mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +10 -1
- mteb/_create_dataloaders.py +8 -3
- mteb/_evaluators/any_sts_evaluator.py +14 -12
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
- mteb/_evaluators/pair_classification_evaluator.py +3 -1
- mteb/_evaluators/retrieval_metrics.py +0 -9
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_stratification.py +1 -1
- mteb/abstasks/abstask.py +6 -1
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/dataset_card_template.md +1 -1
- mteb/abstasks/multilabel_classification.py +2 -2
- mteb/abstasks/retrieval.py +2 -1
- mteb/abstasks/retrieval_dataset_loaders.py +1 -1
- mteb/abstasks/task_metadata.py +2 -1
- mteb/benchmarks/_create_table.py +1 -3
- mteb/benchmarks/benchmark.py +18 -1
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +125 -16
- mteb/benchmarks/get_benchmark.py +3 -1
- mteb/cache.py +7 -3
- mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
- mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
- mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
- mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
- mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
- mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
- mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
- mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
- mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
- mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
- mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
- mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
- mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
- mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
- mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
- mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
- mteb/evaluate.py +26 -6
- mteb/languages/check_language_code.py +11 -3
- mteb/languages/language_scripts.py +4 -0
- mteb/leaderboard/app.py +5 -3
- mteb/leaderboard/benchmark_selector.py +4 -2
- mteb/leaderboard/text_segments.py +1 -1
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/instruct_wrapper.py +3 -0
- mteb/models/model_implementations/align_models.py +6 -0
- mteb/models/model_implementations/andersborges.py +51 -0
- mteb/models/model_implementations/ara_models.py +7 -0
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +1 -3
- mteb/models/model_implementations/blip2_models.py +9 -0
- mteb/models/model_implementations/blip_models.py +19 -0
- mteb/models/model_implementations/bmretriever_models.py +1 -1
- mteb/models/model_implementations/cadet_models.py +8 -0
- mteb/models/model_implementations/cde_models.py +12 -0
- mteb/models/model_implementations/codefuse_models.py +15 -0
- mteb/models/model_implementations/codesage_models.py +12 -0
- mteb/models/model_implementations/cohere_models.py +1 -1
- mteb/models/model_implementations/colqwen_models.py +57 -0
- mteb/models/model_implementations/emillykkejensen_models.py +70 -0
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/ibm_granite_models.py +1 -1
- mteb/models/model_implementations/inf_models.py +3 -3
- mteb/models/model_implementations/jasper_models.py +253 -2
- mteb/models/model_implementations/jina_models.py +12 -2
- mteb/models/model_implementations/kalm_models.py +159 -25
- mteb/models/model_implementations/llm2vec_models.py +1 -1
- mteb/models/model_implementations/misc_models.py +8 -2
- mteb/models/model_implementations/moco_models.py +9 -0
- mteb/models/model_implementations/mxbai_models.py +1 -1
- mteb/models/model_implementations/openclip_models.py +16 -0
- mteb/models/model_implementations/piccolo_models.py +6 -0
- mteb/models/model_implementations/rasgaard_models.py +33 -0
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/salesforce_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
- mteb/models/model_implementations/tarka_models.py +374 -0
- mteb/models/model_implementations/voyage_models.py +6 -7
- mteb/models/model_implementations/voyage_v.py +10 -9
- mteb/models/model_implementations/yuan_models.py +33 -0
- mteb/models/search_wrappers.py +6 -5
- mteb/results/task_result.py +19 -17
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +2 -3
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/__init__.py +16 -0
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
- mteb/tasks/classification/nld/iconclass_classification.py +44 -0
- mteb/tasks/classification/nld/open_tender_classification.py +41 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/__init__.py +1 -0
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/__init__.py +17 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/__init__.py +1 -0
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/__init__.py +1 -0
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
- mteb/tasks/pair_classification/nld/__init__.py +7 -0
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +8 -8
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +18 -4
- mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
- mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
- mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
- mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
- mteb/tasks/retrieval/nld/__init__.py +18 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/rus/__init__.py +11 -2
- mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/__init__.py +1 -0
- mteb/tasks/sts/nld/__init__.py +5 -0
- mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb-2.1.19.dist-info/METADATA +253 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
- mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
- mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
- mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
- mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
- mteb-2.0.5.dist-info/METADATA +0 -455
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,9 @@
|
|
|
1
|
-
from mteb.benchmarks.benchmark import
|
|
1
|
+
from mteb.benchmarks.benchmark import (
|
|
2
|
+
Benchmark,
|
|
3
|
+
HUMEBenchmark,
|
|
4
|
+
MIEBBenchmark,
|
|
5
|
+
VidoreBenchmark,
|
|
6
|
+
)
|
|
2
7
|
from mteb.get_tasks import MTEBTasks, get_task, get_tasks
|
|
3
8
|
|
|
4
9
|
MMTEB_CITATION = r"""@article{enevoldsen2025mmtebmassivemultilingualtext,
|
|
@@ -641,7 +646,7 @@ MTEB_KOR = Benchmark(
|
|
|
641
646
|
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/kr.svg",
|
|
642
647
|
tasks=get_tasks(
|
|
643
648
|
languages=["kor"],
|
|
644
|
-
tasks=[ # @KennethEnevoldsen: We could probably expand this to a more solid
|
|
649
|
+
tasks=[ # @KennethEnevoldsen: We could probably expand this to a more solid benchmark, but for now I have left it as is.
