mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (412) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/_create_dataloaders.py +8 -3
  3. mteb/_evaluators/any_sts_evaluator.py +14 -12
  4. mteb/_evaluators/clustering_evaluator.py +1 -1
  5. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
  6. mteb/_evaluators/pair_classification_evaluator.py +3 -1
  7. mteb/_evaluators/retrieval_metrics.py +0 -9
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_stratification.py +1 -1
  13. mteb/abstasks/abstask.py +6 -1
  14. mteb/abstasks/clustering.py +1 -1
  15. mteb/abstasks/dataset_card_template.md +1 -1
  16. mteb/abstasks/multilabel_classification.py +2 -2
  17. mteb/abstasks/retrieval.py +2 -1
  18. mteb/abstasks/retrieval_dataset_loaders.py +1 -1
  19. mteb/abstasks/task_metadata.py +2 -1
  20. mteb/benchmarks/_create_table.py +1 -3
  21. mteb/benchmarks/benchmark.py +18 -1
  22. mteb/benchmarks/benchmarks/__init__.py +4 -0
  23. mteb/benchmarks/benchmarks/benchmarks.py +125 -16
  24. mteb/benchmarks/get_benchmark.py +3 -1
  25. mteb/cache.py +7 -3
  26. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  27. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  28. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  29. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  30. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  31. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  32. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  33. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  34. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  35. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  36. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  37. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  38. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  39. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  40. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
  41. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
  42. mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
  43. mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
  44. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  49. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  50. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  54. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  55. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  56. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  57. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  58. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  59. mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
  60. mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
  61. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  62. mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
  63. mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
  64. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  65. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  66. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  67. mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
  68. mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
  69. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  71. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  72. mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
  73. mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
  74. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  75. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  76. mteb/evaluate.py +26 -6
  77. mteb/languages/check_language_code.py +11 -3
  78. mteb/languages/language_scripts.py +4 -0
  79. mteb/leaderboard/app.py +5 -3
  80. mteb/leaderboard/benchmark_selector.py +4 -2
  81. mteb/leaderboard/text_segments.py +1 -1
  82. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  83. mteb/models/instruct_wrapper.py +3 -0
  84. mteb/models/model_implementations/align_models.py +6 -0
  85. mteb/models/model_implementations/andersborges.py +51 -0
  86. mteb/models/model_implementations/ara_models.py +7 -0
  87. mteb/models/model_implementations/b1ade_models.py +1 -1
  88. mteb/models/model_implementations/bge_models.py +1 -3
  89. mteb/models/model_implementations/blip2_models.py +9 -0
  90. mteb/models/model_implementations/blip_models.py +19 -0
  91. mteb/models/model_implementations/bmretriever_models.py +1 -1
  92. mteb/models/model_implementations/cadet_models.py +8 -0
  93. mteb/models/model_implementations/cde_models.py +12 -0
  94. mteb/models/model_implementations/codefuse_models.py +15 -0
  95. mteb/models/model_implementations/codesage_models.py +12 -0
  96. mteb/models/model_implementations/cohere_models.py +1 -1
  97. mteb/models/model_implementations/colqwen_models.py +57 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +70 -0
  99. mteb/models/model_implementations/gme_v_models.py +2 -2
  100. mteb/models/model_implementations/ibm_granite_models.py +1 -1
  101. mteb/models/model_implementations/inf_models.py +3 -3
  102. mteb/models/model_implementations/jasper_models.py +253 -2
  103. mteb/models/model_implementations/jina_models.py +12 -2
  104. mteb/models/model_implementations/kalm_models.py +159 -25
  105. mteb/models/model_implementations/llm2vec_models.py +1 -1
  106. mteb/models/model_implementations/misc_models.py +8 -2
  107. mteb/models/model_implementations/moco_models.py +9 -0
  108. mteb/models/model_implementations/mxbai_models.py +1 -1
  109. mteb/models/model_implementations/openclip_models.py +16 -0
  110. mteb/models/model_implementations/piccolo_models.py +6 -0
  111. mteb/models/model_implementations/rasgaard_models.py +33 -0
  112. mteb/models/model_implementations/reasonir_model.py +1 -1
  113. mteb/models/model_implementations/salesforce_models.py +1 -1
  114. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
  115. mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
  116. mteb/models/model_implementations/tarka_models.py +374 -0
  117. mteb/models/model_implementations/voyage_models.py +6 -7
  118. mteb/models/model_implementations/voyage_v.py +10 -9
  119. mteb/models/model_implementations/yuan_models.py +33 -0
  120. mteb/models/search_wrappers.py +6 -5
  121. mteb/results/task_result.py +19 -17
  122. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  123. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  124. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
  125. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  126. mteb/tasks/classification/ara/ajgt.py +1 -2
  127. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  128. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  129. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  130. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  131. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  132. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  133. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  134. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  135. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  136. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  137. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  138. mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
  139. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  140. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  141. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  142. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  143. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  144. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  145. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  146. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  147. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  148. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  149. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  150. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  151. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  152. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  153. mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
  154. mteb/tasks/classification/eng/news_classification.py +1 -2
  155. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  156. mteb/tasks/classification/eng/patent_classification.py +1 -2
  157. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  158. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  159. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  160. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  161. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  162. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  163. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  164. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  165. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  166. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  167. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  168. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  169. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  170. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  171. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  172. mteb/tasks/classification/est/estonian_valence.py +1 -2
  173. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  174. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  175. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  176. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  177. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  178. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  179. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
  180. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  181. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  182. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  183. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  184. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  185. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  186. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  187. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  188. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  189. mteb/tasks/classification/kor/klue_tc.py +1 -2
  190. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  191. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  192. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  193. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  194. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  195. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  196. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  197. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  198. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  199. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  200. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  201. mteb/tasks/classification/mya/myanmar_news.py +2 -3
  202. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  203. mteb/tasks/classification/nld/__init__.py +16 -0
  204. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  205. mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
  206. mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
  207. mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
  208. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
  209. mteb/tasks/classification/nld/iconclass_classification.py +44 -0
  210. mteb/tasks/classification/nld/open_tender_classification.py +41 -0
  211. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
  212. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  213. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  214. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  215. mteb/tasks/classification/pol/polish_classification.py +3 -6
  216. mteb/tasks/classification/ron/moroco.py +1 -2
  217. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  218. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  220. mteb/tasks/classification/rus/headline_classification.py +1 -2
  221. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  222. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  223. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  224. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  225. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  226. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  227. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  228. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  229. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  230. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  231. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  232. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  233. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  234. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  235. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  236. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  237. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  238. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  239. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  240. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  241. mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
