mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (412) hide show
  1. mteb/__init__.py +10 -1
  2. mteb/_create_dataloaders.py +8 -3
  3. mteb/_evaluators/any_sts_evaluator.py +14 -12
  4. mteb/_evaluators/clustering_evaluator.py +1 -1
  5. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
  6. mteb/_evaluators/pair_classification_evaluator.py +3 -1
  7. mteb/_evaluators/retrieval_metrics.py +0 -9
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_stratification.py +1 -1
  13. mteb/abstasks/abstask.py +6 -1
  14. mteb/abstasks/clustering.py +1 -1
  15. mteb/abstasks/dataset_card_template.md +1 -1
  16. mteb/abstasks/multilabel_classification.py +2 -2
  17. mteb/abstasks/retrieval.py +2 -1
  18. mteb/abstasks/retrieval_dataset_loaders.py +1 -1
  19. mteb/abstasks/task_metadata.py +2 -1
  20. mteb/benchmarks/_create_table.py +1 -3
  21. mteb/benchmarks/benchmark.py +18 -1
  22. mteb/benchmarks/benchmarks/__init__.py +4 -0
  23. mteb/benchmarks/benchmarks/benchmarks.py +125 -16
  24. mteb/benchmarks/get_benchmark.py +3 -1
  25. mteb/cache.py +7 -3
  26. mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
  27. mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
  28. mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
  29. mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
  30. mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
  31. mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
  32. mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
  33. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
  34. mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
  35. mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
  36. mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
  37. mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
  38. mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
  39. mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
  40. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
  41. mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
  42. mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
  43. mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
  44. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  45. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  46. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  47. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  49. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  50. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  52. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  53. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  54. mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
  55. mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
  56. mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
  57. mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
  58. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  59. mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
  60. mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
  61. mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
  62. mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
  63. mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
  64. mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
  65. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  66. mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
  67. mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
  68. mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
  69. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  70. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  71. mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
  72. mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
  73. mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
  74. mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
  75. mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
  76. mteb/evaluate.py +26 -6
  77. mteb/languages/check_language_code.py +11 -3
  78. mteb/languages/language_scripts.py +4 -0
  79. mteb/leaderboard/app.py +5 -3
  80. mteb/leaderboard/benchmark_selector.py +4 -2
  81. mteb/leaderboard/text_segments.py +1 -1
  82. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  83. mteb/models/instruct_wrapper.py +3 -0
  84. mteb/models/model_implementations/align_models.py +6 -0
  85. mteb/models/model_implementations/andersborges.py +51 -0
  86. mteb/models/model_implementations/ara_models.py +7 -0
  87. mteb/models/model_implementations/b1ade_models.py +1 -1
  88. mteb/models/model_implementations/bge_models.py +1 -3
  89. mteb/models/model_implementations/blip2_models.py +9 -0
  90. mteb/models/model_implementations/blip_models.py +19 -0
  91. mteb/models/model_implementations/bmretriever_models.py +1 -1
  92. mteb/models/model_implementations/cadet_models.py +8 -0
  93. mteb/models/model_implementations/cde_models.py +12 -0
  94. mteb/models/model_implementations/codefuse_models.py +15 -0
  95. mteb/models/model_implementations/codesage_models.py +12 -0
  96. mteb/models/model_implementations/cohere_models.py +1 -1
  97. mteb/models/model_implementations/colqwen_models.py +57 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +70 -0
  99. mteb/models/model_implementations/gme_v_models.py +2 -2
  100. mteb/models/model_implementations/ibm_granite_models.py +1 -1
  101. mteb/models/model_implementations/inf_models.py +3 -3
  102. mteb/models/model_implementations/jasper_models.py +253 -2
  103. mteb/models/model_implementations/jina_models.py +12 -2
  104. mteb/models/model_implementations/kalm_models.py +159 -25
  105. mteb/models/model_implementations/llm2vec_models.py +1 -1
  106. mteb/models/model_implementations/misc_models.py +8 -2
  107. mteb/models/model_implementations/moco_models.py +9 -0
  108. mteb/models/model_implementations/mxbai_models.py +1 -1
  109. mteb/models/model_implementations/openclip_models.py +16 -0
  110. mteb/models/model_implementations/piccolo_models.py +6 -0
  111. mteb/models/model_implementations/rasgaard_models.py +33 -0
  112. mteb/models/model_implementations/reasonir_model.py +1 -1
  113. mteb/models/model_implementations/salesforce_models.py +1 -1
  114. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
  115. mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
  116. mteb/models/model_implementations/tarka_models.py +374 -0
  117. mteb/models/model_implementations/voyage_models.py +6 -7
  118. mteb/models/model_implementations/voyage_v.py +10 -9
  119. mteb/models/model_implementations/yuan_models.py +33 -0
  120. mteb/models/search_wrappers.py +6 -5
  121. mteb/results/task_result.py +19 -17
  122. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  123. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  124. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
  125. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  126. mteb/tasks/classification/ara/ajgt.py +1 -2
  127. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  128. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  129. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  130. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  131. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  132. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  133. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  134. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  135. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  136. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  137. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  138. mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
  139. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  140. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  141. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  142. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  143. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  144. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  145. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  146. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  147. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  148. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  149. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  150. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  151. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  152. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  153. mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
  154. mteb/tasks/classification/eng/news_classification.py +1 -2
  155. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  156. mteb/tasks/classification/eng/patent_classification.py +1 -2
  157. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  158. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  159. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  160. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  161. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  162. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  163. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  164. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  165. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  166. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  167. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  168. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  169. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  170. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  171. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  172. mteb/tasks/classification/est/estonian_valence.py +1 -2
