nexaai 1.0.19rc5__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (221) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
  5. nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
  6. nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
  7. nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
  8. nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
  9. nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
  10. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  11. nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
  12. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
  13. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
  14. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
  16. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  17. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
  18. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
  19. nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
  20. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
  21. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  22. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
  23. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
  25. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  26. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
  37. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
  38. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
  39. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  40. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
  41. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
  42. nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
  43. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  44. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
  45. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
  47. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  48. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
  49. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
  50. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
  51. nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
  58. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
  59. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
  60. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
  61. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
  62. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
  64. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
  66. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
  199. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
  200. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
  201. nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
  202. nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
  203. nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
  204. nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
  205. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
  206. nexaai/mlx_backend/vlm/interface.py +21 -4
  207. nexaai/mlx_backend/vlm/main.py +6 -2
  208. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  209. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  210. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  211. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  212. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  213. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  214. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  215. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  216. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  217. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  218. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
  219. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +221 -21
  220. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
  221. {nexaai-1.0.19rc5.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,591 @@
1
+ import inspect
2
+ import math
3
+ from dataclasses import dataclass
4
+ from typing import Any, Dict, Optional, Tuple, Union
5
+
6
+ import mlx.core as mx
7
+ import mlx.nn as nn
8
+ from mlx_lm.models.switch_layers import SwitchGLU
9
+
10
+ from ..base import (
11
+ LanguageModelOutput,
12
+ create_attention_mask,
13
+ scaled_dot_product_attention,
14
+ )
15
+ from ..cache import KVCache, RotatingKVCache
16
+
17
+
18
+ @dataclass
19
+ class TextConfig:
20
+ model_type: str = "deepseek_v2"
21
+ vocab_size: int = 102400
22
+ hidden_size: int = 1280
23
+ intermediate_size: int = 6848
24
