nexaai 1.0.19rc5__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (221) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
  5. nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
  6. nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
  7. nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
  8. nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
  9. nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
  10. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  11. nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
  12. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
  13. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
  14. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
  16. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  17. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
  18. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
  19. nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
  20. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
  21. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  22. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
  23. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
  25. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  26. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
  37. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
  38. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
  39. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  40. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
  41. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
  42. nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
  43. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  44. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
  45. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
  47. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  48. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
  49. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
  50. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
  51. nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
  58. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
  59. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
  60. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
  61. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
  62. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
  64. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
  66. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
  199. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
  200. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
  201. nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
  202. nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
  203. nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
  204. nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
  205. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
  206. nexaai/mlx_backend/vlm/interface.py +21 -4
  207. nexaai/mlx_backend/vlm/main.py +6 -2
  208. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  209. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  210. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  211. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  212. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  213. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  214. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  215. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  216. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  217. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  218. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
  219. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +221 -21
  220. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
  221. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,303 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Optional
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+ import numpy as np
8
+
9
+
10
+ @dataclass
11
+ class VisionConfig:
12
+ model_type: str
13
+ num_hidden_layers: int = 27
14
+ hidden_size: int = 1152
15
+ intermediate_size: int = 4304
16
+ num_attention_heads: int = 16
17
+ image_size: int = 384
18
+ patch_size: int = 14
19
+ projection_dim: int = 768
20
+ vocab_size: int = 32000
21
+ num_channels: int = 3
22
+ layer_norm_eps: float = 1e-6
23
+
24
+ @classmethod
25
+ def from_dict(cls, params):
26
+ return cls(
27
+ **{
28
+ k: v
29
+ for k, v in params.items()
30
+ if k in inspect.signature(cls).parameters
31
+ }
32
+ )
33
+
34
+
35
+ def check_array_shape(arr):
36
+ shape = arr.shape
37
+
38
+ # Check if the shape has 4 dimensions
39
+ if len(shape) != 4:
40
+ return False
41
+
42
+ out_channels, kH, KW, _ = shape
43
+
44
+ # Check if out_channels is the largest, and kH and KW are the same
45
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
46
+ return True
47
+ else:
48
+ return False
49
+
50
+
51
+ class Attention(nn.Module):
52
+ def __init__(
53
+ self,
54
+ dims: int,
55
+ num_heads: int,
56
+ query_input_dims: Optional[int] = None,
57
+ key_input_dims: Optional[int] = None,
58
+ value_input_dims: Optional[int] = None,
59
+ value_dims: Optional[int] = None,
60
+ value_output_dims: Optional[int] = None,
61
+ bias: bool = False,
62
+ ):
63
+ super().__init__()
64
+
65
+ if (dims % num_heads) != 0:
66
+ raise ValueError(
67
+ "The input feature dimensions should be divisible by the "
68
+ f"number of heads ({dims} % {num_heads}) != 0"
69
+ )
70
+
71
+ query_input_dims = query_input_dims or dims
72
+ key_input_dims = key_input_dims or dims
73
+ value_input_dims = value_input_dims or key_input_dims
74
+ value_dims = value_dims or dims
75
+ value_output_dims = value_output_dims or dims
76
+
77
+ self.num_heads = num_heads
78
+ head_dim = dims // num_heads
79
+ self.scale = head_dim**-0.5
80
+
81
+ self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
82
+ self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
83
+ self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
84
+ self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
85
+
86
+ def __call__(self, queries, keys, values, mask=None):
87
+ queries = self.q_proj(queries)
88
+ keys = self.k_proj(keys)
89
+ values = self.v_proj(values)
90
+
91
+ num_heads = self.num_heads
92
+ B, L, D = queries.shape
93
+ _, S, _ = keys.shape
94
+ queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
95
+ keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
96
+ values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
97
+
98
+ output = mx.fast.scaled_dot_product_attention(
99
+ queries, keys, values, scale=self.scale, mask=mask
100
+ )
101
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
102
+ return self.out_proj(output)
103
+
104
+
105
+ class MHA(nn.Module):
106
+ def __init__(
107
+ self,
108
+ dims: int,
109
+ num_heads: int,
110
+ bias: bool = False,
111
+ ):
112
+ super().__init__()
113
+
114
+ if (dims % num_heads) != 0:
115
+ raise ValueError(
116
+ "The input feature dimensions should be divisible by the "
117
+ f"number of heads ({dims} % {num_heads}) != 0"
118
+ )
119
+
120
+ self.num_heads = num_heads
121
+ head_dim = dims // num_heads
122
+ self.scale = head_dim**-0.5
123
+
124
+ self.in_proj = nn.Linear(dims, dims * 3, bias=bias)
125
+ self.out_proj = nn.Linear(dims, dims, bias=bias)
126
+
127
+ def __call__(self, queries: mx.array, kv: mx.array, mask=None):
128
+ B, L, D = queries.shape
129
+
130
+ qkv = self.in_proj(queries)
131
+ _, keys, values = mx.split(qkv, 3, axis=-1)
132
+
133
+ num_heads = self.num_heads
134
+ B, L, D = queries.shape
135
+ _, S, _ = keys.shape
136
+ queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
137
+ keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
138
+ values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
139
+
140
+ output = mx.fast.scaled_dot_product_attention(
141
+ queries, keys, values, scale=self.scale, mask=mask
142
+ )
143
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
144
+ return self.out_proj(output)
145
+
146
+
147
+ class MLP(nn.Module):
148
+ def __init__(self, config: VisionConfig):
149
+ super().__init__()
150
+ self.activation_fn = nn.GELU(approx="fast")
151
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
152
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
153
+
154
+ def __call__(self, x: mx.array) -> mx.array:
155
+ x = self.activation_fn(self.fc1(x))
156
+ x = self.fc2(x)
157
+ return x
158
+
159
+
160
+ class EncoderLayer(nn.Module):
161
+ def __init__(self, config: VisionConfig):
162
+ super().__init__()
163
+ self.embed_dim = config.hidden_size
164
+ self.self_attn = Attention(
165
+ config.hidden_size, config.num_attention_heads, bias=True
166
+ )
167
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
168
+ self.mlp = MLP(config)
169
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
170
+
171
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
172
+ y = self.layer_norm1(x)
173
+ y = self.self_attn(y, y, y, mask)
174
+ x = x + y
175
+ y = self.layer_norm2(x)
176
+ y = self.mlp(y)
177
+ return x + y
178
+
179
+
180
+ class Encoder(nn.Module):
181
+ def __init__(self, config: VisionConfig):
182
+ super().__init__()
183
+ self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
184
+
185
+
186
+ class VisionEmbeddings(nn.Module):
187
+ def __init__(self, config: VisionConfig):
188
+ super().__init__()
189
+ self.config = config
190
+ self.embed_dim = config.hidden_size
191
+ self.image_size = config.image_size
192
+ self.patch_size = config.patch_size
193
+
194
+ self.patch_embedding = nn.Conv2d(
195
+ in_channels=config.num_channels,
196
+ out_channels=self.embed_dim,
197
+ kernel_size=self.patch_size,
198
+ stride=self.patch_size,
199
+ bias=True,
200
+ )
201
+
202
+ self.num_patches = (self.image_size // self.patch_size) ** 2
203
+ self.num_positions = self.num_patches
204
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
205
+
206
+ def __call__(self, x: mx.array) -> mx.array:
207
+ batch_size = x.shape[0]
208
+ patch_embeddings = self.patch_embedding(x)
209
+ patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
210
+ position_ids = mx.array(np.arange(self.num_positions)[None, :])
211
+ embeddings = patch_embeddings
212
+ embeddings += self.position_embedding(position_ids)
213
+ return embeddings
214
+
215
+
216
+ class SigLipVisionModel(nn.Module):
217
+ def __init__(self, config: VisionConfig):
218
+ super().__init__()
219
+ self.embeddings = VisionEmbeddings(config)
220
+ self.encoder = Encoder(config)
221
+ self.post_layernorm = nn.LayerNorm(config.hidden_size)
222
+ self.head = SigLipMultiheadAttentionPoolingHead(config)
223
+
224
+ def __call__(
225
+ self,
226
+ x: mx.array,
227
+ output_hidden_states: Optional[bool] = None,
228
+ ) -> mx.array:
229
+ x = self.embeddings(x)
230
+
231
+ encoder_states = (x,) if output_hidden_states else None
232
+
233
+ for l in self.encoder.layers:
234
+ x = l(x, mask=None)
235
+ if output_hidden_states:
236
+ encoder_states = encoder_states + (x,)
237
+
238
+ pooler_output = self.post_layernorm(x[:, 0, :])
239
+ pooler_output = self.head(pooler_output)
240
+ return pooler_output, x, encoder_states
241
+
242
+
243
+ class SigLipMultiheadAttentionPoolingHead(nn.Module):
244
+
245
+ def __init__(self, config: VisionConfig):
246
+ super().__init__()
247
+
248
+ self.probe = mx.ones(
249
+ (
250
+ 1,
251
+ 1,
252
+ config.hidden_size,
253
+ )
254
+ )
255
+ self.attention = MHA(
256
+ config.hidden_size, num_heads=config.num_attention_heads, bias=True
257
+ )
258
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
259
+ self.mlp = MLP(config)
260
+
261
+ def __call__(self, x: mx.array):
262
+ x = self.attention(self.probe, x)[0]
263
+
264
+ residual = x
265
+ x = self.layernorm(x)
266
+ x = residual + self.mlp(x)
267
+
268
+ return x[:, 0]
269
+
270
+
271
+ class VisionModel(nn.Module):
272
+ def __init__(self, config: VisionConfig):
273
+ super().__init__()
274
+ self.model_type = config.model_type
275
+ if self.model_type != "siglip_vision_model":
276
+ raise ValueError(f"Unsupported model type: {self.model_type}")
277
+
278
+ self.vision_model = SigLipVisionModel(config)
279
+
280
+ def __call__(
281
+ self, x: mx.array, output_hidden_states: Optional[bool] = None
282
+ ) -> mx.array:
283
+ return self.vision_model(x, output_hidden_states)
284
+
285
+ def sanitize(self, weights):
286
+ sanitized_weights = {}
287
+ for k, v in weights.items():
288
+ if "position_ids" in k:
289
+ # Remove unused position_ids
290
+ continue
291
+ elif "patch_embedding.weight" in k:
292
