mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (412) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/_create_dataloaders.py +8 -3
  3. mteb/_evaluators/any_sts_evaluator.py +14 -12
  4. mteb/_evaluators/clustering_evaluator.py +1 -1
  5. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
  6. mteb/_evaluators/pair_classification_evaluator.py +3 -1
  7. mteb/_evaluators/retrieval_metrics.py +0 -9
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_stratification.py +1 -1
  13. mteb/abstasks/abstask.py +6 -1
  14. mteb/abstasks/clustering.py +1 -1
  15. mteb/abstasks/dataset_card_template.md +1 -1
  16. mteb/abstasks/multilabel_classification.py +2 -2
  17. mteb/abstasks/retrieval.py +2 -1
  18. mteb/abstasks/retrieval_dataset_loaders.py +1 -1
  19. mteb/abstasks/task_metadata.py +2 -1
  20. mteb/benchmarks/_create_table.py +1 -3
  21. mteb/benchmarks/benchmark.py +18 -1
  22. mteb/benchmarks/benchmarks/__init__.py +4 -0
  23. mteb/benchmarks/benchmarks/benchmarks.py +125 -16
  24. mteb/benchmarks/get_benchmark.py +3 -1
  25. mteb/cache.py +7 -3
  26. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  27. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  28. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  29. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  30. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  31. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  32. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  33. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  34. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  35. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  36. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  37. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  38. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  39. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  40. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
  41. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
  42. mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
  43. mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
  44. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  49. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  50. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  54. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  55. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  56. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  57. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  58. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  59. mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
  60. mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
  61. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  62. mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
  63. mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
  64. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  65. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  66. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  67. mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
  68. mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
  69. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  71. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  72. mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
  73. mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
  74. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  75. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  76. mteb/evaluate.py +26 -6
  77. mteb/languages/check_language_code.py +11 -3
  78. mteb/languages/language_scripts.py +4 -0
  79. mteb/leaderboard/app.py +5 -3
  80. mteb/leaderboard/benchmark_selector.py +4 -2
  81. mteb/leaderboard/text_segments.py +1 -1
  82. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  83. mteb/models/instruct_wrapper.py +3 -0
  84. mteb/models/model_implementations/align_models.py +6 -0
  85. mteb/models/model_implementations/andersborges.py +51 -0
  86. mteb/models/model_implementations/ara_models.py +7 -0
  87. mteb/models/model_implementations/b1ade_models.py +1 -1
  88. mteb/models/model_implementations/bge_models.py +1 -3
  89. mteb/models/model_implementations/blip2_models.py +9 -0
  90. mteb/models/model_implementations/blip_models.py +19 -0
  91. mteb/models/model_implementations/bmretriever_models.py +1 -1
  92. mteb/models/model_implementations/cadet_models.py +8 -0
  93. mteb/models/model_implementations/cde_models.py +12 -0
  94. mteb/models/model_implementations/codefuse_models.py +15 -0
  95. mteb/models/model_implementations/codesage_models.py +12 -0
  96. mteb/models/model_implementations/cohere_models.py +1 -1
  97. mteb/models/model_implementations/colqwen_models.py +57 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +70 -0
  99. mteb/models/model_implementations/gme_v_models.py +2 -2
  100. mteb/models/model_implementations/ibm_granite_models.py +1 -1
  101. mteb/models/model_implementations/inf_models.py +3 -3
  102. mteb/models/model_implementations/jasper_models.py +253 -2
  103. mteb/models/model_implementations/jina_models.py +12 -2
  104. mteb/models/model_implementations/kalm_models.py +159 -25
  105. mteb/models/model_implementations/llm2vec_models.py +1 -1
  106. mteb/models/model_implementations/misc_models.py +8 -2
  107. mteb/models/model_implementations/moco_models.py +9 -0
  108. mteb/models/model_implementations/mxbai_models.py +1 -1
  109. mteb/models/model_implementations/openclip_models.py +16 -0
  110. mteb/models/model_implementations/piccolo_models.py +6 -0
  111. mteb/models/model_implementations/rasgaard_models.py +33 -0
  112. mteb/models/model_implementations/reasonir_model.py +1 -1
  113. mteb/models/model_implementations/salesforce_models.py +1 -1
  114. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
  115. mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
  116. mteb/models/model_implementations/tarka_models.py +374 -0
  117. mteb/models/model_implementations/voyage_models.py +6 -7
  118. mteb/models/model_implementations/voyage_v.py +10 -9
  119. mteb/models/model_implementations/yuan_models.py +33 -0
  120. mteb/models/search_wrappers.py +6 -5
  121. mteb/results/task_result.py +19 -17
