mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (412) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/_create_dataloaders.py +8 -3
  3. mteb/_evaluators/any_sts_evaluator.py +14 -12
  4. mteb/_evaluators/clustering_evaluator.py +1 -1
  5. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
  6. mteb/_evaluators/pair_classification_evaluator.py +3 -1
  7. mteb/_evaluators/retrieval_metrics.py +0 -9
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_stratification.py +1 -1
  13. mteb/abstasks/abstask.py +6 -1
  14. mteb/abstasks/clustering.py +1 -1
  15. mteb/abstasks/dataset_card_template.md +1 -1
  16. mteb/abstasks/multilabel_classification.py +2 -2
  17. mteb/abstasks/retrieval.py +2 -1
  18. mteb/abstasks/retrieval_dataset_loaders.py +1 -1
  19. mteb/abstasks/task_metadata.py +2 -1
  20. mteb/benchmarks/_create_table.py +1 -3
  21. mteb/benchmarks/benchmark.py +18 -1
  22. mteb/benchmarks/benchmarks/__init__.py +4 -0
  23. mteb/benchmarks/benchmarks/benchmarks.py +125 -16
  24. mteb/benchmarks/get_benchmark.py +3 -1
  25. mteb/cache.py +7 -3
  26. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  27. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  28. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  29. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  30. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  31. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  32. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  33. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  34. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  35. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  36. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  37. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  38. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  39. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  40. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
  41. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
  42. mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
  43. mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
  44. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  49. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  50. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  54. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  55. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  56. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  57. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  58. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  59. mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
  60. mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
  61. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  62. mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
  63. mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
  64. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  65. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  66. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  67. mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
  68. mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
  69. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  71. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  72. mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
  73. mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
  74. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  75. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  76. mteb/evaluate.py +26 -6
  77. mteb/languages/check_language_code.py +11 -3
  78. mteb/languages/language_scripts.py +4 -0
  79. mteb/leaderboard/app.py +5 -3
  80. mteb/leaderboard/benchmark_selector.py +4 -2
  81. mteb/leaderboard/text_segments.py +1 -1
  82. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  83. mteb/models/instruct_wrapper.py +3 -0
  84. mteb/models/model_implementations/align_models.py +6 -0
  85. mteb/models/model_implementations/andersborges.py +51 -0
  86. mteb/models/model_implementations/ara_models.py +7 -0
  87. mteb/models/model_implementations/b1ade_models.py +1 -1
  88. mteb/models/model_implementations/bge_models.py +1 -3
  89. mteb/models/model_implementations/blip2_models.py +9 -0
  90. mteb/models/model_implementations/blip_models.py +19 -0
  91. mteb/models/model_implementations/bmretriever_models.py +1 -1
  92. mteb/models/model_implementations/cadet_models.py +8 -0
  93. mteb/models/model_implementations/cde_models.py +12 -0
  94. mteb/models/model_implementations/codefuse_models.py +15 -0
  95. mteb/models/model_implementations/codesage_models.py +12 -0
  96. mteb/models/model_implementations/cohere_models.py +1 -1
  97. mteb/models/model_implementations/colqwen_models.py +57 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +70 -0
  99. mteb/models/model_implementations/gme_v_models.py +2 -2
  100. mteb/models/model_implementations/ibm_granite_models.py +1 -1
  101. mteb/models/model_implementations/inf_models.py +3 -3
  102. mteb/models/model_implementations/jasper_models.py +253 -2
  103. mteb/models/model_implementations/jina_models.py +12 -2
  104. mteb/models/model_implementations/kalm_models.py +159 -25
  105. mteb/models/model_implementations/llm2vec_models.py +1 -1
  106. mteb/models/model_implementations/misc_models.py +8 -2
  107. mteb/models/model_implementations/moco_models.py +9 -0
  108. mteb/models/model_implementations/mxbai_models.py +1 -1
  109. mteb/models/model_implementations/openclip_models.py +16 -0
  110. mteb/models/model_implementations/piccolo_models.py +6 -0
  111. mteb/models/model_implementations/rasgaard_models.py +33 -0
  112. mteb/models/model_implementations/reasonir_model.py +1 -1
  113. mteb/models/model_implementations/salesforce_models.py +1 -1
  114. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
  115. mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
  116. mteb/models/model_implementations/tarka_models.py +374 -0
  117. mteb/models/model_implementations/voyage_models.py +6 -7
  118. mteb/models/model_implementations/voyage_v.py +10 -9
  119. mteb/models/model_implementations/yuan_models.py +33 -0
  120. mteb/models/search_wrappers.py +6 -5
  121. mteb/results/task_result.py +19 -17
  122. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  123. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  124. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
  125. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  126. mteb/tasks/classification/ara/ajgt.py +1 -2
  127. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  128. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  129. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  130. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  131. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  132. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  133. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  134. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  135. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  136. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  137. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  138. mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
  139. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  140. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  141. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  142. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  143. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  144. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  145. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  146. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  147. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  148. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  149. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  150. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  151. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  152. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  153. mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
  154. mteb/tasks/classification/eng/news_classification.py +1 -2
  155. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  156. mteb/tasks/classification/eng/patent_classification.py +1 -2
