mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +10 -1
- mteb/_create_dataloaders.py +8 -3
- mteb/_evaluators/any_sts_evaluator.py +14 -12
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
- mteb/_evaluators/pair_classification_evaluator.py +3 -1
- mteb/_evaluators/retrieval_metrics.py +0 -9
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_stratification.py +1 -1
- mteb/abstasks/abstask.py +6 -1
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/dataset_card_template.md +1 -1
- mteb/abstasks/multilabel_classification.py +2 -2
- mteb/abstasks/retrieval.py +2 -1
- mteb/abstasks/retrieval_dataset_loaders.py +1 -1
- mteb/abstasks/task_metadata.py +2 -1
- mteb/benchmarks/_create_table.py +1 -3
- mteb/benchmarks/benchmark.py +18 -1
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +125 -16
- mteb/benchmarks/get_benchmark.py +3 -1
- mteb/cache.py +7 -3
- mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
- mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
- mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
- mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
- mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
- mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
- mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
- mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
- mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
- mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
- mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
- mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
- mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
- mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
- mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
- mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
- mteb/evaluate.py +26 -6
- mteb/languages/check_language_code.py +11 -3
- mteb/languages/language_scripts.py +4 -0
- mteb/leaderboard/app.py +5 -3
- mteb/leaderboard/benchmark_selector.py +4 -2
- mteb/leaderboard/text_segments.py +1 -1
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/instruct_wrapper.py +3 -0
- mteb/models/model_implementations/align_models.py +6 -0
- mteb/models/model_implementations/andersborges.py +51 -0
- mteb/models/model_implementations/ara_models.py +7 -0
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +1 -3
- mteb/models/model_implementations/blip2_models.py +9 -0
- mteb/models/model_implementations/blip_models.py +19 -0
- mteb/models/model_implementations/bmretriever_models.py +1 -1
- mteb/models/model_implementations/cadet_models.py +8 -0
- mteb/models/model_implementations/cde_models.py +12 -0
- mteb/models/model_implementations/codefuse_models.py +15 -0
- mteb/models/model_implementations/codesage_models.py +12 -0
- mteb/models/model_implementations/cohere_models.py +1 -1
- mteb/models/model_implementations/colqwen_models.py +57 -0
- mteb/models/model_implementations/emillykkejensen_models.py +70 -0
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/ibm_granite_models.py +1 -1
- mteb/models/model_implementations/inf_models.py +3 -3
- mteb/models/model_implementations/jasper_models.py +253 -2
- mteb/models/model_implementations/jina_models.py +12 -2
- mteb/models/model_implementations/kalm_models.py +159 -25
- mteb/models/model_implementations/llm2vec_models.py +1 -1
- mteb/models/model_implementations/misc_models.py +8 -2
- mteb/models/model_implementations/moco_models.py +9 -0
- mteb/models/model_implementations/mxbai_models.py +1 -1
- mteb/models/model_implementations/openclip_models.py +16 -0
- mteb/models/model_implementations/piccolo_models.py +6 -0
- mteb/models/model_implementations/rasgaard_models.py +33 -0
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/salesforce_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
