mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (412) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/_create_dataloaders.py +8 -3
  3. mteb/_evaluators/any_sts_evaluator.py +14 -12
  4. mteb/_evaluators/clustering_evaluator.py +1 -1
  5. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
  6. mteb/_evaluators/pair_classification_evaluator.py +3 -1
  7. mteb/_evaluators/retrieval_metrics.py +0 -9
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_stratification.py +1 -1
  13. mteb/abstasks/abstask.py +6 -1
  14. mteb/abstasks/clustering.py +1 -1
  15. mteb/abstasks/dataset_card_template.md +1 -1
  16. mteb/abstasks/multilabel_classification.py +2 -2
  17. mteb/abstasks/retrieval.py +2 -1
  18. mteb/abstasks/retrieval_dataset_loaders.py +1 -1
  19. mteb/abstasks/task_metadata.py +2 -1
  20. mteb/benchmarks/_create_table.py +1 -3
  21. mteb/benchmarks/benchmark.py +18 -1
  22. mteb/benchmarks/benchmarks/__init__.py +4 -0
  23. mteb/benchmarks/benchmarks/benchmarks.py +125 -16
  24. mteb/benchmarks/get_benchmark.py +3 -1
  25. mteb/cache.py +7 -3
  26. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  27. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  28. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  29. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  30. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  31. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  32. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  33. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  34. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  35. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  36. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  37. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  38. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  39. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  40. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
  41. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
  42. mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
  43. mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
  44. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  49. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  50. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  54. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  55. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  56. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  57. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  58. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  59. mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
  60. mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
  61. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  62. mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
  63. mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
  64. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  65. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  66. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  67. mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
  68. mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
  69. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  71. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  72. mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
  73. mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
  74. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  75. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  76. mteb/evaluate.py +26 -6
  77. mteb/languages/check_language_code.py +11 -3
  78. mteb/languages/language_scripts.py +4 -0
  79. mteb/leaderboard/app.py +5 -3
  80. mteb/leaderboard/benchmark_selector.py +4 -2
  81. mteb/leaderboard/text_segments.py +1 -1
  82. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  83. mteb/models/instruct_wrapper.py +3 -0
  84. mteb/models/model_implementations/align_models.py +6 -0
  85. mteb/models/model_implementations/andersborges.py +51 -0
  86. mteb/models/model_implementations/ara_models.py +7 -0
  87. mteb/models/model_implementations/b1ade_models.py +1 -1
  88. mteb/models/model_implementations/bge_models.py +1 -3
  89. mteb/models/model_implementations/blip2_models.py +9 -0
  90. mteb/models/model_implementations/blip_models.py +19 -0
  91. mteb/models/model_implementations/bmretriever_models.py +1 -1
  92. mteb/models/model_implementations/cadet_models.py +8 -0
  93. mteb/models/model_implementations/cde_models.py +12 -0
  94. mteb/models/model_implementations/codefuse_models.py +15 -0
  95. mteb/models/model_implementations/codesage_models.py +12 -0
  96. mteb/models/model_implementations/cohere_models.py +1 -1
  97. mteb/models/model_implementations/colqwen_models.py +57 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +70 -0
  99. mteb/models/model_implementations/gme_v_models.py +2 -2
  100. mteb/models/model_implementations/ibm_granite_models.py +1 -1
  101. mteb/models/model_implementations/inf_models.py +3 -3
  102. mteb/models/model_implementations/jasper_models.py +253 -2
  103. mteb/models/model_implementations/jina_models.py +12 -2
  104. mteb/models/model_implementations/kalm_models.py +159 -25
  105. mteb/models/model_implementations/llm2vec_models.py +1 -1
  106. mteb/models/model_implementations/misc_models.py +8 -2
  107. mteb/models/model_implementations/moco_models.py +9 -0
  108. mteb/models/model_implementations/mxbai_models.py +1 -1
  109. mteb/models/model_implementations/openclip_models.py +16 -0
  110. mteb/models/model_implementations/piccolo_models.py +6 -0
  111. mteb/models/model_implementations/rasgaard_models.py +33 -0
  112. mteb/models/model_implementations/reasonir_model.py +1 -1
  113. mteb/models/model_implementations/salesforce_models.py +1 -1
  114. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
  115. mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
  116. mteb/models/model_implementations/tarka_models.py +374 -0
  117. mteb/models/model_implementations/voyage_models.py +6 -7
  118. mteb/models/model_implementations/voyage_v.py +10 -9
  119. mteb/models/model_implementations/yuan_models.py +33 -0
  120. mteb/models/search_wrappers.py +6 -5
  121. mteb/results/task_result.py +19 -17
  122. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  123. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  124. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
  125. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  126. mteb/tasks/classification/ara/ajgt.py +1 -2
  127. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  128. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  129. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  130. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  131. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  132. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  133. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  134. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  135. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  136. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  137. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  138. mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
  139. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  140. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  141. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  142. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  143. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  144. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  145. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  146. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  147. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  148. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  149. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  150. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  151. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  152. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  153. mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
  154. mteb/tasks/classification/eng/news_classification.py +1 -2
  155. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  156. mteb/tasks/classification/eng/patent_classification.py +1 -2
  157. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  158. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  159. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  160. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  161. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  162. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  163. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  164. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  165. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  166. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  167. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  168. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  169. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  170. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  171. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  172. mteb/tasks/classification/est/estonian_valence.py +1 -2
  173. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  174. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  175. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  176. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  177. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  178. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  179. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
  180. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  181. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  182. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  183. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  184. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  185. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  186. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  187. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  188. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  189. mteb/tasks/classification/kor/klue_tc.py +1 -2
  190. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  191. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  192. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  193. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  194. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  195. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  196. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  197. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  198. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  199. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  200. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  201. mteb/tasks/classification/mya/myanmar_news.py +2 -3
  202. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  203. mteb/tasks/classification/nld/__init__.py +16 -0
  204. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  205. mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
  206. mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
  207. mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
  208. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
  209. mteb/tasks/classification/nld/iconclass_classification.py +44 -0
  210. mteb/tasks/classification/nld/open_tender_classification.py +41 -0
  211. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