+ moe_intermediate_size: int = 896
25
+ num_hidden_layers: int = 30
26
+ num_attention_heads: int = 32
27
+ num_key_value_heads: int = 32
28
+ n_shared_experts: Optional[int] = 2
29
+ n_routed_experts: Optional[int] = 64
30
+ routed_scaling_factor: float = 1.0
31
+ kv_lora_rank: int = 512
32
+ q_lora_rank: int = 1536
33
+ qk_rope_head_dim: int = 64
34
+ v_head_dim: int = 128
35
+ qk_nope_head_dim: int = 128
36
+ topk_method: str = "greedy"
37
+ n_group: Optional[int] = 1
38
+ topk_group: Optional[int] = 1
39
+ num_experts_per_tok: Optional[int] = 6
40
+ moe_layer_freq: int = 1
41
+ first_k_dense_replace: int = 0
42
+ max_position_embeddings: int = 2048
43
+ rms_norm_eps: float = 1e-6
44
+ rope_theta: float = 10000.0
45
+ rope_traditional: bool = True
46
+ rope_scaling: Dict = None
47
+ attention_bias: bool = False
48
+ scoring_func: str = "softmax"
49
+ attn_type: str = "DeepseekV2Attention"
50
+
51
+ @classmethod
52
+ def from_dict(cls, params):
53
+ return cls(
54
+ **{
55
+ k: v
56
+ for k, v in params.items()
57
+ if k in inspect.signature(cls).parameters
58
+ }
59
+ )
60
+
61
+ def __post_init__(self):
62
+ if self.qk_nope_head_dim == 0:
63
+ self.attn_type = "LlamaAttention"
64
+
65
+ if self.num_key_value_heads is None:
66
+ self.num_key_value_heads = self.num_attention_heads
67
+
68
+
69
+ def yarn_find_correction_dim(
70
+ num_rotations, dim, base=10000, max_position_embeddings=2048
71
+ ):
72
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
73
+ 2 * math.log(base)
74
+ )
75
+
76
+
77
+ def yarn_find_correction_range(
78
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
79
+ ):
80
+ low = math.floor(
81
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
82
+ )
83
+ high = math.ceil(
84
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
85
+ )
86
+ return max(low, 0), min(high, dim - 1)
87
+
88
+
89
+ def yarn_get_mscale(scale=1, mscale=1):
90
+ if scale <= 1:
91
+ return 1.0
92
+ return 0.1 * mscale * math.log(scale) + 1.0
93
+
94
+
95
+ def yarn_linear_ramp_mask(min_val, max_val, dim):
96
+ if min_val == max_val:
97
+ max_val += 0.001 # Prevent singularity
98
+
99
+ linear_func = (mx.arange(dim, dtype=mx.float32) - min_val) / (max_val - min_val)
100
+ return mx.clip(linear_func, 0, 1)
101
+
102
+
103
+ class DeepseekV2YarnRotaryEmbedding(nn.Module):
104
+ def __init__(
105
+ self,
106
+ dim,
107
+ max_position_embeddings=2048,
108
+ base=10000,
109
+ scaling_factor=1.0,
110
+ original_max_position_embeddings=4096,
111
+ beta_fast=32,
112
+ beta_slow=1,
113
+ mscale=1,
114
+ mscale_all_dim=0,
115
+ ):
116
+ super().__init__()
117
+ self.mscale = yarn_get_mscale(scaling_factor, mscale) / yarn_get_mscale(
118
+ scaling_factor, mscale_all_dim
119
+ )
120
+ freq_extra = base ** (mx.arange(0, dim, 2, dtype=mx.float32) / dim)
121
+ freq_inter = scaling_factor * base ** (
122
+ mx.arange(0, dim, 2, dtype=mx.float32) / dim
123
+ )
124
+ low, high = yarn_find_correction_range(
125
+ beta_fast,
126
+ beta_slow,
127
+ dim,
128
+ base,
129
+ original_max_position_embeddings,
130
+ )
131
+ freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
132
+ self._freqs = (freq_inter * freq_extra) / (
133
+ freq_inter * freq_mask + freq_extra * (1 - freq_mask)
134
+ )
135
+
136
+ def __call__(self, x, offset=0):
137
+ if self.mscale != 1.0:
138
+ x = self.mscale * x
139
+ return mx.fast.rope(
140
+ x,
141
+ x.shape[-1],
142
+ traditional=True,
143
+ base=None,
144
+ scale=1.0,
145
+ offset=offset,
146
+ freqs=self._freqs,
147
+ )
148
+
149
+
150
+ class DeepseekV2Attention(nn.Module):
151
+ def __init__(self, config: TextConfig):
152
+ super().__init__()
153
+ self.config = config
154
+ self.hidden_size = config.hidden_size
155
+ self.num_heads = config.num_attention_heads
156
+ self.max_position_embeddings = config.max_position_embeddings
157
+ self.rope_theta = config.rope_theta
158
+ self.q_lora_rank = config.q_lora_rank
159
+ self.qk_rope_head_dim = config.qk_rope_head_dim
160
+ self.kv_lora_rank = config.kv_lora_rank
161
+ self.v_head_dim = config.v_head_dim
162
+ self.qk_nope_head_dim = config.qk_nope_head_dim
163
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
164
+
165
+ self.scale = self.q_head_dim**-0.5
166
+
167
+ if self.q_lora_rank is None:
168
+ self.q_proj = nn.Linear(
169
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
170
+ )
171
+ else:
172
+ self.q_a_proj = nn.Linear(
173
+ self.hidden_size, self.q_lora_rank, bias=config.attention_bias
174
+ )
175
+ self.q_a_layernorm = nn.RMSNorm(self.q_lora_rank)
176
+ self.q_b_proj = nn.Linear(
177
