nexaai 1.0.19rc5__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (221) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
  5. nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
  6. nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
  7. nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
  8. nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
  9. nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
  10. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  11. nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
  12. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
  13. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
  14. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
  16. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  17. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
  18. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
  19. nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
  20. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
  21. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  22. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
  23. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
  25. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  26. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
  37. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
  38. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
  39. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  40. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
  41. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
  42. nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
  43. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  44. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
  45. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
  47. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  48. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
  49. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
  50. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
  51. nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
  58. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
  59. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
  60. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
  61. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
  62. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
  64. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
  66. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
  199. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
  200. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
  201. nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
  202. nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
  203. nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
  204. nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
  205. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
  206. nexaai/mlx_backend/vlm/interface.py +21 -4
  207. nexaai/mlx_backend/vlm/main.py +6 -2
  208. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  209. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  210. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  211. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  212. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  213. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  214. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  215. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  216. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  217. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  218. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
  219. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +221 -21
  220. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
  221. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,393 @@
1
+ import json
2
+ from pathlib import Path
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import mlx.core as mx
6
+ import numpy as np
7
+ from PIL import Image
8
+ from transformers import (
9
+ AutoImageProcessor,
10
+ AutoProcessor,
11
+ AutoTokenizer,
12
+ BatchFeature,
13
+ PreTrainedTokenizerBase,
14
+ ProcessorMixin,
15
+ )
16
+ from transformers.image_utils import ImageFeatureExtractionMixin
17
+ from transformers.utils import logging
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+ # Constants for image processing (from internvl_chat.py)
22
+
23
+ IMAGENET_MEAN = np.array([0.485, 0.456, 0.406])
24
+ IMAGENET_STD = np.array([0.229, 0.224, 0.225])
25
+ # chat_template = get_conv_template("internvl2_5")
26
+ chat_template = "{% for message in messages %}{{message['role'].capitalize() + ': '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['content'] }}{% endfor %}{{'\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:\n' }}{% endif %}"
27
+
28
+ IMG_START_TOKEN = "<img>"
29
+ IMG_END_TOKEN = "</img>"
30
+ IMG_CONTEXT_TOKEN = "<IMG_CONTEXT>"
31
+
32
+
33
+ def build_transform(input_size):
34
+ """
35
+ Builds a transformation pipeline for images.
36
+
37
+ Args:
38
+ input_size (int): The target size for the image (height and width).
39
+
40
+ Returns:
41
+ function: A function that takes a PIL image and returns a normalized mx.array.
42
+ """
43
+ mean = mx.array(IMAGENET_MEAN)
44
+ std = mx.array(IMAGENET_STD)
45
+
46
+ def transform(img: Image.Image) -> mx.array:
47
+ # Ensure image is RGB
48
+ if img.mode != "RGB":
49
+ img = img.convert("RGB")
50
+
51
+ # Resize using PIL - BICUBIC interpolation is default in Pillow >= 9.1.0 for resize
52
+ # For older versions, you might need Pillow-SIMD or explicitly set
53
+ # resampling=Image.BICUBIC if available.
54
+ img = img.resize((input_size, input_size), resample=Image.Resampling.BICUBIC)
55
+
56
+ # Convert PIL image to NumPy array (H, W, C) and scale to [0, 1]
57
+ img_np = np.array(img).astype(np.float32) / 255.0
58
+
59
+ # Convert to MLX array and transpose to (C, H, W)
60
+ img_mx = mx.array(img_np).transpose(2, 0, 1)
61
+
62
+ # Normalize
63
+ img_mx = (img_mx - mean[:, None, None]) / std[:, None, None]
64
+
65
+ return img_mx
66
+
67
+ return transform
68
+
69
+
70
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
71
+ """Finds the closest aspect ratio from a list of targets."""