  242. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  243. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  244. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  245. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  246. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  247. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  248. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  249. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  250. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  251. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  252. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  253. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  254. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  255. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  256. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  257. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  258. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  259. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  260. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  261. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  262. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  263. mteb/tasks/clustering/__init__.py +1 -0
  264. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  265. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  266. mteb/tasks/clustering/nld/__init__.py +17 -0
  267. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
  268. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
  269. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
  270. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
  271. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
  272. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
  273. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
  274. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  275. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  276. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  277. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  278. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  279. mteb/tasks/multilabel_classification/__init__.py +1 -0
  280. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  281. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  282. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  283. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  284. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
  285. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
  286. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  287. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  288. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  289. mteb/tasks/pair_classification/__init__.py +1 -0
  290. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  291. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  292. mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
  293. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  294. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
  295. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
  296. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  297. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  298. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  299. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  300. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  301. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  302. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  303. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  304. mteb/tasks/retrieval/code/code_rag.py +8 -8
  305. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  306. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  307. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  308. mteb/tasks/retrieval/eng/__init__.py +18 -4
  309. mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
  310. mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
  311. mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
  312. mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
  313. mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
  314. mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
  315. mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
  316. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  317. mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
  318. mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
  319. mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
  320. mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
  321. mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
  322. mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
  323. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
  324. mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
  325. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  326. mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
  327. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  328. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  329. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
  330. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
  331. mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
  332. mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
  333. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  334. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  335. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  336. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  337. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  338. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
  339. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  340. mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
  341. mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
  342. mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
  343. mteb/tasks/retrieval/nld/__init__.py +18 -4
  344. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  345. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
  346. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
  347. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
  348. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  349. mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
  350. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  351. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  352. mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
  353. mteb/tasks/retrieval/nob/norquad.py +2 -2
  354. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  355. mteb/tasks/retrieval/rus/__init__.py +11 -2
  356. mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
  357. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  358. mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
  359. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  360. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  361. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  362. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  363. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  364. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  365. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  366. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  367. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  368. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  369. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  370. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  371. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  372. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  373. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  374. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  375. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  376. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  377. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  378. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  379. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  380. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  381. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  382. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  383. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  384. mteb/tasks/sts/__init__.py +1 -0
  385. mteb/tasks/sts/nld/__init__.py +5 -0
  386. mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
  387. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  388. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  389. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  390. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  391. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  392. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  393. mteb-2.1.19.dist-info/METADATA +253 -0
  394. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
  395. mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
  396. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
  397. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
  398. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
  399. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
  400. mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
  401. mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
  402. mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
  403. mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
  404. mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
  405. mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
  406. mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
  407. mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
  408. mteb-2.0.5.dist-info/METADATA +0 -455
  409. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
  410. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
  411. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
  412. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
@@ -31,6 +31,12 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
31
31
  training_datasets=None,
32
32
  adapted_from="mistralai/Mistral-7B-v0.1",
33
33
  superseded_by=None,
34
+ citation="""@article{chen2024little,
35
+ title={Little Giants: Synthesizing High-Quality Embedding Data at Scale},
36
+ author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng},
37
+ journal={arXiv preprint arXiv:2410.18634},
38
+ year={2024}
39
+ }""",
34
40
  )
35
41
  Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
36
42
  name="Gameselo/STS-multilingual-mpnet-base-v2",
@@ -382,7 +388,7 @@ Mihaiii__Venusaur = ModelMeta(
382
388
  reference="https://huggingface.co/Mihaiii/Venusaur",
383
389
  similarity_fn_name=ScoringFunction.COSINE,
384
390
  use_instructions=None,
385
- training_datasets=None, # source model is unkown
391
+ training_datasets=None, # source model is unknown
386
392
  # {"Mihaiii/qa-assistant"},
387
393
  adapted_from="Mihaiii/test14",
388
394
  superseded_by=None,
@@ -1516,7 +1522,7 @@ openbmb__minicpm_embedding = ModelMeta(
1516
1522
  superseded_by=None,
1517
1523
  )
1518
1524
 
1519
- silma_ai__silma_embeddding_matryoshka_v0_1 = ModelMeta(
1525
+ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
1520
1526
  name="silma-ai/silma-embeddding-matryoshka-v0.1",
1521
1527
  revision="a520977a9542ebdb8a7206df6b7ff6977f1886ea",
1522
1528
  release_date="2024-10-12",
@@ -10,6 +10,13 @@ from mteb.models.abs_encoder import AbsEncoder
10
10
  from mteb.models.model_meta import ModelMeta, ScoringFunction
11
11
  from mteb.types import Array, BatchedInput, PromptType
12
12
 
13
+ MOCOV3_CITATION = """@Article{chen2021mocov3,
14
+ author = {Xinlei Chen* and Saining Xie* and Kaiming He},
15
+ title = {An Empirical Study of Training Self-Supervised Vision Transformers},
16
+ journal = {arXiv preprint arXiv:2104.02057},
17
+ year = {2021},
18
+ }"""
19
+
13
20
 
14
21
  def mocov3_loader(model_name, **kwargs):
15
22
  requires_package(mocov3_loader, "timm", model_name, "pip install 'mteb[timm]'")
@@ -129,6 +136,7 @@ mocov3_vit_base = ModelMeta(
129
136
  similarity_fn_name=ScoringFunction.COSINE,
130
137
  use_instructions=False,
131
138
  training_datasets=mocov3_training_datasets,
139
+ citation=MOCOV3_CITATION,
132
140
  )
133
141
 
134
142
  mocov3_vit_large = ModelMeta(
@@ -151,4 +159,5 @@ mocov3_vit_large = ModelMeta(
151
159
  similarity_fn_name=ScoringFunction.COSINE,
152
160
  use_instructions=False,
153
161
  training_datasets=mocov3_training_datasets,
162
+ citation=MOCOV3_CITATION,
154
163
  )
@@ -5,7 +5,7 @@ from mteb.models.model_meta import (
5
5
  from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
6
6
 
7
7
  mixedbread_training_data = {
8
- # from correspondance:
8
+ # from correspondence:
9
9
  # as mentioned in our blog post
10
10
  # (https://www.mixedbread.com/blog/mxbai-embed-large-v1#built-for-rag-and-real-world-use-cases:~:text=During%20the%20whole,related%20use%20cases.)
