mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +10 -1
- mteb/_create_dataloaders.py +8 -3
- mteb/_evaluators/any_sts_evaluator.py +14 -12
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
- mteb/_evaluators/pair_classification_evaluator.py +3 -1
- mteb/_evaluators/retrieval_metrics.py +0 -9
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_stratification.py +1 -1
- mteb/abstasks/abstask.py +6 -1
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/dataset_card_template.md +1 -1
- mteb/abstasks/multilabel_classification.py +2 -2
- mteb/abstasks/retrieval.py +2 -1
- mteb/abstasks/retrieval_dataset_loaders.py +1 -1
- mteb/abstasks/task_metadata.py +2 -1
- mteb/benchmarks/_create_table.py +1 -3
- mteb/benchmarks/benchmark.py +18 -1
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +125 -16
- mteb/benchmarks/get_benchmark.py +3 -1
- mteb/cache.py +7 -3
- mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
- mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
- mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
- mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
- mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
- mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
- mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
- mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
- mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
- mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
- mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
- mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
- mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
- mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
- mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
- mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
- mteb/evaluate.py +26 -6
- mteb/languages/check_language_code.py +11 -3
- mteb/languages/language_scripts.py +4 -0
- mteb/leaderboard/app.py +5 -3
- mteb/leaderboard/benchmark_selector.py +4 -2
- mteb/leaderboard/text_segments.py +1 -1
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/instruct_wrapper.py +3 -0
- mteb/models/model_implementations/align_models.py +6 -0
- mteb/models/model_implementations/andersborges.py +51 -0
- mteb/models/model_implementations/ara_models.py +7 -0
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +1 -3
- mteb/models/model_implementations/blip2_models.py +9 -0
- mteb/models/model_implementations/blip_models.py +19 -0
- mteb/models/model_implementations/bmretriever_models.py +1 -1
- mteb/models/model_implementations/cadet_models.py +8 -0
- mteb/models/model_implementations/cde_models.py +12 -0
- mteb/models/model_implementations/codefuse_models.py +15 -0
- mteb/models/model_implementations/codesage_models.py +12 -0
- mteb/models/model_implementations/cohere_models.py +1 -1
- mteb/models/model_implementations/colqwen_models.py +57 -0
- mteb/models/model_implementations/emillykkejensen_models.py +70 -0
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/ibm_granite_models.py +1 -1
- mteb/models/model_implementations/inf_models.py +3 -3
- mteb/models/model_implementations/jasper_models.py +253 -2
- mteb/models/model_implementations/jina_models.py +12 -2
- mteb/models/model_implementations/kalm_models.py +159 -25
- mteb/models/model_implementations/llm2vec_models.py +1 -1
- mteb/models/model_implementations/misc_models.py +8 -2
- mteb/models/model_implementations/moco_models.py +9 -0
- mteb/models/model_implementations/mxbai_models.py +1 -1
- mteb/models/model_implementations/openclip_models.py +16 -0
- mteb/models/model_implementations/piccolo_models.py +6 -0
- mteb/models/model_implementations/rasgaard_models.py +33 -0
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/salesforce_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
- mteb/models/model_implementations/tarka_models.py +374 -0
- mteb/models/model_implementations/voyage_models.py +6 -7
- mteb/models/model_implementations/voyage_v.py +10 -9
- mteb/models/model_implementations/yuan_models.py +33 -0
- mteb/models/search_wrappers.py +6 -5
- mteb/results/task_result.py +19 -17
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +2 -3
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/__init__.py +16 -0
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
- mteb/tasks/classification/nld/iconclass_classification.py +44 -0
- mteb/tasks/classification/nld/open_tender_classification.py +41 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/__init__.py +1 -0
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/__init__.py +17 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/__init__.py +1 -0
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/__init__.py +1 -0
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
- mteb/tasks/pair_classification/nld/__init__.py +7 -0
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +8 -8
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +18 -4
- mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
- mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
- mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
- mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
- mteb/tasks/retrieval/nld/__init__.py +18 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/rus/__init__.py +11 -2
- mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/__init__.py +1 -0
- mteb/tasks/sts/nld/__init__.py +5 -0
- mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb-2.1.19.dist-info/METADATA +253 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
- mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
- mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
- mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
- mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
- mteb-2.0.5.dist-info/METADATA +0 -455
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
|
@@ -23,14 +23,15 @@ class IndicXnliPairClassification(AbsTaskPairClassification):
|
|
|
23
23
|
"path": "mteb/IndicXnliPairClassification",
|
|
24
24
|
"revision": "027e97b9afe84ea3447b57b7705b8864bb2b3a83",
|
|
25
25
|
},
|
|
26
|
-
description=
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
26
|
+
description=(
|
|
27
|
+
"INDICXNLI is similar to existing XNLI dataset in shape/form, but "
|
|
28
|
+
"focuses on Indic language family. "
|
|
29
|
+
"The train (392,702), validation (2,490), and evaluation sets (5,010) of English "
|
|
30
|
+
"XNLI were translated from English into each of the eleven Indic languages. IndicTrans "
|
|
31
|
+
"is a large Transformer-based sequence to sequence model. It is trained on Samanantar "
|
|
32
|
+
"dataset (Ramesh et al., 2021), which is the largest parallel multi- lingual corpus "
|
|
33
|
+
"over eleven Indic languages."