|
|
645
650
|
# Classification
|
|
646
651
|
"KLUE-TC",
|
|
647
652
|
# Reranking
|
|
@@ -975,8 +980,6 @@ MTEB_INDIC = Benchmark(
|
|
|
975
980
|
# Bitext
|
|
976
981
|
"IN22ConvBitextMining",
|
|
977
982
|
"IN22GenBitextMining",
|
|
978
|
-
"IndicGenBenchFloresBitextMining",
|
|
979
|
-
"LinceMTBitextMining",
|
|
980
983
|
# clustering
|
|
981
984
|
"SIB200ClusteringS2S",
|
|
982
985
|
# classification
|
|
@@ -985,7 +988,6 @@ MTEB_INDIC = Benchmark(
|
|
|
985
988
|
"HindiDiscourseClassification",
|
|
986
989
|
"SentimentAnalysisHindi",
|
|
987
990
|
"MalayalamNewsClassification",
|
|
988
|
-
"IndicLangClassification",
|
|
989
991
|
"MTOPIntentClassification",
|
|
990
992
|
"MultiHateClassification",
|
|
991
993
|
"TweetSentimentClassification",
|
|
@@ -1008,7 +1010,7 @@ MTEB_INDIC = Benchmark(
|
|
|
1008
1010
|
# STS
|
|
1009
1011
|
(get_task("IndicCrosslingualSTS"),)
|
|
1010
1012
|
),
|
|
1011
|
-
description="A regional geopolitical text embedding benchmark
|
|
1013
|
+
description="A regional geopolitical text embedding benchmark targeting embedding performance on Indic languages.",
|
|
1012
1014
|
reference=None,
|
|
1013
1015
|
citation=MMTEB_CITATION,
|
|
1014
1016
|
contacts=["KennethEnevoldsen", "isaac-chung"],
|
|
@@ -1016,7 +1018,7 @@ MTEB_INDIC = Benchmark(
|
|
|
1016
1018
|
|
|
1017
1019
|
|
|
1018
1020
|
eu_languages = [
|
|
1019
|
-
# official EU languages (56) - we could include the whole economic area e.g. Norway -
|
|
1021
|
+
# official EU languages (56) - we could include the whole economic area e.g. Norway - additionally we could include minority languages (probably a good idea?)
|
|
1020
1022
|
# germanic
|
|
1021
1023
|
"dan",
|
|
1022
1024
|
"eng",
|
|
@@ -1084,7 +1086,6 @@ MTEB_EU = Benchmark(
|
|
|
1084
1086
|
"AmazonCounterfactualClassification",
|
|
1085
1087
|
"MassiveScenarioClassification",
|
|
1086
1088
|
"MultiHateClassification",
|
|
1087
|
-
"NordicLangClassification",
|
|
1088
1089
|
"ScalaClassification",
|
|
1089
1090
|
"SwissJudgementClassification",
|
|
1090
1091
|
"TweetSentimentClassification",
|
|
@@ -1142,7 +1143,7 @@ MTEB_EU = Benchmark(
|
|
|
1142
1143
|
languages=eu_languages,
|
|
1143
1144
|
exclusive_language_filter=True,
|
|
1144
1145
|
),
|
|
1145
|
-
description="A regional geopolitical text embedding benchmark
|
|
1146
|
+
description="A regional geopolitical text embedding benchmark targeting embedding performance on European languages.",
|
|
1146
1147
|
reference=None,
|
|
1147
1148
|
citation=MMTEB_CITATION,
|
|
1148
1149
|
contacts=["KennethEnevoldsen", "isaac-chung"],
|
|
@@ -1636,6 +1637,81 @@ BEIR_NL = Benchmark(
|
|
|
1636
1637
|
""",
|
|
1637
1638
|
)
|
|
1638
1639
|
|
|
1640
|
+
MTEB_NL = Benchmark(
|
|
1641
|
+
name="MTEB(nld, v1)",
|
|
1642
|
+
display_name="Dutch",
|
|
1643
|
+
icon="https://github.com/lipis/flag-icons/raw/260c91531be024944c6514130c5defb2ebb02b7d/flags/4x3/nl.svg",
|
|
1644
|
+
tasks=MTEBTasks(
|
|
1645
|
+