+ self.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
178
+ )
179
+
180
+ self.kv_a_proj_with_mqa = nn.Linear(
181
+ self.hidden_size,
182
+ self.kv_lora_rank + self.qk_rope_head_dim,
183
+ bias=config.attention_bias,
184
+ )
185
+ self.kv_a_layernorm = nn.RMSNorm(self.kv_lora_rank)
186
+ self.kv_b_proj = nn.Linear(
187
+ self.kv_lora_rank,
188
+ self.num_heads
189
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
190
+ bias=False,
191
+ )
192
+
193
+ self.o_proj = nn.Linear(
194
+ self.num_heads * self.v_head_dim,
195
+ self.hidden_size,
196
+ bias=config.attention_bias,
197
+ )
198
+
199
+ if self.config.rope_scaling is None:
200
+ self.rope = nn.RoPE(
201
+ self.qk_rope_head_dim,
202
+ traditional=self.config.rope_traditional,
203
+ base=self.rope_theta,
204
+ )
205
+ else:
206
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
207
+ scaling_factor = self.config.rope_scaling.get("factor", 1)
208
+ if mscale_all_dim:
209
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
210
+ self.scale = self.scale * mscale * mscale
211
+
212
+ rope_kwargs = {
213
+ key: self.config.rope_scaling[key]
214
+ for key in [
215
+ "original_max_position_embeddings",
216
+ "beta_fast",
217
+ "beta_slow",
218
+ "mscale",
219
+ "mscale_all_dim",
220
+ ]
221
+ if key in self.config.rope_scaling
222
+ }
223
+ self.rope = DeepseekV2YarnRotaryEmbedding(
224
+ dim=self.qk_rope_head_dim,
225
+ max_position_embeddings=self.max_position_embeddings,
226
+ scaling_factor=scaling_factor,
227
+ base=self.rope_theta,
228
+ **rope_kwargs,
229
+ )
230
+
231
+ def __call__(
232
+ self,
233
+ x: mx.array,
234
+ mask: Optional[mx.array] = None,
235
+ cache: Optional[Any] = None,
236
+ ) -> mx.array:
237
+ B, L, D = x.shape
238
+
239
+ if self.q_lora_rank is None:
240
+ q = self.q_proj(x)
241
+ else:
242
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(x)))
243
+
244
+ q = q.reshape(B, L, self.num_heads, self.q_head_dim).transpose(0, 2, 1, 3)
245
+ q_nope, q_pe = mx.split(q, [self.qk_nope_head_dim], axis=-1)
246
+ compressed_kv = self.kv_a_proj_with_mqa(x)
247
+ compressed_kv, k_pe = mx.split(compressed_kv, [self.kv_lora_rank], axis=-1)
248
+ k_pe = k_pe.reshape(B, L, 1, self.qk_rope_head_dim).transpose(0, 2, 1, 3)
249
+ kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
250
+ kv = kv.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
251
+
252
+ k_nope, values = mx.split(kv, [self.qk_nope_head_dim], axis=-1)
253
+
254
+ if cache is not None:
255
+ q_pe = self.rope(q_pe, cache.offset)
256
+ k_pe = self.rope(k_pe, cache.offset)
257
+ k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
258
+ keys, values = cache.update_and_fetch(
259
+ mx.concatenate([k_nope, k_pe], axis=-1), values
260
+ )
261
+ else:
262
+ q_pe = self.rope(q_pe)
263
+ k_pe = self.rope(k_pe)
264
+ k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
265
+ keys = mx.concatenate([k_nope, k_pe], axis=-1)
266
+
267
+ queries = mx.concatenate([q_nope, q_pe], axis=-1)
268
+
269
+ output = scaled_dot_product_attention(
270
+ queries, keys, values, cache, scale=self.scale, mask=mask
271
+ )
272
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
273
+ return self.o_proj(output)
274
+
275
+
276
+ class LlamaAttention(nn.Module):
277
+ def __init__(self, config: TextConfig):
278
+ super().__init__()
279
+
280
+ dim = config.hidden_size
281
+ self.n_heads = n_heads = config.num_attention_heads
282
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
283
+
284
+ self.head_dim = head_dim = config.hidden_size // n_heads
285
+
286
+ self.scale = head_dim**-0.5
287
+ if config.attention_bias:
288
+ attention_bias = config.attention_bias
289
+ else:
290
+ attention_bias = False
291
+
292
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
293
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
294
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
295
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
296
+
297
+ rope_scale = (
298
+ 1 / config.rope_scaling["factor"]
299
+ if config.rope_scaling is not None
300
+ and config.rope_scaling["type"] == "linear"
301
+ else 1
302
+ )
303
+ self.rope = nn.RoPE(
304
+ head_dim,
305
+ traditional=config.rope_traditional,
306
+ base=config.rope_theta,
307
+ scale=rope_scale,
308
+ )
309
+
310
+ def __call__(
311
+ self,
312
+ x: mx.array,
313
+ mask: Optional[mx.array] = None,
314
+ cache: Optional[Any] = None,
315
+ ) -> mx.array:
316
+ B, L, D = x.shape
317
+
318
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
319
+
320
+ # Prepare the queries, keys and values for the attention computation