72
+ best_ratio_diff = float("inf")
73
+ best_ratio = (1, 1)
74
+ area = width * height
75
+ for ratio in target_ratios:
76
+ target_aspect_ratio = ratio[0] / ratio[1]
77
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
78
+ if ratio_diff < best_ratio_diff:
79
+ best_ratio_diff = ratio_diff
80
+ best_ratio = ratio
81
+ elif ratio_diff == best_ratio_diff:
82
+ # Prioritize ratios closer to the original image area if diffs are equal
83
+ target_area = image_size * image_size * ratio[0] * ratio[1]
84
+ if abs(area - target_area) < abs(
85
+ area - image_size * image_size * best_ratio[0] * best_ratio[1]
86
+ ):
87
+ best_ratio = ratio
88
+ return best_ratio
89
+
90
+
91
+ def dynamic_preprocess(
92
+ image: Image.Image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
93
+ ):
94
+ """
95
+ Preprocesses the image by splitting it into blocks based on the closest aspect ratio.
96
+
97
+ Args:
98
+ image (PIL.Image.Image): Input image.
99
+ min_num (int): Minimum number of blocks.
100
+ max_num (int): Maximum number of blocks.
101
+ image_size (int): Target size for each block.
102
+ use_thumbnail (bool): Whether to include a thumbnail of the original image.
103
+
104
+ Returns:
105
+ list[PIL.Image.Image]: A list of processed image blocks (as PIL images).
106
+ """
107
+ orig_width, orig_height = image.size
108
+ if orig_width == 0 or orig_height == 0:
109
+ # Handle potential zero dimensions
110
+ return []
111
+ aspect_ratio = orig_width / orig_height
112
+
113
+ # Calculate the possible target aspect ratios
114
+ target_ratios = set(
115
+ (i, j)
116
+ for n in range(min_num, max_num + 1)
117
+ for i in range(1, n + 1)
118
+ for j in range(1, n + 1)
119
+ if min_num <= i * j <= max_num
120
+ )
121
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
122
+
123
+ # Find the closest target aspect ratio
124
+ target_aspect_ratio = find_closest_aspect_ratio(
125
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size
126
+ )
127
+
128
+ # Calculate the target dimensions for resizing
129
+ target_width = image_size * target_aspect_ratio[0]
130
+ target_height = image_size * target_aspect_ratio[1]
131
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
132
+
133
+ # Resize the image to fit the target block structure
134
+ # Using BICUBIC resampling
135
+ resized_img = image.resize(
136
+ (target_width, target_height), resample=Image.Resampling.BICUBIC
137
+ )
138
+
139
+ processed_images = []
140
+ # Crop the resized image into blocks
141
+ for i in range(blocks):
142
+ # Calculate crop box for the i-th block
143
+ row_idx = i // target_aspect_ratio[0]
144
+ col_idx = i % target_aspect_ratio[0]
145
+ left = col_idx * image_size
146
+ top = row_idx * image_size
147
+ right = (col_idx + 1) * image_size
148
+ bottom = (row_idx + 1) * image_size
149
+ box = (left, top, right, bottom)
150
+
151
+ # Crop and add the block
152
+ split_img = resized_img.crop(box)
153
+ processed_images.append(split_img)
154
+
155
+ assert (
156
+ len(processed_images) == blocks
157
+ ), f"Expected {blocks} blocks, but got {len(processed_images)}"
158
+
159
+ # Add a thumbnail if requested and if the image was split
160
+ if use_thumbnail and blocks > 1:
161
+ thumbnail_img = image.resize(
162
+ (image_size, image_size), resample=Image.Resampling.BICUBIC
163
+ )
164
+ processed_images.append(thumbnail_img)
165
+
166