|
|
34
|
+
),
|
|
34
35
|
reference="https://gem-benchmark.com/data_cards/opusparcus",
|
|
35
36
|
category="t2t",
|
|
36
37
|
modalities=["text"],
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
from mteb.abstasks.pair_classification import AbsTaskPairClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class SICKNLPairClassification(AbsTaskPairClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="SICKNLPairClassification",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "clips/mteb-nl-sick-pcls-pr",
|
|
10
|
+
"revision": "a13a1892bcb4c077dc416d390389223eea5f20f0",
|
|
11
|
+
},
|
|
12
|
+
description="SICK-NL is a Dutch translation of SICK ",
|
|
13
|
+
reference="https://aclanthology.org/2021.eacl-main.126/",
|
|
14
|
+
type="PairClassification",
|
|
15
|
+
category="t2t",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["nld-Latn"],
|
|
19
|
+
main_score="max_ap",
|
|
20
|
+
date=("2020-09-01", "2021-01-01"),
|
|
21
|
+
domains=["Web", "Written"],
|
|
22
|
+
task_subtypes=[],
|
|
23
|
+
license="mit",
|
|
24
|
+
annotations_creators="human-annotated",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="machine-translated and verified",
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@inproceedings{wijnholds2021sick,
|
|
29
|
+
author = {Wijnholds, Gijs and Moortgat, Michael},
|
|
30
|
+
booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
|
|
31
|
+
pages = {1474--1479},
|
|
32
|
+
title = {SICK-NL: A Dataset for Dutch Natural Language Inference},
|
|
33
|
+
year = {2021},
|
|
34
|
+
}
|
|
35
|
+
""",
|
|
36
|
+
prompt={
|
|
37
|
+
"query": "Zoek tekst die semantisch vergelijkbaar is met de gegeven tekst."
|
|
38
|
+
},
|
|
39
|
+
)
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
from mteb.abstasks.pair_classification import AbsTaskPairClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class XLWICNLPairClassification(AbsTaskPairClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="XLWICNLPairClassification",
|
|
8
|
+
description="The Word-in-Context dataset (WiC) addresses the dependence on sense inventories by reformulating "
|
|
9
|
+
"the standard disambiguation task as a binary classification problem; but, it is limited to the "
|
|
10
|
+
"English language. We put forward a large multilingual benchmark, XL-WiC, featuring gold standards "
|
|
11
|
+
"in 12 new languages from varied language families and with different degrees of resource "
|
|
12
|
+
"availability, opening room for evaluation scenarios such as zero-shot cross-lingual transfer. ",
|
|
13
|
+
reference="https://aclanthology.org/2020.emnlp-main.584.pdf",
|
|
14
|
+
dataset={
|
|
15
|
+
"path": "clips/mteb-nl-xlwic",
|
|
16
|
+
"revision": "0b33ce358b1b5d500ff3715ba3d777b4d2c21cb0",
|
|
17
|
+
},
|
|
18
|
+
type="PairClassification",
|
|
19
|
+
category="t2t",
|
|
20
|
+
modalities=["text"],
|
|
21
|
+
date=("2019-10-04", "2019-10-04"),
|
|
22
|
+
eval_splits=["test"],
|
|
23
|
+
eval_langs=["nld-Latn"],
|
|
24
|
+
main_score="max_ap",
|
|
25
|
+
domains=["Written"],
|
|
26
|
+
task_subtypes=[],
|
|
27
|
+
license="cc-by-nc-sa-4.0",
|
|
28
|
+
annotations_creators="derived",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="created",
|
|
31
|
+
bibtex_citation=r"""
|
|
32
|
+
@inproceedings{raganato2020xl,
|
|
33
|
+
author = {Raganato, A and Pasini, T and Camacho-Collados, J and Pilehvar, M and others},
|
|
34
|
+
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
|
35
|
+
organization = {Association for Computational Linguistics (ACL)},
|
|
36
|
+
pages = {7193--7206},
|
|
37
|
+
title = {XL-WiC: A multilingual benchmark for evaluating semantic contextualization},
|
|
38
|
+
year = {2020},
|
|
39
|
+
}
|
|
40
|
+
""",
|
|
41
|
+
prompt={
|
|
42
|
+
"query": "Zoek tekst die semantisch vergelijkbaar is met de gegeven tekst."