  157. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  158. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  159. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  160. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  161. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  162. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  163. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  164. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  165. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  166. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  167. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  168. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  169. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  170. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  171. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  172. mteb/tasks/classification/est/estonian_valence.py +1 -2
  173. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  174. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  175. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  176. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  177. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  178. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  179. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
  180. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  181. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  182. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  183. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  184. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  185. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  186. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  187. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  188. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  189. mteb/tasks/classification/kor/klue_tc.py +1 -2
  190. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  191. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  192. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  193. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  194. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  195. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  196. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  197. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  198. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  199. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  200. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  201. mteb/tasks/classification/mya/myanmar_news.py +2 -3
  202. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  203. mteb/tasks/classification/nld/__init__.py +16 -0
  204. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  205. mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
  206. mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
  207. mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
  208. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
  209. mteb/tasks/classification/nld/iconclass_classification.py +44 -0
  210. mteb/tasks/classification/nld/open_tender_classification.py +41 -0
  211. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
  212. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  213. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  214. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  215. mteb/tasks/classification/pol/polish_classification.py +3 -6
  216. mteb/tasks/classification/ron/moroco.py +1 -2
  217. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  218. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  220. mteb/tasks/classification/rus/headline_classification.py +1 -2
  221. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  222. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  223. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  224. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  225. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  226. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  227. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  228. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  229. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  230. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  231. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  232. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  233. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  234. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  235. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  236. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  237. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  238. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  239. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  240. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  241. mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
  242. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  243. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  244. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  245. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  246. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  247. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  248. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  249. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  250. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  251. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  252. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  253. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  254. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  255. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  256. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  257. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  258. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  259. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  260. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  261. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  262. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  263. mteb/tasks/clustering/__init__.py +1 -0
  264. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  265. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  266. mteb/tasks/clustering/nld/__init__.py +17 -0
  267. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
  268. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
  269. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
  270. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
  271. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
  272. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
  273. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
  274. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  275. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  276. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  277. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  278. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  279. mteb/tasks/multilabel_classification/__init__.py +1 -0
  280. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  281. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  282. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  283. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  284. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
  285. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
  286. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  287. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  288. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  289. mteb/tasks/pair_classification/__init__.py +1 -0
  290. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  291. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  292. mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
  293. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  294. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
  295. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
  296. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  297. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  298. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  299. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  300. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  301. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  302. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  303. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  304. mteb/tasks/retrieval/code/code_rag.py +8 -8
  305. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  306. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  307. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  308. mteb/tasks/retrieval/eng/__init__.py +18 -4