11
11
  # We do not train on any data (except the MSMarco training split) of MTEB. We have a strong filtering process to ensure the OOD setting. That's true
@@ -10,6 +10,14 @@ from mteb.models.abs_encoder import AbsEncoder
10
10
  from mteb.models.model_meta import ModelMeta, ScoringFunction
11
11
  from mteb.types import Array, BatchedInput, PromptType
12
12
 
13
+ OPENCLIP_CITATION = """@inproceedings{cherti2023reproducible,
14
+ title={Reproducible scaling laws for contrastive language-image learning},
15
+ author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
16
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
17
+ pages={2818--2829},
18
+ year={2023}
19
+ }"""
20
+
13
21
 
14
22
  def openclip_loader(model_name, **kwargs):
15
23
  requires_package(
@@ -133,6 +141,7 @@ CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
133
141
  training_datasets=set(
134
142
  # DataComp-1B
135
143
  ),
144
+ citation=OPENCLIP_CITATION,
136
145
  )
137
146
 
138
147
  CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
@@ -157,6 +166,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
157
166
  training_datasets=set(
158
167
  # DataComp-1B
159
168
  ),
169
+ citation=OPENCLIP_CITATION,
160
170
  )
161
171
 
162
172
  CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
@@ -181,6 +191,7 @@ CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
181
191
  training_datasets=set(
182
192
  # DataComp-1B
183
193
  ),
194
+ citation=OPENCLIP_CITATION,
184
195
  )
185
196
 
186
197
  CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
@@ -205,6 +216,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
205
216
  training_datasets=set(
206
217
  # 2 Billion sample English subset of LAION-5B
207
218
  ),
219
+ citation=OPENCLIP_CITATION,
208
220
  )
209
221
 
210
222
  CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
@@ -229,6 +241,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
229
241
  training_datasets=set(
230
242
  # 2 Billion sample English subset of LAION-5B
231
243
  ),
244
+ citation=OPENCLIP_CITATION,
232
245
  )
233
246
 
234
247
  CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
@@ -253,6 +266,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
253
266
  training_datasets=set(
254
267
  # 2 Billion sample English subset of LAION-5B
255
268
  ),
269
+ citation=OPENCLIP_CITATION,
256
270
  )
257
271
 
258
272
  CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
@@ -277,6 +291,7 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
277
291
  training_datasets=set(
278
292
  # 2 Billion sample English subset of LAION-5B
279
293
  ),
294
+ citation=OPENCLIP_CITATION,
280
295
  )
281
296
 
282
297
  CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
@@ -301,4 +316,5 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
301
316
  training_datasets=set(
302
317
  # 2 Billion sample English subset of LAION-5B
303
318
  ),
319
+ citation=OPENCLIP_CITATION,
304
320
  )
@@ -48,4 +48,10 @@ piccolo_large_zh_v2 = ModelMeta(
48
48
  public_training_code=None,
49
49
  public_training_data=None,
50
50
  training_datasets=None, # They don't say
51
+ citation="""@misc{2405.06932,
52
+ Author = {Junqin Huang and Zhongjie Hu and Zihao Jing and Mengya Gao and Yichao Wu},
53
+ Title = {Piccolo2: General Text Embedding with Multi-task Hybrid Loss Training},
54
+ Year = {2024},
55
+ Eprint = {arXiv:2405.06932},
56
+ }""",
51
57
  )
@@ -0,0 +1,33 @@
1
+ import numpy as np
2
+
3
+ from mteb.models.model_implementations.model2vec_models import Model2VecModel
4
+ from mteb.models.model_meta import ModelMeta, ScoringFunction
5
+
6
+ potion_base_8m = ModelMeta(
7
+ loader=Model2VecModel, # type: ignore
8
+ name="rasgaard/m2v-dfm-large",
9
+ languages=["dan-Latn"],
10
+ open_weights=True,
11
+ revision="387897cfb09992e6d45ea9cd7b28b9fcf119e23a",
12
+ release_date="2025-10-08",
13
+ n_parameters=22893312,
14
+ memory_usage_mb=87,
15
+ max_tokens=np.inf,
16
+ embed_dim=256,
17
+ license="mit",
18
+ similarity_fn_name=ScoringFunction.COSINE,
19
+ framework=["NumPy", "Sentence Transformers"],
20
+ reference="https://huggingface.co/rasgaard/m2v-dfm-large",
21
+ use_instructions=False,
22
+ adapted_from="KennethEnevoldsen/dfm-sentence-encoder-large",
23
+ superseded_by=None,
24
+ training_datasets=set(), # distilled
25
+ public_training_code="https://github.com/MinishLab/model2vec",
26
+ public_training_data="https://huggingface.co/datasets/HuggingFaceFW/fineweb-2", # distilled on this
27
+ citation="""@article{minishlab2024model2vec,
28
+ author = {Tulkens, Stephan and {van Dongen}, Thomas},
29
+ title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
30
+ year = {2024},
31
+ url = {https://github.com/MinishLab/model2vec}
32
+ }""",
33
+ )
@@ -18,7 +18,7 @@ def instruction_template(
18
18
  ) -> str:
19
19
  return (
20
20
  # https://github.com/facebookresearch/ReasonIR/blob/0aac96269e455965949df16520fab72da68ffc22/evaluation/bright/configs/reasonir/economics.json#L3
21
- f"<|user|>\n{instruction}<|embed|>\n"
21
+ f"<|user|>\n{instruction}\n<|embed|>\n"
22
22
  if (prompt_type is None or prompt_type == PromptType.query) and instruction
23
23
  else "<|embed|>\n"
24
24
  )
@@ -27,7 +27,7 @@ SFR_TRAINING_DATA = { # inherits from e5
27
27
  "HotpotQA-PL", # translation not trained on
28
28
  "HotpotQA-NL", # translation not trained on
29
29
  # source: https://github.com/embeddings-benchmark/leaderboard/issues/41
30
- # qoute: In the realm of Semantic Textual Similarity (STS), it is trained on STS12, STS22, and STSBenchmark
30
+ # quote: In the realm of Semantic Textual Similarity (STS), it is trained on STS12, STS22, and STSBenchmark
31
31
  "STS12",
32
32
  "STS22",
33
33
  "STSBenchmark",
@@ -344,7 +344,7 @@ TASK_NAME_TO_INSTRUCTION = {
344
344
  "SprintDuplicateQuestions": "Retrieve semantically similar text\n{}",
345
345
  "TwitterSemEval2015": "Retrieve semantically similar text\n{}",
346
346
  "TwitterURLCorpus": "Retrieve semantically similar text\n{}",
347
- "CQADupstackGamingRetrieval": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given questionn\n{}",
347
+ "CQADupstackGamingRetrieval": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question\n{}",
348
348
  "CQADupstackUnixRetrieval": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question\n{}",
349
349
  "DuRetrieval": "为这个句子生成表示以用于检索相关内容:{}",
350
350
  "T2Retrieval": "为这个句子生成表示以用于检索相关内容:{}",
@@ -0,0 +1,26 @@
1
+ """ATLES Champion Embedding Model for MTEB."""