|
|
43
|
+
},
|
|
44
|
+
)
|
|
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class SprintDuplicateQuestionsPCVN(AbsTaskPairClassification):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="SprintDuplicateQuestions-VN",
|
|
8
|
-
description="
|
|
9
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
10
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
11
|
-
- Applies advanced embedding models to filter the translations.
|
|
12
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
8
|
+
description="A translated dataset from Duplicate questions from the Sprint community. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
13
9
|
reference="https://www.aclweb.org/anthology/D18-1131/",
|
|
14
10
|
dataset={
|
|
15
11
|
"path": "GreenNode/sprintduplicatequestions-pairclassification-vn",
|
|
@@ -9,11 +9,7 @@ class TwitterSemEval2015PCVN(AbsTaskPairClassification):
|
|
|
9
9
|
"path": "GreenNode/twittersemeval2015-pairclassification-vn",
|
|
10
10
|
"revision": "9215a3c954078fd15c2bbecca914477d53944de1",
|
|
11
11
|
},
|
|
12
|
-
description="
|
|
13
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
14
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
15
|
-
- Applies advanced embedding models to filter the translations.
|
|
16
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
12
|
+
description="A translated dataset from Paraphrase-Pairs of Tweets from the SemEval 2015 workshop. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
17
13
|
reference="https://alt.qcri.org/semeval2015/task1/",
|
|
18
14
|
category="t2c",
|
|
19
15
|
type="PairClassification",
|
|
@@ -9,11 +9,7 @@ class TwitterURLCorpusPC(AbsTaskPairClassification):
|
|
|
9
9
|
"path": "GreenNode/twitterurlcorpus-pairclassification-vn",
|
|
10
10
|
"revision": "6e6a40aaade2129f70432f2156a6d24b63d72be3",
|
|
11
11
|
},
|
|
12
|
-
description="
|
|
13
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
14
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
15
|
-
- Applies advanced embedding models to filter the translations.
|
|
16
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
12
|
+
description="A translated dataset from Paraphrase-Pairs of Tweets. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
17
13
|
reference="https://languagenet.github.io/",
|
|
18
14
|
category="t2c",
|
|
19
15
|
type="PairClassification",
|
|
@@ -5,9 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class RuSciBenchCitedCountRegression(AbsTaskRegression):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="RuSciBenchCitedCountRegression",
|
|
8
|
-
description="
|
|
9
|
-
The prediction is based on the article's title and abstract. The data is sourced from the Russian electronic
|
|
10
|
-
library of scientific publications (eLibrary.ru) and includes papers with both Russian and English abstracts.""",
|
|
8
|
+
description="Predicts the number of times a scientific article has been cited by other papers. The prediction is based on the article's title and abstract. The data is sourced from the Russian electronic library of scientific publications (eLibrary.ru) and includes papers with both Russian and English abstracts.",
|
|
11
9
|
reference="https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb",
|
|
12
10
|
dataset={
|
|
13
11
|
"path": "mlsa-iai-msu-lab/ru_sci_bench_mteb",
|
|
@@ -51,9 +49,7 @@ class RuSciBenchCitedCountRegression(AbsTaskRegression):
|
|
|
51
49
|
class RuSciBenchYearPublRegression(AbsTaskRegression):
|
|
52
50
|
metadata = TaskMetadata(
|
|
53
51
|
name="RuSciBenchYearPublRegression",
|
|
54
|
-
description="
|
|
55
|
-
article's title and abstract. The data is sourced from the Russian electronic library of scientific
|
|
56
|
-
publications (eLibrary.ru) and includes papers with both Russian and English abstracts.""",
|
|
52
|
+
description="Predicts the publication year of a scientific article. The prediction is based on the article's title and abstract. The data is sourced from the Russian electronic library of scientific publications (eLibrary.ru) and includes papers with both Russian and English abstracts.",
|
|
57
53
|
reference="https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb",
|
|
58
54
|
dataset={
|
|
59
55
|
"path": "mlsa-iai-msu-lab/ru_sci_bench_mteb",
|
|
@@ -78,8 +78,7 @@ _CITATION = r"""
|
|
|
78
78
|
class XGlueWPRReranking(AbsTaskRetrieval):
|
|
79
79
|
metadata = TaskMetadata(
|
|
80
80
|
name="XGlueWPRReranking",
|
|
81
|
-
description="
|
|
82
|
-
with respect to cross-lingual natural language understanding and generation. XGLUE is composed of 11 tasks spans 19 languages.""",
|
|
81
|
+
description="XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models with respect to cross-lingual natural language understanding and generation. XGLUE is composed of 11 tasks spans 19 languages.",
|
|
83
82
|
reference="https://github.com/microsoft/XGLUE",
|
|
84
83
|
dataset={
|
|
85
84
|
"path": "mteb/XGlueWPRReranking",
|
|
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class AskUbuntuDupQuestionsVN(AbsTaskRetrieval):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="AskUbuntuDupQuestions-VN",
|
|
8
|
-
description="
|
|
9
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
10
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
11
|
-
- Applies advanced embedding models to filter the translations.