  309. mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
  310. mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
  311. mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
  312. mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
  313. mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
  314. mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
  315. mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
  316. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  317. mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
  318. mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
  319. mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
  320. mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
  321. mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
  322. mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
  323. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
  324. mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
  325. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  326. mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
  327. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  328. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  329. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
  330. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
  331. mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
  332. mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
  333. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  334. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  335. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  336. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  337. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  338. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
  339. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  340. mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
  341. mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
  342. mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
  343. mteb/tasks/retrieval/nld/__init__.py +18 -4
  344. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  345. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
  346. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
  347. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
  348. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  349. mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
  350. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  351. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  352. mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
  353. mteb/tasks/retrieval/nob/norquad.py +2 -2
  354. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  355. mteb/tasks/retrieval/rus/__init__.py +11 -2
  356. mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
  357. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  358. mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
  359. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  360. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  361. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  362. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  363. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  364. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  365. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  366. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  367. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  368. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  369. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  370. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  371. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  372. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  373. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  374. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  375. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  376. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  377. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  378. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  379. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  380. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  381. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  382. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  383. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  384. mteb/tasks/sts/__init__.py +1 -0
  385. mteb/tasks/sts/nld/__init__.py +5 -0
  386. mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
  387. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  388. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  389. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  390. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  391. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  392. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  393. mteb-2.1.19.dist-info/METADATA +253 -0
  394. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
  395. mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
  396. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
  397. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
  398. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
  399. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
  400. mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
  401. mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
  402. mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
  403. mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
  404. mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
  405. mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
  406. mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
  407. mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
  408. mteb-2.0.5.dist-info/METADATA +0 -455
  409. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
  410. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
  411. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
  412. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
@@ -23,14 +23,15 @@ class IndicXnliPairClassification(AbsTaskPairClassification):
23
23
  "path": "mteb/IndicXnliPairClassification",
24
24
  "revision": "027e97b9afe84ea3447b57b7705b8864bb2b3a83",
25
25
  },
26
- description="""INDICXNLI is similar to existing XNLI dataset in shape/form, but
27
- focusses on Indic language family.
28
- The train (392,702), validation (2,490), and evaluation sets (5,010) of English
29
- XNLI were translated from English into each of the eleven Indic languages. IndicTrans
30
- is a large Transformer-based sequence to sequence model. It is trained on Samanantar
31
- dataset (Ramesh et al., 2021), which is the largest parallel multi- lingual corpus
32
- over eleven Indic languages.
33
- """,
26
+ description=(
27
+ "INDICXNLI is similar to existing XNLI dataset in shape/form, but "
28
+ "focuses on Indic language family. "
29
+ "The train (392,702), validation (2,490), and evaluation sets (5,010) of English "
30
+ "XNLI were translated from English into each of the eleven Indic languages. IndicTrans "
31
+ "is a large Transformer-based sequence to sequence model. It is trained on Samanantar "
32
+ "dataset (Ramesh et al., 2021), which is the largest parallel multi- lingual corpus "
33
+ "over eleven Indic languages."
34
+ ),
34
35
  reference="https://gem-benchmark.com/data_cards/opusparcus",
35
36
  category="t2t",
36
37
  modalities=["text"],
@@ -0,0 +1,7 @@
1
+ from .sick_nl_pair_classification import SICKNLPairClassification
2
+ from .xlwic_nl_pair_classification import XLWICNLPairClassification
3
+
4
+ __all__ = [
5
+ "SICKNLPairClassification",
6
+ "XLWICNLPairClassification",
7
+ ]
@@ -0,0 +1,39 @@
1
+ from mteb.abstasks.pair_classification import AbsTaskPairClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class SICKNLPairClassification(AbsTaskPairClassification):
6
+ metadata = TaskMetadata(
7
+ name="SICKNLPairClassification",
8
+ dataset={
9
+ "path": "clips/mteb-nl-sick-pcls-pr",
10
+ "revision": "a13a1892bcb4c077dc416d390389223eea5f20f0",
11
+ },
12
+ description="SICK-NL is a Dutch translation of SICK ",
13
+ reference="https://aclanthology.org/2021.eacl-main.126/",
14
+ type="PairClassification",
15
+ category="t2t",
16
+ modalities=["text"],
17
+ eval_splits=["test"],
18
+ eval_langs=["nld-Latn"],
19
+ main_score="max_ap",
20
+ date=("2020-09-01", "2021-01-01"),
21
+ domains=["Web", "Written"],
22
+ task_subtypes=[],
23
+ license="mit",
24
+ annotations_creators="human-annotated",
25
+ dialect=[],