- mteb/models/model_implementations/tarka_models.py +374 -0
- mteb/models/model_implementations/voyage_models.py +6 -7
- mteb/models/model_implementations/voyage_v.py +10 -9
- mteb/models/model_implementations/yuan_models.py +33 -0
- mteb/models/search_wrappers.py +6 -5
- mteb/results/task_result.py +19 -17
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +2 -3
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/__init__.py +16 -0
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
- mteb/tasks/classification/nld/iconclass_classification.py +44 -0
- mteb/tasks/classification/nld/open_tender_classification.py +41 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/__init__.py +1 -0
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/__init__.py +17 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/__init__.py +1 -0
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/__init__.py +1 -0
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
- mteb/tasks/pair_classification/nld/__init__.py +7 -0
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +8 -8
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +18 -4
- mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
- mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
- mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
- mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
- mteb/tasks/retrieval/nld/__init__.py +18 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/rus/__init__.py +11 -2
- mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/__init__.py +1 -0
- mteb/tasks/sts/nld/__init__.py +5 -0
- mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb-2.1.19.dist-info/METADATA +253 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
- mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
- mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
- mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
- mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
- mteb-2.0.5.dist-info/METADATA +0 -455
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 226621,
|
|
4
|
+
"number_of_characters": 84600866,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 84508282,
|
|
7
|
+
"min_text_length": 8,
|
|
8
|
+
"average_text_length": 374.55858275603777,
|
|
9
|
+
"max_text_length": 3463,
|
|
10
|
+
"unique_texts": 225621
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 92584,
|
|
15
|
+
"min_text_length": 34,
|
|
16
|
+
"average_text_length": 92.584,
|
|
17
|
+
"max_text_length": 288,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 2000,
|
|
23
|
+
"min_relevant_docs_per_query": 2,
|
|
24
|
+
"average_relevant_docs_per_query": 2.0,
|
|
25
|
+
"max_relevant_docs_per_query": 2,
|
|
26
|
+
"unique_relevant_docs": 1975
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 30905,
|
|
4
|
+
"number_of_characters": 20629665,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 20619027,
|
|
7
|
+
"min_text_length": 41,
|
|
8
|
+
"average_text_length": 669.3837288575788,
|
|
9
|
+
"max_text_length": 1716,
|
|
10
|
+
"unique_texts": 30172
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 10638,
|
|
15
|
+
"min_text_length": 27,
|
|
16
|
+
"average_text_length": 104.29411764705883,
|
|
17
|
+
"max_text_length": 369,
|
|
18
|
+
"unique_texts": 102
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 157,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.5392156862745099,
|
|
25
|
+
"max_relevant_docs_per_query": 8,
|
|
26
|
+
"unique_relevant_docs": 148
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 3956,
|
|
4
|
+
"number_of_characters": 6345348,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 6337710,
|
|
7
|
+
"min_text_length": 144,
|
|
8
|
+
"average_text_length": 1744.483897605285,
|
|
9
|
+
"max_text_length": 8480,
|
|
10
|
+
"unique_texts": 3593