  212. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  213. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  214. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  215. mteb/tasks/classification/pol/polish_classification.py +3 -6
  216. mteb/tasks/classification/ron/moroco.py +1 -2
  217. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  218. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  220. mteb/tasks/classification/rus/headline_classification.py +1 -2
  221. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  222. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  223. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  224. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  225. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  226. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  227. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  228. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  229. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  230. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  231. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  232. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  233. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  234. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  235. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  236. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  237. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  238. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  239. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  240. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  241. mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
  242. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  243. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  244. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  245. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  246. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  247. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  248. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  249. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  250. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  251. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  252. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  253. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  254. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  255. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  256. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  257. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  258. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  259. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  260. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  261. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  262. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  263. mteb/tasks/clustering/__init__.py +1 -0
  264. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  265. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  266. mteb/tasks/clustering/nld/__init__.py +17 -0
  267. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
  268. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
  269. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
  270. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
  271. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
  272. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
  273. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
  274. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  275. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  276. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  277. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  278. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  279. mteb/tasks/multilabel_classification/__init__.py +1 -0
  280. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  281. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  282. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  283. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  284. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
  285. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
  286. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  287. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  288. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  289. mteb/tasks/pair_classification/__init__.py +1 -0
  290. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  291. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  292. mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
  293. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  294. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
  295. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
  296. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  297. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  298. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  299. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  300. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  301. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  302. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  303. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  304. mteb/tasks/retrieval/code/code_rag.py +8 -8
  305. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  306. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  307. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  308. mteb/tasks/retrieval/eng/__init__.py +18 -4
  309. mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
  310. mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
  311. mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
  312. mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
  313. mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
  314. mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
  315. mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
  316. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  317. mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
  318. mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
  319. mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
  320. mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
  321. mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
  322. mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
  323. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
  324. mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
  325. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  326. mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
  327. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  328. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  329. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
  330. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
  331. mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
  332. mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
  333. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  334. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  335. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  336. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  337. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  338. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
  339. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  340. mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
  341. mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
  342. mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
  343. mteb/tasks/retrieval/nld/__init__.py +18 -4
  344. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  345. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
  346. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
  347. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
  348. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  349. mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
  350. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  351. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  352. mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
  353. mteb/tasks/retrieval/nob/norquad.py +2 -2
  354. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  355. mteb/tasks/retrieval/rus/__init__.py +11 -2
  356. mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
  357. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  358. mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
  359. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  360. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  361. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  362. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  363. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  364. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  365. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  366. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  367. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  368. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  369. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  370. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  371. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  372. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  373. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  374. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  375. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  376. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  377. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  378. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  379. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  380. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  381. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  382. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  383. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  384. mteb/tasks/sts/__init__.py +1 -0
  385. mteb/tasks/sts/nld/__init__.py +5 -0
  386. mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
  387. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  388. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  389. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  390. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  391. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  392. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  393. mteb-2.1.19.dist-info/METADATA +253 -0
  394. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
  395. mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
  396. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
  397. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
  398. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
  399. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
  400. mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
  401. mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
  402. mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
  403. mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
  404. mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
  405. mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
  406. mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
  407. mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
  408. mteb-2.0.5.dist-info/METADATA +0 -455
  409. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
  410. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
  411. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
  412. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
@@ -3,6 +3,8 @@ from dataclasses import dataclass
3
3
 