26
+ sample_creation="machine-translated and verified",
27
+ bibtex_citation=r"""
28
+ @inproceedings{wijnholds2021sick,
29
+ author = {Wijnholds, Gijs and Moortgat, Michael},
30
+ booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
31
+ pages = {1474--1479},
32
+ title = {SICK-NL: A Dataset for Dutch Natural Language Inference},
33
+ year = {2021},
34
+ }
35
+ """,
36
+ prompt={
37
+ "query": "Zoek tekst die semantisch vergelijkbaar is met de gegeven tekst."
38
+ },
39
+ )
@@ -0,0 +1,44 @@
1
+ from mteb.abstasks.pair_classification import AbsTaskPairClassification
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class XLWICNLPairClassification(AbsTaskPairClassification):
6
+ metadata = TaskMetadata(
7
+ name="XLWICNLPairClassification",
8
+ description="The Word-in-Context dataset (WiC) addresses the dependence on sense inventories by reformulating "
9
+ "the standard disambiguation task as a binary classification problem; but, it is limited to the "
10
+ "English language. We put forward a large multilingual benchmark, XL-WiC, featuring gold standards "
11
+ "in 12 new languages from varied language families and with different degrees of resource "
12
+ "availability, opening room for evaluation scenarios such as zero-shot cross-lingual transfer. ",
13
+ reference="https://aclanthology.org/2020.emnlp-main.584.pdf",
14
+ dataset={
15
+ "path": "clips/mteb-nl-xlwic",
16
+ "revision": "0b33ce358b1b5d500ff3715ba3d777b4d2c21cb0",
17
+ },
18
+ type="PairClassification",
19
+ category="t2t",
20
+ modalities=["text"],
21
+ date=("2019-10-04", "2019-10-04"),
22
+ eval_splits=["test"],
23
+ eval_langs=["nld-Latn"],
24
+ main_score="max_ap",
25
+ domains=["Written"],
26
+ task_subtypes=[],
27
+ license="cc-by-nc-sa-4.0",
28
+ annotations_creators="derived",
29
+ dialect=[],
30
+ sample_creation="created",
31
+ bibtex_citation=r"""
32
+ @inproceedings{raganato2020xl,
33
+ author = {Raganato, A and Pasini, T and Camacho-Collados, J and Pilehvar, M and others},
34
+ booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
35
+ organization = {Association for Computational Linguistics (ACL)},
36
+ pages = {7193--7206},
37
+ title = {XL-WiC: A multilingual benchmark for evaluating semantic contextualization},
38
+ year = {2020},
39
+ }
40
+ """,
41
+ prompt={
42
+ "query": "Zoek tekst die semantisch vergelijkbaar is met de gegeven tekst."
43
+ },
44
+ )
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class SprintDuplicateQuestionsPCVN(AbsTaskPairClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="SprintDuplicateQuestions-VN",
8
- description="""A translated dataset from Duplicate questions from the Sprint community.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from Duplicate questions from the Sprint community. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://www.aclweb.org/anthology/D18-1131/",
14
10
  dataset={
15
11
  "path": "GreenNode/sprintduplicatequestions-pairclassification-vn",
@@ -9,11 +9,7 @@ class TwitterSemEval2015PCVN(AbsTaskPairClassification):
9
9
  "path": "GreenNode/twittersemeval2015-pairclassification-vn",
10
10
  "revision": "9215a3c954078fd15c2bbecca914477d53944de1",
11
11
  },
12
- description="""A translated dataset from Paraphrase-Pairs of Tweets from the SemEval 2015 workshop.
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from Paraphrase-Pairs of Tweets from the SemEval 2015 workshop. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://alt.qcri.org/semeval2015/task1/",
18
14
  category="t2c",
19
15
  type="PairClassification",
@@ -9,11 +9,7 @@ class TwitterURLCorpusPC(AbsTaskPairClassification):
9
9
  "path": "GreenNode/twitterurlcorpus-pairclassification-vn",
10
10
  "revision": "6e6a40aaade2129f70432f2156a6d24b63d72be3",
11
11
  },
12
- description="""A translated dataset from Paraphrase-Pairs of Tweets.
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from Paraphrase-Pairs of Tweets. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://languagenet.github.io/",
18
14
  category="t2c",
19
15
  type="PairClassification",
@@ -5,9 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class RuSciBenchCitedCountRegression(AbsTaskRegression):
6
6
  metadata = TaskMetadata(
7
7
  name="RuSciBenchCitedCountRegression",
8
- description="""Predicts the number of times a scientific article has been cited by other papers.
9
- The prediction is based on the article's title and abstract. The data is sourced from the Russian electronic
10
- library of scientific publications (eLibrary.ru) and includes papers with both Russian and English abstracts.""",
8
+ description="Predicts the number of times a scientific article has been cited by other papers. The prediction is based on the article's title and abstract. The data is sourced from the Russian electronic library of scientific publications (eLibrary.ru) and includes papers with both Russian and English abstracts.",
11
9
  reference="https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb",
12
10
  dataset={
13
11
  "path": "mlsa-iai-msu-lab/ru_sci_bench_mteb",
@@ -51,9 +49,7 @@ class RuSciBenchCitedCountRegression(AbsTaskRegression):
51
49
  class RuSciBenchYearPublRegression(AbsTaskRegression):
52
50
  metadata = TaskMetadata(
53
51
  name="RuSciBenchYearPublRegression",
54
- description="""Predicts the publication year of a scientific article. The prediction is based on the
55
- article's title and abstract. The data is sourced from the Russian electronic library of scientific
56
- publications (eLibrary.ru) and includes papers with both Russian and English abstracts.""",
52
+ description="Predicts the publication year of a scientific article. The prediction is based on the article's title and abstract. The data is sourced from the Russian electronic library of scientific publications (eLibrary.ru) and includes papers with both Russian and English abstracts.",
57
53
  reference="https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb",
58
54
  dataset={
59
55
  "path": "mlsa-iai-msu-lab/ru_sci_bench_mteb",
@@ -78,8 +78,7 @@ _CITATION = r"""
78
78
  class XGlueWPRReranking(AbsTaskRetrieval):
79
79
  metadata = TaskMetadata(
80
80
  name="XGlueWPRReranking",
81
- description="""XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models
82
- with respect to cross-lingual natural language understanding and generation. XGLUE is composed of 11 tasks spans 19 languages.""",
81
+ description="XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models with respect to cross-lingual natural language understanding and generation. XGLUE is composed of 11 tasks spans 19 languages.",
83
82
  reference="https://github.com/microsoft/XGLUE",
84
83
  dataset={
85
84
  "path": "mteb/XGlueWPRReranking",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class AskUbuntuDupQuestionsVN(AbsTaskRetrieval):
6
6
  metadata = TaskMetadata(
7
7
  name="AskUbuntuDupQuestions-VN",
8
- description="""A translated dataset from AskUbuntu Question Dataset - Questions from AskUbuntu with manual annotations marking pairs of questions as similar or non-similar
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from AskUbuntu Question Dataset - Questions from AskUbuntu with manual annotations marking pairs of questions as similar or non-similar The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://github.com/taolei87/askubuntu",
14
10
  dataset={
15
11
  "path": "mteb/AskUbuntuDupQuestions-VN",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class SciDocsRerankingVN(AbsTaskRetrieval):
6
6
  metadata = TaskMetadata(
7
7
  name="SciDocsRR-VN",
8
- description="""A translated dataset from Ranking of related scientific papers based on their title.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from Ranking of related scientific papers based on their title. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://allenai.org/data/scidocs",
14
10
  dataset={
15
11
  "path": "mteb/SciDocsRR-VN",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class StackOverflowDupQuestionsVN(AbsTaskRetrieval):
6
6
  metadata = TaskMetadata(
7
7
  name="StackOverflowDupQuestions-VN",
8
- description="""A translated dataset from Stack Overflow Duplicate Questions Task for questions with the tags Java, JavaScript and Python
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset from Stack Overflow Duplicate Questions Task for questions with the tags Java, JavaScript and Python The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf",
14
10
  dataset={
15
11
  "path": "mteb/StackOverflowDupQuestions-VN",
@@ -60,9 +60,9 @@ class CodeRAGProgrammingSolutionsRetrieval(AbsTaskRetrieval):
60
60
  self.data_loaded = True
61
61
 