+ # PyTorch conv2d weight tensors have shape:
293
+ # [out_channels, in_channels, kH, KW]
294
+ # MLX conv2d expects the weight be of shape:
295
+ # [out_channels, kH, KW, in_channels]
296
+ if check_array_shape(v):
297
+ sanitized_weights[k] = v
298
+ else:
299
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
300
+ else:
301
+ sanitized_weights[k] = v
302
+
303
+ return sanitized_weights
@@ -0,0 +1,8 @@
1
+ from .llava_next import (
2
+ LanguageModel,
3
+ Model,
4
+ ModelConfig,
5
+ TextConfig,
6
+ VisionConfig,
7
+ VisionModel,
8
+ )
@@ -0,0 +1,230 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Dict, Optional, Tuple, Union
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+
8
+ from ..base import (
9
+ LanguageModelOutput,
10
+ create_attention_mask,
11
+ scaled_dot_product_attention,
12
+ )
13
+ from ..cache import KVCache
14
+
15
+
16
+ @dataclass
17
+ class TextConfig:
18
+ model_type: str
19
+ hidden_size: int = 4096
20
+ num_hidden_layers: int = 32
21
+ intermediate_size: int = 14336
22
+ num_attention_heads: int = 32
23
+ rms_norm_eps: float = 1e-05
24
+ vocab_size: int = 32064
25
+ num_key_value_heads: int = 8
26
+ rope_theta: float = 1000000
27
+ rope_traditional: bool = False
28
+ rope_scaling: Optional[Dict[str, Union[float, str]]] = None
29
+ max_position_embeddings: int = 4096
30
+
31
+ @classmethod
32
+ def from_dict(cls, params):
33
+ return cls(
34
+ **{
35
+ k: v
36
+ for k, v in params.items()
37
+ if k in inspect.signature(cls).parameters
38
+ }
39
+ )
40
+
41
+ def __post_init__(self):
42
+ if self.num_key_value_heads is None:
43
+ self.num_key_value_heads = self.num_attention_heads
44
+
45
+ if self.rope_scaling:
46
+ required_keys = {"factor", "type"}
47
+ if not all(key in self.rope_scaling for key in required_keys):
48
+ raise ValueError(f"rope_scaling must contain keys {required_keys}")
49
+
50
+ if self.rope_scaling["type"] != "linear":
51
+ raise ValueError("rope_scaling 'type' currently only supports 'linear'")
52
+
53
+
54
+ class Attention(nn.Module):
55
+ def __init__(self, config: TextConfig):
56
+ super().__init__()
57
+
58
+ dim = config.hidden_size
59
+ self.n_heads = n_heads = config.num_attention_heads
60
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
61
+
62
+ self.repeats = n_heads // n_kv_heads
63
+
64
+ head_dim = config.hidden_size // n_heads
65
+ self.scale = head_dim**-0.5
66
+
67
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
68
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
69
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
70
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
71
+
72
+ rope_scale = (
73
+ 1 / config.rope_scaling["factor"]
74
+ if config.rope_scaling is not None
75
+ and config.rope_scaling["type"] == "linear"
76
+ else 1
77
+ )
78
+ self.rope = nn.RoPE(
79
+ head_dim,
80
+ traditional=config.rope_traditional,
81
+ base=config.rope_theta,
82
+ scale=rope_scale,
83
+ )
84
+
85
+ def __call__(
86
+ self,
87
+ x: mx.array,
88
+ mask: Optional[mx.array] = None,
89
+ cache: Optional[KVCache] = None,
90
+ ) -> mx.array:
91
+ B, L, D = x.shape
92
+
93
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
94
+
95
+ # Prepare the queries, keys and values for the attention computation
96
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
97
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
98
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
99
+
100
+ if cache is not None:
101
+ queries = self.rope(queries, offset=cache.offset)
102
+ keys = self.rope(keys, offset=cache.offset)
103
+ keys, values = cache.update_and_fetch(keys, values)
104
+ else:
105
+ queries = self.rope(queries)
106
+ keys = self.rope(keys)
107
+
108
+ output = scaled_dot_product_attention(
109
+ queries, keys, values, cache, scale=self.scale, mask=mask
110
+ )
111
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
112
+ return self.o_proj(output)
113
+
114
+
115
+ class MLP(nn.Module):
116
+ def __init__(self, dim, hidden_dim):
117
+ super().__init__()
118
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
119
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
120
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
121
+
122
+ def __call__(self, x) -> mx.array:
123