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 7638,
|
|
15
|
+
"min_text_length": 3,
|
|
16
|
+
"average_text_length": 23.647058823529413,
|
|
17
|
+
"max_text_length": 89,
|
|
18
|
+
"unique_texts": 323
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 12334,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 38.18575851393189,
|
|
25
|
+
"max_relevant_docs_per_query": 475,
|
|
26
|
+
"unique_relevant_docs": 3128
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 138633,
|
|
4
|
+
"number_of_characters": 59639635,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 59576581,
|
|
7
|
+
"min_text_length": 2,
|
|
8
|
+
"average_text_length": 432.86552643624714,
|
|
9
|
+
"max_text_length": 16782,
|
|
10
|
+
"unique_texts": 122413
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 63054,
|
|
15
|
+
"min_text_length": 9,
|
|
16
|
+
"average_text_length": 63.054,
|
|
17
|
+
"max_text_length": 286,
|
|
18
|
+
"unique_texts": 992
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 178163,
|
|
4
|
+
"number_of_characters": 10498457,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 10447229,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 58.96958732918273,
|
|
9
|
+
"max_text_length": 581,
|
|
10
|
+
"unique_texts": 176849
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 51228,
|
|
15
|
+
"min_text_length": 2,
|
|
16
|
+
"average_text_length": 51.228,
|
|
17
|
+
"max_text_length": 180,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1641,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.641,
|
|
25
|
+
"max_relevant_docs_per_query": 34,
|
|
26
|
+
"unique_relevant_docs": 1641
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 192237,
|
|
4
|
+
"number_of_characters": 234466370,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 234404032,
|
|
7
|
+
"min_text_length": 0,
|
|
8
|
+
"average_text_length": 1225.7253146619116,
|
|
9
|
+
"max_text_length": 2000,
|
|
10
|
+
"unique_texts": 191237
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 62338,
|
|
15
|
+
"min_text_length": 4,
|
|
16
|
+
"average_text_length": 62.338,
|
|
17
|
+
"max_text_length": 85,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 26657,
|
|
4
|
+
"number_of_characters": 34261482,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 34181168,
|
|
7
|
+
"min_text_length": 10,
|
|
8
|
+
"average_text_length": 1332.2355692403632,
|
|
9
|
+
"max_text_length": 9275,
|
|
10
|
+
"unique_texts": 25656
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 80314,
|
|
15
|
+
"min_text_length": 17,
|
|
16
|
+
"average_text_length": 80.314,
|
|
17
|
+
"max_text_length": 227,
|
|
18
|
+
"unique_texts": 1000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 4928,
|
|
23
|
+
"min_relevant_docs_per_query": 27,
|
|
24
|
+
"average_relevant_docs_per_query": 4.928,
|
|
25
|
+
"max_relevant_docs_per_query": 30,
|
|
26
|
+
"unique_relevant_docs": 25657
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 5483,
|
|
4
|
+
"number_of_characters": 8526662,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 8496576,
|
|
7
|
+
"min_text_length": 228,
|
|
8
|
+
"average_text_length": 1639.3162261238665,
|
|
9
|
+
"max_text_length": 9187,
|
|
10
|
+
"unique_texts": 5183
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 30086,
|
|
15
|
+
"min_text_length": 24,
|
|
16
|
+
"average_text_length": 100.28666666666666,
|
|
17
|
+
"max_text_length": 228,
|
|
18
|
+
"unique_texts": 300
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 339,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.13,
|
|
25
|
+
"max_relevant_docs_per_query": 5,
|
|
26
|
+
"unique_relevant_docs": 283
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 10318,
|
|
4
|
+
"number_of_characters": 7839416,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 7765564,
