nexaai 1.0.19rc5__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (221) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
  5. nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
  6. nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
  7. nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
  8. nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
  9. nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
  10. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  11. nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
  12. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
  13. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
  14. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
  16. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  17. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
  18. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
  19. nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
  20. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
  21. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  22. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
  23. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
  25. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  26. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
  37. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
  38. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
  39. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  40. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
  41. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
  42. nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
  43. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  44. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
  45. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
  47. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  48. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
  49. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
  50. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
  51. nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
  58. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
  59. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
  60. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
  61. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
  62. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
  64. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
  66. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
  199. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
  200. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
  201. nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
  202. nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
  203. nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
  204. nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
  205. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
  206. nexaai/mlx_backend/vlm/interface.py +21 -4
  207. nexaai/mlx_backend/vlm/main.py +6 -2
  208. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  209. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  210. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  211. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  212. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  213. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  214. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  215. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  216. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  217. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  218. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
  219. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +221 -21
  220. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
  221. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,629 @@
1
+ import math
2
+ from functools import partial
3
+ from typing import Any, Optional
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+ from mlx_lm.models.cache import _BaseCache
8
+
9
+ from ..base import (
10
+ LanguageModelOutput,
11
+ create_attention_mask,
12
+ scaled_dot_product_attention,
13
+ )
14
+ from ..cache import KVCache, RotatingKVCache
15
+ from .config import TextConfig
16
+
17
+
18
+ class Gemma3nRMSNorm(nn.Module):
19
+ def __init__(
20
+ self,
21
+ dim: int,
22
+ eps: float = 1e-6,
23
+ scale_shift: float = 0.0,
24
+ with_scale: bool = True,
25
+ ):
26
+ super().__init__()
27
+ self.eps = eps
28
+ self.scale_shift = scale_shift
29
+ self.with_scale = with_scale
30
+
31
+ if self.with_scale:
32
+ # Make weight a proper parameter
33
+ self.weight = mx.ones(dim)
34
+ else:
35
+ self.weight = None
36
+
37
+ def _norm(self, x):
38
+ # Match PyTorch's normalization exactly
39
+ return x * mx.rsqrt(x.square().mean(axis=-1, keepdims=True) + self.eps)
40
+
41
+ def __call__(self, x: mx.array) -> mx.array:
42
+ # Match PyTorch implementation
43
+ output = self._norm(x.astype(mx.float32))
44
+
45
+ if self.with_scale:
46
+ output = output * (self.weight + self.scale_shift)
47
+
48
+ return output.astype(x.dtype)
49
+
50
+
51
+ class RMSNoScale(nn.Module):
52
+ def __init__(self, eps: float = 1e-5):
53
+ super().__init__()
54
+ self.eps = eps
55
+
56
+ def __call__(self, x):
57
+ return mx.fast.rms_norm(x, None, self.eps)
58
+
59
+
60
+ class Gemma3nLaurelBlock(nn.Module):
61
+ """Learned Augmented Residual Layer"""
62
+
63
+ def __init__(self, config: TextConfig):
64
+ super().__init__()
65
+ self.config = config
66
+
67
+ self.linear_left = nn.Linear(
68
+ self.config.hidden_size, self.config.laurel_rank, bias=False
69
+ )
70
+ self.linear_right = nn.Linear(
71
+ self.config.laurel_rank, self.config.hidden_size, bias=False
72
+ )
73
+ self.post_laurel_norm = nn.RMSNorm(
74
+ dims=self.config.hidden_size,
75
+ eps=self.config.rms_norm_eps,
76
+ )
77
+
78
+ def __call__(self, x: mx.array) -> mx.array:
79
+ laurel_x = self.linear_left(x)
80
+ laurel_x = self.linear_right(laurel_x)
81
+ normed_laurel_x = self.post_laurel_norm(laurel_x)
82
+ return x + normed_laurel_x
83
+
84
+
85
+ class Gemma3nAttention(nn.Module):
86
+ def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
87
+ super().__init__()
88
+ self.is_sliding = config.layer_types[layer_idx] == "sliding_attention"
89
+
90
+ dim = config.hidden_size
91
+ self.n_heads = n_heads = config.num_attention_heads
92
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
93
+ self.repeats = n_heads // n_kv_heads
94
+ self.head_dim = head_dim = config.head_dim
95
+ self.layer_idx = layer_idx
96
+
97
+ self.scale = 1.0
98
+
99
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
100
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
101
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
102
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
103
+
104
+ self.q_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
105
+ self.k_norm = nn.RMSNorm(dims=config.head_dim, eps=config.rms_norm_eps)
106
+ self.v_norm = RMSNoScale(eps=config.rms_norm_eps)
107
+
108
+ self.is_kv_shared_layer = is_kv_shared_layer
109
+
110
+ self.rope = nn.RoPE(
111
+ head_dim,
112
+ traditional=False,
113
+ base=(
114
+ config.rope_local_base_freq if self.is_sliding else config.rope_theta
115
+ ),
116
+ )
117
+
118
+ def __call__(
119
+ self,
120
+ x: mx.array,
121
+ mask: Optional[mx.array] = None,
122
+ cache: Optional[Any] = None,
123
+ ) -> mx.array:
124
+ B, L, _ = x.shape
125
+
126
+ queries = self.q_proj(x)
127
+ queries = queries.reshape(B, L, -1, self.head_dim)
128
+ queries = self.q_norm(queries)
129
+
130
+ offset = 0
131
+ if self.is_kv_shared_layer and cache is not None:
132
+ # For shared layers, retrieve KV from the designated cache layer
133
+ keys, values = cache.state
134
+ offset = cache.offset
135
+
136
+ else:
137
+
138
+ if cache is not None:
139
+ offset = cache.offset
140
+
141
+ keys = self.k_proj(x).reshape(B, L, -1, self.head_dim)
142
+ keys = self.k_norm(keys)
143
+ keys = keys.transpose(0, 2, 1, 3)
144
+ keys = self.rope(keys, offset=offset)
145
+
146
+ values = self.v_proj(x).reshape(B, L, -1, self.head_dim)