+ return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
124
+
125
+
126
+ class TransformerBlock(nn.Module):
127
+ def __init__(self, config: TextConfig):
128
+ super().__init__()
129
+ self.num_attention_heads = config.num_attention_heads
130
+ self.hidden_size = config.hidden_size
131
+ self.self_attn = Attention(config)
132
+ self.mlp = MLP(config.hidden_size, config.intermediate_size)
133
+ self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
134
+ self.post_attention_layernorm = nn.RMSNorm(
135
+ config.hidden_size, eps=config.rms_norm_eps
136
+ )
137
+ self.config = config
138
+
139
+ def __call__(
140
+ self,
141
+ x: mx.array,
142
+ mask: Optional[mx.array] = None,
143
+ cache: Optional[KVCache] = None,
144
+ ) -> mx.array:
145
+ r = self.self_attn(self.input_layernorm(x), mask, cache)
146
+ h = x + r
147
+ r = self.mlp(self.post_attention_layernorm(h))
148
+ out = h + r
149
+ return out
150
+
151
+
152
+ class Llama(nn.Module):
153
+ def __init__(self, config: TextConfig):
154
+ super().__init__()
155
+ self.config = config
156
+ self.vocab_size = config.vocab_size
157
+ self.num_hidden_layers = config.num_hidden_layers
158
+ assert self.vocab_size > 0
159
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
160
+ self.layers = [
161
+ TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
162
+ ]
163
+ self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
164
+
165
+ def __call__(
166
+ self,
167
+ inputs: mx.array,
168
+ inputs_embeds: Optional[mx.array] = None,
169
+ mask: Optional[mx.array] = None,
170
+ cache=None,
171
+ ):
172
+ # for passing merged input embeddings
173
+ if inputs_embeds is None:
174
+ h = self.embed_tokens(inputs)
175
+ else:
176
+ h = inputs_embeds
177
+
178
+ if cache is None:
179
+ cache = [None] * len(self.layers)
180
+
181
+ if mask is None:
182
+ mask = create_attention_mask(h, cache)
183
+
184
+ for layer, c in zip(self.layers, cache):
185
+ h = layer(h, mask, c)
186
+
187
+ return self.norm(h)
188
+
189
+
190
+ class LanguageModel(nn.Module):
191
+ def __init__(self, config: TextConfig):
192
+ super().__init__()
193
+ self.config = config
194
+ self.model_type = config.model_type
195
+ if self.model_type not in ["mistral", "llama"]:
196
+ raise ValueError(
197
+ f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
198
+ )
199
+ self.model = Llama(config)
200
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
201
+
202
+ def __call__(
203
+ self,
204
+ inputs: mx.array,
205
+ inputs_embeds=None,
206
+ mask: Optional[mx.array] = None,
207
+ cache=None,
208
+ ):
209
+ out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
210
+ logits = self.lm_head(out)
211
+ return LanguageModelOutput(logits=logits)
212
+
213
+ @staticmethod
214
+ def sanitize(weights):
215
+ # Remove unused precomputed rotary freqs
216
+ return {
217
+ k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
218
+ }
219
+
220
+ @property
221
+ def layers(self):
222
+ return self.model.layers
223
+
224
+ @property
225
+ def head_dim(self):
226
+ return self.config.hidden_size // self.config.num_attention_heads
227
+
228
+ @property
229
+ def n_kv_heads(self):
230
+ return self.config.num_key_value_heads
@@ -0,0 +1,160 @@
1
+ import glob
2
+ import inspect
3
+ import json
4
+ from dataclasses import dataclass
5
+ from pathlib import Path
6
+ from typing import List, Optional
7
+
8
+ import mlx.core as mx
9
+ import mlx.nn as nn
10
+ import numpy as np
11
+ from huggingface_hub import snapshot_download
12
+
13
+ from .language import LanguageModel, TextConfig
14
+ from .vision import VisionConfig, VisionModel
15
+
16
+
17
+ @dataclass
18
+ class ModelConfig:
19
+ text_config: TextConfig
20
+ vision_config: VisionConfig
21
+ model_type: str
22
+ ignore_index: int = -100
23
+ image_token_index: int = 32000
24
+ vision_feature_select_strategy: str = "default"
25
+ vision_feature_layer: int = -2
26
+ vocab_size: int = 32000
27
+ eos_token_id: Optional[List[int]] = None
28
+
29
+ @classmethod
30
+ def from_dict(cls, params):
31
+ return cls(
32
+ **{
33
+ k: v
34
+ for k, v in params.items()
35
+ if k in inspect.signature(cls).parameters
36
+ }
37
+ )
38
+
39
+
40
+ class LlavaMultiModalProjector(nn.Module):
41
+ def __init__(self, config: ModelConfig):
