nexaai 1.0.19rc5__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (221) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
  5. nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
  6. nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
  7. nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
  8. nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
  9. nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
  10. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  11. nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
  12. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
  13. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
  14. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
  16. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  17. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
  18. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
  19. nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
  20. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
  21. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  22. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
  23. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
  25. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  26. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
  37. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
  38. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
  39. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  40. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
  41. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
  42. nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
  43. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  44. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
  45. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
  47. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  48. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
  49. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
  50. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
  51. nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
  58. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
  59. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
  60. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
  61. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
  62. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
  64. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
  66. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
  199. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
  200. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
  201. nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
  202. nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
  203. nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
  204. nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
  205. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
  206. nexaai/mlx_backend/vlm/interface.py +21 -4
  207. nexaai/mlx_backend/vlm/main.py +6 -2
  208. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  209. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  210. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  211. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  212. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  213. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  214. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  215. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  216. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  217. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  218. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
  219. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +221 -21
  220. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
  221. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,186 @@
1
+ import mlx.core as mx
2
+ import numpy as np
3
+
4
+
5
+ def gaussian_blur_axis(image, sigma, axis):
6
+ """
7
+ Applies a 1D Gaussian blur along the given axis.
8
+ This version works for arrays with any number of dimensions.
9
+ """
10
+ radius = int(3 * sigma)
11
+ if radius < 1:
12
+ return image
13
+ x = mx.arange(-radius, radius + 1)
14
+ kernel = mx.exp(-(x**2) / (2 * sigma**2))
15
+ kernel = kernel / mx.sum(kernel)
16
+
17
+ # MLX doesn't have a direct apply_along_axis equivalent,
18
+ # so we'll implement the convolution differently based on the axis
19
+
20
+ # Helper function to apply 1D convolution along specific axis
21
+ def conv_1d(array, kernel, axis):
22
+ # Reshape kernel to broadcast along the right dimensions
23
+ kernel_shape = [1] * image.ndim
24
+ kernel_shape[axis] = len(kernel)
25
+ kernel_reshaped = kernel.reshape(kernel_shape)
26
+
27
+ # Pad the array
28
+ pad_width = [(0, 0)] * image.ndim
29
+ pad_width[axis] = (radius, radius)
30
+ padded = mx.pad(array, pad_width, mode="edge")
31
+
32
+ # Perform convolution via sliding window sum
33
+ result = mx.zeros_like(array)
34
+ slices = [slice(None)] * padded.ndim
35
+
36
+ for i in range(2 * radius + 1):
37
+ slices[axis] = slice(i, i + array.shape[axis])
38
+ result = result + padded[tuple(slices)] * kernel_reshaped
39
+
40
+ return result
41
+
42
+ return conv_1d(image, kernel, axis)
43
+
44
+
45
+ def bilinear_interpolate(image, new_height, new_width, align_corners=False):
46
+ """
47
+ Performs bilinear interpolation on an array whose spatial dimensions are the first two.
48
+ It supports extra dimensions (e.g. channels or batch dimensions that have been moved to the trailing axes).
49
+ """
50
+ # image is assumed to have shape (H, W, ...) where H and W are spatial dimensions.
51
+ H_in, W_in = image.shape[0], image.shape[1]
52
+
53
+ # Compute sampling positions in the input image.
54
+ if new_height == 1:
55
+ row_positions = mx.array([0.0])
56
+ else:
57
+ if align_corners:
58
+ row_positions = mx.linspace(0, H_in - 1, new_height)
59
+ else:
60
+ row_positions = (mx.arange(new_height) + 0.5) * H_in / new_height - 0.5
61
+
62
+ if new_width == 1:
63
+ col_positions = mx.array([0.0])
64
+ else:
65
+ if align_corners:
66
+ col_positions = mx.linspace(0, W_in - 1, new_width)
67
+ else:
68
+ col_positions = (mx.arange(new_width) + 0.5) * W_in / new_width - 0.5
69
+
70
+ # Compute floor and ceil indices.