+ return processed_images
167
+
168
+
169
+ class InternVLImageProcessor(ImageFeatureExtractionMixin):
170
+ model_input_names = ["pixel_values"]
171
+
172
+ def __init__(
173
+ self,
174
+ do_resize: bool = True,
175
+ size: int = 448, # Default image size from dynamic_preprocess
176
+ resample=Image.Resampling.BICUBIC,
177
+ do_center_crop: bool = False, # Not used in original, but standard HF param
178
+ crop_size=None,
179
+ do_rescale: bool = True, # Original code scales by 1/255.0
180
+ rescale_factor: float = 1 / 255.0,
181
+ do_normalize: bool = True,
182
+ image_mean=IMAGENET_MEAN.tolist(),
183
+ image_std=IMAGENET_STD.tolist(),
184
+ do_dynamic_preprocess: bool = True,
185
+ dynamic_min_num: int = 1,
186
+ dynamic_max_num: int = 12,
187
+ dynamic_use_thumbnail: bool = True,
188
+ **kwargs,
189
+ ):
190
+ super().__init__()
191
+ self.do_resize = (
192
+ do_resize # Although dynamic_preprocess handles resizing internally
193
+ )
194
+ self.size = size
195
+ self.resample = resample
196
+ self.do_center_crop = do_center_crop
197
+ self.crop_size = crop_size
198
+ self.do_rescale = do_rescale
199
+ self.rescale_factor = rescale_factor
200
+ self.do_normalize = do_normalize
201
+ self.image_mean = image_mean
202
+ self.image_std = image_std
203
+ # Custom dynamic processing params
204
+ self.do_dynamic_preprocess = do_dynamic_preprocess
205
+ self.dynamic_min_num = dynamic_min_num
206
+ self.dynamic_max_num = dynamic_max_num
207
+ self.dynamic_use_thumbnail = dynamic_use_thumbnail
208
+
209
+ def preprocess(
210
+ self,
211
+ images: List[Image.Image],
212
+ do_dynamic_preprocess: Optional[bool] = None,
213
+ size: Optional[int] = None,
214
+ # ... other params matching __init__ ...
215
+ return_tensors: Optional[str] = None,
216
+ **kwargs,
217
+ ) -> List[mx.array]:
218
+
219
+ do_dynamic_preprocess = (
220
+ do_dynamic_preprocess
221
+ if do_dynamic_preprocess is not None
222
+ else self.do_dynamic_preprocess
223
+ )
224
+ size = size if size is not None else self.size
225
+ # ... handle other overrides ...
226
+
227
+ if not isinstance(images, list):
228
+ images = [images]
229
+
230
+ if not all(isinstance(image, Image.Image) for image in images):
231
+ raise ValueError("Input must be a list of PIL Images.")
232
+
233
+ processed_images_batch = []
234
+ for image in images:
235
+ # Apply dynamic preprocessing
236
+ if do_dynamic_preprocess:
237
+ processed_images = dynamic_preprocess(
238
+ image,
239
+ min_num=self.dynamic_min_num,
240
+ max_num=self.dynamic_max_num,
241
+ image_size=size,
242
+ use_thumbnail=self.dynamic_use_thumbnail,
243
+ )
244
+ else:
245
+ # Fallback or alternative simpler preprocessing if needed
246
+ # e.g., simple resize + normalize
247
+ processed_images = [image.resize((size, size), resample=self.resample)]
248
+
249
+ # Create transform function
250
+ transform = build_transform(input_size=size)
251
+
252
+ # Apply transform to each image block and collect arrays
253
+ pixel_values_list = [transform(img) for img in processed_images]
254
+
255
+ # Stack the arrays along a new dimension (batch dimension)
256
+ pixel_values = mx.stack(pixel_values_list, axis=0)
257
+
258
+ processed_images_batch.append(pixel_values)
259
+
260
+ # At this point, processed_images_batch contains a list of mx arrays,
261
+ # each array corresponding to an input image with stacked blocks.