147
+ values = self.v_norm(values)
148
+ values = values.transpose(0, 2, 1, 3)
149
+
150
+ if cache is not None:
151
+ keys, values = cache.update_and_fetch(keys, values)
152
+
153
+ queries = queries.transpose(0, 2, 1, 3)
154
+ queries = self.rope(queries, offset=offset)
155
+
156
+ if isinstance(mask, mx.array) and mask.shape[-1] != keys.shape[-2]:
157
+ mask = mask[:, : keys.shape[-2]]
158
+
159
+ output = scaled_dot_product_attention(
160
+ queries, keys, values, cache=cache, scale=self.scale, mask=mask
161
+ )
162
+
163
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
164
+
165
+ return self.o_proj(output)
166
+
167
+
168
+ @partial(mx.compile, shapeless=True)
169
+ def gelu_topk(inputs, std_multiplier):
170
+ inputs_mean = mx.mean(inputs, axis=-1, keepdims=True)
171
+ inputs_std = mx.std(inputs, axis=-1, keepdims=True)
172
+ cutoff_x = inputs_mean + inputs_std * std_multiplier.astype(inputs_std.dtype)
173
+ return nn.gelu_approx(mx.maximum(0, inputs - cutoff_x))
174
+
175
+
176
+ class MLP(nn.Module):
177
+ def __init__(self, config: TextConfig, layer_idx: int = 0):
178
+ super().__init__()
179
+ self.config = config
180
+ self.hidden_size = config.hidden_size
181
+ self.intermediate_size = config.intermediate_size
182
+ self.gate_proj = nn.Linear(
183
+ self.hidden_size, self.intermediate_size[0], bias=False
184
+ )
185
+ self.up_proj = nn.Linear(
186
+ self.hidden_size, self.intermediate_size[0], bias=False
187
+ )
188
+ self.down_proj = nn.Linear(
189
+ self.intermediate_size[0], self.hidden_size, bias=False
190
+ )
191
+ if config.activation_sparsity_pattern is not None:
192
+ self.activation_sparsity = config.activation_sparsity_pattern[layer_idx]
193
+ else:
194
+ self.activation_sparsity = 0.0
195
+ if self.activation_sparsity > 0:
196
+ self._std_multiplier = math.sqrt(2.0) * mx.erfinv(
197
+ 2 * self.activation_sparsity - 1
198
+ )
199
+
200
+ def __call__(self, x: mx.array):
201
+ gate_proj = self.gate_proj(x)
202
+ if self.activation_sparsity > 0.0:
203
+ activations = gelu_topk(gate_proj, self._std_multiplier)
204
+ else:
205
+ activations = nn.gelu_approx(gate_proj)
206
+ up_proj = self.up_proj(x)
207
+ down_proj = self.down_proj(activations * up_proj)
208
+ return down_proj
209
+
210
+
211
+ class Gemma3nAltUp(nn.Module):
212
+ """Alternating Updates (AltUp)"""
213
+
214
+ def __init__(self, config: TextConfig):
215
+ super().__init__()
216
+ self.config = config
217
+
218
+ self.correct_output_scale = mx.zeros((self.config.hidden_size,))
219
+ self.correction_coefs = nn.Linear(
220
+ self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False
221
+ )
222
+ self.prediction_coefs = nn.Linear(
223
+ self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False
224
+ )
225
+ self.modality_router = nn.Linear(
226
+ self.config.hidden_size, self.config.altup_num_inputs, bias=False
227
+ )
228
+ self.router_norm = nn.RMSNorm(
229
+ dims=self.config.hidden_size,
230
+ eps=self.config.rms_norm_eps,
231
+ )
232
+
233
+ def compute_router_modalities(self, x: mx.array) -> mx.array:
234
+ router_inputs = self.router_norm(x) * (self.config.hidden_size**-1.0)
235
+ routed = self.modality_router(router_inputs).astype(mx.float32)
236
+ return mx.tanh(routed)
237
+
238
+ def predict(self, x: mx.array) -> mx.array:
239
+ modalities = self.compute_router_modalities(x[self.config.altup_active_idx])
240
+
241
+ self.prediction_coefs.weight = self.prediction_coefs.weight.astype(mx.float32)
242
+
243
+ if self.config.altup_coef_clip is not None:
244
+ self.prediction_coefs.weight = mx.clip(
245
+ self.prediction_coefs.weight,
246
+ -self.config.altup_coef_clip,
247
+ self.config.altup_coef_clip,
248
+ )
249
+
250
+ all_coefs = (
251
+ self.prediction_coefs(modalities)
252
+ .reshape(
253
+ *modalities.shape[:-1],
254
+ self.config.altup_num_inputs,
255
+ self.config.altup_num_inputs,
256
+ )
257
+ .transpose(0, 1, 3, 2)
258
+ )
259
+
260
+ x_up = x.astype(mx.float32)
261
+ x_permuted = x_up.transpose(1, 2, 3, 0)
262
+ predictions = mx.matmul(x_permuted, all_coefs)
263