62
62
  def dataset_transform(self) -> None:
63
- """And transform to a retrieval datset, which have the following attributes
63
+ """And transform to a retrieval dataset, which have the following attributes
64
64
 
65
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
65
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
66
66
  self.queries = Dict[query_id, str] #id => query
67
67
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
68
68
  """
@@ -117,9 +117,9 @@ class CodeRAGOnlineTutorialsRetrieval(AbsTaskRetrieval):
117
117
  self.data_loaded = True
118
118
 
119
119
  def dataset_transform(self) -> None:
120
- """And transform to a retrieval datset, which have the following attributes
120
+ """And transform to a retrieval dataset, which have the following attributes
121
121
 
122
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
122
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
123
123
  self.queries = Dict[query_id, str] #id => query
124
124
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
125
125
  """
@@ -177,9 +177,9 @@ class CodeRAGLibraryDocumentationSolutionsRetrieval(AbsTaskRetrieval):
177
177
  self.data_loaded = True
178
178
 
179
179
  def dataset_transform(self) -> None:
180
- """And transform to a retrieval datset, which have the following attributes
180
+ """And transform to a retrieval dataset, which have the following attributes
181
181
 
182
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
182
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
183
183
  self.queries = Dict[query_id, str] #id => query
184
184
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
185
185
  """
@@ -234,9 +234,9 @@ class CodeRAGStackoverflowPostsRetrieval(AbsTaskRetrieval):
234
234
  self.data_loaded = True
235
235
 
236
236
  def dataset_transform(self) -> None:
237
- """And transform to a retrieval datset, which have the following attributes
237
+ """And transform to a retrieval dataset, which have the following attributes
238
238
 
239
- self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document datas like title and text
239
+ self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
240
240
  self.queries = Dict[query_id, str] #id => query
241
241
  self.relevant_docs = Dict[query_id, Dict[[doc_id, score]]
242
242
  """
@@ -56,7 +56,7 @@ Derczynski, Leon},
56
56
  self.data_loaded = True
57
57
 
58
58
  def dataset_transform(self) -> None:
59
- """And transform to a retrieval datset, which have the following attributes
59
+ """And transform to a retrieval dataset, which have the following attributes
60
60
 
61
61
  self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
62
62
  self.queries = dict[query_id, str] #id => query
@@ -69,9 +69,9 @@ Piperidis, Stelios},
69
69
  self.data_loaded = True
70
70
 
71
71
  def dataset_transform(self) -> None:
72
- """And transform to a retrieval datset, which have the following attributes
72
+ """And transform to a retrieval dataset, which have the following attributes
73
73
 
74
- self.corpus = dict[doc_id, dict[str, str]] #id => dict with document datas like title and text
74
+ self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
75
75
  self.queries = dict[query_id, str] #id => query
76
76
  self.relevant_docs = dict[query_id, dict[[doc_id, score]]
77
77
  """
@@ -45,9 +45,9 @@ class TwitterHjerneRetrieval(AbsTaskRetrieval):
45
45
  self.data_loaded = True
46
46
 