321
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
322
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
323
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
324
+
325
+ if cache is not None:
326
+ queries = self.rope(queries, offset=cache.offset)
327
+ keys = self.rope(keys, offset=cache.offset)
328
+ keys, values = cache.update_and_fetch(keys, values)
329
+ else:
330
+ queries = self.rope(queries)
331
+ keys = self.rope(keys)
332
+
333
+ output = scaled_dot_product_attention(
334
+ queries, keys, values, cache, scale=self.scale, mask=mask
335
+ )
336
+
337
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
338
+ return self.o_proj(output)
339
+
340
+
341
+ class DeepseekV2MLP(nn.Module):
342
+ def __init__(
343
+ self, config: TextConfig, hidden_size: int = None, intermediate_size: int = None
344
+ ):
345
+ super().__init__()
346
+ self.config = config
347
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
348
+ self.intermediate_size = (
349
+ config.intermediate_size if intermediate_size is None else intermediate_size
350
+ )
351
+
352
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
353
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
354
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
355
+
356
+ def __call__(self, x):
357
+ down_proj = self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
358
+ return down_proj
359
+
360
+
361
+ class MoEGate(nn.Module):
362
+ def __init__(self, config: TextConfig):
363
+ super().__init__()
364
+ self.config = config
365
+ self.scoring_func = config.scoring_func
366
+ self.top_k = config.num_experts_per_tok
367
+ self.n_routed_experts = config.n_routed_experts
368
+ self.routed_scaling_factor = config.routed_scaling_factor
369
+ self.topk_method = config.topk_method
370
+ self.n_group = config.n_group
371
+ self.topk_group = config.topk_group
372
+ if self.topk_method == "noaux_tc":
373
+ self.e_score_correction_bias = mx.zeros((self.n_routed_experts))
374
+ self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
375
+
376
+ def __call__(self, x):
377
+ gates = x @ self.weight.T
378
+
379
+ if self.scoring_func == "softmax":
380
+ scores = mx.softmax(gates, axis=-1, precise=True)
381
+ elif self.scoring_func == "sigmoid":
382
+ scores = mx.sigmoid(gates)
383
+ else:
384
+ raise ValueError(f"Unknown scoring function: {self.scoring_func}")
385
+
386
+ if self.topk_method == "greedy":
387
+ bsz, seq_len = x.shape[:2]
388
+ scores = scores.reshape(bsz, seq_len, self.n_group, -1)
389
+ group_scores = scores.max(axis=-1)
390
+
391
+ # Get top-k groups
392
+ k = self.n_group - self.topk_group
393
+ group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-1)[..., :k]
394
+ batch_idx = mx.expand_dims(mx.arange(bsz), (1, 2))
395
+ seq_idx = mx.expand_dims(mx.arange(seq_len), (0, 2))
396
+
397
+ # Mask out top-k groups
398
+ scores[batch_idx, seq_idx, group_idx] = 0.0
399
+ scores = scores.reshape(bsz, seq_len, -1)
400
+
401
+ # Get top-k indices and weights
402
+ k = self.top_k
403
+ inds = mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k]
404
+ scores = mx.take_along_axis(scores, inds, axis=-1)
405
+
406
+ elif self.topk_method == "noaux_tc":
407
+ bsz, seq_len = x.shape[:2]
408
+
409
+ # Add bias correction
410
+ scores_for_choice = scores.reshape(bsz * seq_len, -1) + mx.expand_dims(
411
+ self.e_score_correction_bias, 0
412
+ )
413
+
414
+ # Calculate group scores using top-2 sum per group
415
+ scores_reshaped = scores_for_choice.reshape(bsz * seq_len, self.n_group, -1)
416
+
417
+ # Get top 2 scores per group
418
+ group_scores = mx.topk(scores_reshaped, 2, axis=-1).sum(axis=-1)
419
+
420
+ # Get top groups
421
+ k = self.n_group - self.topk_group
422
+
423
+ # Create mask for selected groups
424
+ group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-1)[..., :k]
425
+ batch_idx = mx.expand_dims(mx.arange(bsz), (1, 2))
426
+
427
+ seq_idx = mx.expand_dims(mx.arange(seq_len), (0, 2))
428
+ scores[batch_idx, seq_idx, group_idx] = 0.0
429
+
430
+ # Get top-k indices and weights
431
+ k = self.top_k
432
+ inds = mx.argpartition(scores, kth=-k, axis=-1)[..., -k:]
433
+
434
+ # Gather original scores for the selected indices
435
+ scores_flat = scores.reshape(bsz * seq_len, -1)
436
+ batch_idx = mx.expand_dims(mx.arange(bsz * seq_len), 1)
437
+ scores = mx.take(scores_flat, inds + batch_idx * scores_flat.shape[1])
438
+ else:
439
+ raise ValueError(f"Unknown topk method: {self.topk_method}")
440
+
441
+ scores = scores * self.routed_scaling_factor
442