  122. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  123. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  124. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
  125. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  126. mteb/tasks/classification/ara/ajgt.py +1 -2
  127. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  128. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  129. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  130. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  131. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  132. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  133. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  134. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  135. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  136. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  137. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  138. mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
  139. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  140. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  141. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  142. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  143. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  144. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  145. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  146. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  147. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  148. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  149. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  150. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  151. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  152. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  153. mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
  154. mteb/tasks/classification/eng/news_classification.py +1 -2
  155. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  156. mteb/tasks/classification/eng/patent_classification.py +1 -2
  157. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  158. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  159. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  160. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  161. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  162. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  163. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  164. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  165. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  166. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  167. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  168. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  169. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  170. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  171. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  172. mteb/tasks/classification/est/estonian_valence.py +1 -2
  173. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  174. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  175. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  176. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  177. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  178. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  179. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
  180. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  181. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  182. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  183. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  184. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  185. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  186. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  187. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  188. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  189. mteb/tasks/classification/kor/klue_tc.py +1 -2
  190. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  191. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  192. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  193. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  194. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  195. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  196. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  197. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  198. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  199. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  200. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  201. mteb/tasks/classification/mya/myanmar_news.py +2 -3
  202. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  203. mteb/tasks/classification/nld/__init__.py +16 -0
  204. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  205. mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
  206. mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
  207. mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
  208. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
  209. mteb/tasks/classification/nld/iconclass_classification.py +44 -0
  210. mteb/tasks/classification/nld/open_tender_classification.py +41 -0
  211. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
  212. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  213. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  214. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  215. mteb/tasks/classification/pol/polish_classification.py +3 -6
  216. mteb/tasks/classification/ron/moroco.py +1 -2
  217. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  218. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  220. mteb/tasks/classification/rus/headline_classification.py +1 -2