42
+ super().__init__()
43
+ self.linear_1 = nn.Linear(
44
+ config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
45
+ )
46
+ self.gelu = nn.GELU()
47
+ self.linear_2 = nn.Linear(
48
+ config.text_config.hidden_size, config.text_config.hidden_size, bias=True
49
+ )
50
+
51
+ def __call__(self, x: mx.array) -> mx.array:
52
+ x = self.linear_1(x)
53
+ x = self.gelu(x)
54
+ x = self.linear_2(x)
55
+ return x
56
+
57
+
58
+ class Model(nn.Module):
59
+ def __init__(self, config: ModelConfig):
60
+ super().__init__()
61
+ self.config = config
62
+ self.vision_tower = VisionModel(config.vision_config)
63
+ self.language_model = LanguageModel(config.text_config)
64
+ embed_std = 1 / mx.sqrt(config.text_config.hidden_size)
65
+ self.image_newline = (
66
+ mx.random.normal((config.text_config.hidden_size,)) * embed_std
67
+ )
68
+
69
+ self.multi_modal_projector = LlavaMultiModalProjector(config)
70
+ self.vision_feature_layer = config.vision_feature_layer
71
+ self.vision_feature_select_strategy = config.vision_feature_select_strategy
72
+
73
+ def get_input_embeddings(
74
+ self,
75
+ input_ids: Optional[mx.array] = None,
76
+ pixel_values: Optional[mx.array] = None,
77
+ ):
78
+ if pixel_values is None:
79
+ return self.language_model.model.embed_tokens(input_ids)
80
+
81
+ # Get the input embeddings from the language model
82
+ inputs_embeds = self.language_model.model.embed_tokens(input_ids)
83
+
84
+ # Get the ouptut hidden states from the vision model
85
+ *_, hidden_states = self.vision_tower(
86
+ pixel_values[0].transpose(0, 2, 3, 1), output_hidden_states=True
87
+ )
88
+
89
+ # Select the hidden states from the desired layer
90
+ selected_image_feature = hidden_states[self.vision_feature_layer]
91
+
92
+ if self.vision_feature_select_strategy == "default":
93
+ selected_image_feature = selected_image_feature[:, 1:]
94
+ elif self.vision_feature_select_strategy == "full":
95
+ selected_image_feature = selected_image_feature
96
+ else:
97
+ raise ValueError(
98
+ "Unexpected feature selection strategy: "
99
+ f"{self.vision_feature_select_strategy}"
100
+ )
101
+
102
+ # Pass image features through the multi-modal projector
103
+ image_features = self.multi_modal_projector(selected_image_feature)
104
+
105
+ # Add a newline token to the image features
106
+ if self.image_newline is not None:
107
+ self.image_newline = np.array(self.image_newline)[None, None, :]
108
+ self.image_newline = np.broadcast_to(
109
+ self.image_newline, image_features.shape
110
+ )
111
+ image_newline = mx.array(self.image_newline)
112
+ image_features = mx.concatenate([image_features, image_newline], axis=0)
113
+
114
+ # Insert special image tokens in the input_ids
115
+ final_inputs_embeds = self._merge_input_ids_with_image_features(
116
+ image_features, inputs_embeds, input_ids
117
+ )
118
+ return final_inputs_embeds
119
+
120
+ def _merge_input_ids_with_image_features(
121
+ self, image_features, inputs_embeds, input_ids
122
+ ):
123
+ image_token_index = self.config.image_token_index
124
+ num_images, num_image_patches, embed_dim = image_features.shape
125
+
126
+ image_positions = np.where(input_ids == image_token_index)[1].tolist()
127
+
128
+ text_segments = []
129
+ start_idx = 0
130
+
131
+ for position in image_positions:
132
+ text_segments.append(inputs_embeds[:, start_idx:position])
133
+ start_idx = position + 1
134
+
135
+ image_embeddings = mx.split(image_features, image_features.shape[0])
136
+ final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
137
+ final_embeddings += [inputs_embeds[:, start_idx:]]
138
+
139
+ # Create a final embedding of shape
140
+ # (1, num_image_patches*num_images + sequence_len, embed_dim)
141
+ return mx.concatenate(final_embeddings, axis=1)
142
+
143
+ @property
144
+ def layers(self):
145
+ return self.language_model.model.layers
146
+
147
+ def __call__(
148
+ self,
149
+ input_ids: mx.array,
150
+ pixel_values: mx.array,
151
+ mask: mx.array,
152
+ cache=None,
153
+ **kwargs,
154
+ ):
155
+
156
+ input_embddings = self.get_input_embeddings(input_ids, pixel_values)
157
+ logits = self.language_model(
158
+ input_ids, cache=cache, inputs_embeds=input_embddings
159
+ )
160
+ return logits