get_tasks(
|
|
1646
|
+
languages=["nld"],
|
|
1647
|
+
exclusive_language_filter=True,
|
|
1648
|
+
tasks=[
|
|
1649
|
+
# Classification
|
|
1650
|
+
"DutchBookReviewSentimentClassification.v2",
|
|
1651
|
+
"MassiveIntentClassification",
|
|
1652
|
+
"MassiveScenarioClassification",
|
|
1653
|
+
"SIB200Classification",
|
|
1654
|
+
"MultiHateClassification",
|
|
1655
|
+
"VaccinChatNLClassification",
|
|
1656
|
+
"DutchColaClassification",
|
|
1657
|
+
"DutchGovernmentBiasClassification",
|
|
1658
|
+
"DutchSarcasticHeadlinesClassification",
|
|
1659
|
+
"DutchNewsArticlesClassification",
|
|
1660
|
+
"OpenTenderClassification",
|
|
1661
|
+
"IconclassClassification",
|
|
1662
|
+
# # PairClassification
|
|
1663
|
+
"SICKNLPairClassification",
|
|
1664
|
+
"XLWICNLPairClassification",
|
|
1665
|
+
# # MultiLabelClassification
|
|
1666
|
+
"CovidDisinformationNLMultiLabelClassification",
|
|
1667
|
+
"MultiEURLEXMultilabelClassification",
|
|
1668
|
+
"VABBMultiLabelClassification",
|
|
1669
|
+
# # Clustering
|
|
1670
|
+
"DutchNewsArticlesClusteringS2S",
|
|
1671
|
+
"DutchNewsArticlesClusteringP2P",
|
|
1672
|
+
"SIB200ClusteringS2S",
|
|
1673
|
+
"VABBClusteringS2S",
|
|
1674
|
+
"VABBClusteringP2P",
|
|
1675
|
+
"OpenTenderClusteringS2S",
|
|
1676
|
+
"OpenTenderClusteringP2P",
|
|
1677
|
+
"IconclassClusteringS2S",
|
|
1678
|
+
# # Reranking
|
|
1679
|
+
"WikipediaRerankingMultilingual",
|
|
1680
|
+
# # Retrieval
|
|
1681
|
+
"ArguAna-NL.v2",
|
|
1682
|
+
"SCIDOCS-NL.v2",
|
|
1683
|
+
"SciFact-NL.v2",
|
|
1684
|
+
"NFCorpus-NL.v2",
|
|
1685
|
+
"BelebeleRetrieval",
|
|
1686
|
+
"WebFAQRetrieval",
|
|
1687
|
+
"DutchNewsArticlesRetrieval",
|
|
1688
|
+
"bBSARDNLRetrieval",
|
|
1689
|
+
"LegalQANLRetrieval",
|
|
1690
|
+
"OpenTenderRetrieval",
|
|
1691
|
+
"VABBRetrieval",
|
|
1692
|
+
"WikipediaRetrievalMultilingual",
|
|
1693
|
+
# # STS
|
|
1694
|
+
"SICK-NL-STS",
|
|
1695
|
+
"STSBenchmarkMultilingualSTS",
|
|
1696
|
+
],
|
|
1697
|
+
)
|
|
1698
|
+
),
|
|
1699
|
+
description="MTEB-NL",
|
|
1700
|
+
reference="https://arxiv.org/abs/2509.12340",
|
|
1701
|
+
contacts=["nikolay-banar"],
|
|
1702
|
+
citation=r"""
|
|
1703
|
+
@misc{banar2025mtebnle5nlembeddingbenchmark,
|
|
1704
|
+
archiveprefix = {arXiv},
|
|
1705
|
+
author = {Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
|
|
1706
|
+
eprint = {22509.12340},
|
|
1707
|
+
primaryclass = {cs.CL},
|
|
1708
|
+
title = {MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
|
|
1709
|
+
url = {https://arxiv.org/abs/2509.12340},
|
|
1710
|
+
year = {2025},
|
|
1711
|
+
}
|
|
1712
|
+
""",
|
|
1713
|
+
)
|
|
1714
|
+
|
|
1639
1715
|
MIEB_common_tasks = [
|
|
1640
1716
|
# Image Classification
|
|
1641
1717
|
"Birdsnap", # fine
|
|
@@ -1783,7 +1859,7 @@ MIEB_ENG = MIEBBenchmark(
|
|
|
1783
1859
|
),
|
|
1784
1860
|
description="""MIEB(eng) is a comprehensive image embeddings benchmark, spanning 8 task types, covering 125 tasks.