71
+ row_floor = mx.floor(row_positions).astype(mx.int32)
72
+ col_floor = mx.floor(col_positions).astype(mx.int32)
73
+ row_ceil = row_floor + 1
74
+ col_ceil = col_floor + 1
75
+
76
+ row_floor = mx.clip(row_floor, 0, H_in - 1)
77
+ row_ceil = mx.clip(row_ceil, 0, H_in - 1)
78
+ col_floor = mx.clip(col_floor, 0, W_in - 1)
79
+ col_ceil = mx.clip(col_ceil, 0, W_in - 1)
80
+
81
+ row_weight = row_positions - row_floor # shape (new_height,)
82
+ col_weight = col_positions - col_floor # shape (new_width,)
83
+
84
+ # Use advanced indexing for gather operations
85
+ # Create meshgrid for coordinates
86
+ row_floor_grid, col_floor_grid = mx.meshgrid(row_floor, col_floor, indexing="ij")
87
+ row_ceil_grid, col_floor_grid = mx.meshgrid(row_ceil, col_floor, indexing="ij")
88
+ row_floor_grid, col_ceil_grid = mx.meshgrid(row_floor, col_ceil, indexing="ij")
89
+ row_ceil_grid, col_ceil_grid = mx.meshgrid(row_ceil, col_ceil, indexing="ij")
90
+
91
+ # Gather the four surrounding pixels using take_along_axis
92
+ # For higher dimensional arrays, we'll need to reshape and broadcast
93
+ extra_dims = image.ndim - 2
94
+
95
+ def gather_pixels(row_indices, col_indices):
96
+ # Flatten the spatial dimensions for gathering
97
+ flat_indices = row_indices * W_in + col_indices
98
+ flat_image = mx.reshape(image, (-1,) + image.shape[2:])
99
+ # Gather and reshape back
100
+ gathered = mx.take(flat_image, flat_indices.reshape(-1), axis=0)
101
+ return mx.reshape(gathered, (new_height, new_width) + image.shape[2:])
102
+
103
+ top_left = gather_pixels(row_floor_grid, col_floor_grid)
104
+ top_right = gather_pixels(row_floor_grid, col_ceil_grid)
105
+ bottom_left = gather_pixels(row_ceil_grid, col_floor_grid)
106
+ bottom_right = gather_pixels(row_ceil_grid, col_ceil_grid)
107
+
108
+ # Expand the weights to have shape (new_height, new_width, *[1]*extra_dims)
109
+ r_weight = row_weight.reshape(new_height, 1, *([1] * extra_dims))
110
+ c_weight = col_weight.reshape(1, new_width, *([1] * extra_dims))
111
+
112
+ # Perform bilinear interpolation.
113
+ result = (
114
+ (1 - r_weight) * (1 - c_weight) * top_left
115
+ + (1 - r_weight) * c_weight * top_right
116
+ + r_weight * (1 - c_weight) * bottom_left
117
+ + r_weight * c_weight * bottom_right
118
+ )
119
+ return result
120
+
121
+
122
+ def resize_bilinear(image, new_size, align_corners=False, antialias=True):
123
+ """
124
+ Resizes an image (or embedding tensor) to new_size=(new_height, new_width)
125
+ using bilinear interpolation with MLX.
126
+
127
+ Supports:
128
+ - 2D: (H, W)
129
+ - 3D: (H, W, C)
130
+ - 4D: (B, C, H, W) (assumed for typical image batches)
131
+ """
132
+ new_height, new_width = new_size
133
+
134
+ # Convert numpy arrays to MLX arrays if needed
135
+ if isinstance(image, np.ndarray):
136
+ image = mx.array(image)
137
+
138
+ if image.ndim == 2 or image.ndim == 3:
139
+ # Assume spatial dims are the first two.
140
+ resized = image
141
+ H_in, W_in = image.shape[:2]
142
+ if antialias:
143
+ if new_height < H_in:
144
+ scale_y = new_height / H_in
145
+ sigma_y = (1 / scale_y - 1) / 2.0 # heuristic
146
+ if sigma_y > 0:
147
+ resized = gaussian_blur_axis(resized, sigma_y, axis=0)
148
+ if new_width < W_in:
149
+ scale_x = new_width / W_in
150
+ sigma_x = (1 / scale_x - 1) / 2.0
151
+ if sigma_x > 0:
152
+ resized = gaussian_blur_axis(resized, sigma_x, axis=1)
153
+ resized = bilinear_interpolate(
154
+ resized, new_height, new_width, align_corners=align_corners
155
+ )
156
+ return resized
157
+
158
+ elif image.ndim == 4:
159
+ # Assume shape is (B, C, H, W) (typical PyTorch/MLX format).