  221. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  222. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  223. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  224. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  225. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  226. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  227. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  228. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  229. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  230. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  231. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  232. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  233. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  234. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  235. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  236. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  237. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  238. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  239. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  240. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  241. mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
  242. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  243. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  244. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  245. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  246. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  247. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  248. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  249. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  250. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  251. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  252. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  253. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  254. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  255. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  256. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  257. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  258. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  259. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  260. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  261. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  262. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  263. mteb/tasks/clustering/__init__.py +1 -0
  264. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  265. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  266. mteb/tasks/clustering/nld/__init__.py +17 -0
  267. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
  268. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
  269. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
  270. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
  271. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
  272. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
  273. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
  274. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  275. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  276. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  277. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  278. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  279. mteb/tasks/multilabel_classification/__init__.py +1 -0
  280. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  281. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  282. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  283. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  284. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
  285. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
  286. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  287. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  288. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  289. mteb/tasks/pair_classification/__init__.py +1 -0
  290. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  291. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  292. mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
  293. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  294. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
  295. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
  296. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  297. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  298. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  299. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  300. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  301. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  302. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  303. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  304. mteb/tasks/retrieval/code/code_rag.py +8 -8
  305. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  306. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  307. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  308. mteb/tasks/retrieval/eng/__init__.py +18 -4
  309. mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
  310. mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
  311. mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
  312. mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
  313. mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
  314. mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
  315. mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
  316. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  317. mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
  318. mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
  319. mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
  320. mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
  321. mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
  322. mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
  323. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
  324. mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
  325. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  326. mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
  327. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  328. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  329. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
  330. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
  331. mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
  332. mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