|
|
1785
1861
|
In addition to image classification (zero shot and linear probing), clustering, retrieval, MIEB includes tasks in compositionality evaluation,
|
|
1786
|
-
document
|
|
1862
|
+
document understanding, visual STS, and CV-centric tasks.""",
|
|
1787
1863
|
reference="https://arxiv.org/abs/2504.10471",
|
|
1788
1864
|
contacts=["gowitheflow-1998", "isaac-chung"],
|
|
1789
1865
|
citation=r"""
|
|
@@ -1817,7 +1893,7 @@ MIEB_MULTILINGUAL = MIEBBenchmark(
|
|
|
1817
1893
|
),
|
|
1818
1894
|
description="""MIEB(Multilingual) is a comprehensive image embeddings benchmark, spanning 10 task types, covering 130 tasks and a total of 39 languages.
|
|
1819
1895
|
In addition to image classification (zero shot and linear probing), clustering, retrieval, MIEB includes tasks in compositionality evaluation,
|
|
1820
|
-
document
|
|
1896
|
+
document understanding, visual STS, and CV-centric tasks. This benchmark consists of MIEB(eng) + 3 multilingual retrieval
|
|
1821
1897
|
datasets + the multilingual parts of VisualSTS-b and VisualSTS-16.""",
|
|
1822
1898
|
reference="https://arxiv.org/abs/2504.10471",
|
|
1823
1899
|
contacts=["gowitheflow-1998", "isaac-chung"],
|
|
@@ -2038,7 +2114,7 @@ BUILT_MTEB = Benchmark(
|
|
|
2038
2114
|
"BuiltBenchReranking",
|
|
2039
2115
|
],
|
|
2040
2116
|
),
|
|
2041
|
-
description='"Built-Bench" is an ongoing effort aimed at evaluating text embedding models in the context of built asset management, spanning over various
|
|
2117
|
+
description='"Built-Bench" is an ongoing effort aimed at evaluating text embedding models in the context of built asset management, spanning over various disciplines such as architecture, engineering, construction, and operations management of the built environment.',
|
|
2042
2118
|
reference="https://arxiv.org/abs/2411.12056",
|
|
2043
2119
|
citation=r"""
|
|
2044
2120
|
@article{shahinmoghadam2024benchmarking,
|
|
@@ -2143,10 +2219,43 @@ VIDORE_V2 = Benchmark(
|
|
|
2143
2219
|
""",
|
|
2144
2220
|
)
|
|
2145
2221
|
|
|
2146
|
-
|
|
2147
|
-
name="
|
|
2148
|
-
display_name="
|
|
2149
|
-
icon="https://
|
|
2222
|
+
VIDORE_V3 = VidoreBenchmark(
|
|
2223
|
+
name="ViDoRe(v3)",
|
|
2224
|
+
display_name="ViDoRe V3",
|
|
2225
|
+
icon="https://cdn-uploads.huggingface.co/production/uploads/66e16a677c2eb2da5109fb5c/x99xqw__fl2UaPbiIdC_f.png",
|
|
2226
|
+
tasks=get_tasks(
|
|
2227
|
+
tasks=[
|
|
2228
|
+
"Vidore3FinanceEnRetrieval",
|
|
2229
|
+
"Vidore3IndustrialRetrieval",
|
|
2230
|
+
"Vidore3ComputerScienceRetrieval",
|
|
2231
|
+
"Vidore3PharmaceuticalsRetrieval",
|
|
2232
|
+
"Vidore3HrRetrieval",
|
|
2233
|
+
"Vidore3FinanceFrRetrieval",
|
|
2234
|
+
"Vidore3PhysicsRetrieval",
|
|
2235
|
+
"Vidore3EnergyRetrieval",
|
|
2236
|
+
"Vidore3TelecomRetrieval",
|
|
2237
|
+
"Vidore3NuclearRetrieval",
|
|
2238
|
+
]
|
|
2239
|
+
),
|
|
2240
|
+