4
4
  from typing_extensions import Self
5
5
 
6
+ from mteb.languages import check_language_code
7
+
6
8
 
7
9
  @dataclass
8
10
  class LanguageScripts:
@@ -46,8 +48,10 @@ class LanguageScripts:
46
48
  if len(lang_script) == 2:
47
49
  normalized_langs.add(lang_script[0])
48
50
  lang_script_codes.add(lang)
51
+ check_language_code(lang)
49
52
  script_codes.add(lang_script[1])
50
53
  else:
54
+ check_language_code(lang)
51
55
  normalized_langs.add(lang)
52
56
 
53
57
  return cls(
mteb/leaderboard/app.py CHANGED
@@ -107,7 +107,9 @@ def _update_description(
107
107
  description += f" - **Number of task types**: {n_task_types}\n"
108
108
  description += f" - **Number of domains**: {n_domains}\n"
109
109
  if benchmark.reference is not None:
110
- description += f"\n[Click for More Info]({benchmark.reference})"
110
+ description += (
111
+ f'\n<a href="{benchmark.reference}" target="_blank">Click for More Info</a>'
112
+ )
111
113
 
112
114
  return description
113
115
 
@@ -137,7 +139,7 @@ def _update_task_info(task_names: str) -> gr.DataFrame:
137
139
  df["languages"] = df["languages"].map(_format_list)
138
140
  df = df.sort_values("name")
139
141
  df["domains"] = df["domains"].map(_format_list)
140
- df["name"] = "[" + df["name"] + "](" + df["reference"] + ")"
142
+ df["name"] = f'<a href="{df["reference"]}" target="_blank">{df["name"]}</a>'
141
143
  df["modalities"] = df["modalities"].map(_format_list)
142
144
  df = df.rename(
143
145
  columns={
@@ -318,7 +320,7 @@ def get_leaderboard_app(cache: ResultCache = ResultCache()) -> gr.Blocks:
318
320
  """
319
321
  ## Embedding Leaderboard
320
322
 
321
- This leaderboard compares 100+ text and image embedding models across 1000+ languages. We refer to the publication of each selectable benchmark for details on metrics, languages, tasks, and task types. Anyone is welcome [to add a model](https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md), [add benchmarks](https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_benchmark.md), [help us improve zero-shot annotations](https://github.com/embeddings-benchmark/mteb/blob/06489abca007261c7e6b11f36d4844c5ed5efdcb/mteb/models/bge_models.py#L91) or [propose other changes to the leaderboard](https://github.com/embeddings-benchmark/mteb/tree/main/mteb/leaderboard).
323
+ This leaderboard compares 100+ text and image embedding models across 1000+ languages. We refer to the publication of each selectable benchmark for details on metrics, languages, tasks, and task types. Anyone is welcome [to add a model](https://embeddings-benchmark.github.io/mteb/contributing/adding_a_model/), [add benchmarks](https://embeddings-benchmark.github.io/mteb/contributing/adding_a_benchmark/), [help us improve zero-shot annotations](https://github.com/embeddings-benchmark/mteb/blob/06489abca007261c7e6b11f36d4844c5ed5efdcb/mteb/models/bge_models.py#L91) or [propose other changes to the leaderboard](https://github.com/embeddings-benchmark/mteb/issues/new?template=enhancement.yaml).
322
324
  """
323
325
  )
324
326
  gr.Markdown(
@@ -73,6 +73,7 @@ GP_BENCHMARK_ENTRIES = [
73
73
  "MTEB(fra, v1)",
74
74
  "MTEB(jpn, v1)",
75
75
  "MTEB(kor, v1)",
76
+ "MTEB(nld, v1)",
76
77
  "MTEB(pol, v1)",
77
78
  "MTEB(rus, v1)",
78
79
  "MTEB(fas, v2)",
@@ -109,10 +110,11 @@ R_BENCHMARK_ENTRIES = [
109
110
  MenuEntry(
110
111
  "Image",
111
112
  description=None,
112
- open=False,
113
+ open=True,
113
114
  benchmarks=[
114
- mteb.get_benchmark("VisualDocumentRetrieval"),
115
+ mteb.get_benchmark("ViDoRe(v3)"),
115
116
  mteb.get_benchmark("JinaVDR"),
117
+ MenuEntry("Other", [mteb.get_benchmark("ViDoRe(v1&v2)")]),
116
118
  ],
117
119
  ),
118
120
  MenuEntry(
@@ -53,7 +53,7 @@ ACKNOWLEDGEMENT = """
53
53
  <img src="https://play-lh.googleusercontent.com/HdfHZ5jnfMM1Ep7XpPaVdFIVSRx82wKlRC_qmnHx9H1E4aWNp4WKoOcH0x95NAnuYg" width="60" height="55" style="padding: 10px;">
54
54
  </a>
55
55
  <a href="https://huggingface.co">
56
- <img src="https://raw.githubusercontent.com/embeddings-benchmark/mteb/main/docs/images/hf_logo.png" width="60" height="55" style="padding: 10px;">
56
+ <img src="https://raw.githubusercontent.com/embeddings-benchmark/mteb/main/docs/images/logos/hf_logo.png" width="60" height="55" style="padding: 10px;">
57
57
  </a>
58
58
  </div>
59
59
 
@@ -112,7 +112,7 @@ class CachedEmbeddingWrapper:
112
112
  dataset,
113
113
  task_metadata=task_metadata,
114
114
  prompt_type=prompt_type,
115
- batch_size=batch_size,
115
+ **kwargs,
116
116
  )
117
117
  new_vectors = self._model.encode(
118
118
  dl,
@@ -153,6 +153,9 @@ class InstructSentenceTransformerModel(AbsEncoder):
153
153
 