  333. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  334. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  335. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  336. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  337. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  338. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
  339. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  340. mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
  341. mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
  342. mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
  343. mteb/tasks/retrieval/nld/__init__.py +18 -4
  344. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  345. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
  346. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
  347. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
  348. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  349. mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
  350. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  351. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  352. mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
  353. mteb/tasks/retrieval/nob/norquad.py +2 -2
  354. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  355. mteb/tasks/retrieval/rus/__init__.py +11 -2
  356. mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
  357. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  358. mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
  359. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  360. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  361. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  362. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  363. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  364. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  365. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  366. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  367. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  368. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  369. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  370. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  371. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  372. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  373. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  374. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  375. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  376. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  377. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  378. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  379. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  380. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  381. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  382. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  383. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  384. mteb/tasks/sts/__init__.py +1 -0
  385. mteb/tasks/sts/nld/__init__.py +5 -0
  386. mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
  387. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  388. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  389. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  390. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  391. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  392. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  393. mteb-2.1.19.dist-info/METADATA +253 -0
  394. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
  395. mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
  396. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
  397. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
  398. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
  399. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
  400. mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
  401. mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
  402. mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
  403. mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
  404. mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
  405. mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
  406. mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
  407. mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
  408. mteb-2.0.5.dist-info/METADATA +0 -455
  409. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
  410. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
  411. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
  412. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 226621,
4
+ "number_of_characters": 84600866,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 84508282,
7
+ "min_text_length": 8,
8
+ "average_text_length": 374.55858275603777,
9
+ "max_text_length": 3463,
10
+ "unique_texts": 225621
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 92584,
15
+ "min_text_length": 34,
16
+ "average_text_length": 92.584,
17
+ "max_text_length": 288,
18
+ "unique_texts": 1000
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 2000,
23
+ "min_relevant_docs_per_query": 2,
24
+ "average_relevant_docs_per_query": 2.0,
25
+ "max_relevant_docs_per_query": 2,
26
+ "unique_relevant_docs": 1975
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 30905,
4
+ "number_of_characters": 20629665,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 20619027,
7
+ "min_text_length": 41,
8
+ "average_text_length": 669.3837288575788,
9
+ "max_text_length": 1716,
10
+ "unique_texts": 30172
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 10638,
15
+ "min_text_length": 27,
16
+ "average_text_length": 104.29411764705883,
17
+ "max_text_length": 369,
18
+ "unique_texts": 102
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 157,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.5392156862745099,
25
+ "max_relevant_docs_per_query": 8,
26
+ "unique_relevant_docs": 148
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 3956,
4
+ "number_of_characters": 6345348,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 6337710,
7
+ "min_text_length": 144,
8
+ "average_text_length": 1744.483897605285,
9
+ "max_text_length": 8480,
10
+ "unique_texts": 3593
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 7638,
15
+ "min_text_length": 3,
16
+ "average_text_length": 23.647058823529413,
17
+ "max_text_length": 89,
18
+ "unique_texts": 323