262
+
263
+ data = {"pixel_values": mx.array(processed_images_batch)}
264
+ return BatchFeature(data=data, tensor_type=None)
265
+
266
+
267
+ class InternVLChatProcessor(ProcessorMixin):
268
+ attributes = ["image_processor", "tokenizer"]
269
+ image_processor_class = "InternVLImageProcessor"
270
+ tokenizer_class = (
271
+ "AutoTokenizer",
272
+ "Qwen2TokenizerFast",
273
+ ) # Specify possible classes
274
+
275
+ def __init__(
276
+ self,
277
+ image_processor=None,
278
+ tokenizer=None,
279
+ chat_template=chat_template,
280
+ **kwargs,
281
+ ):
282
+ if image_processor is None:
283
+ image_processor = InternVLImageProcessor(**kwargs)
284
+ if isinstance(tokenizer, str):
285
+ # Defaulting to the likely repo ID found earlier
286
+ tokenizer = AutoTokenizer.from_pretrained(
287
+ tokenizer, trust_remote_code=True, **kwargs
288
+ )
289
+
290
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
291
+
292
+ self.num_image_token = int((448 // 14) ** 2 * (0.5**2))
293
+
294
+ def __call__(
295
+ self,
296
+ text: Union[str, List[str]] = None,
297
+ images: List[Image.Image] = None,
298
+ padding: Union[bool, str] = True,
299
+ truncation: bool = True,
300
+ max_length: Optional[int] = None,
301
+ return_tensors: Optional[str] = "pt", # Default to PyTorch tensors
302
+ **kwargs,
303
+ ):
304
+ processed_inputs = {}
305
+ if images is not None:
306
+ image_features = self.image_processor.preprocess(
307
+ images, return_tensors=return_tensors, **kwargs
308
+ )
309
+ processed_inputs.update(image_features) # Should contain 'pixel_values'
310
+
311
+ if text is not None:
312
+ queries = []
313
+
314
+ if isinstance(text, str):
315
+ text = [text]
316
+
317
+ for idx in range(len(images)):
318
+ question = text[idx]
319
+
320
+ if images is not None and "<image>" not in question:
321
+ question = "<image>\n" + question
322
+
323
+ num_patches = image_features["pixel_values"][idx].shape[0]
324
+ image_tokens = (
325
+ IMG_START_TOKEN
326
+ + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
327
+ + IMG_END_TOKEN
328
+ )
329
+ question = question.replace("<image>", image_tokens, 1)
330
+ queries.append(question)
331
+
332
+ self.tokenizer.padding_side = "left"
333
+ text_inputs = self.tokenizer(
334
+ queries,
335
+ padding=padding,
336
+ truncation=truncation,
337
+ max_length=max_length,
338
+ return_tensors=return_tensors,
339
+ **kwargs,
340
+ )
341
+ processed_inputs.update(text_inputs) # 'input_ids', 'attention_mask'
342
+
343
+ return processed_inputs
344
+
345
+ def batch_decode(self, *args, **kwargs):
346
+ """
347
+ This method forwards all its arguments to the tokenizer's batch_decode method.
348
+ """
349
+ return self.tokenizer.batch_decode(*args, **kwargs)
350
+
351
+ def decode(self, *args, **kwargs):
352
+ """
353
+ This method forwards all its arguments to the tokenizer's decode method.
354
+ """
355
+ return self.tokenizer.decode(*args, **kwargs)
356
+
357
+ def save_pretrained(self, save_directory, **kwargs):
358
+ pass
359
+
360
+ @staticmethod
361
+ def from_pretrained(pretrained_model_name_or_path, **kwargs):
362
+ tokenizer = AutoTokenizer.from_pretrained(
363
+ pretrained_model_name_or_path, **kwargs
364
+ )
365
+ image_processor = InternVLImageProcessor(**kwargs)
366
+ return InternVLChatProcessor(
367
+ image_processor=image_processor, tokenizer=tokenizer
368
+ )
369
+
370
+ # Need save_pretrained and from_pretrained
371
+ # save_pretrained should save both tokenizer and image_processor configs/files
372
+ # from_pretrained should load both
373
+
374
+ # Example:
375
+ # def save_pretrained(self, save_directory, **kwargs):
376
+ # self.tokenizer.save_pretrained(save_directory, **kwargs)
377
+ # self.image_processor.save_pretrained(save_directory, **kwargs)
378
+
379
+ # def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
380
+ # tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
381
+ # image_processor = InternVLImageProcessor.from_pretrained(pretrained_model_name_or_path, **kwargs)
382
+ # return cls(image_processor=image_processor, tokenizer=tokenizer)
383
+
384
+
385
+ # Registration
386
+ MODEL_TYPE = "internvl_chat" # Verify this from the model's config.json
387
+
388
+ AutoImageProcessor.register(
389
+ MODEL_TYPE, slow_image_processor_class=InternVLImageProcessor
390
+ )
391
+ AutoProcessor.register(MODEL_TYPE, InternVLChatProcessor)
392
+
393
+ logger.info(f"Registered custom processor classes for model type '{MODEL_TYPE}'.")