description="ViDoRe V3 sets a new industry gold standard for multi-modal, enterprise document visual retrieval evaluation. It addresses a critical challenge in production RAG systems: retrieving accurate information from complex, visually-rich documents. The benchmark includes both open and closed datasets: to submit results on private tasks, please [open an issue](https://github.com/embeddings-benchmark/mteb/issues?template=eval_request.yaml).",
|
|
2241
|
+
reference="https://huggingface.co/blog/QuentinJG/introducing-vidore-v3",
|
|
2242
|
+
citation=r"""
|
|
2243
|
+
@misc{mace2025vidorev3,
|
|
2244
|
+
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
|
|
2245
|
+
day = {5},
|
|
2246
|
+
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
|
|
2247
|
+
journal = {Hugging Face Blog},
|
|
2248
|
+
month = {November},
|
|
2249
|
+
publisher = {Hugging Face},
|
|
2250
|
+
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
|
|
2251
|
+
year = {2025},
|
|
2252
|
+
}
|
|
2253
|
+
""",
|
|
2254
|
+
)
|
|
2255
|
+
|
|
2256
|
+
VISUAL_DOCUMENT_RETRIEVAL = VidoreBenchmark(
|
|
2257
|
+
name="ViDoRe(v1&v2)",
|
|
2258
|
+
display_name="ViDoRe (V1&V2)",
|
|
2150
2259
|
tasks=get_tasks(
|
|
2151
2260
|
tasks=[
|
|
2152
2261
|
# v1
|
mteb/benchmarks/get_benchmark.py
CHANGED
|
@@ -14,7 +14,7 @@ def _build_registry() -> dict[str, Benchmark]:
|
|
|
14
14
|
|
|
15
15
|
benchmark_registry = {
|
|
16
16
|
inst.name: inst
|
|
17
|
-
for
|
|
17
|
+
for _, inst in benchmark_module.__dict__.items()
|
|
18
18
|
if isinstance(inst, Benchmark)
|
|
19
19
|
}
|
|
20
20
|
return benchmark_registry
|
|
@@ -39,6 +39,7 @@ def _get_previous_benchmark_names() -> dict[str, str]:
|
|
|
39
39
|
MTEB_RETRIEVAL_MEDICAL,
|
|
40
40
|
MTEB_RETRIEVAL_WITH_INSTRUCTIONS,
|
|
41
41
|
SEB,
|
|
42
|
+
VISUAL_DOCUMENT_RETRIEVAL,
|
|
42
43
|
MTEB_code,
|
|
43
44
|
MTEB_multilingual_v2,
|
|
44
45
|
)
|
|
@@ -63,6 +64,7 @@ def _get_previous_benchmark_names() -> dict[str, str]:
|
|
|
63
64
|
"MTEB(Chinese)": C_MTEB.name,
|
|
64
65
|
"FaMTEB(fas, beta)": FA_MTEB.name,
|
|
65
66
|
"BRIGHT(long)": BRIGHT_LONG.name,
|
|
67
|
+
"VisualDocumentRetrieval": VISUAL_DOCUMENT_RETRIEVAL.name,
|
|
66
68
|
}
|
|
67
69
|
return previous_benchmark_names
|
|
68
70
|
|
mteb/cache.py
CHANGED
|
@@ -62,7 +62,11 @@ class ResultCache:
|
|
|
62
62
|
Returns:
|
|
63
63
|
The path to the results of the task.
|
|
64
64
|
"""
|
|
65
|
-
results_folder =
|
|
65
|
+
results_folder = (
|
|
66
|
+
self.cache_path / "results"
|
|
67
|
+
if not remote
|
|
68
|
+
else self.cache_path / "remote" / "results"
|
|
69
|
+
)
|
|
66
70
|
|
|
67
71
|
if isinstance(model_name, ModelMeta):
|
|
68
72
|
if model_revision is not None:
|
|
@@ -74,7 +78,7 @@ class ResultCache:
|
|
|
74
78
|
elif isinstance(model_name, str):
|
|
75
79
|
model_name = model_name.replace("/", "__").replace(" ", "_")
|
|
76
80
|
|
|
77
|
-
model_path =
|
|
81
|
+
model_path = results_folder / model_name
|
|
78
82
|
|
|
79
83
|
if model_revision is None:
|
|
80
84
|
logger.warning(
|
|
@@ -495,7 +499,7 @@ class ResultCache:
|
|
|
495
499
|
if validate_and_filter:
|
|
496
500
|
task = task_names[task_result.task_name]
|
|
497
501
|
try:
|
|
498
|
-
task_result.validate_and_filter_scores(task=task)
|
|
502
|
+