2
+
3
+ from mteb.models.model_meta import ModelMeta
4
+ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
5
+
6
+ spartan8806_atles_champion_embedding = ModelMeta(
7
+ loader=sentence_transformers_loader,
8
+ name="spartan8806/atles-champion-embedding",
9
+ languages=["eng-Latn"],
10
+ open_weights=True,
11
+ revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
12
+ release_date="2025-11-15",
13
+ n_parameters=110_000_000,
14
+ memory_usage_mb=420,
15
+ max_tokens=512,
16
+ embed_dim=768,
17
+ license="apache-2.0",
18
+ similarity_fn_name="cosine",
19
+ framework=["Sentence Transformers"],
20
+ reference="https://huggingface.co/spartan8806/atles-champion-embedding",
21
+ use_instructions=False,
22
+ training_datasets={"STSBenchmark"},
23
+ adapted_from="sentence-transformers/all-mpnet-base-v2",
24
+ public_training_code=None,
25
+ public_training_data=None,
26
+ )
@@ -0,0 +1,374 @@
1
+ from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
2
+ from mteb.models.model_implementations.google_models import gemma_embedding_loader
3
+ from mteb.models.model_meta import ModelMeta
4
+
5
+ Tarka_Embedding_150M_V1_CITATION = """@misc{tarka_ai_research_2025,
6
+ author = { Tarka AI Research },
7
+ title = { Tarka-Embedding-150M-V1 (Revision c5f4f43) },
8
+ year = 2025,
9
+ url = { https://huggingface.co/Tarka-AIR/Tarka-Embedding-150M-V1 },
10
+ doi = { 10.57967/hf/6875 },
11
+ publisher = { Hugging Face }
12
+ }"""
13
+ Tarka_Embedding_350M_V1_CITATION = """@misc{tarka_ai_research_2025,
14
+ author = { Tarka AI Research },
15
+ title = { Tarka-Embedding-350M-V1 (Revision f4b5de8) },
16
+ year = 2025,
17
+ url = { https://huggingface.co/Tarka-AIR/Tarka-Embedding-350M-V1 },
18
+ doi = { 10.57967/hf/6979 },
19
+ publisher = { Hugging Face }
20
+ }"""
21
+
22
+ # Reference: Original prompt definitions adapted from Qwen3-Embedding
23
+ # Source: https://github.com/QwenLM/Qwen3-Embedding/blob/main/evaluation/task_prompts.json
24
+ tarka_embedding_350_v1_instruction_prompts = {
25
+ "AmazonCounterfactualClassification": "Classify a given Amazon customer review text as either counterfactual or not-counterfactual",
26
+ "AmazonPolarityClassification": "Classify Amazon reviews into positive or negative sentiment",
27
+ "AmazonReviewsClassification": "Classify the given Amazon review into its appropriate rating category",
28
+ "Banking77Classification": "Given a online banking query, find the corresponding intents",
29
+ "Banking77Classification.v2": "Given a online banking query, find the corresponding intents",
30
+ "EmotionClassification": "Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise",
31
+ "ImdbClassification": "Classify the sentiment expressed in the given movie review text from the IMDB dataset",
32
+ "MassiveIntentClassification": "Given a user utterance as query, find the user intents",
33
+ "MassiveScenarioClassification": "Given a user utterance as query, find the user scenarios",
34
+ "MTOPDomainClassification": "Classify the intent domain of the given utterance in task-oriented conversation",
35
+ "MTOPIntentClassification": "Classify the intent of the given utterance in task-oriented conversation",
36
+ "ToxicConversationsClassification": "Classify the given comments as either toxic or not toxic",
37
+ "TweetSentimentExtractionClassification": "Classify the sentiment of a given tweet as either positive, negative, or neutral",
38
+ "TNews": "Classify the fine-grained category of the given news title",
39
+ "IFlyTek": "Given an App description text, find the appropriate fine-grained category",
40
+ "MultilingualSentiment": "Classify sentiment of the customer review into positive, neutral, or negative",
41
+ "JDReview": "Classify the customer review for iPhone on e-commerce platform into positive or negative",
42
+ "OnlineShopping": "Classify the customer review for online shopping into positive or negative",
43
+ "Waimai": "Classify the customer review from a food takeaway platform into positive or negative",
44
+ "ArxivClusteringP2P": "Identify the main and secondary category of Arxiv papers based on the titles and abstracts",
45
+ "ArxivClusteringS2S": "Identify the main and secondary category of Arxiv papers based on the titles",
46
+ "BiorxivClusteringP2P": "Identify the main category of Biorxiv papers based on the titles and abstracts",
47
+ "BiorxivClusteringP2P.v2": "Identify the main category of Biorxiv papers based on the titles and abstracts",
48
+ "BiorxivClusteringS2S": "Identify the main category of Biorxiv papers based on the titles",
49
+ "MedrxivClusteringP2P": "Identify the main category of Medrxiv papers based on the titles and abstracts",
50
+ "MedrxivClusteringP2P.v2": "Identify the main category of Medrxiv papers based on the titles and abstracts",
51
+ "MedrxivClusteringS2S": "Identify the main category of Medrxiv papers based on the titles",
52
+ "MedrxivClusteringS2S.v2": "Identify the main category of Medrxiv papers based on the titles",
53
+ "RedditClustering": "Identify the topic or theme of Reddit posts based on the titles",
54
+ "RedditClusteringP2P": "Identify the topic or theme of Reddit posts based on the titles and posts",
55
+ "StackExchangeClustering": "Identify the topic or theme of StackExchange posts based on the titles",
56
+ "StackExchangeClusteringP2P": "Identify the topic or theme of StackExchange posts based on the given paragraphs",
57
+ "StackExchangeClustering.v2": "Identify the topic or theme of StackExchange posts based on the titles",
58
+ "StackExchangeClusteringP2P.v2": "Identify the topic or theme of StackExchange posts based on the given paragraphs",
59
+ "TwentyNewsgroupsClustering": "Identify the topic or theme of the given news articles",