154
154
  self.model_name = model_name
155
155
  self.model = SentenceTransformer(model_name, revision=revision, **kwargs)
156
+ if max_seq_length:
157
+ # https://github.com/huggingface/sentence-transformers/issues/3575
158
+ self.model.max_seq_length = max_seq_length
156
159
  self.apply_instruction_to_passages = apply_instruction_to_passages
157
160
  self.prompts_dict = prompts_dict
158
161
 
@@ -124,4 +124,10 @@ align_base = ModelMeta(
124
124
  training_datasets=set(
125
125
  # COYO-700M
126
126
  ),
127
+ citation="""@misc{kakaobrain2022coyo-align,
128
+ title = {COYO-ALIGN},
129
+ author = {Yoon, Boogeo and Lee, Youhan and Baek, Woonhyuk},
130
+ year = {2022},
131
+ howpublished = {https://github.com/kakaobrain/coyo-align},
132
+ }""",
127
133
  )
@@ -0,0 +1,51 @@
1
+ import numpy as np
2
+
3
+ from mteb.models.model_implementations.model2vec_models import Model2VecModel
4
+ from mteb.models.model_meta import ModelMeta, ScoringFunction
5
+
6
+ model2vecdk = ModelMeta(
7
+ loader=Model2VecModel, # type: ignore
8
+ name="andersborges/model2vecdk",
9
+ languages=["dan-Latn"],
10
+ open_weights=True,
11
+ revision="cb576c78dcc1b729e4612645f61db59929d69e61",
12
+ release_date="2025-11-21",
13
+ n_parameters=48042496,
14
+ memory_usage_mb=183,
15
+ max_tokens=np.inf,
16
+ embed_dim=256,
17
+ license="mit",
18
+ similarity_fn_name=ScoringFunction.COSINE,
19
+ framework=["NumPy", "Sentence Transformers"],
20
+ reference="https://huggingface.co/andersborges/model2vecdk",
21
+ use_instructions=False,
22
+ adapted_from="https://huggingface.co/jealk/TTC-L2V-supervised-2",
23
+ superseded_by=None,
24
+ training_datasets=set(), # distilled
25
+ public_training_code="https://github.com/andersborges/dkmodel2vec",
26
+ public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
27
+ )
28
+
29
+
30
+ model2vecdk_stem = ModelMeta(
31
+ loader=Model2VecModel, # type: ignore
32
+ name="andersborges/model2vecdk-stem",
33
+ languages=["dan-Latn"],
34
+ open_weights=True,
35
+ revision="cb576c78dcc1b729e4612645f61db59929d69e61",
36
+ release_date="2025-11-21",
37
+ n_parameters=48578560,
38
+ memory_usage_mb=185,
39
+ max_tokens=np.inf,
40
+ embed_dim=256,
41
+ license="mit",
42
+ similarity_fn_name=ScoringFunction.COSINE,
43
+ framework=["NumPy", "Sentence Transformers"],
44
+ reference="https://huggingface.co/andersborges/model2vecdk",
45
+ use_instructions=False,
46
+ adapted_from="https://huggingface.co/jealk/TTC-L2V-supervised-2",
47
+ superseded_by=None,
48
+ training_datasets=set(), # distilled
49
+ public_training_code="https://github.com/andersborges/dkmodel2vec",
50
+ public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
51
+ )
@@ -23,4 +23,11 @@ arabic_triplet_matryoshka = ModelMeta(
23
23
  training_datasets=set(
24
24
  # "akhooli/arabic-triplets-1m-curated-sims-len"
25
25
  ),
26
+ citation="""
27
+ @article{nacar2025gate,
28
+ title={GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Matryoshka Representation Learning and Hybrid Loss Training},
29
+ author={Nacar, Omer and Koubaa, Anis and Sibaee, Serry and Al-Habashi, Yasser and Ammar, Adel and Boulila, Wadii},
30
+ journal={arXiv preprint arXiv:2505.24581},
31
+ year={2025}
32
+ }""",
26
33
  )
@@ -2,7 +2,7 @@ from mteb.models.model_meta import ModelMeta, ScoringFunction
2
2
  from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
3
3
 
4
4
  b1ade_training_data = {
5
- # We are in teh process of submitting a paper outlining our process of creating b1ade using model merging and knowledge distillation.
5
+ # We are in the process of submitting a paper outlining our process of creating b1ade using model merging and knowledge distillation.
6
6
  # Similar to mixedbread models, we do not train on any data (except the MSMarco training split) of MTEB.
7
7
  "MSMARCO",
8
8
  }
@@ -62,7 +62,7 @@ bge_m3_training_data = {
62
62
  # mMARCO-ZH
63
63
  # LawGPT
64
64
  # NLI-zh2, LeCaRDv2,
65
- # NLI, MultiLongDoc (their syntetic)
65
+ # NLI, MultiLongDoc (their synthetic)
66
66
  # + synthetic data
67
67
  }
68
68
 