  173. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  174. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  175. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  176. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  177. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  178. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  179. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
  180. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  181. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  182. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  183. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  184. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  185. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  186. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  187. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  188. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  189. mteb/tasks/classification/kor/klue_tc.py +1 -2
  190. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  191. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  192. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  193. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  194. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  195. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  196. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  197. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  198. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  199. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  200. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  201. mteb/tasks/classification/mya/myanmar_news.py +2 -3
  202. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  203. mteb/tasks/classification/nld/__init__.py +16 -0
  204. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  205. mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
  206. mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
  207. mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
  208. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
  209. mteb/tasks/classification/nld/iconclass_classification.py +44 -0
  210. mteb/tasks/classification/nld/open_tender_classification.py +41 -0
  211. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
  212. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  213. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  214. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  215. mteb/tasks/classification/pol/polish_classification.py +3 -6
  216. mteb/tasks/classification/ron/moroco.py +1 -2
  217. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  218. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  220. mteb/tasks/classification/rus/headline_classification.py +1 -2
  221. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  222. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  223. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  224. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  225. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  226. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  227. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  228. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  229. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  230. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  231. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  232. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  233. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  234. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  235. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  236. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  237. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  238. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  239. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  240. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  241. mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
  242. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  243. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  244. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  245. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  246. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  247. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  248. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  249. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  250. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  251. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  252. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  253. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  254. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  255. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  256. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  257. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  258. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  259. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  260. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  261. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  262. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  263. mteb/tasks/clustering/__init__.py +1 -0
  264. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  265. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  266. mteb/tasks/clustering/nld/__init__.py +17 -0
  267. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
  268. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
  269. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
  270. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
  271. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
  272. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
  273. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
  274. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  275. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  276. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  277. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  278. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  279. mteb/tasks/multilabel_classification/__init__.py +1 -0
  280. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  281. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  282. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  283. mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
  284. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
  285. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
  286. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  287. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  288. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  289. mteb/tasks/pair_classification/__init__.py +1 -0
  290. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  291. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  292. mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
  293. mteb/tasks/pair_classification/nld/__init__.py +7 -0
  294. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
  295. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
  296. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  297. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  298. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  299. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  300. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  301. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  302. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  303. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  304. mteb/tasks/retrieval/code/code_rag.py +8 -8
  305. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
  306. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
  307. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
  308. mteb/tasks/retrieval/eng/__init__.py +18 -4
  309. mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
  310. mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
  311. mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
  312. mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
  313. mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
  314. mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
  315. mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
  316. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  317. mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
  318. mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
  319. mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
  320. mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
  321. mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
  322. mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
  323. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
  324. mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