160
+ B, C, H_in, W_in = image.shape
161
+ # Permute to bring spatial dims to the front: (H, W, B, C)
162
+ image_perm = mx.transpose(image, (2, 3, 0, 1))
163
+ resized = image_perm
164
+ if antialias:
165
+ if new_height < H_in:
166
+ scale_y = new_height / H_in
167
+ sigma_y = (1 / scale_y - 1) / 2.0
168
+ if sigma_y > 0:
169
+ resized = gaussian_blur_axis(resized, sigma_y, axis=0)
170
+ if new_width < W_in:
171
+ scale_x = new_width / W_in
172
+ sigma_x = (1 / scale_x - 1) / 2.0
173
+ if sigma_x > 0:
174
+ resized = gaussian_blur_axis(resized, sigma_x, axis=1)
175
+ resized = bilinear_interpolate(
176
+ resized, new_height, new_width, align_corners=align_corners
177
+ )
178
+ # Permute back to (B, C, new_height, new_width)
179
+ resized = mx.transpose(resized, (2, 3, 0, 1))
180
+ return resized
181
+
182
+ else:
183
+ raise ValueError("Unsupported image dimensions.")
184
+
185
+
186
+ #
@@ -0,0 +1,233 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Optional, Tuple
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+
8
+ from ..base import (
9
+ LanguageModelOutput,
10
+ create_attention_mask,
11
+ scaled_dot_product_attention,
12
+ )
13
+ from ..cache import KVCache, RotatingKVCache
14
+
15
+
16
+ @dataclass
17
+ class TextConfig:
18
+ model_type: str
19
+ hidden_size: int = 8192
20
+ head_dim: int = 128
21
+ num_hidden_layers: int = 40
22
+ intermediate_size: int = 14336
23
+ num_attention_heads: int = 64
24
+ num_key_value_heads: int = 8
25
+ rope_theta: float = 50000.0
26
+ vocab_size: int = 256000
27
+ layer_norm_eps: float = 1e-05
28
+ logit_scale: float = 0.0625
29
+ attention_bias: bool = False
30
+ layer_norm_bias: bool = False
31
+ sliding_window: int = 4096
32
+ sliding_window_pattern: int = 4
33
+ max_position_embeddings: int = 4096
34
+
35
+ @classmethod
36
+ def from_dict(cls, params):
37
+ return cls(
38
+ **{
39
+ k: v
40
+ for k, v in params.items()
41
+ if k in inspect.signature(cls).parameters
42
+ }
43
+ )
44
+
45
+
46
+ class Attention(nn.Module):
47
+ def __init__(self, config: TextConfig, layer_idx: int):
48
+ super().__init__()
49
+ self.config = config
50
+ self.layer_idx = layer_idx
51
+
52
+ dim = config.hidden_size
53
+ self.n_heads = n_heads = config.num_attention_heads
54
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
55
+ self.head_dim = head_dim = config.head_dim
56
+ if (head_dim * n_heads) != dim:
57
+ raise ValueError(
58
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {dim}"
59
+ f" and `num_heads`: {n_heads})."
60
+ )
61
+ self.scale = head_dim**-0.5
62
+
63
+ attetion_bias = config.attention_bias
64
+
65
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias)
66
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
67
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias)
68
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias)
69
+
70
+ self.rope = nn.RoPE(head_dim, traditional=True, base=config.rope_theta)
71
+
72
+ self.use_sliding_window = (layer_idx + 1) % config.sliding_window_pattern != 0
73
+
74
+ def __call__(
75
+ self,
76
+ x: mx.array,
77
+ mask: Optional[mx.array] = None,
78
+ cache: Optional[Tuple[mx.array, mx.array]] = None,
79
+ ) -> mx.array:
80
+ B, L, D = x.shape
81
+
82
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
83
+
84
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
85
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
86
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
87
+
88
+ # Apply RoPE only if sliding window is enabled
89
+ if self.use_sliding_window:
90
+ if cache is None:
91
+ queries = self.rope(queries)
92
+ keys = self.rope(keys)
93
+ else:
94
+ queries = self.rope(queries, offset=cache.offset)
95
+ keys = self.rope(keys, offset=cache.offset)
96
+
97
+ if cache is not None:
98
+ keys, values = cache.update_and_fetch(keys, values)
99
+
100
+ if self.use_sliding_window and mask is not None and isinstance(mask, mx.array):