|
|
7
|
+
"min_text_length": 9,
|
|
8
|
+
"average_text_length": 833.393861343636,
|
|
9
|
+
"max_text_length": 35146,
|
|
10
|
+
"unique_texts": 9123
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 73852,
|
|
15
|
+
"min_text_length": 7,
|
|
16
|
+
"average_text_length": 73.852,
|
|
17
|
+
"max_text_length": 258,
|
|
18
|
+
"unique_texts": 999
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,184 @@
|
|
|
1
|
+
{
|
|
2
|
+
"train": {
|
|
3
|
+
"num_samples": 16500,
|
|
4
|
+
"number_of_characters": 118992,
|
|
5
|
+
"documents_text_statistics": null,
|
|
6
|
+
"documents_image_statistics": {
|
|
7
|
+
"min_image_width": 447,
|
|
8
|
+
"average_image_width": 1401.1196666666667,
|
|
9
|
+
"max_image_width": 2743,
|
|
10
|
+
"min_image_height": 376,
|
|
11
|
+
"average_image_height": 1685.2892,
|
|
12
|
+
"max_image_height": 5257,
|
|
13
|
+
"unique_images": 14981
|
|
14
|
+
},
|
|
15
|
+
"queries_text_statistics": {
|
|
16
|
+
"total_text_length": 118992,
|
|
17
|
+
"min_text_length": 13,
|
|
18
|
+
"average_text_length": 79.328,
|
|
19
|
+
"max_text_length": 204,
|
|
20
|
+
"unique_texts": 1499
|
|
21
|
+
},
|
|
22
|
+
"queries_image_statistics": null,
|
|
23
|
+
"relevant_docs_statistics": {
|
|
24
|
+
"num_relevant_docs": 1499,
|
|
25
|
+
"min_relevant_docs_per_query": 1,
|
|
26
|
+
"average_relevant_docs_per_query": 1.0,
|
|
27
|
+
"max_relevant_docs_per_query": 1,
|
|
28
|
+
"unique_relevant_docs": 1499
|
|
29
|
+
},
|
|
30
|
+
"top_ranked_statistics": null,
|
|
31
|
+
"hf_subset_descriptive_stats": {
|
|
32
|
+
"en": {
|
|
33
|
+
"num_samples": 3300,
|
|
34
|
+
"number_of_characters": 20947,
|
|
35
|
+
"documents_text_statistics": null,
|
|
36
|
+
"documents_image_statistics": {
|
|
37
|
+
"min_image_width": 653,
|
|
38
|
+
"average_image_width": 1388.4603333333334,
|
|
39
|
+
"max_image_width": 2464,
|
|
40
|
+
"min_image_height": 878,
|
|
41
|
+
"average_image_height": 1691.6246666666666,
|
|
42
|
+
"max_image_height": 3533,
|
|
43
|
+
"unique_images": 2996
|
|
44
|
+
},
|
|
45
|
+
"queries_text_statistics": {
|
|
46
|
+
"total_text_length": 20947,
|
|
47
|
+
"min_text_length": 31,
|
|
48
|
+
"average_text_length": 69.82333333333334,
|
|
49
|
+
"max_text_length": 142,
|
|
50
|
+
"unique_texts": 300
|
|
51
|
+
},
|
|
52
|
+
"queries_image_statistics": null,
|
|
53
|
+
"relevant_docs_statistics": {
|
|
54
|
+
"num_relevant_docs": 300,
|
|
55
|
+
"min_relevant_docs_per_query": 1,
|
|
56
|
+
"average_relevant_docs_per_query": 1.0,
|
|
57
|
+
"max_relevant_docs_per_query": 1,
|
|
58
|
+
"unique_relevant_docs": 300
|
|
59
|
+
},
|
|
60
|
+
"top_ranked_statistics": null
|
|
61
|
+
},
|
|
62
|
+
"es": {
|
|
63
|
+
"num_samples": 3300,
|
|
64
|
+
"number_of_characters": 24935,
|
|
65
|
+
"documents_text_statistics": null,
|
|
66
|
+
"documents_image_statistics": {
|
|
67
|
+
"min_image_width": 447,
|
|
68
|
+
"average_image_width": 1370.8263333333334,
|
|
69
|
+
"max_image_width": 2743,
|
|
70
|
+
"min_image_height": 376,
|
|
71
|
+
"average_image_height": 1709.195,
|
|
72
|
+
"max_image_height": 5257,
|
|
73
|
+
"unique_images": 2997
|
|
74
|
+
},
|
|
75
|
+
"queries_text_statistics": {
|
|
76
|
+
"total_text_length": 24935,
|
|
77
|
+
"min_text_length": 35,
|
|
78
|
+
"average_text_length": 83.11666666666666,
|
|
79
|
+
"max_text_length": 153,
|
|
80
|
+
"unique_texts": 300
|
|
81
|
+
},
|
|
82
|
+
"queries_image_statistics": null,
|
|
83
|
+
"relevant_docs_statistics": {
|
|
84
|
+
"num_relevant_docs": 300,
|
|
85
|
+
"min_relevant_docs_per_query": 1,
|
|
86
|
+
"average_relevant_docs_per_query": 1.0,
|
|
87
|
+
"max_relevant_docs_per_query": 1,
|
|
88
|
+
"unique_relevant_docs": 300
|
|
89
|
+
},
|
|
90
|
+
"top_ranked_statistics": null
|
|
91
|
+
},
|
|
92
|
+
"fr": {
|
|
93
|
+
"num_samples": 3300,
|
|
94
|
+