60
+ "TwentyNewsgroupsClustering.v2": "Identify the topic or theme of the given news articles",
61
+ "CLSClusteringS2S": "Identify the main category of scholar papers based on the titles",
62
+ "CLSClusteringP2P": "Identify the main category of scholar papers based on the titles and abstracts",
63
+ "ThuNewsClusteringS2S": "Identify the topic or theme of the given news articles based on the titles",
64
+ "ThuNewsClusteringP2P": "Identify the topic or theme of the given news articles based on the titles and contents",
65
+ "AskUbuntuDupQuestions": "Retrieve duplicate questions from AskUbuntu forum",
66
+ "MindSmallReranking": "Retrieve relevant news articles based on user browsing history",
67
+ "SciDocsRR": "Given a title of a scientific paper, retrieve the titles of other relevant papers",
68
+ "StackOverflowDupQuestions": "Retrieve duplicate questions from StackOverflow forum",
69
+ "SprintDuplicateQuestions": "Retrieve duplicate questions from Sprint forum",
70
+ "TwitterSemEval2015": "Retrieve tweets that are semantically similar to the given tweet",
71
+ "TwitterURLCorpus": "Retrieve tweets that are semantically similar to the given tweet",
72
+ "T2Reranking": "Given a Chinese search query, retrieve web passages that answer the question",
73
+ "MmarcoReranking": "Given a Chinese search query, retrieve web passages that answer the question",
74
+ "CMedQAv1": "Given a Chinese community medical question, retrieve replies that best answer the question",
75
+ "CMedQAv2": "Given a Chinese community medical question, retrieve replies that best answer the question",
76
+ "Ocnli": "Retrieve semantically similar text.",
77
+ "Cmnli": "Retrieve semantically similar text.",
78
+ "ArguAna": {
79
+ "query": "Given a claim, find documents that refute the claim",
80
+ "passage": "Given a claim, find documents that refute the claim",
81
+ },
82
+ "ClimateFEVER": "Given a claim about climate change, retrieve documents that support or refute the claim",
83
+ "ClimateFEVERHardNegatives": "Given a claim about climate change, retrieve documents that support or refute the claim",
84
+ "DBPedia": "Given a query, retrieve relevant entity descriptions from DBPedia",
85
+ "FEVER": "Given a claim, retrieve documents that support or refute the claim",
86
+ "FEVERHardNegatives": "Given a claim, retrieve documents that support or refute the claim",
87
+ "FiQA2018": "Given a financial question, retrieve user replies that best answer the question",
88
+ "HotpotQA": "Given a multi-hop question, retrieve documents that can help answer the question",
89
+ "HotpotQAHardNegatives": "Given a multi-hop question, retrieve documents that can help answer the question",
90
+ "MSMARCO": "Given a web search query, retrieve relevant passages that answer the query",
91
+ "NFCorpus": "Given a question, retrieve relevant documents that best answer the question",
92
+ "NQ": "Given a question, retrieve Wikipedia passages that answer the question",
93
+ "QuoraRetrieval": "Given a question, retrieve questions that are semantically equivalent to the given question",
94
+ "SCIDOCS": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
95
+ "SciFact": "Given a scientific claim, retrieve documents that support or refute the claim",
96
+ "Touche2020": "Given a question, retrieve detailed and persuasive arguments that answer the question",
97
+ "Touche2020Retrieval.v3": "Given a question, retrieve detailed and persuasive arguments that answer the question",
98
+ "TRECCOVID": "Given a query on COVID-19, retrieve documents that answer the query",
99
+ "T2Retrieval": "Given a Chinese search query, retrieve web passages that answer the question",
100
+ "MMarcoRetrieval": "Given a web search query, retrieve relevant passages that answer the query",
101
+ "DuRetrieval": "Given a Chinese search query, retrieve web passages that answer the question",
102
+ "CovidRetrieval": "Given a question on COVID-19, retrieve news articles that answer the question",
103
+ "CmedqaRetrieval": "Given a Chinese community medical question, retrieve replies that best answer the question",
104
+ "EcomRetrieval": "Given a user query from an e-commerce website, retrieve description sentences of relevant products",
105
+ "MedicalRetrieval": "Given a medical question, retrieve user replies that best answer the question",
106
+ "VideoRetrieval": "Given a video search query, retrieve the titles of relevant videos",
107
+ "STSBenchmarkMultilingualSTS": "Retrieve semantically similar text",
108
+ "SICKFr": "Retrieve semantically similar text",
109
+ "SummEvalFr": "Given a news summary, retrieve other semantically similar summaries",
110
+ "MasakhaNEWSClassification": "Classify the News in the given texts into one of the seven category: politics,sports,health,business,entertainment,technology,religion ",
111
+ "OpusparcusPC": "Retrieve semantically similar text",
112
+ "PawsX": "Retrieve semantically similar text",
113
+ "AlloProfClusteringP2P": "Identify the main category of Allo Prof document based on the titles and descriptions",
114
+ "AlloProfClusteringS2S": "Identify the main category of Allo Prof document based on the titles",
115
+ "HALClusteringS2S": "Identify the main category of academic passage based on the titles and contents",
116
+ "MasakhaNEWSClusteringP2P": "Identify the topic or theme of the given news articles based on the titles and contents",
117
+ "MasakhaNEWSClusteringS2S": "Identify the topic or theme of the given news articles based on the titles",
118
+ "MLSUMClusteringP2P": "Identify the topic or theme of the given articles based on the titles and contents",
119