+ predictions = predictions.transpose(3, 0, 1, 2)
264
+ predictions += x_up
265
+ return predictions.astype(x.dtype)
266
+
267
+ def correct(self, predictions: mx.array, activated: mx.array):
268
+ modalities = self.compute_router_modalities(activated)
269
+
270
+ self.correction_coefs.weight = self.correction_coefs.weight.astype(mx.float32)
271
+
272
+ if self.config.altup_coef_clip is not None:
273
+ self.correction_coefs.weight = mx.clip(
274
+ self.correction_coefs.weight,
275
+ -self.config.altup_coef_clip,
276
+ self.config.altup_coef_clip,
277
+ )
278
+
279
+ all_coefs = self.correction_coefs(modalities) + 1.0
280
+
281
+ active_x = predictions[self.config.altup_active_idx]
282
+ innovation = activated - active_x
283
+
284
+ all_coefs = all_coefs.transpose(2, 1, 0)
285
+ corrected = innovation[None] * all_coefs[:, None]
286
+ corrected += predictions
287
+
288
+ return corrected.astype(activated.dtype)
289
+
290
+
291
+ class Gemma3nDecoderLayer(nn.Module):
292
+ def __init__(self, config: TextConfig, layer_idx: int, is_kv_shared_layer: bool):
293
+ super().__init__()
294
+ self.config = config
295
+ self.hidden_size = config.hidden_size
296
+ self.layer_idx = layer_idx
297
+ self.self_attn = Gemma3nAttention(config, layer_idx, is_kv_shared_layer)
298
+ self.mlp = MLP(config, layer_idx=layer_idx)
299
+ self.input_layernorm = nn.RMSNorm(
300
+ self.hidden_size,
301
+ eps=config.rms_norm_eps,
302
+ )
303
+
304
+ self.post_attention_layernorm = nn.RMSNorm(
305
+ self.hidden_size,
306
+ eps=config.rms_norm_eps,
307
+ )
308
+ self.pre_feedforward_layernorm = nn.RMSNorm(
309
+ self.hidden_size,
310
+ eps=config.rms_norm_eps,
311
+ )
312
+ self.post_feedforward_layernorm = nn.RMSNorm(
313
+ self.hidden_size,
314
+ eps=config.rms_norm_eps,
315
+ )
316
+ self.is_sliding = self.self_attn.is_sliding
317
+ self.sliding_window = config.sliding_window
318
+
319
+ self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
320
+
321
+ self.altup = Gemma3nAltUp(config)
322
+ self.laurel = Gemma3nLaurelBlock(config)
323
+ self.per_layer_input_gate = nn.Linear(
324
+ self.hidden_size, self.hidden_size_per_layer_input, bias=False
325
+ )
326
+ self.per_layer_projection = nn.Linear(
327
+ self.hidden_size_per_layer_input, self.hidden_size, bias=False
328
+ )
329
+ self.post_per_layer_input_norm = nn.RMSNorm(
330
+ self.hidden_size,
331
+ eps=config.rms_norm_eps,
332
+ )
333
+
334
+ def __call__(
335
+ self,
336
+ x: mx.array,
337
+ mask: Optional[mx.array] = None,
338
+ cache: Optional[Any] = None,
339
+ per_layer_input: Optional[mx.array] = None,
340
+ ):
341
+ predictions = self.altup.predict(x)
342
+ active_prediction = predictions[self.config.altup_active_idx]
343
+
344
+ active_prediction_normed = self.input_layernorm(active_prediction)
345
+ laurel_output = self.laurel(active_prediction_normed)
346
+
347
+ attn = self.self_attn(
348
+ active_prediction_normed,
349
+ mask,
350
+ cache,
351
+ )
352
+
353
+ attn = self.post_attention_layernorm(attn)
354
+
355
+ attn_gated = active_prediction + attn
356
+ attn_laurel = (attn_gated + laurel_output) * (2.0**-0.5)
357
+
358
+ attn_norm = self.pre_feedforward_layernorm(attn_laurel)
359
+ attn_ffw = self.mlp(attn_norm)
360
+ attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw)
361
+ attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm
362
+
363
+ corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated)
364
+
365
+ first_prediction = corrected_predictions[self.config.altup_active_idx]
366
+ if self.config.altup_correct_scale:
367
+ first_prediction = first_prediction * self.altup.correct_output_scale
368
+
369
+ first_prediction = self.per_layer_input_gate(first_prediction)
370
+ first_prediction = nn.gelu_approx(first_prediction)
371
+
372
+ first_prediction = mx.multiply(first_prediction, per_layer_input)
373
+
374
+ first_prediction = self.per_layer_projection(first_prediction)
375
+ first_prediction = self.post_per_layer_input_norm(first_prediction)
376
+
377
+ corrected_predictions[1:] = corrected_predictions[1:] + first_prediction
378
+
379