+ return inds, scores
443
+
444
+
445
+ class DeepseekV2MoE(nn.Module):
446
+ def __init__(self, config: TextConfig):
447
+ super().__init__()
448
+ self.config = config
449
+ self.num_experts_per_tok = config.num_experts_per_tok
450
+ self.switch_mlp = SwitchGLU(
451
+ config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
452
+ )
453
+
454
+ self.gate = MoEGate(config)
455
+ if config.n_shared_experts is not None:
456
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
457
+ self.shared_experts = DeepseekV2MLP(
458
+ config=config, intermediate_size=intermediate_size
459
+ )
460
+
461
+ def __call__(self, x):
462
+ inds, scores = self.gate(x)
463
+ y = self.switch_mlp(x, inds)
464
+ y = (y * scores[..., None]).sum(axis=-2)
465
+ if self.config.n_shared_experts is not None:
466
+ y = y + self.shared_experts(x)
467
+
468
+ return y
469
+
470
+
471
+ class DeepseekV2DecoderLayer(nn.Module):
472
+ def __init__(self, config: TextConfig, layer_idx: int):
473
+ super().__init__()
474
+ self.attn_type = config.attn_type
475
+ self.self_attn = (
476
+ DeepseekV2Attention(config)
477
+ if self.attn_type == "DeepseekV2Attention"
478
+ else LlamaAttention(config)
479
+ )
480
+ self.mlp = (
481
+ DeepseekV2MoE(config)
482
+ if (
483
+ config.n_routed_experts is not None
484
+ and layer_idx >= config.first_k_dense_replace
485
+ and layer_idx % config.moe_layer_freq == 0
486
+ )
487
+ else DeepseekV2MLP(config)
488
+ )
489
+ self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
490
+ self.post_attention_layernorm = nn.RMSNorm(
491
+ config.hidden_size, eps=config.rms_norm_eps
492
+ )
493
+
494
+ def __call__(
495
+ self,
496
+ x: mx.array,
497
+ mask: Optional[mx.array] = None,
498
+ cache: Optional[Any] = None,
499
+ ) -> mx.array:
500
+ r = self.self_attn(self.input_layernorm(x), mask, cache)
501
+ h = x + r
502
+ r = self.mlp(self.post_attention_layernorm(h))
503
+ out = h + r
504
+ return out
505
+
506
+
507
+ class DeepseekV2Model(nn.Module):
508
+ def __init__(self, config: TextConfig):
509
+ super().__init__()
510
+ self.vocab_size = config.vocab_size
511
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
512
+ self.layers = [
513
+ DeepseekV2DecoderLayer(config, idx)
514
+ for idx in range(config.num_hidden_layers)
515
+ ]
516
+ self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
517
+
518
+ def __call__(
519
+ self,
520
+ x: mx.array,
521
+ mask: Optional[mx.array] = None,
522
+ inputs_embeds: Optional[mx.array] = None,
523
+ cache: Optional[Any] = None,
524
+ ) -> mx.array:
525
+
526
+ if inputs_embeds is None:
527
+ h = self.embed_tokens(x)
528
+ else:
529
+ h = inputs_embeds
530
+
531
+ if cache is None:
532
+ cache = [None] * len(self.layers)
533
+
534
+ if mask is None:
535
+ mask = create_attention_mask(h, cache)
536
+
537
+ for layer, c in zip(self.layers, cache):
538
+ h = layer(h, mask, c)
539
+
540
+ return self.norm(h)
541
+
542
+
543
+ class LanguageModel(nn.Module):
544
+ def __init__(self, config: TextConfig):
545
+ super().__init__()
546
+ self.config = config
547
+ self.model_type = config.model_type
548
+ self.model = DeepseekV2Model(config)
549
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
550
+
551
+ def __call__(
552
+ self,
553
+ inputs: mx.array,
554
+ inputs_embeds: Optional[mx.array] = None,
555
+ mask: Optional[mx.array] = None,
556
+ cache: Optional[Any] = None,
557
+ ):
558
+ out = self.model(inputs, mask=mask, inputs_embeds=inputs_embeds, cache=cache)
559
+ out = self.lm_head(out)
560
+ return LanguageModelOutput(logits=out)
561
+
562
+ def sanitize(self, weights):
563
+ for l in range(self.config.num_hidden_layers):
564
+ prefix = f"language_model.model.layers.{l}"
565
+ for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
566
+ for k in ["weight", "scales", "biases"]:
567
+ if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
568
+ to_join = [
569
+ weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
570
+ for e in range(self.config.n_routed_experts)
571
+ ]
572
+ weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
573
+ return weights
574
+
575
+ @property
576
+ def layers(self):
577
+ return self.model.layers
578
+
579
+ @property
580
+ def head_dim(self):
581
+ if self.config.attn_type == "DeepseekV2Attention":
582
+ return (
583
+ self.config.qk_nope_head_dim + self.config.qk_rope_head_dim,
584
+ self.config.v_head_dim,
585
+ )
586
+ else:
587
+ return self.config.hidden_size // self.config.num_key_value_heads
588
+
589
+ @property
590
+ def n_kv_heads(self):
591
+ return self.config.num_key_value_heads