|
|
12
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
8
|
+
description="A translated dataset from AskUbuntu Question Dataset - Questions from AskUbuntu with manual annotations marking pairs of questions as similar or non-similar The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
13
9
|
reference="https://github.com/taolei87/askubuntu",
|
|
14
10
|
dataset={
|
|
15
11
|
"path": "mteb/AskUbuntuDupQuestions-VN",
|
|
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class SciDocsRerankingVN(AbsTaskRetrieval):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="SciDocsRR-VN",
|
|
8
|
-
description="
|
|
9
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
10
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
11
|
-
- Applies advanced embedding models to filter the translations.
|
|
12
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
8
|
+
description="A translated dataset from Ranking of related scientific papers based on their title. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
13
9
|
reference="https://allenai.org/data/scidocs",
|
|
14
10
|
dataset={
|
|
15
11
|
"path": "mteb/SciDocsRR-VN",
|
|
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class StackOverflowDupQuestionsVN(AbsTaskRetrieval):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="StackOverflowDupQuestions-VN",
|
|
8
|
-
description="
|
|
9
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
10
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
11
|
-
- Applies advanced embedding models to filter the translations.
|
|
12
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
8
|
+
description="A translated dataset from Stack Overflow Duplicate Questions Task for questions with the tags Java, JavaScript and Python The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
13
9
|
reference="https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf",
|
|
14
10
|
dataset={
|
|
15
11
|
"path": "mteb/StackOverflowDupQuestions-VN",
|
|
@@ -60,9 +60,9 @@ class CodeRAGProgrammingSolutionsRetrieval(AbsTaskRetrieval):
|
|
|
60
60
|
self.data_loaded = True
|
|
61
61
|
|
|
62
62
|
def dataset_transform(self) -> None:
|
|
63
|
-
"""And transform to a retrieval
|
|
63
|
+
"""And transform to a retrieval dataset, which have the following attributes
|
|
64
64
|
|
|
65
|
-
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document
|
|
65
|
+
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
66
66
|
self.queries = Dict[query_id, str] #id => query
|
|
67
67
|
self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
|
|
68
68
|
"""
|
|
@@ -117,9 +117,9 @@ class CodeRAGOnlineTutorialsRetrieval(AbsTaskRetrieval):
|
|
|
117
117
|
self.data_loaded = True
|
|
118
118
|
|
|
119
119
|
def dataset_transform(self) -> None:
|
|
120
|
-
"""And transform to a retrieval
|
|
120
|
+
"""And transform to a retrieval dataset, which have the following attributes
|
|
121
121
|
|
|
122
|
-
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document
|
|
122
|
+
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
123
123
|
self.queries = Dict[query_id, str] #id => query
|
|
124
124
|
self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
|
|
125
125
|
"""
|
|
@@ -177,9 +177,9 @@ class CodeRAGLibraryDocumentationSolutionsRetrieval(AbsTaskRetrieval):
|
|
|
177
177
|
self.data_loaded = True
|
|
178
178
|
|
|
179
179
|
def dataset_transform(self) -> None:
|
|
180
|
-
"""And transform to a retrieval
|
|
180
|
+
"""And transform to a retrieval dataset, which have the following attributes