@@ -0,0 +1,293 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Optional
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+ import numpy as np
8
+
9
+ from ..base import interpolate
10
+
11
+
12
+ @dataclass
13
+ class VisionConfig:
14
+ model_type: str
15
+ hidden_size: int = 1024
16
+ num_attention_heads: int = 16
17
+ patch_size: int = 14
18
+ num_hidden_layers: int = 24
19
+ intermediate_size: int = 4096
20
+ image_size: int = 448
21
+ num_channels: int = 3
22
+ layer_norm_eps: float = 1e-6
23
+ drop_path_rate: float = 0.1
24
+ qkv_bias: bool = True
25
+ qk_normalization: bool = False
26
+ norm_type: str = "layer_norm"
27
+
28
+ @classmethod
29
+ def from_dict(cls, params):
30
+ return cls(
31
+ **{
32
+ k: v
33
+ for k, v in params.items()
34
+ if k in inspect.signature(cls).parameters
35
+ }
36
+ )
37
+
38
+
39
+ def check_array_shape(arr):
40
+ shape = arr.shape
41
+
42
+ # Check if the shape has 4 dimensions
43
+ if len(shape) != 4:
44
+ return False
45
+
46
+ out_channels, kH, KW, _ = shape
47
+
48
+ # Check if out_channels is the largest, and kH and KW are the same
49
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
50
+ return True
51
+ else:
52
+ return False
53
+
54
+
55
+ class Attention(nn.Module):
56
+ def __init__(self, config: VisionConfig):
57
+ super().__init__()
58
+
59
+ if (config.hidden_size % config.num_attention_heads) != 0:
60
+ raise ValueError(
61
+ "The input feature dimensions should be divisible by the "
62
+ f"number of heads ({config.hidden_size} % {config.num_attention_heads}) != 0"
63
+ )
64
+
65
+ self.dims = dims = config.hidden_size
66
+
67
+ self.num_heads = config.num_attention_heads
68
+ head_dim = config.hidden_size // config.num_attention_heads
69
+ self.scale = head_dim**-0.5
70
+ self.qkv_bias = config.qkv_bias
71
+
72
+ self.qkv = nn.Linear(dims, 3 * dims, bias=config.qkv_bias)
73
+ self.proj = nn.Linear(dims, dims)
74
+
75
+ self.qk_normalization = config.qk_normalization
76
+
77
+ if self.qk_normalization:
78
+ self.q_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
79
+ self.k_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
80
+
81
+ def __call__(self, x, mask=None):
82
+ B, L, C = x.shape
83
+ qkv = self.qkv(x).reshape(B, L, 3, self.num_heads, C // self.num_heads)
84
+ qkv = qkv.transpose(2, 0, 3, 1, 4)
85
+ queries, keys, values = (
86
+ qkv[0],
87
+ qkv[1],
88
+ qkv[2],
89
+ ) # Each has shape (B, groups, N, C//groups)
90
+
91
+ if self.qk_normalization:
92
+ B_, H_, N_, D_ = queries.shape
93
+ queries = (
94
+ self.q_norm(queries.transpose(0, 2, 1, 3).flatten(-2, -1))
95
+ .reshape(B_, N_, H_, D_)
96
+ .transpose(0, 2, 1, 3)
97
+ )
98
+ keys = (
99
+ self.k_norm(keys.transpose(0, 2, 1, 3).flatten(-2, -1))
100
+ .reshape(B_, N_, H_, D_)
101
+ .transpose(0, 2, 1, 3)
102
+ )
103
+
104
+ output = mx.fast.scaled_dot_product_attention(
105
+ queries, keys, values, scale=self.scale, mask=mask
106
+ )
107
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
108
+ return self.proj(output)
109
+
110
+
111