47
47
  def dataset_transform(self) -> None:
48
- """And transform to a retrieval datset, which have the following attributes
48
+ """And transform to a retrieval dataset, which have the following attributes
49
49
 
50
- self.corpus = dict[doc_id, dict[str, str]] #id => dict with document datas like title and text
50
+ self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
51
51
  self.queries = dict[query_id, str] #id => query
52
52
  self.relevant_docs = dict[query_id, dict[[doc_id, score]]
53
53
  """
@@ -22,6 +22,7 @@ from .cirr_it2i_retrieval import CIRRIT2IRetrieval
22
22
  from .climate_fever_retrieval import (
23
23
  ClimateFEVER,
24
24
  ClimateFEVERHardNegatives,
25
+ ClimateFEVERHardNegativesV2,
25
26
  ClimateFEVERRetrievalv2,
26
27
  )
27
28
  from .cqa_dupstack_android_retrieval import CQADupstackAndroidRetrieval
@@ -57,7 +58,7 @@ from .dapfam_patent_retrieval import (
57
58
  DAPFAMOutTitlAbsToTitlAbsClmRetrieval,
58
59
  DAPFAMOutTitlAbsToTitlAbsRetrieval,
59
60
  )
60
- from .dbpedia_retrieval import DBPedia, DBPediaHardNegatives
61
+ from .dbpedia_retrieval import DBPedia, DBPediaHardNegatives, DBPediaHardNegativesV2
61
62
  from .edis_t2it_retrieval import EDIST2ITRetrieval
62
63
  from .encyclopedia_vqa_it2it_retrieval import EncyclopediaVQAIT2ITRetrieval
63
64
  from .english_finance1_retrieval import EnglishFinance1Retrieval
@@ -70,7 +71,7 @@ from .fashion200k_i2t_retrieval import Fashion200kI2TRetrieval
70
71
  from .fashion200k_t2i_retrieval import Fashion200kT2IRetrieval
71
72
  from .fashion_iq_it2i_retrieval import FashionIQIT2IRetrieval
72
73
  from .feedback_qa_retrieval import FeedbackQARetrieval
73
- from .fever_retrieval import FEVER, FEVERHardNegatives
74
+ from .fever_retrieval import FEVER, FEVERHardNegatives, FEVERHardNegativesV2
74
75
  from .fi_qa2018_retrieval import FiQA2018
75
76
  from .fin_qa_retrieval import FinQARetrieval
76
77
  from .finance_bench_retrieval import FinanceBenchRetrieval
@@ -85,7 +86,11 @@ from .hateful_memes_i2t_retrieval import HatefulMemesI2TRetrieval
85
86
  from .hateful_memes_t2i_retrieval import HatefulMemesT2IRetrieval
86
87
  from .hc3_finance_retrieval import HC3FinanceRetrieval
87
88
  from .hella_swag_retrieval import HellaSwag
88
- from .hotpot_qa_retrieval import HotpotQA, HotpotQAHardNegatives
89
+ from .hotpot_qa_retrieval import (
90
+ HotpotQA,
91
+ HotpotQAHardNegatives,
92
+ HotpotQAHardNegativesV2,
93
+ )
89
94
  from .image_co_de_t2i_retrieval import ImageCoDeT2IRetrieval
90
95
  from .info_seek_it2it_retrieval import InfoSeekIT2ITRetrieval
91
96
  from .info_seek_it2t_retrieval import InfoSeekIT2TRetrieval
@@ -133,7 +138,11 @@ from .oven_it2it_retrieval import OVENIT2ITRetrieval
133
138
  from .oven_it2t_retrieval import OVENIT2TRetrieval
134
139
  from .piqa_retrieval import PIQA
135
140
  from .quail_retrieval import Quail
136
- from .quora_retrieval import QuoraRetrieval, QuoraRetrievalHardNegatives
141
+ from .quora_retrieval import (
142
+ QuoraRetrieval,
143
+ QuoraRetrievalHardNegatives,
144
+ QuoraRetrievalHardNegativesV2,
145
+ )
137
146
  from .r2_med_retrieval import (
138
147
  R2MEDBioinformaticsRetrieval,
139
148
  R2MEDBiologyRetrieval,
@@ -247,6 +256,7 @@ __all__ = [
247
256
  "ChemNQRetrieval",
248
257
  "ClimateFEVER",
249
258
  "ClimateFEVERHardNegatives",
259
+ "ClimateFEVERHardNegativesV2",
250
260
  "ClimateFEVERRetrievalv2",
251
261
  "DAPFAMAllTitlAbsClmToFullTextRetrieval",
252
262
  "DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval",
@@ -268,6 +278,7 @@ __all__ = [
268
278
  "DAPFAMOutTitlAbsToTitlAbsRetrieval",
269
279
  "DBPedia",
270
280
  "DBPediaHardNegatives",
281
+ "DBPediaHardNegativesV2",
271
282
  "EDIST2ITRetrieval",
272
283
  "EncyclopediaVQAIT2ITRetrieval",
273
284
  "EnglishFinance1Retrieval",
@@ -276,6 +287,7 @@ __all__ = [
276
287
  "EnglishFinance4Retrieval",
277
288
  "EnglishHealthcare1Retrieval",
278
289
  "FEVERHardNegatives",
290
+ "FEVERHardNegativesV2",
279
291
  "FaithDialRetrieval",
280
292
  "Fashion200kI2TRetrieval",
281
293
  "Fashion200kT2IRetrieval",
@@ -296,6 +308,7 @@ __all__ = [
296
308
  "HellaSwag",
297
309
  "HotpotQA",
298
310
  "HotpotQAHardNegatives",
311
+ "HotpotQAHardNegativesV2",
299
312
  "ImageCoDeT2IRetrieval",
300
313
  "InfoSeekIT2ITRetrieval",
301
314
  "InfoSeekIT2TRetrieval",
@@ -345,6 +358,7 @@ __all__ = [
345
358
  "Quail",
346
359
  "QuoraRetrieval",
347
360
  "QuoraRetrievalHardNegatives",
361
+ "QuoraRetrievalHardNegativesV2",
348
362
  "R2MEDBioinformaticsRetrieval",
349
363
  "R2MEDBiologyRetrieval",
350
364
  "R2MEDIIYiClinicalRetrieval",
@@ -1,30 +1,21 @@
1
1
  from mteb.abstasks.retrieval import AbsTaskRetrieval
2
2
  from mteb.abstasks.task_metadata import TaskMetadata
3
3
 