+ "MLSUMClusteringS2S": "Identify the topic or theme of the given articles based on the titles",
120
+ "SyntecReranking": "Given a question, retrieve passages that answer the question",
121
+ "AlloprofReranking": "Given a question, retrieve passages that answer the question",
122
+ "AlloprofRetrieval": "Given a question, retrieve passages that answer the question",
123
+ "BSARDRetrieval": "Given a question, retrieve passages that answer the question",
124
+ "SyntecRetrieval": "Given a question, retrieve passages that answer the question",
125
+ "XPQARetrieval": "Given a question, retrieve passages that answer the question",
126
+ "MintakaRetrieval": "Given a question, retrieve passages that answer the question",
127
+ "CBD": "Classify the sentiment of polish tweet reviews",
128
+ "PolEmo2.0-IN": "Classify the sentiment of in-domain (medicine and hotels) online reviews",
129
+ "PolEmo2.0-OUT": "Classify the sentiment of out-of-domain (products and school) online reviews",
130
+ "AllegroReviews": "Classify the sentiment of reviews from e-commerce marketplace Allegro",
131
+ "PAC": 'Classify the sentence into one of the two types: "BEZPIECZNE_POSTANOWIENIE_UMOWNE" and "KLAUZULA_ABUZYWNA"',
132
+ "SICK-E-PL": "Retrieve semantically similar text",
133
+ "SICK-R-PL": "Retrieve semantically similar text",
134
+ "STS22": "Retrieve semantically similar text",
135
+ "AFQMC": "Retrieve semantically similar text",
136
+ "BQ": "Retrieve semantically similar text",
137
+ "LCQMC": "Retrieve semantically similar text",
138
+ "PAWSX": "Retrieve semantically similar text",
139
+ "QBQTC": "Retrieve semantically similar text",
140
+ "STS12": "Retrieve semantically similar text",
141
+ "PPC": "Retrieve semantically similar text",
142
+ "CDSC-E": "Retrieve semantically similar text",
143
+ "PSC": "Retrieve semantically similar text",
144
+ "8TagsClustering": "Identify of headlines from social media posts in Polish into 8 categories: film, history, food, medicine, motorization, work, sport and technology",
145
+ "ArguAna-PL": "Given a claim, find documents that refute the claim",
146
+ "DBPedia-PL": "Given a query, retrieve relevant entity descriptions from DBPedia",
147
+ "FiQA-PL": "Given a financial question, retrieve user replies that best answer the question",
148
+ "HotpotQA-PL": "Given a multi-hop question, retrieve documents that can help answer the question",
149
+ "MSMARCO-PL": "Given a web search query, retrieve relevant passages that answer the query",
150
+ "NFCorpus-PL": "Given a question, retrieve relevant documents that best answer the question",
151
+ "NQ-PL": "Given a question, retrieve Wikipedia passages that answer the question",
152
+ "Quora-PL": "Given a question, retrieve questions that are semantically equivalent to the given question",
153
+ "SCIDOCS-PL": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
154
+ "SciFact-PL": "Given a scientific claim, retrieve documents that support or refute the claim",
155
+ "TRECCOVID-PL": "Given a query on COVID-19, retrieve documents that answer the query",
156
+ "GeoreviewClassification": "Classify the organization rating based on the reviews",
157
+ "HeadlineClassification": "Classify the topic or theme of the given news headline",
158
+ "InappropriatenessClassification": "Classify the given message as either sensitive topic or not",
159
+ "KinopoiskClassification": "Classify the sentiment expressed in the given movie review text",
160
+ "RuReviewsClassification": "Classify product reviews into positive, negative or neutral sentiment",
161
+ "RuSciBenchGRNTIClassification": "Classify the category of scientific papers based on the titles and abstracts",
162
+ "RuSciBenchOECDClassification": "Classify the category of scientific papers based on the titles and abstracts",
163
+ "GeoreviewClusteringP2P": "Identify the organization category based on the reviews",
164
+ "RuSciBenchGRNTIClusteringP2P": "Identify the category of scientific papers based on the titles and abstracts",
165
+ "RuSciBenchOECDClusteringP2P": "Identify the category of scientific papers based on the titles and abstracts",
166
+ "TERRa": "Given a premise, retrieve a hypothesis that is entailed by the premise",
167
+ "RuBQReranking": "Given a question, retrieve Wikipedia passages that answer the question",
168
+ "RiaNewsRetrieval": "Given a headline, retrieval relevant articles",
169
+ "RuBQRetrieval": "Given a question, retrieve Wikipedia passages that answer the question",
170
+ "RUParaPhraserSTS": "Retrieve semantically similar text",
171
+ "RuSTSBenchmarkSTS": "Retrieve semantically similar text",
172
+ "AppsRetrieval": "Given a question about code problem, retrieval code that can solve user's problem",
173
+ "COIRCodeSearchNetRetrieval": "Given a code snippet, retrieve the comment corresponding to that code.",
174
+ "CodeEditSearchRetrieval": "Given a piece of code, retrieval code that in the ",
175
+ "CodeFeedbackMT": "Given a question about coding, retrieval code or passage that can solve user's question",
176
+ "CodeFeedbackST": "Given a question about coding, retrieval code or passage that can solve user's question",
177
+ "CodeSearchNetCCRetrieval": "Given a code comment, retrieve the code snippet corresponding to that comment.",
178
+ "CodeSearchNetRetrieval": "Given a code snippet, retrieve the comment corresponding to that code.",
179
+ "CodeTransOceanContest": "Given a piece for code, retrieval semantically similar code",
180
+ "CodeTransOceanDL": "Given a piece for code, retrieval semantically similar code",
181
+ "CosQA": "Given a question about coding, retrieval code or passage that can solve user's question",
182
+ "StackOverflowQA": "Given a question about coding, retrieval code or passage that can solve user's question",