task_result = task_result.validate_and_filter_scores(task=task)
|
|
499
503
|
except Exception as e:
|
|
500
504
|
logger.info(
|
|
501
505
|
f"Validation failed for {task_result.task_name} in {model_name} {revision}: {e}"
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 2400,
|
|
4
|
+
"number_texts_intersect_with_train": null,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 92146,
|
|
7
|
+
"min_text_length": 5,
|
|
8
|
+
"average_text_length": 38.39416666666666,
|
|
9
|
+
"max_text_length": 138,
|
|
10
|
+
"unique_texts": 2400
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.0,
|
|
16
|
+
"max_labels_per_text": 1,
|
|
17
|
+
"unique_labels": 2,
|
|
18
|
+
"labels": {
|
|
19
|
+
"1": {
|
|
20
|
+
"count": 1200
|
|
21
|
+
},
|
|
22
|
+
"0": {
|
|
23
|
+
"count": 1200
|
|
24
|
+
}
|
|
25
|
+
}
|
|
26
|
+
}
|
|
27
|
+
},
|
|
28
|
+
"train": {
|
|
29
|
+
"num_samples": 19893,
|
|
30
|
+
"number_texts_intersect_with_train": null,
|
|
31
|
+
"text_statistics": {
|
|
32
|
+
"total_text_length": 761416,
|
|
33
|
+
"min_text_length": 4,
|
|
34
|
+
"average_text_length": 38.27557432262605,
|
|
35
|
+
"max_text_length": 152,
|
|
36
|
+
"unique_texts": 19893
|
|
37
|
+
},
|
|
38
|
+
"image_statistics": null,
|
|
39
|
+
"label_statistics": {
|
|
40
|
+
"min_labels_per_text": 1,
|
|
41
|
+
"average_label_per_text": 1.0,
|
|
42
|
+
"max_labels_per_text": 1,
|
|
43
|
+
"unique_labels": 2,
|
|
44
|
+
"labels": {
|
|
45
|
+
"1": {
|
|
46
|
+
"count": 12604
|
|
47
|
+
},
|
|
48
|
+
"0": {
|
|
49
|
+
"count": 7289
|
|
50
|
+
}
|
|
51
|
+
}
|
|
52
|
+
}
|
|
53
|
+
}
|
|
54
|
+
}
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 752,
|
|
4
|
+
"number_texts_intersect_with_train": 100,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 171956,
|
|
7
|
+
"min_text_length": 32,
|
|
8
|
+
"average_text_length": 228.66489361702128,
|
|
9
|
+
"max_text_length": 2746,
|
|
10
|
+
"unique_texts": 752
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.0,
|
|
16
|
+
"max_labels_per_text": 1,
|
|
17
|
+
"unique_labels": 2,
|
|
18
|
+
"labels": {
|
|
19
|
+
"0.0": {
|
|
20
|
+
"count": 555
|
|
21
|
+
},
|
|
22
|
+
"1.0": {
|
|
23
|
+
"count": 197
|
|
24
|
+
}
|
|
25
|
+
}
|
|
26
|
+
}
|
|
27
|
+
},
|
|
28
|
+
"train": {
|
|
29
|
+
"num_samples": 1718,
|
|
30
|
+
"number_texts_intersect_with_train": null,
|
|
31
|
+
"text_statistics": {
|
|
32
|
+
"total_text_length": 390362,
|
|
33
|
+
"min_text_length": 18,
|
|
34
|
+
"average_text_length": 227.2188591385332,
|
|
35
|
+
"max_text_length": 2662,
|
|
36
|
+
"unique_texts": 1718
|
|
37
|
+
},
|
|
38
|
+
"image_statistics": null,
|
|
39
|
+
"label_statistics": {
|
|
40
|
+
"min_labels_per_text": 1,
|
|
41
|
+
"average_label_per_text": 1.0,
|
|
42
|
+
"max_labels_per_text": 1,
|
|
43
|
+
"unique_labels": 2,
|
|
44
|
+
"labels": {
|
|
45
|
+
"1.0": {
|
|
46
|
+
"count": 470
|
|
47
|
+
},
|
|
48
|
+
"0.0": {
|
|
49
|
+
"count": 1248
|
|
50
|
+
}
|
|
51
|
+
}
|
|
52
|
+
}
|
|
53
|
+
}
|
|
54
|
+
}
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 1200,
|
|
4
|
+