4
-
5
- class ClimateFEVER(AbsTaskRetrieval):
6
- metadata = TaskMetadata(
7
- name="ClimateFEVER",
8
- description="CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims (queries) regarding climate-change. The underlying corpus is the same as FVER.",
9
- reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
10
- dataset={
11
- "path": "mteb/climate-fever",
12
- "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380",
13
- },
14
- type="Retrieval",
15
- category="t2t",
16
- modalities=["text"],
17
- eval_splits=["test"],
18
- eval_langs=["eng-Latn"],
19
- main_score="ndcg_at_10",
20
- date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
21
- domains=["Encyclopaedic", "Written"],
22
- task_subtypes=["Claim verification"],
23
- license="cc-by-sa-4.0",
24
- annotations_creators="human-annotated",
25
- dialect=[],
26
- sample_creation="found",
27
- bibtex_citation=r"""
4
+ _climate_fever_metadata = dict(
5
+ type="Retrieval",
6
+ category="t2t",
7
+ modalities=["text"],
8
+ eval_splits=["test"],
9
+ eval_langs=["eng-Latn"],
10
+ main_score="ndcg_at_10",
11
+ date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
12
+ domains=["Encyclopaedic", "Written"],
13
+ task_subtypes=["Claim verification"],
14
+ license="cc-by-sa-4.0",
15
+ annotations_creators="human-annotated",
16
+ dialect=[],
17
+ sample_creation="found",
18
+ bibtex_citation=r"""
28
19
  @misc{diggelmann2021climatefever,
29
20
  archiveprefix = {arXiv},
30
21
  author = {Thomas Diggelmann and Jordan Boyd-Graber and Jannis Bulian and Massimiliano Ciaramita and Markus Leippold},
@@ -34,82 +25,82 @@ class ClimateFEVER(AbsTaskRetrieval):
34
25
  year = {2021},
35
26
  }
36
27
  """,
28
+ )
29
+
30
+
31
+ class ClimateFEVER(AbsTaskRetrieval):
32
+ metadata = TaskMetadata(
33
+ name="ClimateFEVER",
34
+ description=(
35
+ "CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims "
36
+ "(queries) regarding climate-change. The underlying corpus is the same as FEVER."
37
+ ),
38
+ reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
39
+ dataset={
40
+ "path": "mteb/climate-fever",
41
+ "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380",
42
+ },
43
+ prompt={
44
+ "query": "Given a claim about climate change, retrieve documents that support or refute the claim"
45
+ },
46
+ **_climate_fever_metadata,
47
+ )
48
+
49
+
50
+ class ClimateFEVERRetrievalv2(AbsTaskRetrieval):
51
+ metadata = TaskMetadata(
52
+ name="ClimateFEVER.v2",
53
+ description=(
54
+ "CLIMATE-FEVER is a dataset following the FEVER methodology, containing 1,535 real-world climate change claims. "
55
+ "This updated version addresses corpus mismatches and qrel inconsistencies in MTEB, restoring labels while refining corpus-query alignment for better accuracy."
56
+ ),
57
+ reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
58
+ dataset={
59
+ "path": "mteb/climate-fever-v2",
60
+ "revision": "e438c9586767800aeb10dbe8a245c41dbea4e5f4",
61
+ },
37
62
  prompt={
38
63
  "query": "Given a claim about climate change, retrieve documents that support or refute the claim"
39
64
  },
65
+ adapted_from=["ClimateFEVER"],
66
+ **_climate_fever_metadata,
40
67
  )
41
68
 