101
+ key_len = keys.shape[-2]
102
+ if mask.shape[-1] != key_len:
103
+ mask = mask[..., -key_len:]
104
+
105
+ output = scaled_dot_product_attention(
106
+ queries, keys, values, cache, scale=self.scale, mask=mask
107
+ )
108
+
109
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
110
+ return self.o_proj(output)
111
+
112
+
113
+ class MLP(nn.Module):
114
+ def __init__(self, dim, hidden_dim):
115
+ super().__init__()
116
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
117
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
118
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
119
+
120
+ def __call__(self, x):
121
+ return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
122
+
123
+
124
+ class TransformerBlock(nn.Module):
125
+ def __init__(self, config: TextConfig, layer_idx: int):
126
+ super().__init__()
127
+ self.hidden_size = config.hidden_size
128
+ self.n_heads = config.num_attention_heads
129
+
130
+ self.self_attn = Attention(config, layer_idx)
131
+ self.mlp = MLP(config.hidden_size, config.intermediate_size)
132
+ self.input_layernorm = nn.LayerNorm(
133
+ config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
134
+ )
135
+ self.config = config
136
+
137
+ def __call__(
138
+ self,
139
+ x: mx.array,
140
+ mask: Optional[mx.array] = None,
141
+ cache: Optional[Tuple[mx.array, mx.array]] = None,
142
+ ) -> mx.array:
143
+ h = self.input_layernorm(x)
144
+ attn_h = self.self_attn(h, mask, cache)
145
+ ff_h = self.mlp(h)
146
+ return attn_h + ff_h + x
147
+
148
+
149
+ class CohereModel(nn.Module):
150
+ def __init__(self, config: TextConfig):
151
+ super().__init__()
152
+ self.config = config
153
+ self.vocab_size = config.vocab_size
154
+ self.num_hidden_layers = config.num_hidden_layers
155
+ assert self.vocab_size > 0
156
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
157
+ self.layers = [
158
+ TransformerBlock(config, layer_idx=i)
159
+ for i in range(config.num_hidden_layers)
160
+ ]
161
+ self.norm = nn.LayerNorm(
162
+ config.hidden_size, eps=config.layer_norm_eps, bias=config.layer_norm_bias
163
+ )
164
+
165
+ def __call__(
166
+ self,
167
+ inputs: mx.array,
168
+ inputs_embeds: mx.array = None,
169
+ mask: mx.array = None,
170
+ cache=None,
171
+ ):
172
+ if inputs_embeds is None:
173
+ h = self.embed_tokens(inputs)
174
+ else:
175
+ h = inputs_embeds
176
+
177
+ if cache is None:
178
+ cache = [None] * len(self.layers)
179
+
180
+ if mask is None:
181
+ j = self.config.sliding_window_pattern
182
+ mask = create_attention_mask(h, cache[j - 1 : j])
183
+
184
+ for layer, c in zip(self.layers, cache):
185
+ h = layer(h, mask, c)
186
+
187
+ return self.norm(h)
188
+
189
+
190
+ class LanguageModel(nn.Module):
191
+ def __init__(self, config: TextConfig):
192
+ super().__init__()
193
+ self.model_type = config.model_type
194
+ self.model = CohereModel(config)
195
+ self.config = config
196
+
197
+ def __call__(
198
+ self,
199
+ inputs: mx.array,
200
+ inputs_embeds: mx.array = None,
201
+ mask: mx.array = None,
202
+ cache=None,
203
+ ):
204
+ out = self.model(inputs, inputs_embeds, mask, cache)
205
+ out = self.model.embed_tokens.as_linear(out)
206
+ out = out * self.model.config.logit_scale
207
+ return LanguageModelOutput(logits=out)
208
+
209
+ def make_cache(self):
210
+ caches = []
211
+ for i in range(self.config.num_hidden_layers):
212
+ if (
213
+ i % self.config.sliding_window_pattern
214
+ == self.config.sliding_window_pattern - 1
215
+ ):
216
+ caches.append(KVCache())
217
+ else:
218
+ caches.append(
219
+ RotatingKVCache(max_size=self.config.sliding_window, keep=0)
220
+ )
221
+ return caches
222
+
223
+ @property
224
+ def layers(self):
225
+ return self.model.layers
226
+
227
+ @property
228
+ def head_dim(self):
229
+ return self.model.config.head_dim
230
+
231
+ @property
232
+ def n_kv_heads(self):
233
+ return self.model.config.num_key_value_heads