"number_of_characters": 25217,
|
|
95
|
+
"documents_text_statistics": null,
|
|
96
|
+
"documents_image_statistics": {
|
|
97
|
+
"min_image_width": 780,
|
|
98
|
+
"average_image_width": 1402.3566666666666,
|
|
99
|
+
"max_image_width": 2579,
|
|
100
|
+
"min_image_height": 756,
|
|
101
|
+
"average_image_height": 1689.5696666666668,
|
|
102
|
+
"max_image_height": 2912,
|
|
103
|
+
"unique_images": 2998
|
|
104
|
+
},
|
|
105
|
+
"queries_text_statistics": {
|
|
106
|
+
"total_text_length": 25217,
|
|
107
|
+
"min_text_length": 37,
|
|
108
|
+
"average_text_length": 84.05666666666667,
|
|
109
|
+
"max_text_length": 152,
|
|
110
|
+
"unique_texts": 299
|
|
111
|
+
},
|
|
112
|
+
"queries_image_statistics": null,
|
|
113
|
+
"relevant_docs_statistics": {
|
|
114
|
+
"num_relevant_docs": 299,
|
|
115
|
+
"min_relevant_docs_per_query": 1,
|
|
116
|
+
"average_relevant_docs_per_query": 1.0,
|
|
117
|
+
"max_relevant_docs_per_query": 1,
|
|
118
|
+
"unique_relevant_docs": 299
|
|
119
|
+
},
|
|
120
|
+
"top_ranked_statistics": null
|
|
121
|
+
},
|
|
122
|
+
"de": {
|
|
123
|
+
"num_samples": 3300,
|
|
124
|
+
"number_of_characters": 23029,
|
|
125
|
+
"documents_text_statistics": null,
|
|
126
|
+
"documents_image_statistics": {
|
|
127
|
+
"min_image_width": 828,
|
|
128
|
+
"average_image_width": 1394.5596666666668,
|
|
129
|
+
"max_image_width": 2366,
|
|
130
|
+
"min_image_height": 756,
|
|
131
|
+
"average_image_height": 1686.0596666666668,
|
|
132
|
+
"max_image_height": 2827,
|
|
133
|
+
"unique_images": 2994
|
|
134
|
+
},
|
|
135
|
+
"queries_text_statistics": {
|
|
136
|
+
"total_text_length": 23029,
|
|
137
|
+
"min_text_length": 35,
|
|
138
|
+
"average_text_length": 76.76333333333334,
|
|
139
|
+
"max_text_length": 143,
|
|
140
|
+
"unique_texts": 300
|
|
141
|
+
},
|
|
142
|
+
"queries_image_statistics": null,
|
|
143
|
+
"relevant_docs_statistics": {
|
|
144
|
+
"num_relevant_docs": 300,
|
|
145
|
+
"min_relevant_docs_per_query": 1,
|
|
146
|
+
"average_relevant_docs_per_query": 1.0,
|
|
147
|
+
"max_relevant_docs_per_query": 1,
|
|
148
|
+
"unique_relevant_docs": 300
|
|
149
|
+
},
|
|
150
|
+
"top_ranked_statistics": null
|
|
151
|
+
},
|
|
152
|
+
"it": {
|
|
153
|
+
"num_samples": 3300,
|
|
154
|
+
"number_of_characters": 24864,
|
|
155
|
+
"documents_text_statistics": null,
|
|
156
|
+
"documents_image_statistics": {
|
|
157
|
+
"min_image_width": 788,
|
|
158
|
+
"average_image_width": 1449.3953333333334,
|
|
159
|
+
"max_image_width": 2583,
|
|
160
|
+
"min_image_height": 804,
|
|
161
|
+
"average_image_height": 1649.997,
|
|
162
|
+
"max_image_height": 2168,
|
|
163
|
+
"unique_images": 2996
|
|
164
|
+
},
|
|
165
|
+
"queries_text_statistics": {
|
|
166
|
+
"total_text_length": 24864,
|
|
167
|
+
"min_text_length": 13,
|
|
168
|
+
"average_text_length": 82.88,
|
|
169
|
+
"max_text_length": 204,
|
|
170
|
+
"unique_texts": 300
|
|
171
|
+
},
|
|
172
|
+
"queries_image_statistics": null,
|
|
173
|
+
"relevant_docs_statistics": {
|
|
174
|
+
"num_relevant_docs": 300,
|
|
175
|
+
"min_relevant_docs_per_query": 1,
|
|
176
|
+
"average_relevant_docs_per_query": 1.0,
|
|
177
|
+
"max_relevant_docs_per_query": 1,
|
|
178
|
+
"unique_relevant_docs": 300
|
|
179
|
+
},
|
|
180
|
+
"top_ranked_statistics": null
|
|
181
|
+
}
|
|
182
|
+
}
|
|
183
|
+
}
|
|
184
|
+
}
|
|
@@ -1,29 +1,29 @@
|
|
|
1
1
|
{
|
|
2
2
|
"test": {
|
|
3
|
-
"num_samples":
|
|
4
|
-
"number_of_characters":
|
|
3
|
+
"num_samples": 6362,
|
|
4
|
+
"number_of_characters": 180770,
|
|
5
5
|
"documents_text_statistics": {
|
|
6
|
-
"total_text_length":
|
|
7
|
-
"min_text_length":
|
|
8
|
-
"average_text_length":
|
|
9
|
-
"max_text_length":
|
|
10
|
-
"unique_texts":
|
|
6
|
+
"total_text_length": 39142,
|
|
7
|
+
"min_text_length": 2,
|
|
8
|
+