+ class MLP(nn.Module):
112
+ def __init__(self, config: VisionConfig):
113
+ super().__init__()
114
+ self.activation_fn = nn.GELU(approx="precise")
115
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
116
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
117
+
118
+ def __call__(self, x: mx.array) -> mx.array:
119
+ x = self.fc1(x)
120
+ x = self.activation_fn(x)
121
+ x = self.fc2(x)
122
+ return x
123
+
124
+
125
+ class EncoderLayer(nn.Module):
126
+ def __init__(self, config: VisionConfig, drop_path_rate: float = 0.0):
127
+ super().__init__()
128
+ self.embed_dim = config.hidden_size
129
+ self.intermediate_size = config.intermediate_size
130
+ self.norm_type = getattr(config, "norm_type", "layer_norm")
131
+
132
+ self.attn = Attention(config)
133
+ self.mlp = MLP(config)
134
+
135
+ if self.norm_type == "layer_norm":
136
+ self.norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
137
+ self.norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
138
+ elif self.norm_type == "rms_norm":
139
+ self.norm1 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
140
+ self.norm2 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
141
+ else:
142
+ raise ValueError(f"Unsupported normalization type: {self.norm_type}")
143
+
144
+ self.ls1 = mx.ones((self.embed_dim,))
145
+ self.ls2 = mx.ones((self.embed_dim,))
146
+
147
+ self.drop_path1 = (
148
+ nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
149
+ )
150
+ self.drop_path2 = (
151
+ nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
152
+ )
153
+
154
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
155
+ dtype = x.dtype
156
+ x = x + self.drop_path1(self.attn(self.norm1(x).astype(dtype)) * self.ls1)
157
+
158
+ x = x + self.drop_path2(self.mlp(self.norm2(x).astype(dtype)) * self.ls2)
159
+
160
+ return x.astype(dtype)
161
+
162
+
163
+ class Encoder(nn.Module):
164
+ def __init__(self, config: VisionConfig):
165
+ super().__init__()
166
+ dpr = [
167
+ mx.array(x)
168
+ for x in np.linspace(0, config.drop_path_rate, config.num_hidden_layers)
169
+ ]
170
+ self.layers = [
171
+ EncoderLayer(config, dpr[i]) for i in range(config.num_hidden_layers)
172
+ ]
173
+
174
+ def __call__(
175
+ self,
176
+ x: mx.array,
177
+ output_hidden_states: Optional[bool] = None,
178
+ mask: Optional[mx.array] = None,
179
+ ) -> mx.array:
180
+ encoder_states = (x,) if output_hidden_states else None
181
+ h = x
182
+ for l in self.layers:
183
+ x = l(x, mask=mask)
184
+ if output_hidden_states:
185
+ encoder_states = encoder_states + (x,)
186
+
187
+ h = x
188
+
189
+ return (h, encoder_states)
190
+
191
+
192
+ class VisionEmbeddings(nn.Module):
193
+ def __init__(self, config: VisionConfig):
194
+ super().__init__()
195
+ self.config = config
196
+ self.embed_dim = config.hidden_size
197
+ self.image_size = config.image_size
198
+ self.patch_size = config.patch_size
199
+
200
+ self.class_embedding = mx.random.normal((1, 1, self.embed_dim))
201
+
202
+ self.patch_embedding = nn.Conv2d(
203
+ in_channels=3,
204
+ out_channels=self.embed_dim,