|
|
181
181
|
|
|
182
|
-
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document
|
|
182
|
+
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
183
183
|
self.queries = Dict[query_id, str] #id => query
|
|
184
184
|
self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
|
|
185
185
|
"""
|
|
@@ -234,9 +234,9 @@ class CodeRAGStackoverflowPostsRetrieval(AbsTaskRetrieval):
|
|
|
234
234
|
self.data_loaded = True
|
|
235
235
|
|
|
236
236
|
def dataset_transform(self) -> None:
|
|
237
|
-
"""And transform to a retrieval
|
|
237
|
+
"""And transform to a retrieval dataset, which have the following attributes
|
|
238
238
|
|
|
239
|
-
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document
|
|
239
|
+
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
240
240
|
self.queries = Dict[query_id, str] #id => query
|
|
241
241
|
self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
|
|
242
242
|
"""
|
|
@@ -56,7 +56,7 @@ Derczynski, Leon},
|
|
|
56
56
|
self.data_loaded = True
|
|
57
57
|
|
|
58
58
|
def dataset_transform(self) -> None:
|
|
59
|
-
"""And transform to a retrieval
|
|
59
|
+
"""And transform to a retrieval dataset, which have the following attributes
|
|
60
60
|
|
|
61
61
|
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
62
62
|
self.queries = dict[query_id, str] #id => query
|
|
@@ -69,9 +69,9 @@ Piperidis, Stelios},
|
|
|
69
69
|
self.data_loaded = True
|
|
70
70
|
|
|
71
71
|
def dataset_transform(self) -> None:
|
|
72
|
-
"""And transform to a retrieval
|
|
72
|
+
"""And transform to a retrieval dataset, which have the following attributes
|
|
73
73
|
|
|
74
|
-
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document
|
|
74
|
+
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
75
75
|
self.queries = dict[query_id, str] #id => query
|
|
76
76
|
self.relevant_docs = dict[query_id, dict[[doc_id, score]]
|
|
77
77
|
"""
|
|
@@ -45,9 +45,9 @@ class TwitterHjerneRetrieval(AbsTaskRetrieval):
|
|
|
45
45
|
self.data_loaded = True
|
|
46
46
|
|
|
47
47
|
def dataset_transform(self) -> None:
|
|
48
|
-
"""And transform to a retrieval
|
|
48
|
+
"""And transform to a retrieval dataset, which have the following attributes
|
|
49
49
|
|
|
50
|
-
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document
|
|
50
|
+
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
51
51
|
self.queries = dict[query_id, str] #id => query
|
|
52
52
|
self.relevant_docs = dict[query_id, dict[[doc_id, score]]
|
|
53
53
|
"""
|
|
@@ -22,6 +22,7 @@ from .cirr_it2i_retrieval import CIRRIT2IRetrieval
|
|
|
22
22
|
from .climate_fever_retrieval import (
|
|
23
23
|
ClimateFEVER,
|
|
24
24
|
ClimateFEVERHardNegatives,
|
|
25
|
+
ClimateFEVERHardNegativesV2,
|
|
25
26
|
ClimateFEVERRetrievalv2,
|
|
26
27
|
)
|
|
27
28
|
from .cqa_dupstack_android_retrieval import CQADupstackAndroidRetrieval
|
|
@@ -57,7 +58,7 @@ from .dapfam_patent_retrieval import (
|
|
|
57
58
|
DAPFAMOutTitlAbsToTitlAbsClmRetrieval,
|
|
58
59
|
DAPFAMOutTitlAbsToTitlAbsRetrieval,
|
|
59
60
|
)
|
|
60
|
-
from .dbpedia_retrieval import DBPedia, DBPediaHardNegatives
|
|
61
|
+
from .dbpedia_retrieval import DBPedia, DBPediaHardNegatives, DBPediaHardNegativesV2
|
|
61
62
|
from .edis_t2it_retrieval import EDIST2ITRetrieval
|
|
62
63
|
from .encyclopedia_vqa_it2it_retrieval import EncyclopediaVQAIT2ITRetrieval
|
|
63
64
|
from .english_finance1_retrieval import EnglishFinance1Retrieval
|
|
@@ -70,7 +71,7 @@ from .fashion200k_i2t_retrieval import Fashion200kI2TRetrieval