"average_text_length": 7.68243375858685,
|
|
9
|
+
"max_text_length": 31,
|
|
10
|
+
"unique_texts": 5095
|
|
11
11
|
},
|
|
12
12
|
"documents_image_statistics": null,
|
|
13
13
|
"queries_text_statistics": {
|
|
14
|
-
"total_text_length":
|
|
15
|
-
"min_text_length":
|
|
16
|
-
"average_text_length":
|
|
17
|
-
"max_text_length":
|
|
18
|
-
"unique_texts":
|
|
14
|
+
"total_text_length": 141628,
|
|
15
|
+
"min_text_length": 79,
|
|
16
|
+
"average_text_length": 111.78216258879242,
|
|
17
|
+
"max_text_length": 185,
|
|
18
|
+
"unique_texts": 1267
|
|
19
19
|
},
|
|
20
20
|
"queries_image_statistics": null,
|
|
21
21
|
"relevant_docs_statistics": {
|
|
22
|
-
"num_relevant_docs":
|
|
22
|
+
"num_relevant_docs": 1267,
|
|
23
23
|
"min_relevant_docs_per_query": 1,
|
|
24
24
|
"average_relevant_docs_per_query": 1.0,
|
|
25
25
|
"max_relevant_docs_per_query": 1,
|
|
26
|
-
"unique_relevant_docs":
|
|
26
|
+
"unique_relevant_docs": 478
|
|
27
27
|
},
|
|
28
28
|
"top_ranked_statistics": null
|
|
29
29
|
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 22637,
|
|
4
|
+
"number_of_characters": 21218611,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 21197901,
|
|
7
|
+
"min_text_length": 7,
|
|
8
|
+
"average_text_length": 945.7015837608744,
|
|
9
|
+
"max_text_length": 37834,
|
|
10
|
+
"unique_texts": 22415
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 20710,
|
|
15
|
+
"min_text_length": 22,
|
|
16
|
+
"average_text_length": 93.28828828828829,
|
|
17
|
+
"max_text_length": 250,
|
|
18
|
+
"unique_texts": 222
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1059,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 4.77027027027027,
|
|
25
|
+
"max_relevant_docs_per_query": 57,
|
|
26
|
+
"unique_relevant_docs": 491
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 4902,
|
|
4
|
+
"number_of_characters": 463327,
|
|
5
|
+
"unique_pairs": 4902,
|
|
6
|
+
"text1_statistics": {
|
|
7
|
+
"total_text_length": 233941,
|
|
8
|
+
"min_text_length": 10,
|
|
9
|
+
"average_text_length": 47.72358221134231,
|
|
10
|
+
"max_text_length": 158,
|
|
11
|
+
"unique_texts": 3378
|
|
12
|
+
},
|
|
13
|
+
"text2_statistics": {
|
|
14
|
+
"total_text_length": 229386,
|
|
15
|
+
"min_text_length": 10,
|
|
16
|
+
"average_text_length": 46.79436964504284,
|
|
17
|
+
"max_text_length": 158,
|
|
18
|
+
"unique_texts": 3327
|
|
19
|
+
},
|
|
20
|
+
"image1_statistics": null,
|
|
21
|
+
"image2_statistics": null,
|
|
22
|
+
"label_statistics": {
|
|
23
|
+
"min_score": 1.0,
|
|
24
|
+
"avg_score": 3.528012039368932,
|
|
25
|
+
"max_score": 5.0
|
|
26
|
+
}
|
|
27
|
+
}
|
|
28
|
+
}
|
mteb/evaluate.py
CHANGED
|
@@ -256,6 +256,20 @@ def _check_model_modalities(
|
|
|
256
256
|
logger.warning(msg)
|
|
257
257
|
|
|
258
258
|
|
|
259
|
+
def _requires_merge(task: AbsTask, existing_results: TaskResult) -> bool:
|
|
260
|
+
"""Check if the existing results require merging with new results."""
|
|
261
|
+
# If the task has multiple eval splits and existing results cover only a subset, we need to merge
|
|
262
|
+
required_evals = dict.fromkeys(task.eval_splits, task.hf_subsets)
|
|
263
|
+
for split, subsets in required_evals.items():
|
|
264
|
+
res = existing_results.scores.get(split, None)
|
|
265
|
+
if res is None:
|
|
266
|
+
return True
|
|
267
|
+
hf_subsets = [r["hf_subset"] for r in res]
|
|
268
|
+
if not set(subsets).issubset(set(hf_subsets)):
|
|
269
|
+
return True
|
|
270
|
+
return False
|
|
271
|
+
|
|
272
|
+
|
|
259
273
|
def evaluate(
|
|
260
274
|
model: ModelMeta | MTEBModels | SentenceTransformer | CrossEncoder,
|
|
261
275
|
tasks: AbsTask | Iterable[AbsTask],
|
|
@@ -333,7 +347,7 @@ def evaluate(
|
|
|
333
347
|
task = cast(AbsTaskAggregate, tasks)
|
|
334
348
|
results = evaluate(
|
|
335
349
|
model,
|
|
336
|
-
task.metadata.