@@ -141,7 +141,6 @@ bge_chinese_training_data = {
141
141
  # https://huggingface.co/BAAI/bge-m3/discussions/29
142
142
  bgem3_languages = [
143
143
  "afr-Latn", # af
144
- # als
145
144
  "amh-Ethi", # am
146
145
  # an
147
146
  # ar
@@ -151,7 +150,6 @@ bgem3_languages = [
151
150
  # av
152
151
  # az
153
152
  "azj-Latn", # azb
154
- # ba
155
153
  # bar
156
154
  # bcl
157
155
  "ben-Beng", # be
@@ -10,6 +10,13 @@ from mteb.models.abs_encoder import AbsEncoder
10
10
  from mteb.models.model_meta import ModelMeta, ScoringFunction
11
11
  from mteb.types import Array, BatchedInput, PromptType
12
12
 
13
+ BLIP2_CITATION = """@inproceedings{li2023blip2,
14
+ title={{BLIP-2:} Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models},
15
+ author={Junnan Li and Dongxu Li and Silvio Savarese and Steven Hoi},
16
+ year={2023},
17
+ booktitle={ICML},
18
+ }"""
19
+
13
20
 
14
21
  def blip2_loader(model_name, **kwargs):
15
22
  requires_package(
@@ -176,6 +183,7 @@ blip2_opt_2_7b = ModelMeta(
176
183
  similarity_fn_name=ScoringFunction.COSINE,
177
184
  use_instructions=False,
178
185
  training_datasets=blip2_training_datasets,
186
+ citation=BLIP2_CITATION,
179
187
  )
180
188
 
181
189
  blip2_opt_6_7b_coco = ModelMeta(
@@ -198,4 +206,5 @@ blip2_opt_6_7b_coco = ModelMeta(
198
206
  similarity_fn_name=ScoringFunction.COSINE,
199
207
  use_instructions=False,
200
208
  training_datasets=blip2_training_datasets,
209
+ citation=BLIP2_CITATION,
201
210
  )
@@ -10,6 +10,17 @@ from mteb.models.abs_encoder import AbsEncoder
10
10
  from mteb.models.model_meta import ModelMeta, ScoringFunction
11
11
  from mteb.types import Array, BatchedInput, PromptType
12
12
 
13
+ BLIP_CITATION = """@misc{https://doi.org/10.48550/arxiv.2201.12086,
14
+ doi = {10.48550/ARXIV.2201.12086},
15
+ url = {https://arxiv.org/abs/2201.12086},
16
+ author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
17
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
18
+ title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
19
+ publisher = {arXiv},
20
+ year = {2022},
21
+ copyright = {Creative Commons Attribution 4.0 International}
22
+ }"""
23
+
13
24
 
14
25
  class BLIPModel(AbsEncoder):
15
26
  def __init__(
@@ -140,6 +151,7 @@ blip_image_captioning_large = ModelMeta(
140
151
  # CC3M+CC12M+SBU
141
152
  # LAION115M
142
153
  ),
154
+ citation=BLIP_CITATION,
143
155
  )
144
156
 
145
157
  blip_image_captioning_base = ModelMeta(
@@ -166,6 +178,7 @@ blip_image_captioning_base = ModelMeta(
166
178
  # CC3M+CC12M+SBU
167
179
  # LAION115M
168
180
  ),
181
+ citation=BLIP_CITATION,
169
182
  )
170
183
 
171
184
 
@@ -192,6 +205,7 @@ blip_vqa_base = ModelMeta(
192
205
  # CC3M+CC12M+SBU
193
206
  # LAION115M
194
207
  ),
208
+ citation=BLIP_CITATION,
195
209
  )
196
210
 
197
211
  blip_vqa_capfilt_large = ModelMeta(
@@ -217,6 +231,7 @@ blip_vqa_capfilt_large = ModelMeta(
217
231
  # CC3M+CC12M+SBU
218
232
  # LAION115M
219
233
  ),
234
+ citation=BLIP_CITATION,
220
235
  )
221
236
 
222
237
  blip_itm_base_coco = ModelMeta(
@@ -242,6 +257,7 @@ blip_itm_base_coco = ModelMeta(
242
257
  # CC3M+CC12M+SBU
243
258
  # LAION115M
244
259
  ),
260
+ citation=BLIP_CITATION,
245
261
  )
246
262
 
247
263
  blip_itm_large_coco = ModelMeta(
@@ -268,6 +284,7 @@ blip_itm_large_coco = ModelMeta(
268
284
  # CC3M+CC12M+SBU
269
285
  # LAION115M
270
286
  ),
287
+ citation=BLIP_CITATION,
271
288
  )
272
289
 
273
290
  blip_itm_base_flickr = ModelMeta(
@@ -294,6 +311,7 @@ blip_itm_base_flickr = ModelMeta(
294
311
  # LAION115M
295
312
  # Flickr30k
296
313
  ),
314
+ citation=BLIP_CITATION,
297
315
  )
298
316
 
299
317
  blip_itm_large_flickr = ModelMeta(
@@ -319,4 +337,5 @@ blip_itm_large_flickr = ModelMeta(
319
337
  # CC3M+CC12M+SBU
320
338
  # LAION115M
321
339
  ),
340
+ citation=BLIP_CITATION,
322
341
  )
@@ -48,7 +48,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
48
48
  if padding_side is not None:
49
49
  tokenizer_params["padding_side"] = padding_side
50
50
  kwargs.setdefault("tokenizer_args", {}).update(tokenizer_params)
51
- kwargs.setdefault("config_args", {}).update(revison=revision)
51
+ kwargs.setdefault("config_args", {}).update(revision=revision)
52
52
 