+ return corrected_predictions
380
+
381
+
382
+ class Gemma3Model(nn.Module):
383
+ def __init__(self, config: TextConfig):
384
+ super().__init__()
385
+ self.config = config
386
+ self.hidden_size = config.hidden_size
387
+ self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
388
+ self.vocab_size = config.vocab_size
389
+ self.vocab_size_per_layer_input = config.vocab_size_per_layer_input
390
+ self.num_hidden_layers = config.num_hidden_layers
391
+ self.first_kv_shared_layer_idx = (
392
+ config.num_hidden_layers - config.num_kv_shared_layers
393
+ )
394
+
395
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
396
+ self.layers = [
397
+ Gemma3nDecoderLayer(
398
+ config=config,
399
+ layer_idx=layer_idx,
400
+ is_kv_shared_layer=layer_idx >= self.first_kv_shared_layer_idx,
401
+ )
402
+ for layer_idx in range(config.num_hidden_layers)
403
+ ]
404
+
405
+ self.embed_tokens_per_layer = nn.Embedding(
406
+ config.vocab_size_per_layer_input,
407
+ config.num_hidden_layers * config.hidden_size_per_layer_input,
408
+ )
409
+
410
+ self.per_layer_model_projection = nn.Linear(
411
+ config.hidden_size,
412
+ config.num_hidden_layers * config.hidden_size_per_layer_input,
413
+ bias=False,
414
+ )
415
+
416
+ self.per_layer_projection_norm = nn.RMSNorm(
417
+ dims=config.hidden_size_per_layer_input,
418
+ eps=config.rms_norm_eps,
419
+ )
420
+
421
+ self.altup_projections = [
422
+ nn.Linear(config.hidden_size, config.hidden_size, bias=False)
423
+ for _ in range(1, self.config.altup_num_inputs)
424
+ ]
425
+
426
+ self.altup_unembed_projections = [
427
+ nn.Linear(config.hidden_size, config.hidden_size, bias=False)
428
+ for _ in range(1, self.config.altup_num_inputs)
429
+ ]
430
+
431
+ self.norm = nn.RMSNorm(
432
+ config.hidden_size,
433
+ eps=config.rms_norm_eps,
434
+ )
435
+
436
+ self.first_sliding_idx = self.config.layer_types.index("sliding_attention")
437
+ self.first_full_idx = self.config.layer_types.index("full_attention")
438
+
439
+ concrete_layers = self.config.layer_types[: self.first_kv_shared_layer_idx]
440
+ shared_full_idx = (
441
+ len(concrete_layers) - 1 - concrete_layers[::-1].index("full_attention")
442
+ )
443
+ shared_sliding_idx = (
444
+ len(concrete_layers) - 1 - concrete_layers[::-1].index("sliding_attention")
445
+ )
446
+
447
+ self.layer_idx_to_cache_idx = []
448
+ for i, layer_type in enumerate(self.config.layer_types):
449
+ if i < self.first_kv_shared_layer_idx:
450
+ self.layer_idx_to_cache_idx.append(i)
451
+ else:
452
+ if layer_type == "full_attention":
453
+ self.layer_idx_to_cache_idx.append(shared_full_idx)
454
+ elif layer_type == "sliding_attention":
455
+ self.layer_idx_to_cache_idx.append(shared_sliding_idx)
456
+ else:
457
+ raise NotImplementedError(f"Unknown layer type: {layer_type}")
458
+
459
+ def __call__(
460
+ self,
461
+ inputs: mx.array = None,
462
+ inputs_embeds: mx.array = None,
463
+ mask: mx.array = None,
464
+ cache=None,
465
+ **kwargs,
466
+ ):
467
+ per_layer_inputs = kwargs.pop("per_layer_inputs", None)
468
+
469
+ if inputs_embeds is None:
470
+ h = self.embed_tokens(inputs) * (self.hidden_size**0.5)
471
+ else:
472
+ h = inputs_embeds
473
+
474
+ if per_layer_inputs is None and inputs is not None:
475
+ per_layer_inputs = self.get_per_layer_inputs(inputs)
476
+
477
+ per_layer_inputs = self.project_per_layer_inputs(h, per_layer_inputs)
478
+
479
+ if cache is None:
480
+ cache = [None] * len(self.layers)
481
+
482
+ if mask is None:
483
+ full_mask = create_attention_mask(
484
+ h,
485
+ cache[self.first_full_idx :],
486
+ )
487
+ sliding_window_mask = create_attention_mask(
488
+ h,
489
+ cache[self.first_sliding_idx :],
490
+ )
491
+ h0 = h
492
+
493
+ # Expand hidden_states to support per-layer inputs
494
+ target_magnitude = mx.mean(h0**2, axis=-1, keepdims=True) ** 0.5
495
+
496
+ h_list = [h0]
497
+ h_list.extend([proj(h0) for proj in self.altup_projections])
498
+ h = mx.stack(h_list, axis=0)
499
+ mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
500
+ h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
501
+
502