|
|
|
70
71
|
from .fashion200k_t2i_retrieval import Fashion200kT2IRetrieval
|
|
71
72
|
from .fashion_iq_it2i_retrieval import FashionIQIT2IRetrieval
|
|
72
73
|
from .feedback_qa_retrieval import FeedbackQARetrieval
|
|
73
|
-
from .fever_retrieval import FEVER, FEVERHardNegatives
|
|
74
|
+
from .fever_retrieval import FEVER, FEVERHardNegatives, FEVERHardNegativesV2
|
|
74
75
|
from .fi_qa2018_retrieval import FiQA2018
|
|
75
76
|
from .fin_qa_retrieval import FinQARetrieval
|
|
76
77
|
from .finance_bench_retrieval import FinanceBenchRetrieval
|
|
@@ -85,7 +86,11 @@ from .hateful_memes_i2t_retrieval import HatefulMemesI2TRetrieval
|
|
|
85
86
|
from .hateful_memes_t2i_retrieval import HatefulMemesT2IRetrieval
|
|
86
87
|
from .hc3_finance_retrieval import HC3FinanceRetrieval
|
|
87
88
|
from .hella_swag_retrieval import HellaSwag
|
|
88
|
-
from .hotpot_qa_retrieval import
|
|
89
|
+
from .hotpot_qa_retrieval import (
|
|
90
|
+
HotpotQA,
|
|
91
|
+
HotpotQAHardNegatives,
|
|
92
|
+
HotpotQAHardNegativesV2,
|
|
93
|
+
)
|
|
89
94
|
from .image_co_de_t2i_retrieval import ImageCoDeT2IRetrieval
|
|
90
95
|
from .info_seek_it2it_retrieval import InfoSeekIT2ITRetrieval
|
|
91
96
|
from .info_seek_it2t_retrieval import InfoSeekIT2TRetrieval
|
|
@@ -133,7 +138,11 @@ from .oven_it2it_retrieval import OVENIT2ITRetrieval
|
|
|
133
138
|
from .oven_it2t_retrieval import OVENIT2TRetrieval
|
|
134
139
|
from .piqa_retrieval import PIQA
|
|
135
140
|
from .quail_retrieval import Quail
|
|
136
|
-
from .quora_retrieval import
|
|
141
|
+
from .quora_retrieval import (
|
|
142
|
+
QuoraRetrieval,
|
|
143
|
+
QuoraRetrievalHardNegatives,
|
|
144
|
+
QuoraRetrievalHardNegativesV2,
|
|
145
|
+
)
|
|
137
146
|
from .r2_med_retrieval import (
|
|
138
147
|
R2MEDBioinformaticsRetrieval,
|
|
139
148
|
R2MEDBiologyRetrieval,
|
|
@@ -247,6 +256,7 @@ __all__ = [
|
|
|
247
256
|
"ChemNQRetrieval",
|
|
248
257
|
"ClimateFEVER",
|
|
249
258
|
"ClimateFEVERHardNegatives",
|
|
259
|
+
"ClimateFEVERHardNegativesV2",
|
|
250
260
|
"ClimateFEVERRetrievalv2",
|
|
251
261
|
"DAPFAMAllTitlAbsClmToFullTextRetrieval",
|
|
252
262
|
"DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval",
|
|
@@ -268,6 +278,7 @@ __all__ = [
|
|
|
268
278
|
"DAPFAMOutTitlAbsToTitlAbsRetrieval",
|
|
269
279
|
"DBPedia",
|
|
270
280
|
"DBPediaHardNegatives",
|
|
281
|
+
"DBPediaHardNegativesV2",
|
|
271
282
|
"EDIST2ITRetrieval",
|
|
272
283
|
"EncyclopediaVQAIT2ITRetrieval",
|
|
273
284
|
"EnglishFinance1Retrieval",
|
|
@@ -276,6 +287,7 @@ __all__ = [
|
|
|
276
287
|
"EnglishFinance4Retrieval",
|
|
277
288
|
"EnglishHealthcare1Retrieval",
|
|
278
289
|
"FEVERHardNegatives",
|
|
290
|
+
"FEVERHardNegativesV2",
|
|
279
291
|
"FaithDialRetrieval",
|
|
280
292
|
"Fashion200kI2TRetrieval",
|
|
281
293
|
"Fashion200kT2IRetrieval",
|
|
@@ -296,6 +308,7 @@ __all__ = [
|
|
|
296
308
|
"HellaSwag",
|
|
297
309
|
"HotpotQA",
|
|
298
310
|
"HotpotQAHardNegatives",
|
|
311
|
+
"HotpotQAHardNegativesV2",
|
|
299
312
|
"ImageCoDeT2IRetrieval",
|
|
300
313
|
"InfoSeekIT2ITRetrieval",
|
|
301
314
|
"InfoSeekIT2TRetrieval",
|
|
@@ -345,6 +358,7 @@ __all__ = [
|
|
|
345
358
|
"Quail",
|
|
346
359
|
"QuoraRetrieval",
|
|
347
360
|
"QuoraRetrievalHardNegatives",
|
|
361
|
+
"QuoraRetrievalHardNegativesV2",
|
|
348
362
|
"R2MEDBioinformaticsRetrieval",
|
|
349
363
|
"R2MEDBiologyRetrieval",
|
|
350
364
|
"R2MEDIIYiClinicalRetrieval",
|
|
@@ -1,30 +1,21 @@
|
|
|
1
1
|