53
53
  transformer = Transformer(
54
54
  model_name,
@@ -3,6 +3,13 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
3
3
 
4
4
  from .bge_models import bge_m3_training_data
5
5
 
6
+ CADET_CITATION = """@article{tamber2025conventionalcontrastivelearningfalls,
7
+ title={Conventional Contrastive Learning Often Falls Short: Improving Dense Retrieval with Cross-Encoder Listwise Distillation and Synthetic Data},
8
+ author={Manveer Singh Tamber and Suleman Kazi and Vivek Sourabh and Jimmy Lin},
9
+ journal={arXiv:2505.19274},
10
+ year={2025}
11
+ }"""
12
+
6
13
  cadet_training_data = {
7
14
  # we train with the corpora of FEVER, MSMARCO, and DBPEDIA. We only train with synthetic generated queries.
8
15
  # However, we do use queries from MSMARCO as examples for synthetic query generation.
@@ -46,4 +53,5 @@ cadet_embed = ModelMeta(
46
53
  public_training_data="https://github.com/manveertamber/cadet-dense-retrieval",
47
54
  training_datasets=cadet_training_data,
48
55
  adapted_from="intfloat/e5-base-unsupervised",
56
+ citation=CADET_CITATION,
49
57
  )
@@ -24,6 +24,16 @@ if TYPE_CHECKING:
24
24
  )
25
25
  logger = logging.getLogger(__name__)
26
26
 
27
+ CDE_CITATION = """@misc{morris2024contextualdocumentembeddings,
28
+ title={Contextual Document Embeddings},
29
+ author={John X. Morris and Alexander M. Rush},
30
+ year={2024},
31
+ eprint={2410.02525},
32
+ archivePrefix={arXiv},
33
+ primaryClass={cs.CL},
34
+ url={https://arxiv.org/abs/2410.02525},
35
+ }"""
36
+
27
37
 
28
38
  class CDEWrapper(SentenceTransformerEncoderWrapper):
29
39
  dataset_embeddings: torch.Tensor | None = None
@@ -217,6 +227,7 @@ cde_small_v1 = ModelMeta(
217
227
  training_datasets=bge_full_data,
218
228
  public_training_code="https://github.com/jxmorris12/cde",
219
229
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
230
+ citation=CDE_CITATION,
220
231
  )
221
232
 
222
233
  cde_small_v2 = ModelMeta(
@@ -244,4 +255,5 @@ cde_small_v2 = ModelMeta(
244
255
  training_datasets=bge_full_data,
245
256
  public_training_code="https://github.com/jxmorris12/cde",
246
257
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
258
+ citation=CDE_CITATION,
247
259
  )
@@ -2,6 +2,18 @@ from mteb.models import ModelMeta
2
2
  from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
3
3
  from mteb.types import PromptType
4
4
 
5
+ F2LLM_CITATION = """@article{2025F2LLM,
6
+ title={F2LLM Technical Report: Matching SOTA Embedding Performance with 6 Million Open-Source Data},
7
+ author={Ziyin Zhang and Zihan Liao and Hang Yu and Peng Di and Rui Wang},
8
+ journal={CoRR},
9
+ volume={abs/2510.02294},
10
+ year={2025},
11
+ url={https://doi.org/10.48550/arXiv.2510.02294},
12
+ doi={10.48550/ARXIV.2510.02294},
13
+ eprinttype={arXiv},
14
+ eprint={2510.02294}
15
+ }"""
16
+
5
17
  training_datasets = {
6
18
  "MSMARCO",
7
19
  "ArguAna",
@@ -146,6 +158,7 @@ F2LLM_0B6 = ModelMeta(
146
158
  public_training_code="https://github.com/codefuse-ai/F2LLM",
147
159
  public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
148
160
  training_datasets=training_datasets,
161
+ citation=F2LLM_CITATION,
149
162
  )
150
163
 
151
164
  F2LLM_1B7 = ModelMeta(
@@ -174,6 +187,7 @@ F2LLM_1B7 = ModelMeta(
174
187
  public_training_code="https://github.com/codefuse-ai/F2LLM",
175
188
  public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
176
189
  training_datasets=training_datasets,
190
+ citation=F2LLM_CITATION,
177
191
  )
178
192
 
179
193
  F2LLM_4B = ModelMeta(
@@ -202,4 +216,5 @@ F2LLM_4B = ModelMeta(
202
216
  public_training_code="https://github.com/codefuse-ai/F2LLM",
203
217
  public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
204
218
  training_datasets=training_datasets,
219
+ citation=F2LLM_CITATION,
205
220
  )
@@ -1,6 +1,15 @@
1
1
  from mteb.models.model_meta import ModelMeta, ScoringFunction
2
2
  from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
3
3
 
