
|
+
if hasattr(c, "max_size"):
|
|
46
|
+
window_size = c.max_size
|
|
47
|
+
offset = min(window_size, offset)
|
|
48
|
+
return_array = return_array or offset + T > window_size
|
|
49
|
+
if return_array:
|
|
50
|
+
return create_causal_mask(T, offset, window_size=window_size)
|
|
51
|
+
else:
|
|
52
|
+
return "causal"
|
|
53
|
+
else:
|
|
54
|
+
mask = None
|
|
55
|
+
return mask
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def quantized_scaled_dot_product_attention(
|
|
59
|
+
queries: mx.array,
|
|
60
|
+
q_keys: tuple[mx.array, mx.array, mx.array],
|
|
61
|
+
q_values: tuple[mx.array, mx.array, mx.array],
|
|
62
|
+
scale: float,
|
|
63
|
+
mask: Optional[mx.array],
|
|
64
|
+
group_size: int = 64,
|
|
65
|
+
bits: int = 8,
|
|
66
|
+
) -> mx.array:
|
|
67
|
+
B, n_q_heads, L, D = queries.shape
|
|
68
|
+
n_kv_heads = q_keys[0].shape[-3]
|
|
69
|
+
n_repeats = n_q_heads // n_kv_heads
|
|
70
|
+
|
|
71
|
+
queries *= scale
|
|
72
|
+
|
|
73
|
+
if n_repeats > 1:
|
|
74
|
+
queries = mx.reshape(queries, (B, n_kv_heads, n_repeats, L, D))
|
|
75
|
+
q_keys = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_keys)
|
|
76
|
+
q_values = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_values)
|
|
77
|
+
|
|
78
|
+
scores = mx.quantized_matmul(queries, *q_keys, transpose=True, group_size=group_size, bits=bits)
|
|
79
|
+
if mask is not None:
|
|
80
|
+
if isinstance(mask, str):
|
|
81
|
+
qL, kL = scores.shape[-2:]
|
|
82
|
+
q_indices = mx.arange(kL - qL, kL)
|
|
83
|
+
k_indices = mx.arange(kL)
|
|
84
|
+
mask = q_indices[:, None] >= k_indices[None]
|
|
85
|
+
if mask.dtype == mx.bool_:
|
|
86
|
+
scores = mx.where(mask, scores, mx.finfo(scores.dtype).min)
|
|
87
|
+
else:
|
|
88
|
+
scores += mask
|
|
89
|
+
scores = mx.softmax(scores, axis=-1, precise=True)
|
|
90
|
+
out = mx.quantized_matmul(scores, *q_values, transpose=False, group_size=group_size, bits=bits)
|
|
91
|
+
|
|
92
|
+
if n_repeats > 1:
|
|
93
|
+
out = mx.reshape(out, (B, n_q_heads, L, D))
|
|
94
|
+
|
|
95
|
+
return out
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def scaled_dot_product_attention(
|
|
99
|
+
queries,
|
|
100
|
+
keys,
|
|
101
|
+
values,
|
|
102
|
+
cache,
|
|
103
|
+
scale: float,
|
|
104
|
+
mask: Optional[mx.array],
|
|
105
|
+
) -> mx.array:
|
|
106
|
+
if isinstance(cache, QuantizedKVCache):
|
|
107
|
+
return quantized_scaled_dot_product_attention(
|
|
108
|
+
queries,
|
|
109
|
+
keys,
|
|
110
|
+
values,
|
|
111
|
+
scale=scale,
|
|
112
|
+
mask=mask,
|
|
113
|
+
group_size=cache.group_size,
|
|
114
|
+
bits=cache.bits,
|
|
115
|
+
)
|
|
116
|
+
else:
|
|
117
|
+
return mx.fast.scaled_dot_product_attention(queries, keys, values, scale=scale, mask=mask)
|