42
69
 
43
70
  class ClimateFEVERHardNegatives(AbsTaskRetrieval):
44
71
  metadata = TaskMetadata(
45
72
  name="ClimateFEVERHardNegatives",
46
- description="CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.",
73
+ description=(
74
+ "CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. "
75
+ "The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct."
76
+ ),
47
77
  reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
48
78
  dataset={
49
79
  "path": "mteb/ClimateFEVER_test_top_250_only_w_correct-v2",
50
80
  "revision": "3a309e201f3c2c4b13bd4a367a8f37eee2ec1d21",
51
81
  },
52
- type="Retrieval",
53
- category="t2t",
54
- modalities=["text"],
55
- eval_splits=["test"],
56
- eval_langs=["eng-Latn"],
57
- main_score="ndcg_at_10",
58
- date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
59
- domains=["Encyclopaedic", "Written"],
60
- task_subtypes=["Claim verification"],
61
- license="cc-by-sa-4.0",
62
- annotations_creators="human-annotated",
63
- dialect=[],
64
- sample_creation="found",
65
- bibtex_citation=r"""
66
- @misc{diggelmann2021climatefever,
67
- archiveprefix = {arXiv},
68
- author = {Thomas Diggelmann and Jordan Boyd-Graber and Jannis Bulian and Massimiliano Ciaramita and Markus Leippold},
69
- eprint = {2012.00614},
70
- primaryclass = {cs.CL},
71
- title = {CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims},
72
- year = {2021},
73
- }
74
- """,
75
82
  adapted_from=["ClimateFEVER"],
83
+ superseded_by="ClimateFEVERHardNegatives.v2",
84
+ **_climate_fever_metadata,
76
85
  )
77
86
 
78
87
 
79
- class ClimateFEVERRetrievalv2(AbsTaskRetrieval):
88
+ class ClimateFEVERHardNegativesV2(AbsTaskRetrieval):
80
89
  metadata = TaskMetadata(
81
- name="ClimateFEVER.v2",
82
- description="CLIMATE-FEVER is a dataset following the FEVER methodology, containing 1,535 real-world climate change claims. This updated version addresses corpus mismatches and qrel inconsistencies in MTEB, restoring labels while refining corpus-query alignment for better accuracy. ",
90
+ name="ClimateFEVERHardNegatives.v2",
91
+ description=(
92
+ "CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. "
93
+ "The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct. "
94
+ "V2 uses a more appropriate prompt rather than the default prompt for retrieval. You can get more information on the effect of different prompt in the [PR](https://github.com/embeddings-benchmark/mteb/pull/3469#issuecomment-3436467106)"
95
+ ),
83
96
  reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
84
97
  dataset={
85
- "path": "mteb/climate-fever-v2",
86
- "revision": "e438c9586767800aeb10dbe8a245c41dbea4e5f4",
98
+ "path": "mteb/ClimateFEVER_test_top_250_only_w_correct-v2",
99
+ "revision": "3a309e201f3c2c4b13bd4a367a8f37eee2ec1d21",
87
100
  },
88
- type="Retrieval",
89
- category="t2t",
90
- modalities=["text"],
91
- eval_splits=["test"],
92
- eval_langs=["eng-Latn"],
93
- main_score="ndcg_at_10",
94
- date=("2001-01-01", "2020-12-31"), # launch of wiki -> paper publication
95
- domains=["Academic", "Written"],
96
- task_subtypes=["Claim verification"],
97
- license="cc-by-sa-4.0",
98
- annotations_creators="human-annotated",
99
- dialect=[],
100
- sample_creation="found",
101
- bibtex_citation=r"""
102
- @misc{diggelmann2021climatefever,
103
- archiveprefix = {arXiv},
104
- author = {Thomas Diggelmann and Jordan Boyd-Graber and Jannis Bulian and Massimiliano Ciaramita and Markus Leippold},
105
- eprint = {2012.00614},
106
- primaryclass = {cs.CL},
107
- title = {CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims},
108
- year = {2021},
109
- }
110
- """,
101
+ adapted_from=["ClimateFEVER"],
111
102
  prompt={
112
103
  "query": "Given a claim about climate change, retrieve documents that support or refute the claim"
113
104
  },
114
- adapted_from=["ClimateFEVER"],
105
+ **_climate_fever_metadata,
115
106
  )