4
+ CODESAGE_CITATION = """@inproceedings{
5
+ zhang2024code,
6
+ title={{CODE} {REPRESENTATION} {LEARNING} {AT} {SCALE}},
7
+ author={Dejiao Zhang and Wasi Uddin Ahmad and Ming Tan and Hantian Ding and Ramesh Nallapati and Dan Roth and Xiaofei Ma and Bing Xiang},
8
+ booktitle={The Twelfth International Conference on Learning Representations},
9
+ year={2024},
10
+ url={https://openreview.net/forum?id=vfzRRjumpX}
11
+ }"""
12
+
4
13
  codesage_languages = [
5
14
  "python-Code",
6
15
  "javascript-Code",
@@ -33,6 +42,7 @@ codesage_large = ModelMeta(
33
42
  "CodeSearchNetRetrieval",
34
43
  "CodeSearchNetCCRetrieval",
35
44
  },
45
+ citation=CODESAGE_CITATION,
36
46
  )
37
47
 
38
48
  codesage_base = ModelMeta(
@@ -58,6 +68,7 @@ codesage_base = ModelMeta(
58
68
  "CodeSearchNetRetrieval",
59
69
  "CodeSearchNetCCRetrieval",
60
70
  },
71
+ citation=CODESAGE_CITATION,
61
72
  )
62
73
 
63
74
  codesage_small = ModelMeta(
@@ -83,4 +94,5 @@ codesage_small = ModelMeta(
83
94
  "CodeSearchNetRetrieval",
84
95
  "CodeSearchNetCCRetrieval",
85
96
  },
97
+ citation=CODESAGE_CITATION,
86
98
  )
@@ -221,7 +221,7 @@ class CohereTextEmbeddingModel(AbsEncoder):
221
221
  ) -> None:
222
222
  import cohere # type: ignore
223
223
 
224
- self.model_name = model_name.lstrip("Cohere/Cohere-")
224
+ self.model_name = model_name.removeprefix("Cohere/Cohere-")
225
225
  self.sep = sep
226
226
  self.model_prompts = self.validate_task_to_prompt_name(model_prompts)
227
227
  if embedding_type not in get_args(EmbeddingType):
@@ -220,3 +220,60 @@ colnomic_7b = ModelMeta(
220
220
  training_datasets=COLNOMIC_TRAINING_DATA,
221
221
  citation=COLNOMIC_CITATION,
222
222
  )
223
+
224
+
225
+ EVOQWEN_TRAINING_DATA = {
226
+ "colpali_train_set",
227
+ "VisRAG-Ret-Train-Synthetic-data",
228
+ "VisRAG-Ret-Train-In-domain-data",
229
+ }
230
+
231
+ evoqwen25_vl_retriever_3b_v1 = ModelMeta(
232
+ loader=ColQwen2_5Wrapper,
233
+ loader_kwargs=dict(
234
+ torch_dtype=torch.float16, attn_implementation="flash_attention_2"
235
+ ),
236
+ name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
237
+ languages=["eng-Latn"],
238
+ revision="aeacaa2775f2758d82721eb1cf2f5daf1a392da9",
239
+ release_date="2025-11-04",
240
+ modalities=["image", "text"],
241
+ n_parameters=3_000_000_000,
242
+ memory_usage_mb=7200,
243
+ max_tokens=128000,
244
+ embed_dim=128,
245
+ license="apache-2.0",
246
+ open_weights=True,
247
+ public_training_code="https://github.com/illuin-tech/colpali",
248
+ public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
249
+ framework=["ColPali"],
250
+ reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
251
+ similarity_fn_name="MaxSim",
252
+ use_instructions=True,
253
+ training_datasets=EVOQWEN_TRAINING_DATA,
254
+ )
255
+
256
+ evoqwen25_vl_retriever_7b_v1 = ModelMeta(
257
+ loader=ColQwen2_5Wrapper,
258
+ loader_kwargs=dict(
259
+ torch_dtype=torch.float16, attn_implementation="flash_attention_2"
260
+ ),
261
+ name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
262
+ languages=["eng-Latn"],
263
+ revision="8952ac6ee0e7de2e9211b165921518caf9202110",
264
+ release_date="2025-11-04",
265
+ modalities=["image", "text"],
266
+ n_parameters=7_000_000_000,
267
+ memory_usage_mb=14400,
268
+ max_tokens=128000,
269
+ embed_dim=128,
270
+ license="apache-2.0",
271
+ open_weights=True,
272
+ public_training_code="https://github.com/illuin-tech/colpali",
273
+ public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
274
+ framework=["ColPali"],
275
+ reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
276
+ similarity_fn_name="MaxSim",
277
+ use_instructions=True,
278
+ training_datasets=EVOQWEN_TRAINING_DATA,
279
+ )
@@ -0,0 +1,70 @@
1
+ from mteb.models.model_meta import ModelMeta
2
+ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
3
+
4
+ embedding_gemma_300m_scandi = ModelMeta(
5
+ loader=sentence_transformers_loader, # type: ignore
6
+ name="emillykkejensen/EmbeddingGemma-Scandi-300m",
7
+ languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
8
+ open_weights=True,
9
+ revision="9f3307b9f601db564a9190cb475324d128dcfe86",
10
+ release_date="2025-10-17",
11
+ n_parameters=307_581_696,
12
+ embed_dim=768,
13
+ max_tokens=2048,
14
+ license="apache-2.0",
15
+ reference="https://huggingface.co/emillykkejensen/EmbeddingGemma-Scandi-300m",
16
+ framework=["Sentence Transformers", "PyTorch"],
17
+ use_instructions=True,
18
+ public_training_code=None,
19
+ public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
20
+ training_datasets=set(),
21
+ similarity_fn_name="cosine", # type: ignore[arg-type]
22
+ adapted_from="google/embeddinggemma-300m",
23
+ memory_usage_mb=578,
24
+ )
25
+
26
+
27
+ qwen_scandi = ModelMeta(
28
+ loader=sentence_transformers_loader, # type: ignore
29
+ name="emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
30
+ languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
31
+ open_weights=True,
32
+ revision="cf1e7ba36ebd3d605549d8f02930a18e17b54513",
33
+ release_date="2025-10-17",
34
+ n_parameters=595776512,
35
+ memory_usage_mb=2272,
36
+ embed_dim=1024,
37
+ max_tokens=32768,
38
+ license="apache-2.0",
39
+ reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
40
+ framework=["Sentence Transformers", "PyTorch"],
41
+ use_instructions=True,
42
+ public_training_code=None,
43
+ public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
44
+ training_datasets=set(),
45
+ similarity_fn_name="cosine", # type: ignore[arg-type]
46
+ adapted_from="Qwen/Qwen3-Embedding-0.6B",
47
+ )
48
+
49
+
50
+ mmbert_scandi = ModelMeta(
51
+ loader=sentence_transformers_loader, # type: ignore
52
+ name="emillykkejensen/mmBERTscandi-base-embedding",
53
+ languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
54
+ open_weights=True,
55
+ revision="82d74c7a5d8e1ddf31b132865df2d16b2b0294ee",
56
+ release_date="2025-10-17",
57
+ n_parameters=306939648,
58
+ memory_usage_mb=1171,
59
+ embed_dim=768,
60
+ max_tokens=8192,
61
+ license="apache-2.0",
62
+ reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
63
+ framework=["Sentence Transformers", "PyTorch"],
64
+ use_instructions=True,
65
+ public_training_code=None,
66
+ public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
67
+ training_datasets=set(),
68
+ similarity_fn_name="cosine", # type: ignore[arg-type]
69
+ adapted_from="jonasaise/scandmmBERT-base-scandinavian",
70
+ )
@@ -39,7 +39,7 @@ class Encoder(torch.nn.Module):
39
39
  self.max_length = max_length
40
40
  self.normalize = normalize
41
41
  self.processor.tokenizer.padding_side = "right"
42
- self.defualt_instruction = "You are a helpful assistant."
42
+ self.default_instruction = "You are a helpful assistant."
43
43
 