183
+ "SyntheticText2SQL": "Given a user's question, retrieve SQL queries that are appropriate responses to the question",
184
+ "BibleNLPBitextMining": "Retrieve parallel sentences",
185
+ "BUCC.v2": "Retrieve parallel sentences",
186
+ "DiaBlaBitextMining": "Retrieve parallel sentences",
187
+ "FloresBitextMining": "Retrieve parallel sentences",
188
+ "IN22GenBitextMining": "Retrieve parallel sentences",
189
+ "IndicGenBenchFloresBitextMining": "Retrieve parallel sentences",
190
+ "NollySentiBitextMining": "Retrieve parallel sentences",
191
+ "NTREXBitextMining": "Retrieve parallel sentences",
192
+ "NusaTranslationBitextMining": "Retrieve parallel sentences",
193
+ "NusaXBitextMining": "Retrieve parallel sentences",
194
+ "Tatoeba": "Retrieve parallel sentences",
195
+ "BulgarianStoreReviewSentimentClassfication": "Classify user reviews into positive or negative sentiment",
196
+ "CzechProductReviewSentimentClassification": "Classify product reviews into positive or negative sentiment",
197
+ "GreekLegalCodeClassification": "Given a greek legal text, classify its topic",
198
+ "DBpediaClassification": "Given a Wikipedia articles, categorized it into classes based on its DBpedia ontology",
199
+ "FinancialPhrasebankClassification": "Given financial news, categorized by sentiment into positive, negative, or neutral",
200
+ "PoemSentimentClassification": "Gvien a poem, categorized by sentiment into positive, no_impact, negative or mixed",
201
+ "TweetTopicSingleClassification": "Gvien a twitter, classify its topic",
202
+ "EstonianValenceClassification": "Given a news article, categorized by sentiment into negatiivne, positiivne, neutraalne or vastuolulin",
203
+ "FilipinoShopeeReviewsClassification": "Given a shop review, classify its rating on a scale from 1 to 5",
204
+ "GujaratiNewsClassification": "Given a Gujarati news articles, classify its topic",
205
+ "SentimentAnalysisHindi": "Given a hindi text, categorized by sentiment into positive, negative or neutral",
206
+ "IndonesianIdClickbaitClassification": "Given an Indonesian news headlines, classify its into clickbait or non-clickbait",
207
+ "ItaCaseholdClassification": "Given a judgments, classify its topic",
208
+ "KorSarcasmClassification": "Given a twitter, categorized it into sarcasm or not_sarcasm",
209
+ "KurdishSentimentClassification": "Given a text, categorized by sentiment into positive or negative",
210
+ "MacedonianTweetSentimentClassification": "Given a Macedonian tweet, categorized by sentiment into positive, negative, or neutral",
211
+ "AfriSentiClassification": "Given a text, categorized by sentiment into positive, negative, or neutral",
212
+ "CataloniaTweetClassification": "Given a tweet, categorized by sentiment into AGAINST, FAVOR or NEUTRAL",
213
+ "CyrillicTurkicLangClassification": "Given a text, classify its language",
214
+ "IndicLangClassification": "Given a text, classify its language",
215
+ "MultiHateClassification": "Given a text, categorized by sentiment into hate or non-hate",
216
+ "NusaParagraphEmotionClassification": "Given a paragraph, classify its emotion",
217
+ "NusaX-senti": "Given a text, categorized by sentiment into positive or negative",
218
+ "SwissJudgementClassification": "Given a news article, categorized it into approval or dismissal",
219
+ "NepaliNewsClassification": "Given a news article, categorized it into business, entertainment or sports",
220
+ "OdiaNewsClassification": "Given a news article, categorized it into business, entertainment or sports",
221
+ "PunjabiNewsClassification": "Given a news article, categorized it into two-classes",
222
+ "SinhalaNewsClassification": "Given a news article, categorized it into political, business, technology, sports and Entertainment",
223
+ "CSFDSKMovieReviewSentimentClassification": "Given a movie review, classify its rating on a scale from 0 to 5",
224
+ "SiswatiNewsClassification": "Given a news article, classify its topic",
225
+ "SlovakMovieReviewSentimentClassification": "Given a movie review, categorized it into positive or negative",
226
+ "SwahiliNewsClassification": "Given a news article, classify its domain",
227
+ "TswanaNewsClassification": "Given a news article, classify its topic",
228
+ "IsiZuluNewsClassification": "Given a news article, classify its topic",
229
+ "WikiCitiesClustering": "Identify of Wikipedia articles of cities by country",
230
+ "RomaniBibleClustering": "Identify verses from the Bible in Kalderash Romani by book.",
231
+ "ArXivHierarchicalClusteringP2P": "Identify the main and secondary category of Arxiv papers based on the titles and abstracts",
232
+ "ArXivHierarchicalClusteringS2S": "Identify the main and secondary category of Arxiv papers based on the titles",
233
+ "BigPatentClustering.v2": "Identify the category of documents from the Big Patent dataset",
234
+ "AlloProfClusteringS2S.v2": "Identify the topic of document titles from Allo Prof dataset",
235
+ "HALClusteringS2S.v2": "Identify the topic of titles from HAL",
236
+ "SIB200ClusteringS2S": "Identify the category of documents",
237
+ "WikiClusteringP2P.v2": "Identify the category of wiki passages",
238
+ "PlscClusteringP2P.v2": "Identify the category of titles+abstracts from Library of Science",
239
+ "KorHateSpeechMLClassification": "Given a Korean online news comments, classify its fine-grained hate speech classes",
240
+ "MalteseNewsClassification": "Given a maltese new, classify its topic",
241
+ "MultiEURLEXMultilabelClassification": "Given a text, classify its topic",
242
+ "BrazilianToxicTweetsClassification": "Given a tweet, classify its topic",
243
+ "CTKFactsNLI": "Retrieve semantically similar text",