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 12334,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 38.18575851393189,
25
+ "max_relevant_docs_per_query": 475,
26
+ "unique_relevant_docs": 3128
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 138633,
4
+ "number_of_characters": 59639635,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 59576581,
7
+ "min_text_length": 2,
8
+ "average_text_length": 432.86552643624714,
9
+ "max_text_length": 16782,
10
+ "unique_texts": 122413
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 63054,
15
+ "min_text_length": 9,
16
+ "average_text_length": 63.054,
17
+ "max_text_length": 286,
18
+ "unique_texts": 992
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 178163,
4
+ "number_of_characters": 10498457,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 10447229,
7
+ "min_text_length": 1,
8
+ "average_text_length": 58.96958732918273,
9
+ "max_text_length": 581,
10
+ "unique_texts": 176849
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 51228,
15
+ "min_text_length": 2,
16
+ "average_text_length": 51.228,
17
+ "max_text_length": 180,
18
+ "unique_texts": 1000
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1641,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.641,
25
+ "max_relevant_docs_per_query": 34,
26
+ "unique_relevant_docs": 1641
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 192237,
4
+ "number_of_characters": 234466370,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 234404032,
7
+ "min_text_length": 0,
8
+ "average_text_length": 1225.7253146619116,
9
+ "max_text_length": 2000,
10
+ "unique_texts": 191237
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 62338,
15
+ "min_text_length": 4,
16
+ "average_text_length": 62.338,
17
+ "max_text_length": 85,
18
+ "unique_texts": 1000
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 26657,
4
+ "number_of_characters": 34261482,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 34181168,
7
+ "min_text_length": 10,
8
+ "average_text_length": 1332.2355692403632,
9
+ "max_text_length": 9275,
10
+ "unique_texts": 25656
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 80314,
15
+ "min_text_length": 17,
16
+ "average_text_length": 80.314,
17
+ "max_text_length": 227,
18
+ "unique_texts": 1000
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 4928,
23
+ "min_relevant_docs_per_query": 27,
24
+ "average_relevant_docs_per_query": 4.928,
25
+ "max_relevant_docs_per_query": 30,
26
+ "unique_relevant_docs": 25657
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 5483,
4
+ "number_of_characters": 8526662,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 8496576,
7
+ "min_text_length": 228,
8
+ "average_text_length": 1639.3162261238665,
9
+ "max_text_length": 9187,
10
+ "unique_texts": 5183
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 30086,
15
+ "min_text_length": 24,
16
+ "average_text_length": 100.28666666666666,
17
+ "max_text_length": 228,
18
+ "unique_texts": 300
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 339,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.13,
25
+ "max_relevant_docs_per_query": 5,
26
+ "unique_relevant_docs": 283
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 10318,
4
+ "number_of_characters": 7839416,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 7765564,
7
+ "min_text_length": 9,
8
+ "average_text_length": 833.393861343636,
9
+ "max_text_length": 35146,
10
+ "unique_texts": 9123
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 73852,
15
+ "min_text_length": 7,
16
+ "average_text_length": 73.852,
17
+ "max_text_length": 258,
18
+ "unique_texts": 999
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1000,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0,
25
+ "max_relevant_docs_per_query": 1,
26
+ "unique_relevant_docs": 1000
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,184 @@
1
+ {
2
+ "train": {
3
+ "num_samples": 16500,
4
+ "number_of_characters": 118992,
5
+ "documents_text_statistics": null,
6
+ "documents_image_statistics": {
7
+ "min_image_width": 447,
8
+ "average_image_width": 1401.1196666666667,
9
+ "max_image_width": 2743,
10
+ "min_image_height": 376,
11
+ "average_image_height": 1685.2892,
12
+ "max_image_height": 5257,
13
+ "unique_images": 14981
14
+ },
15
+ "queries_text_statistics": {
16
+ "total_text_length": 118992,
17
+ "min_text_length": 13,
18
+ "average_text_length": 79.328,
19
+ "max_text_length": 204,
20
+ "unique_texts": 1499
21
+ },
22
+ "queries_image_statistics": null,
23
+ "relevant_docs_statistics": {
24
+ "num_relevant_docs": 1499,
25
+ "min_relevant_docs_per_query": 1,
26
+ "average_relevant_docs_per_query": 1.0,
27
+ "max_relevant_docs_per_query": 1,
28
+ "unique_relevant_docs": 1499
29
+ },
30
+ "top_ranked_statistics": null,
31
+ "hf_subset_descriptive_stats": {
32
+ "en": {
33
+ "num_samples": 3300,
34
+ "number_of_characters": 20947,
35
+ "documents_text_statistics": null,
36
+ "documents_image_statistics": {
37
+ "min_image_width": 653,
38
+ "average_image_width": 1388.4603333333334,
39
+ "max_image_width": 2464,
40
+ "min_image_height": 878,
41
+ "average_image_height": 1691.6246666666666,
42
+ "max_image_height": 3533,
43
+ "unique_images": 2996
44
+ },
45
+ "queries_text_statistics": {
46
+ "total_text_length": 20947,
47
+ "min_text_length": 31,
48
+ "average_text_length": 69.82333333333334,
49
+ "max_text_length": 142,
50
+ "unique_texts": 300
51
+ },
52
+ "queries_image_statistics": null,
53
+ "relevant_docs_statistics": {
54
+ "num_relevant_docs": 300,
55
+ "min_relevant_docs_per_query": 1,
56
+ "average_relevant_docs_per_query": 1.0,
57
+ "max_relevant_docs_per_query": 1,
58
+ "unique_relevant_docs": 300
59
+ },
60
+ "top_ranked_statistics": null
61
+ },
62
+ "es": {
63
+ "num_samples": 3300,
64
+ "number_of_characters": 24935,
65
+ "documents_text_statistics": null,
66
+ "documents_image_statistics": {
67
+ "min_image_width": 447,
68
+ "average_image_width": 1370.8263333333334,
69
+ "max_image_width": 2743,
70
+ "min_image_height": 376,
71
+ "average_image_height": 1709.195,
72
+ "max_image_height": 5257,
73
+ "unique_images": 2997
74
+ },
75
+ "queries_text_statistics": {
76
+ "total_text_length": 24935,
77
+ "min_text_length": 35,
78
+ "average_text_length": 83.11666666666666,
79
+ "max_text_length": 153,