44
44
  def forward(
45
45
  self,
@@ -103,7 +103,7 @@ class Encoder(torch.nn.Module):
103
103
  instruction=None,
104
104
  **kwargs,
105
105
  ):
106
- instruction = instruction or self.defualt_instruction
106
+ instruction = instruction or self.default_instruction
107
107
  # Inputs must be batched
108
108
  input_texts, input_images = [], []
109
109
  for t, i in zip(texts, images):
@@ -79,7 +79,7 @@ granite_training_data = {
79
79
  "MIRACLReranking",
80
80
  # Multilingual MrTydi Triples
81
81
  "MrTidyRetrieval",
82
- # Sadeeem Question Asnwering
82
+ # Sadeeem Question Answering
83
83
  # DBPedia Title-Body Pairs
84
84
  "DBPedia",
85
85
  "DBPedia-NL", # translated from hotpotQA (not trained on)
@@ -4,7 +4,7 @@ from mteb.models.model_meta import (
4
4
  )
5
5
  from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
6
6
 
7
- inf_retreiver_v1_training_data = {
7
+ inf_retriever_v1_training_data = {
8
8
  # eng_Latn
9
9
  "ArguAna",
10
10
  "CQADupstackRetrieval",
@@ -66,7 +66,7 @@ inf_retriever_v1 = ModelMeta(
66
66
  adapted_from="Alibaba-NLP/gte-Qwen2-7B-instruct",
67
67
  public_training_code=None,
68
68
  public_training_data=None,
69
- training_datasets=inf_retreiver_v1_training_data,
69
+ training_datasets=inf_retriever_v1_training_data,
70
70
  citation=INF_RETRIEVER_CITATION,
71
71
  )
72
72
 
@@ -92,6 +92,6 @@ inf_retriever_v1_1_5b = ModelMeta(
92
92
  adapted_from="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
93
93
  public_training_code=None,
94
94
  public_training_data=None,
95
- training_datasets=inf_retreiver_v1_training_data,
95
+ training_datasets=inf_retriever_v1_training_data,
96
96
  citation=INF_RETRIEVER_CITATION,
97
97
  )