+ for i, layer in enumerate(self.layers):
503
+ per_layer_input = per_layer_inputs[:, :, i, :]
504
+
505
+ is_global = self.config.layer_types[i] == "full_attention"
506
+
507
+ local_mask = mask
508
+ if mask is None and is_global:
509
+ local_mask = full_mask
510
+ elif mask is None:
511
+ local_mask = sliding_window_mask
512
+
513
+ h = layer(
514
+ h,
515
+ local_mask,
516
+ cache[self.layer_idx_to_cache_idx[i]],
517
+ per_layer_input,
518
+ )
519
+
520
+ # Per-layer inputs to single output
521
+ target_magnitude = mx.mean(h[0] ** 2, axis=-1, keepdims=True) ** 0.5
522
+ for i, proj in enumerate(self.altup_unembed_projections):
523
+ h[i + 1] = proj(h[i + 1])
524
+ mags = mx.mean(h[1:] ** 2, axis=-1, keepdims=True) ** 0.5
525
+ h[1:] = h[1:] * (target_magnitude / mx.maximum(mags, mx.finfo(h0.dtype).min))
526
+
527
+ h = mx.mean(h, axis=0)
528
+
529
+ return self.norm(h)
530
+
531
+ def get_per_layer_inputs(self, input_ids: mx.array) -> mx.array:
532
+ per_layer_inputs_mask = input_ids < self.vocab_size_per_layer_input
533
+ tokens = mx.where(per_layer_inputs_mask, input_ids, mx.zeros_like(input_ids))
534
+ result = self.embed_tokens_per_layer(tokens) * (
535
+ self.hidden_size_per_layer_input**0.5
536
+ )
537
+ return result.reshape(
538
+ *input_ids.shape,
539
+ self.num_hidden_layers,
540
+ self.hidden_size_per_layer_input,
541
+ )
542
+
543
+ def project_per_layer_inputs(
544
+ self,
545
+ inputs_embeds: mx.array,
546
+ per_layer_inputs: mx.array,
547
+ ) -> mx.array:
548
+ per_layer_projection = self.per_layer_model_projection(inputs_embeds) * (
549
+ self.hidden_size**-0.5
550
+ )
551
+ per_layer_projection = per_layer_projection.reshape(
552
+ *inputs_embeds.shape[:-1],
553
+ self.config.num_hidden_layers,
554
+ self.config.hidden_size_per_layer_input,
555
+ )
556
+ per_layer_projection = self.per_layer_projection_norm(per_layer_projection)
557
+ return (per_layer_projection + per_layer_inputs) * (2.0**-0.5)
558
+
559
+
560
+ @partial(mx.compile, shapeless=True)
561
+ def logit_softcap(softcap, x):
562
+ out = mx.tanh(x / softcap)
563
+ out = out * softcap
564
+ return out
565
+
566
+
567
+ class LanguageModel(nn.Module):
568
+ def __init__(self, config: TextConfig):
569
+ super().__init__()
570
+ self.config = config
571
+ self.model_type = config.model_type
572
+ self.model = Gemma3Model(config)
573
+ self.final_logit_softcapping = config.final_logit_softcapping
574
+
575
+ def __call__(
576
+ self,
577
+ inputs: mx.array = None,
578
+ inputs_embeds: Optional[mx.array] = None,
579
+ mask: Optional[mx.array] = None,
580
+ cache=None,
581
+ **kwargs,
582
+ ):
583
+ out = self.model(
584
+ inputs, inputs_embeds=inputs_embeds, mask=mask, cache=cache, **kwargs
585
+ )
586
+ out = self.model.embed_tokens.as_linear(out)
587
+ if self.final_logit_softcapping is not None:
588
+ out = logit_softcap(self.final_logit_softcapping, out)
589
+ return LanguageModelOutput(logits=out)
590
+
591
+ def sanitize(self, weights):
592
+ sanitized_weights = {}
593
+
594
+ for k, v in weights.items():
595
+ if "language_model.model" not in k and "language_model.lm_head" not in k:
596
+ new_key = k.replace("language_model", "language_model.model")
597
+ sanitized_weights[new_key] = v
598
+ elif "self_attn.rotary_emb.inv_freq" in k:
599
+ continue
600
+ else:
601
+ sanitized_weights[k] = v
602
+ return sanitized_weights
603
+
604
+ @property
605
+ def layers(self):
606
+ return self.model.layers
607
+
608
+ @property
609
+ def head_dim(self):
610
+ return self.config.head_dim
611
+
612
+ @property
613
+ def n_kv_heads(self):
614
+ return self.config.num_key_value_heads
615
+
616
+ def make_cache(self):
617
+ caches = []
618
+ for layer_type in self.config.layer_types[
619
+ : self.model.first_kv_shared_layer_idx
620
+ ]:
621
+ if layer_type == "full_attention":
622
+ caches.append(KVCache())
623
+ elif layer_type == "sliding_attention":
624
+ caches.append(
625
+ RotatingKVCache(max_size=self.config.sliding_window, keep=0)
626
+ )
627
+ else:
628
+ raise NotImplementedError(f"Unknown layer type: {layer_type}")
629
+ return caches