80
+ "unique_texts": 300
81
+ },
82
+ "queries_image_statistics": null,
83
+ "relevant_docs_statistics": {
84
+ "num_relevant_docs": 300,
85
+ "min_relevant_docs_per_query": 1,
86
+ "average_relevant_docs_per_query": 1.0,
87
+ "max_relevant_docs_per_query": 1,
88
+ "unique_relevant_docs": 300
89
+ },
90
+ "top_ranked_statistics": null
91
+ },
92
+ "fr": {
93
+ "num_samples": 3300,
94
+ "number_of_characters": 25217,
95
+ "documents_text_statistics": null,
96
+ "documents_image_statistics": {
97
+ "min_image_width": 780,
98
+ "average_image_width": 1402.3566666666666,
99
+ "max_image_width": 2579,
100
+ "min_image_height": 756,
101
+ "average_image_height": 1689.5696666666668,
102
+ "max_image_height": 2912,
103
+ "unique_images": 2998
104
+ },
105
+ "queries_text_statistics": {
106
+ "total_text_length": 25217,
107
+ "min_text_length": 37,
108
+ "average_text_length": 84.05666666666667,
109
+ "max_text_length": 152,
110
+ "unique_texts": 299
111
+ },
112
+ "queries_image_statistics": null,
113
+ "relevant_docs_statistics": {
114
+ "num_relevant_docs": 299,
115
+ "min_relevant_docs_per_query": 1,
116
+ "average_relevant_docs_per_query": 1.0,
117
+ "max_relevant_docs_per_query": 1,
118
+ "unique_relevant_docs": 299
119
+ },
120
+ "top_ranked_statistics": null
121
+ },
122
+ "de": {
123
+ "num_samples": 3300,
124
+ "number_of_characters": 23029,
125
+ "documents_text_statistics": null,
126
+ "documents_image_statistics": {
127
+ "min_image_width": 828,
128
+ "average_image_width": 1394.5596666666668,
129
+ "max_image_width": 2366,
130
+ "min_image_height": 756,
131
+ "average_image_height": 1686.0596666666668,
132
+ "max_image_height": 2827,
133
+ "unique_images": 2994
134
+ },
135
+ "queries_text_statistics": {
136
+ "total_text_length": 23029,
137
+ "min_text_length": 35,
138
+ "average_text_length": 76.76333333333334,
139
+ "max_text_length": 143,
140
+ "unique_texts": 300
141
+ },
142
+ "queries_image_statistics": null,
143
+ "relevant_docs_statistics": {
144
+ "num_relevant_docs": 300,
145
+ "min_relevant_docs_per_query": 1,
146
+ "average_relevant_docs_per_query": 1.0,
147
+ "max_relevant_docs_per_query": 1,
148
+ "unique_relevant_docs": 300
149
+ },
150
+ "top_ranked_statistics": null
151
+ },
152
+ "it": {
153
+ "num_samples": 3300,
154
+ "number_of_characters": 24864,
155
+ "documents_text_statistics": null,
156
+ "documents_image_statistics": {
157
+ "min_image_width": 788,
158
+ "average_image_width": 1449.3953333333334,
159
+ "max_image_width": 2583,
160
+ "min_image_height": 804,
161
+ "average_image_height": 1649.997,
162
+ "max_image_height": 2168,
163
+ "unique_images": 2996
164
+ },
165
+ "queries_text_statistics": {
166
+ "total_text_length": 24864,
167
+ "min_text_length": 13,
168
+ "average_text_length": 82.88,
169
+ "max_text_length": 204,
170
+ "unique_texts": 300
171
+ },
172
+ "queries_image_statistics": null,
173
+ "relevant_docs_statistics": {
174
+ "num_relevant_docs": 300,
175
+ "min_relevant_docs_per_query": 1,
176
+ "average_relevant_docs_per_query": 1.0,
177
+ "max_relevant_docs_per_query": 1,
178
+ "unique_relevant_docs": 300
179
+ },
180
+ "top_ranked_statistics": null
181
+ }
182
+ }
183
+ }
184
+ }
@@ -1,29 +1,29 @@
1
1
  {
2
2
  "test": {
3
- "num_samples": 4872,
4
- "number_of_characters": 9352943,
3
+ "num_samples": 6362,
4
+ "number_of_characters": 180770,
5
5
  "documents_text_statistics": {
6
- "total_text_length": 8957572,
7
- "min_text_length": 8,
8
- "average_text_length": 3504.527386541471,
9
- "max_text_length": 47929,
10
- "unique_texts": 2556
6
+ "total_text_length": 39142,
7
+ "min_text_length": 2,
8
+ "average_text_length": 7.68243375858685,
9
+ "max_text_length": 31,
10
+ "unique_texts": 5095
11
11
  },
12
12
  "documents_image_statistics": null,
13
13
  "queries_text_statistics": {
14
- "total_text_length": 395371,
15
- "min_text_length": 8,
16
- "average_text_length": 170.71286701208982,
17
- "max_text_length": 2863,
18
- "unique_texts": 2316
14
+ "total_text_length": 141628,
15
+ "min_text_length": 79,
16
+ "average_text_length": 111.78216258879242,
17
+ "max_text_length": 185,
18
+ "unique_texts": 1267
19
19
  },
20
20
  "queries_image_statistics": null,
21
21
  "relevant_docs_statistics": {
22
- "num_relevant_docs": 2316,
22
+ "num_relevant_docs": 1267,
23
23
  "min_relevant_docs_per_query": 1,
24
24
  "average_relevant_docs_per_query": 1.0,
25
25
  "max_relevant_docs_per_query": 1,
26
- "unique_relevant_docs": 988
26
+ "unique_relevant_docs": 478
27
27
  },
28
28
  "top_ranked_statistics": null
29
29
  }
@@ -0,0 +1,30 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 22637,
4
+ "number_of_characters": 21218611,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 21197901,
7
+ "min_text_length": 7,
8
+ "average_text_length": 945.7015837608744,
9
+ "max_text_length": 37834,
10
+ "unique_texts": 22415
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 20710,
15
+ "min_text_length": 22,
16
+ "average_text_length": 93.28828828828829,
17
+ "max_text_length": 250,
18
+ "unique_texts": 222
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 1059,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 4.77027027027027,
25
+ "max_relevant_docs_per_query": 57,
26
+ "unique_relevant_docs": 491
27
+ },
28
+ "top_ranked_statistics": null
29
+ }
30
+ }
@@ -0,0 +1,28 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 4902,
4
+ "number_of_characters": 463327,
5
+ "unique_pairs": 4902,
6
+ "text1_statistics": {
7
+ "total_text_length": 233941,
8
+ "min_text_length": 10,
9
+ "average_text_length": 47.72358221134231,
10
+ "max_text_length": 158,
11
+ "unique_texts": 3378
12
+ },
13
+ "text2_statistics": {
14
+ "total_text_length": 229386,
15
+ "min_text_length": 10,
16
+ "average_text_length": 46.79436964504284,
17
+ "max_text_length": 158,
18
+ "unique_texts": 3327
19
+ },
20
+ "image1_statistics": null,
21
+ "image2_statistics": null,
22
+ "label_statistics": {
23
+ "min_score": 1.0,
24
+ "avg_score": 3.528012039368932,
25
+ "max_score": 5.0
26
+ }
27
+ }
28
+ }
mteb/evaluate.py CHANGED
@@ -256,6 +256,20 @@ def _check_model_modalities(
256
256
  logger.warning(msg)
257
257
 
258
258
 
259
+ def _requires_merge(task: AbsTask, existing_results: TaskResult) -> bool:
260
+ """Check if the existing results require merging with new results."""