205
+ kernel_size=self.patch_size,
206
+ stride=self.patch_size,
207
+ )
208
+
209
+ self.num_patches = (self.image_size // self.patch_size) ** 2
210
+ self.num_positions = self.num_patches + 1
211
+
212
+ self.position_embedding = mx.random.normal(
213
+ (1, self.num_positions, self.embed_dim)
214
+ )
215
+
216
+ def _get_pos_embed(self, pos_embed, H, W):
217
+ target_dtype = pos_embed.dtype
218
+ pos_embed = pos_embed.reshape(
219
+ 1,
220
+ self.image_size // self.patch_size,
221
+ self.image_size // self.patch_size,
222
+ -1,
223
+ ).transpose(0, 3, 1, 2)
224
+ pos_embed = interpolate(pos_embed, (H, W))
225
+ pos_embed = (
226
+ pos_embed.reshape(1, -1, H * W).transpose(0, 2, 1).astype(target_dtype)
227
+ )
228
+ return pos_embed
229
+
230
+ def __call__(self, x: mx.array) -> mx.array:
231
+ target_dtype = self.patch_embedding.weight.dtype
232
+ patch_embeds = self.patch_embedding(x).transpose(
233
+ 0, 3, 1, 2
234
+ ) # shape = [*, channel, width, height]
235
+ batch_size, _, height, width = patch_embeds.shape
236
+ patch_embeds = mx.flatten(patch_embeds, start_axis=2).transpose(0, 2, 1)
237
+ class_embeds = mx.broadcast_to(
238
+ self.class_embedding, (batch_size, 1, self.embed_dim)
239
+ ).astype(target_dtype)
240
+ embeddings = mx.concatenate([class_embeds, patch_embeds], axis=1)
241
+ position_embedding = mx.concatenate(
242
+ [
243
+ self.position_embedding[:, :1, :],
244
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width),
245
+ ],
246
+ axis=1,
247
+ )
248
+ embeddings = embeddings + position_embedding.astype(target_dtype)
249
+
250
+ return embeddings
251
+
252
+
253
+ class VisionModel(nn.Module):
254
+ def __init__(self, config: VisionConfig):
255
+ super().__init__()
256
+ self.model_type = config.model_type
257
+ if self.model_type not in ["siglip_vision_model", "intern_vit_6b"]:
258
+ raise ValueError(f"Unsupported model type: {self.model_type}")
259
+
260
+ self.embeddings = VisionEmbeddings(config)
261
+ self.encoder = Encoder(config)
262
+
263
+ def __call__(
264
+ self,
265
+ x: mx.array,
266
+ output_hidden_states: Optional[bool] = None,
267
+ ) -> mx.array:
268
+ x = self.embeddings(x)
269
+ last_hidden_state, encoder_outputs = self.encoder(
270
+ x=x, output_hidden_states=output_hidden_states, mask=None
271
+ )
272
+ pooler_output = last_hidden_state[:, 0, :]
273
+ return last_hidden_state, pooler_output, encoder_outputs[1:]
274
+
275
+ def sanitize(self, weights):
276
+ sanitized_weights = {}
277
+ for k, v in weights.items():
278
+ if "position_ids" in k:
279
+ # Remove unused position_ids
280
+ continue
281
+ elif "patch_embedding.weight" in k:
282
+ # PyTorch conv2d weight tensors have shape:
283
+ # [out_channels, in_channels, kH, KW]
284
+ # MLX conv2d expects the weight be of shape:
285
+ # [out_channels, kH, KW, in_channels]
286
+ if check_array_shape(v):
287
+ sanitized_weights[k] = v
288
+ else:
289
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
290
+ else:
291
+ sanitized_weights[k] = v
292
+
293
+ return sanitized_weights