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
2
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
3
|
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
main_score="ndcg_at_10",
|
|
20
|
-
date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
|
|
21
|
-
domains=["Encyclopaedic", "Written"],
|
|
22
|
-
task_subtypes=["Claim verification"],
|
|
23
|
-
license="cc-by-sa-4.0",
|
|
24
|
-
annotations_creators="human-annotated",
|
|
25
|
-
dialect=[],
|
|
26
|
-
sample_creation="found",
|
|
27
|
-
bibtex_citation=r"""
|
|
4
|
+
_climate_fever_metadata = dict(
|
|
5
|
+
type="Retrieval",
|
|
6
|
+
category="t2t",
|
|
7
|
+
modalities=["text"],
|
|
8
|
+
eval_splits=["test"],
|
|
9
|
+
eval_langs=["eng-Latn"],
|
|
10
|
+
main_score="ndcg_at_10",
|
|
11
|
+
date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
|
|
12
|
+
domains=["Encyclopaedic", "Written"],
|
|
13
|
+
task_subtypes=["Claim verification"],
|
|
14
|
+
license="cc-by-sa-4.0",
|
|
15
|
+
annotations_creators="human-annotated",
|
|
16
|
+
dialect=[],
|
|
17
|
+
sample_creation="found",
|
|
18
|
+
bibtex_citation=r"""
|
|
28
19
|
@misc{diggelmann2021climatefever,
|
|
29
20
|
archiveprefix = {arXiv},
|
|
30
21
|
author = {Thomas Diggelmann and Jordan Boyd-Graber and Jannis Bulian and Massimiliano Ciaramita and Markus Leippold},
|
|
@@ -34,82 +25,82 @@ class ClimateFEVER(AbsTaskRetrieval):
|
|
|
34
25
|
year = {2021},
|
|
35
26
|
}
|
|
36
27
|
""",
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class ClimateFEVER(AbsTaskRetrieval):
|
|
32
|
+
metadata = TaskMetadata(
|
|
33
|
+
name="ClimateFEVER",
|
|
34
|
+
description=(
|
|
35
|
+
"CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims "
|
|
36
|
+
"(queries) regarding climate-change. The underlying corpus is the same as FEVER."
|
|
37
|
+
),
|
|
38
|
+
reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
|
|
39
|
+
dataset={
|
|
40
|
+
"path": "mteb/climate-fever",
|
|
41
|
+
"revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380",
|
|
42
|
+
},
|
|
43
|
+
prompt={
|
|
44
|
+
"query": "Given a claim about climate change, retrieve documents that support or refute the claim"
|
|
45
|
+
},
|
|
46
|
+
**_climate_fever_metadata,
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class ClimateFEVERRetrievalv2(AbsTaskRetrieval):
|
|
51
|
+
metadata = TaskMetadata(
|
|
52
|
+
name="ClimateFEVER.v2",
|
|
53
|
+
description=(
|
|
54
|
+
"CLIMATE-FEVER is a dataset following the FEVER methodology, containing 1,535 real-world climate change claims. "
|
|
55
|
+
"This updated version addresses corpus mismatches and qrel inconsistencies in MTEB, restoring labels while refining corpus-query alignment for better accuracy."
|
|
56
|
+
),
|
|
57
|
+
reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
|
|
58
|
+
dataset={
|
|
59
|
+
"path": "mteb/climate-fever-v2",
|
|
60
|
+
"revision": "e438c9586767800aeb10dbe8a245c41dbea4e5f4",
|
|
61
|
+
},
|
|
37
62
|
prompt={
|
|
38
63
|
"query": "Given a claim about climate change, retrieve documents that support or refute the claim"
|
|
39
64
|
},
|
|
65
|
+
adapted_from=["ClimateFEVER"],
|
|
66
|
+
**_climate_fever_metadata,
|
|
40
67
|
)
|
|
41
68
|
|
|
42
69
|
|
|
43
70
|
class ClimateFEVERHardNegatives(AbsTaskRetrieval):
|
|
44
71
|
metadata = TaskMetadata(
|
|
45
72
|
name="ClimateFEVERHardNegatives",
|
|
46
|
-
description=
|
|
73
|
+
description=(
|
|
74
|
+
"CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. "
|
|
75
|
+
"The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct."