"number_texts_intersect_with_train": 1,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 2034506,
|
|
7
|
+
"min_text_length": 184,
|
|
8
|
+
"average_text_length": 1695.4216666666666,
|
|
9
|
+
"max_text_length": 8825,
|
|
10
|
+
"unique_texts": 1200
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.0,
|
|
16
|
+
"max_labels_per_text": 1,
|
|
17
|
+
"unique_labels": 8,
|
|
18
|
+
"labels": {
|
|
19
|
+
"Opmerkelijk": {
|
|
20
|
+
"count": 150
|
|
21
|
+
},
|
|
22
|
+
"Buitenland": {
|
|
23
|
+
"count": 150
|
|
24
|
+
},
|
|
25
|
+
"Cultuur & Media": {
|
|
26
|
+
"count": 150
|
|
27
|
+
},
|
|
28
|
+
"Binnenland": {
|
|
29
|
+
"count": 150
|
|
30
|
+
},
|
|
31
|
+
"Politiek": {
|
|
32
|
+
"count": 150
|
|
33
|
+
},
|
|
34
|
+
"Economie": {
|
|
35
|
+
"count": 150
|
|
36
|
+
},
|
|
37
|
+
"Tech": {
|
|
38
|
+
"count": 150
|
|
39
|
+
},
|
|
40
|
+
"Regionaal nieuws": {
|
|
41
|
+
"count": 150
|
|
42
|
+
}
|
|
43
|
+
}
|
|
44
|
+
}
|
|
45
|
+
},
|
|
46
|
+
"train": {
|
|
47
|
+
"num_samples": 5600,
|
|
48
|
+
"number_texts_intersect_with_train": null,
|
|
49
|
+
"text_statistics": {
|
|
50
|
+
"total_text_length": 9620538,
|
|
51
|
+
"min_text_length": 106,
|
|
52
|
+
"average_text_length": 1717.9532142857142,
|
|
53
|
+
"max_text_length": 29389,
|
|
54
|
+
"unique_texts": 5600
|
|
55
|
+
},
|
|
56
|
+
"image_statistics": null,
|
|
57
|
+
"label_statistics": {
|
|
58
|
+
"min_labels_per_text": 1,
|
|
59
|
+
"average_label_per_text": 1.0,
|
|
60
|
+
"max_labels_per_text": 1,
|
|
61
|
+
"unique_labels": 8,
|
|
62
|
+
"labels": {
|
|
63
|
+
"Cultuur & Media": {
|
|
64
|
+
"count": 700
|
|
65
|
+
},
|
|
66
|
+
"Binnenland": {
|
|
67
|
+
"count": 700
|
|
68
|
+
},
|
|
69
|
+
"Buitenland": {
|
|
70
|
+
"count": 700
|
|
71
|
+
},
|
|
72
|
+
"Regionaal nieuws": {
|
|
73
|
+
"count": 700
|
|
74
|
+
},
|
|
75
|
+
"Politiek": {
|
|
76
|
+
"count": 700
|
|
77
|
+
},
|
|
78
|
+
"Economie": {
|
|
79
|
+
"count": 700
|
|
80
|
+
},
|
|
81
|
+
"Opmerkelijk": {
|
|
82
|
+
"count": 700
|
|
83
|
+
},
|
|
84
|
+
"Tech": {
|
|
85
|
+
"count": 700
|
|
86
|
+
}
|
|
87
|
+
}
|
|
88
|
+
}
|
|
89
|
+
}
|
|
90
|
+
}
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 1326,
|
|
4
|
+
"number_texts_intersect_with_train": null,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 82644,
|
|
7
|
+
"min_text_length": 17,
|
|
8
|
+
"average_text_length": 62.32579185520362,
|
|
9
|
+
"max_text_length": 117,
|
|
10
|
+
"unique_texts": 1326
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.0,
|
|
16
|
+
"max_labels_per_text": 1,
|
|
17
|
+
"unique_labels": 2,
|
|
18
|
+
"labels": {
|
|
19
|
+
"0": {
|
|
20
|
+
"count": 826
|
|
21
|
+
},
|
|
22
|
+
"1": {
|
|
23
|
+
"count": 500
|
|
24
|
+
}
|
|
25
|
+
}
|
|
26
|
+
}
|
|
27
|
+
},
|
|
28
|
+
"train": {
|
|
29
|
+
"num_samples": 10609,
|
|
30
|
+
"number_texts_intersect_with_train": null,
|
|
31
|
+
"text_statistics": {
|
|
32
|
+
"total_text_length": 658787,
|
|
33
|
+
"min_text_length": 7,
|
|
34
|
+
"average_text_length": 62.09699311904986,
|
|
35
|
+
"max_text_length": 161,
|
|
36
|
+
"unique_texts": 10609