261
+ # If the task has multiple eval splits and existing results cover only a subset, we need to merge
262
+ required_evals = dict.fromkeys(task.eval_splits, task.hf_subsets)
263
+ for split, subsets in required_evals.items():
264
+ res = existing_results.scores.get(split, None)
265
+ if res is None:
266
+ return True
267
+ hf_subsets = [r["hf_subset"] for r in res]
268
+ if not set(subsets).issubset(set(hf_subsets)):
269
+ return True
270
+ return False
271
+
272
+
259
273
  def evaluate(
260
274
  model: ModelMeta | MTEBModels | SentenceTransformer | CrossEncoder,
261
275
  tasks: AbsTask | Iterable[AbsTask],
@@ -333,7 +347,7 @@ def evaluate(
333
347
  task = cast(AbsTaskAggregate, tasks)
334
348
  results = evaluate(
335
349
  model,
336
- task.metadata.task_list,
350
+ task.metadata.tasks,
337
351
  co2_tracker=co2_tracker,
338
352
  raise_error=raise_error,
339
353
  encode_kwargs=encode_kwargs,
@@ -388,13 +402,18 @@ def evaluate(
388
402
 
389
403
  if (
390
404
  existing_results
391
- and overwrite_strategy == "only-missing"
392
- and overwrite_strategy == OverwriteStrategy.ONLY_MISSING
393
- and existing_results.is_mergeable(task)
405
+ and overwrite_strategy
406
+ not in (OverwriteStrategy.ALWAYS, OverwriteStrategy.NEVER)
407
+ and (
408
+ not _requires_merge(task, existing_results)
409
+ or existing_results.is_mergeable(task)
410
+ )
394
411
  ):
395
412
  missing_eval = existing_results.get_missing_evaluations(task)
396
413
  else:
397
414
  missing_eval = dict.fromkeys(task.eval_splits, task.hf_subsets)
415
+ # Will be fully recomputed so we set it to None to avoid merging:
416
+ existing_results = None
398
417
 
399
418
  if (
400
419
  existing_results
@@ -415,12 +434,13 @@ def evaluate(
415
434
  OverwriteStrategy.ONLY_CACHE,
416
435
  ]:
417
436
  raise ValueError(
418
- f"overwrite_strategy is set to '{overwrite_strategy.value}' and the results file exists. However there are the following missing splits (and subsets): {missing_eval}. To rerun these set overwrite_strategy to 'only-missing'."
437
+ f"overwrite_strategy is set to '{overwrite_strategy.value}' and the results file exists for task {task.metadata.name}. "
438
+ + f"However there are the following missing splits (and subsets): {missing_eval}. To rerun these set overwrite_strategy to 'only-missing'."
419
439
  )
420
440
 
421
441
  if existing_results:
422
442
  logger.info(
423
- f"Found existing results for {task.metadata.name}, only running missing splits: {list(missing_eval.keys())}"
443
+ f"Found existing results for {task.metadata.name}, only running missing splits (subsets): {missing_eval}"
424
444
  )
425
445
 
426
446
  if isinstance(model, ModelMeta):
@@ -13,7 +13,15 @@ def check_language_code(code: str) -> None:
13
13
  Args:
14
14
  code: The language code to check.
15
15
  """
16
- lang, script = code.split("-")
16
+ lang = None
17
+ script = None
18
+ if "-" in code:
19
+ lang, script = code.split("-")
20
+ elif code[0].isupper():
21
+ script = code
22
+ else:
23
+ lang = code
24
+
17
25
  if script == "Code":
18
26
  if lang in PROGRAMMING_LANGS:
19
27
  return # override for code
@@ -21,11 +29,11 @@ def check_language_code(code: str) -> None:
21
29
  raise ValueError(
22
30
  f"Programming language {lang} is not a valid programming language."
23
31
  )
24
- if lang not in ISO_TO_LANGUAGE:
32
+ if lang is not None and lang not in ISO_TO_LANGUAGE:
25
33
  raise ValueError(
26
34
  f"Invalid language code: {lang}, you can find valid ISO 639-3 codes in {path_to_lang_codes}"
27
35
  )
28
- if script not in ISO_TO_SCRIPT:
36
+ if script is not None and script not in ISO_TO_SCRIPT:
29
37
  raise ValueError(
30
38
  f"Invalid script code: {script}, you can find valid ISO 15924 codes in {path_to_lang_scripts}"
31
39
  )