|
|
350
|
+
task.metadata.tasks,
|
|
337
351
|
co2_tracker=co2_tracker,
|
|
338
352
|
raise_error=raise_error,
|
|
339
353
|
encode_kwargs=encode_kwargs,
|
|
@@ -388,13 +402,18 @@ def evaluate(
|
|
|
388
402
|
|
|
389
403
|
if (
|
|
390
404
|
existing_results
|
|
391
|
-
and overwrite_strategy
|
|
392
|
-
|
|
393
|
-
and
|
|
405
|
+
and overwrite_strategy
|
|
406
|
+
not in (OverwriteStrategy.ALWAYS, OverwriteStrategy.NEVER)
|
|
407
|
+
and (
|
|
408
|
+
not _requires_merge(task, existing_results)
|
|
409
|
+
or existing_results.is_mergeable(task)
|
|
410
|
+
)
|
|
394
411
|
):
|
|
395
412
|
missing_eval = existing_results.get_missing_evaluations(task)
|
|
396
413
|
else:
|
|
397
414
|
missing_eval = dict.fromkeys(task.eval_splits, task.hf_subsets)
|
|
415
|
+
# Will be fully recomputed so we set it to None to avoid merging:
|
|
416
|
+
existing_results = None
|
|
398
417
|
|
|
399
418
|
if (
|
|
400
419
|
existing_results
|
|
@@ -415,12 +434,13 @@ def evaluate(
|
|
|
415
434
|
OverwriteStrategy.ONLY_CACHE,
|
|
416
435
|
]:
|
|
417
436
|
raise ValueError(
|
|
418
|
-
f"overwrite_strategy is set to '{overwrite_strategy.value}' and the results file exists
|
|
437
|
+
f"overwrite_strategy is set to '{overwrite_strategy.value}' and the results file exists for task {task.metadata.name}. "
|
|
438
|
+
+ f"However there are the following missing splits (and subsets): {missing_eval}. To rerun these set overwrite_strategy to 'only-missing'."
|
|
419
439
|
)
|
|
420
440
|
|
|
421
441
|
if existing_results:
|
|
422
442
|
logger.info(
|
|
423
|
-
f"Found existing results for {task.metadata.name}, only running missing splits: {
|
|
443
|
+
f"Found existing results for {task.metadata.name}, only running missing splits (subsets): {missing_eval}"
|
|
424
444
|
)
|
|
425
445
|
|
|
426
446
|
if isinstance(model, ModelMeta):
|
|
@@ -13,7 +13,15 @@ def check_language_code(code: str) -> None:
|
|
|
13
13
|
Args:
|
|
14
14
|
code: The language code to check.
|
|
15
15
|
"""
|
|
16
|
-
lang
|
|
16
|
+
lang = None
|
|
17
|
+
script = None
|
|
18
|
+
if "-" in code:
|
|
19
|
+
lang, script = code.split("-")
|
|
20
|
+
elif code[0].isupper():
|
|
21
|
+
script = code
|
|
22
|
+
else:
|
|
23
|
+
lang = code
|
|
24
|
+
|
|
17
25
|
if script == "Code":
|
|
18
26
|
if lang in PROGRAMMING_LANGS:
|
|
19
27
|
return # override for code
|
|
@@ -21,11 +29,11 @@ def check_language_code(code: str) -> None:
|
|
|
21
29
|
raise ValueError(
|
|
22
30
|
f"Programming language {lang} is not a valid programming language."
|
|
23
31
|
)
|
|
24
|
-
if lang not in ISO_TO_LANGUAGE:
|
|
32
|
+
if lang is not None and lang not in ISO_TO_LANGUAGE:
|
|
25
33
|
raise ValueError(
|
|
26
34
|
f"Invalid language code: {lang}, you can find valid ISO 639-3 codes in {path_to_lang_codes}"
|
|
27
35
|
)
|
|
28
|
-
if script not in ISO_TO_SCRIPT:
|
|
36
|
+
if script is not None and script not in ISO_TO_SCRIPT:
|
|
29
37
|
raise ValueError(
|
|
30
38
|
f"Invalid script code: {script}, you can find valid ISO 15924 codes in {path_to_lang_scripts}"
|
|
31
39
|
)
|