244
+ "indonli": "Retrieve semantically similar text",
245
+ "ArmenianParaphrasePC": "Retrieve semantically similar text",
246
+ "PawsXPairClassification": "Retrieve semantically similar text",
247
+ "RTE3": "Retrieve semantically similar text",
248
+ "XNLI": "Retrieve semantically similar text",
249
+ "PpcPC": "Retrieve semantically similar text",
250
+ "GermanSTSBenchmark": "Retrieve semantically similar text",
251
+ "SICK-R": "Retrieve semantically similar text",
252
+ "STS13": "Retrieve semantically similar text",
253
+ "STS14": "Retrieve semantically similar text",
254
+ "STSBenchmark": "Retrieve semantically similar text",
255
+ "FaroeseSTS": "Retrieve semantically similar text",
256
+ "FinParaSTS": "Retrieve semantically similar text",
257
+ "JSICK": "Retrieve semantically similar text",
258
+ "IndicCrosslingualSTS": "Retrieve semantically similar text",
259
+ "SemRel24STS": "Retrieve semantically similar text",
260
+ "STS17": "Retrieve semantically similar text",
261
+ "STS22.v2": "Retrieve semantically similar text",
262
+ "STSES": "Retrieve semantically similar text",
263
+ "STSB": "Retrieve semantically similar text",
264
+ "AILAStatutes": "Identifying the most relevant statutes for a given situation",
265
+ "HagridRetrieval": "Retrieval the relevant passage for the given query",
266
+ "LegalBenchCorporateLobbying": "Retrieval the relevant passage for the given query",
267
+ "LEMBPasskeyRetrieval": "Retrieval the relevant passage for the given query",
268
+ "BelebeleRetrieval": "Retrieval the relevant passage for the given query",
269
+ "MLQARetrieval": "Retrieval the relevant passage for the given query",
270
+ "StatcanDialogueDatasetRetrieval": "Retrieval the relevant passage for the given query",
271
+ "WikipediaRetrievalMultilingual": "Retrieval the relevant passage for the given query",
272
+ "Core17InstructionRetrieval": "Retrieval the relevant passage for the given query",
273
+ "News21InstructionRetrieval": "Retrieval the relevant passage for the given query",
274
+ "Robust04InstructionRetrieval": "Retrieval the relevant passage for the given query",
275
+ "WebLINXCandidatesReranking": "Retrieval the relevant passage for the given query",
276
+ "WikipediaRerankingMultilingual": "Retrieval the relevant passage for the given query",
277
+ "STS15": "Retrieve semantically similar text",
278
+ "MIRACLRetrievalHardNegatives": "Retrieval relevant passage for the given query",
279
+ "BIOSSES": "Retrieve semantically similar text",
280
+ "CQADupstackRetrieval": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
281
+ "CQADupstackGamingRetrieval": {
282
+ "query": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
283
+ "passage": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
284
+ },
285
+ "CQADupstackUnixRetrieval": {
286
+ "query": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
287
+ "passage": "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question",
288
+ },
289
+ "STS16": "Retrieve semantically similar text",
290
+ "SummEval": "Retrieve semantically similar text",
291
+ "ATEC": "Retrieve semantically similar text",
292
+ "SummEvalSummarization.v2": "Given a news summary, retrieve other semantically similar summaries.",
293
+ }
294
+
295
+ MULTILINGUAL_EVALUATED_LANGUAGES = [
296
+ "arb-Arab",
297
+ "eng-Latn",
298
+ "spa-Latn",
299
+ "deu-Latn",
300
+ "fra-Latn",
301
+ "jpn-Jpan",
302
+ "kor-Hang",
303
+ "zho-Hans",
304
+ ]
305
+
306
+ training_data = {
307
+ "T2Retrieval",
308
+ "DuRetrieval",
309
+ "MMarcoReranking",
310
+ "CMedQAv2-reranking",
311
+ "NQ",
312
+ "MSMARCO",
313
+ "HotpotQA",
314
+ "FEVER",
315
+ "MrTidyRetrieval",
316
+ "MIRACLRetrieval",
317
+ "CodeSearchNet",
318
+ }
319
+
320
+
321
+ tarka_embedding_150m_v1 = ModelMeta(
322
+ loader=gemma_embedding_loader,
323
+ name="Tarka-AIR/Tarka-Embedding-150M-V1",
324
+ languages=MULTILINGUAL_EVALUATED_LANGUAGES,
325
+ open_weights=True,
326
+ revision="b0ffecc4ef0d873e517507ed080e43b88b2704b9",
327
+ release_date="2025-11-04",
328
+ n_parameters=155_714_304,
329
+ embed_dim=768,
330
+ max_tokens=2048,
331
+ license="gemma",
332
+ reference="https://huggingface.co/Tarka-AIR/Tarka-Embedding-150M-V1",
333
+ framework=["Sentence Transformers", "PyTorch"],
334
+ use_instructions=True,
335
+ public_training_code=None,
336
+ public_training_data=None,
337
+ training_datasets=training_data,
338
+ similarity_fn_name="cosine",
339
+ memory_usage_mb=576,
340
+ citation=Tarka_Embedding_150M_V1_CITATION,
341
+ )
342
+
343
+ tark_embedding_350_v1_kwargs = dict(
344
+ model_kwargs={
345
+ "torch_dtype": "bfloat16",
346
+ }, # use low-precision
347
+ trust_remote_code=True,
348
+ prompts_dict=tarka_embedding_350_v1_instruction_prompts,
349
+ apply_instruction_to_passages=False,
350
+ instruction_template="Instruct: {instruction}\nQuery:",
351
+ )
352
+
353
+ tarka_embedding_350m_v1 = ModelMeta(
354
+ loader=InstructSentenceTransformerModel,
355
+ loader_kwargs=tark_embedding_350_v1_kwargs,
356
+ name="Tarka-AIR/Tarka-Embedding-350M-V1",
357
+ languages=MULTILINGUAL_EVALUATED_LANGUAGES,
358
+ open_weights=True,
359
+ revision="a850d6a329145474727424fed6b12b62096b8ba3",
360
+ release_date="2025-11-11",
361
+ n_parameters=354_483_968,
362
+ memory_usage_mb=676,
363
+ embed_dim=1024,
364
+ max_tokens=128000,
365
+ license=None,
366
+ reference="https://huggingface.co/Tarka-AIR/Tarka-Embedding-350M-V1",
367
+ similarity_fn_name="cosine",
368
+ framework=["Sentence Transformers", "PyTorch"],
369
+ use_instructions=True,
370
+ public_training_code=None,
371
+ public_training_data=None,
372
+ training_datasets=training_data,
373
+ citation=Tarka_Embedding_350M_V1_CITATION,
374
+ )