|
|
37
|
+
},
|
|
38
|
+
"image_statistics": null,
|
|
39
|
+
"label_statistics": {
|
|
40
|
+
"min_labels_per_text": 1,
|
|
41
|
+
"average_label_per_text": 1.0,
|
|
42
|
+
"max_labels_per_text": 1,
|
|
43
|
+
"unique_labels": 2,
|
|
44
|
+
"labels": {
|
|
45
|
+
"1": {
|
|
46
|
+
"count": 4000
|
|
47
|
+
},
|
|
48
|
+
"0": {
|
|
49
|
+
"count": 6609
|
|
50
|
+
}
|
|
51
|
+
}
|
|
52
|
+
}
|
|
53
|
+
}
|
|
54
|
+
}
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 202,
|
|
4
|
+
"number_texts_intersect_with_train": null,
|
|
5
|
+
"text_statistics": {
|
|
6
|
+
"total_text_length": 11827,
|
|
7
|
+
"min_text_length": 6,
|
|
8
|
+
"average_text_length": 58.54950495049505,
|
|
9
|
+
"max_text_length": 403,
|
|
10
|
+
"unique_texts": 202
|
|
11
|
+
},
|
|
12
|
+
"image_statistics": null,
|
|
13
|
+
"label_statistics": {
|
|
14
|
+
"min_labels_per_text": 1,
|
|
15
|
+
"average_label_per_text": 1.0,
|
|
16
|
+
"max_labels_per_text": 1,
|
|
17
|
+
"unique_labels": 9,
|
|
18
|
+
"labels": {
|
|
19
|
+
"Geschiedenis": {
|
|
20
|
+
"count": 22
|
|
21
|
+
},
|
|
22
|
+
"Klassieke mythologie en Oude Geschiedenis": {
|
|
23
|
+
"count": 22
|
|
24
|
+
},
|
|
25
|
+
"Literatuur": {
|
|
26
|
+
"count": 23
|
|
27
|
+
},
|
|
28
|
+
"Natuur": {
|
|
29
|
+
"count": 23
|
|
30
|
+
},
|
|
31
|
+
"De mens, de mensheid in het algemeen": {
|
|
32
|
+
"count": 22
|
|
33
|
+
},
|
|
34
|
+
"Maatschappij, civilisatie en cultuur": {
|
|
35
|
+
"count": 22
|
|
36
|
+
},
|
|
37
|
+
"Abstracte idee\u00ebn en concepten": {
|
|
38
|
+
"count": 23
|
|
39
|
+
},
|
|
40
|
+
"Religie en magie": {
|
|
41
|
+
"count": 22
|
|
42
|
+
},
|
|
43
|
+
"Bijbel": {
|
|
44
|
+
"count": 23
|
|
45
|
+
}
|
|
46
|
+
}
|
|
47
|
+
}
|
|
48
|
+
},
|
|
49
|
+
"train": {
|
|
50
|
+
"num_samples": 945,
|
|
51
|
+
"number_texts_intersect_with_train": null,
|
|
52
|
+
"text_statistics": {
|
|
53
|
+
"total_text_length": 52510,
|
|
54
|
+
"min_text_length": 3,
|
|
55
|
+
"average_text_length": 55.56613756613756,
|
|
56
|
+
"max_text_length": 793,
|
|
57
|
+
"unique_texts": 945
|
|
58
|
+
},
|
|
59
|
+
"image_statistics": null,
|
|
60
|
+
"label_statistics": {
|
|
61
|
+
"min_labels_per_text": 1,
|
|
62
|
+
"average_label_per_text": 1.0,
|
|
63
|
+
"max_labels_per_text": 1,
|
|
64
|
+
"unique_labels": 9,
|
|
65
|
+
"labels": {
|
|
66
|
+
"Literatuur": {
|
|
67
|
+
"count": 105
|
|
68
|
+
},
|
|
69
|
+
"Maatschappij, civilisatie en cultuur": {
|
|
70
|
+
"count": 105
|
|
71
|
+
},
|
|
72
|
+
"Klassieke mythologie en Oude Geschiedenis": {
|
|
73
|
+
"count": 105
|
|
74
|
+
},
|
|
75
|
+
"Bijbel": {
|
|
76
|
+
"count": 105
|
|
77
|
+
},
|
|
78
|
+
"De mens, de mensheid in het algemeen": {
|
|
79
|
+
"count": 105
|
|
80
|
+
},
|
|
81
|
+
"Abstracte idee\u00ebn en concepten": {
|
|
82
|
+
"count": 105
|
|
83
|
+
},
|
|
84
|
+
"Natuur": {
|
|
85
|
+
"count": 105
|
|
86
|
+
},
|
|
87
|
+
"Geschiedenis": {
|
|
88
|
+
"count": 105
|
|
89
|
+
},
|
|
90
|
+
"Religie en magie": {
|
|
91
|
+
"count": 105
|
|
92
|
+
}
|
|
93
|
+
}
|
|
94
|
+
}
|
|
95
|
+
}
|
|
96
|
+
}
|