|
|
76
|
+
),
|
|
47
77
|
reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
|
|
48
78
|
dataset={
|
|
49
79
|
"path": "mteb/ClimateFEVER_test_top_250_only_w_correct-v2",
|
|
50
80
|
"revision": "3a309e201f3c2c4b13bd4a367a8f37eee2ec1d21",
|
|
51
81
|
},
|
|
52
|
-
type="Retrieval",
|
|
53
|
-
category="t2t",
|
|
54
|
-
modalities=["text"],
|
|
55
|
-
eval_splits=["test"],
|
|
56
|
-
eval_langs=["eng-Latn"],
|
|
57
|
-
main_score="ndcg_at_10",
|
|
58
|
-
date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
|
|
59
|
-
domains=["Encyclopaedic", "Written"],
|
|
60
|
-
task_subtypes=["Claim verification"],
|
|
61
|
-
license="cc-by-sa-4.0",
|
|
62
|
-
annotations_creators="human-annotated",
|
|
63
|
-
dialect=[],
|
|
64
|
-
sample_creation="found",
|
|
65
|
-
bibtex_citation=r"""
|
|
66
|
-
@misc{diggelmann2021climatefever,
|
|
67
|
-
archiveprefix = {arXiv},
|
|
68
|
-
author = {Thomas Diggelmann and Jordan Boyd-Graber and Jannis Bulian and Massimiliano Ciaramita and Markus Leippold},
|
|
69
|
-
eprint = {2012.00614},
|
|
70
|
-
primaryclass = {cs.CL},
|
|
71
|
-
title = {CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims},
|
|
72
|
-
year = {2021},
|
|
73
|
-
}
|
|
74
|
-
""",
|
|
75
82
|
adapted_from=["ClimateFEVER"],
|
|
83
|
+
superseded_by="ClimateFEVERHardNegatives.v2",
|
|
84
|
+
**_climate_fever_metadata,
|
|
76
85
|
)
|
|
77
86
|
|
|
78
87
|
|
|
79
|
-
class
|
|
88
|
+
class ClimateFEVERHardNegativesV2(AbsTaskRetrieval):
|
|
80
89
|
metadata = TaskMetadata(
|
|
81
|
-
name="
|
|
82
|
-
description=
|
|
90
|
+
name="ClimateFEVERHardNegatives.v2",
|
|
91
|
+
description=(
|
|
92
|
+
"CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. "
|
|
93
|
+
"The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct. "
|
|
94
|
+
"V2 uses a more appropriate prompt rather than the default prompt for retrieval. You can get more information on the effect of different prompt in the [PR](https://github.com/embeddings-benchmark/mteb/pull/3469#issuecomment-3436467106)"
|
|
95
|
+
),
|
|
83
96
|
reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
|
|
84
97
|
dataset={
|
|
85
|
-
"path": "mteb/
|
|
86
|
-
"revision": "
|
|
98
|
+
"path": "mteb/ClimateFEVER_test_top_250_only_w_correct-v2",
|
|
99
|
+
"revision": "3a309e201f3c2c4b13bd4a367a8f37eee2ec1d21",
|
|
87
100
|
},
|
|
88
|
-
|
|
89
|
-
category="t2t",
|
|
90
|
-
modalities=["text"],
|
|
91
|
-
eval_splits=["test"],
|
|
92
|
-
eval_langs=["eng-Latn"],
|
|
93
|
-
main_score="ndcg_at_10",
|
|
94
|
-
date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
|
|
95
|
-
domains=["Academic", "Written"],
|
|
96
|
-
task_subtypes=["Claim verification"],
|
|
97
|
-
license="cc-by-sa-4.0",
|
|
98
|
-
annotations_creators="human-annotated",
|
|
99
|
-
dialect=[],
|
|
100
|
-
sample_creation="found",
|
|
101
|
-
bibtex_citation=r"""
|
|
102
|
-
@misc{diggelmann2021climatefever,
|
|
103
|
-
archiveprefix = {arXiv},
|
|
104
|
-
author = {Thomas Diggelmann and Jordan Boyd-Graber and Jannis Bulian and Massimiliano Ciaramita and Markus Leippold},
|
|
105
|
-
eprint = {2012.00614},
|
|
106
|
-
primaryclass = {cs.CL},
|
|
107
|
-
title = {CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims},
|
|
108
|
-
year = {2021},
|
|
109
|
-
}
|
|
110
|
-
""",
|
|
101
|
+
adapted_from=["ClimateFEVER"],
|
|
111
102
|
prompt={
|
|
112
103
|
"query": "Given a claim about climate change, retrieve documents that support or refute the claim"
|
|
113
104
|
},
|
|
114
|
-
|
|
105
|
+
**_climate_fever_metadata,
|
|
115
106
|
)
|