  325. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  326. mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
  327. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  328. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  329. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
  330. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
  331. mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
  332. mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
  333. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  334. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  335. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  336. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  337. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  338. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
  339. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  340. mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
  341. mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
  342. mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
  343. mteb/tasks/retrieval/nld/__init__.py +18 -4
  344. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  345. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
  346. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
  347. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
  348. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  349. mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
  350. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  351. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  352. mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
  353. mteb/tasks/retrieval/nob/norquad.py +2 -2
  354. mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
  355. mteb/tasks/retrieval/rus/__init__.py +11 -2
  356. mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
  357. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  358. mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
  359. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  360. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  361. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  362. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  363. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  364. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  365. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  366. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  367. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  368. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  369. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  370. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  371. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  372. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  373. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  374. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  375. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  376. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  377. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  378. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  379. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  380. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  381. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  382. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  383. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  384. mteb/tasks/sts/__init__.py +1 -0
  385. mteb/tasks/sts/nld/__init__.py +5 -0
  386. mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
  387. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  388. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  389. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  390. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  391. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  392. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  393. mteb-2.1.19.dist-info/METADATA +253 -0
  394. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
  395. mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
  396. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
  397. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
  398. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
  399. mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
  400. mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
  401. mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
  402. mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
  403. mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
  404. mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
  405. mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
  406. mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
  407. mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
  408. mteb-2.0.5.dist-info/METADATA +0 -455
  409. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
  410. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
  411. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
  412. {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
@@ -49,8 +49,7 @@ class SwahiliNewsClassification(AbsTaskClassification):
49
49
  class SwahiliNewsClassificationV2(AbsTaskClassification):
50
50
  metadata = TaskMetadata(
51
51
  name="SwahiliNewsClassification.v2",
52
- description="""Dataset for Swahili News Classification, categorized with 6 domains (Local News (Kitaifa), International News (Kimataifa), Finance News (Uchumi), Health News (Afya), Sports News (Michezo), and Entertainment News (Burudani)). Building and Optimizing Swahili Language Models: Techniques, Embeddings, and Datasets
53
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
52
+ description="Dataset for Swahili News Classification, categorized with 6 domains (Local News (Kitaifa), International News (Kimataifa), Finance News (Uchumi), Health News (Afya), Sports News (Michezo), and Entertainment News (Burudani)). Building and Optimizing Swahili Language Models: Techniques, Embeddings, and Datasets This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
54
53
  reference="https://huggingface.co/datasets/Mollel/SwahiliNewsClassification",
55
54
  dataset={
56
55
  "path": "mteb/swahili_news",
@@ -50,8 +50,7 @@ class DalajClassificationV2(AbsTaskClassification):
50
50
  "revision": "ecf6f2d83e8e85816ec3974896557a4aafce4f3e",
51
51
  "name": "dalaj",
52
52
  },
53
- description="""A Swedish dataset for linguistic acceptability. Available as a part of Superlim.
54
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
53
+ description="A Swedish dataset for linguistic acceptability. Available as a part of Superlim. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
55
54
  reference="https://spraakbanken.gu.se/en/resources/superlim",
56
55
  type="Classification",
57
56
  category="t2c",
@@ -47,8 +47,7 @@ Fishel, Mark},
47
47
  class SweRecClassificationV2(AbsTaskClassification):
48
48
  metadata = TaskMetadata(
49
49
  name="SweRecClassification.v2",
50
- description="""A Swedish dataset for sentiment classification on review
51
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
50
+ description="A Swedish dataset for sentiment classification on review This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
52
51
  reference="https://aclanthology.org/2023.nodalida-1.20/",
53
52
  dataset={
54
53
  "path": "mteb/swe_rec",
@@ -32,8 +32,7 @@ class SwedishSentimentClassification(AbsTaskClassification):
32
32
  class SwedishSentimentClassificationV2(AbsTaskClassification):
33
33
  metadata = TaskMetadata(
34
34
  name="SwedishSentimentClassification.v2",
35
- description="""Dataset of Swedish reviews scarped from various public available websites
36
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
35
+ description="Dataset of Swedish reviews scarped from various public available websites This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
37
36
  reference="https://huggingface.co/datasets/swedish_reviews",
38
37
  dataset={
39
38
  "path": "mteb/swedish_sentiment",
@@ -45,8 +45,7 @@ class TamilNewsClassification(AbsTaskClassification):
45
45
  class TamilNewsClassificationV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="TamilNewsClassification.v2",
48
- description="""A Tamil dataset for 6-class classification of Tamil news articles
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
48
+ description="A Tamil dataset for 6-class classification of Tamil news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
50
49
  reference="https://github.com/vanangamudi/tamil-news-classification",
51
50
  dataset={
52
51
  "path": "mteb/tamil_news",
@@ -36,8 +36,7 @@ class TeluguAndhraJyotiNewsClassification(AbsTaskClassification):
36
36
  class TeluguAndhraJyotiNewsClassificationV2(AbsTaskClassification):
37
37
  metadata = TaskMetadata(
38
38
  name="TeluguAndhraJyotiNewsClassification.v2",
39
- description="""A Telugu dataset for 5-class classification of Telugu news articles
40
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
39
+ description="A Telugu dataset for 5-class classification of Telugu news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
41
40
  reference="https://github.com/AnushaMotamarri/Telugu-Newspaper-Article-Dataset",
42
41
  dataset={
43
42
  "path": "mteb/telugu_andhra_jyoti_news",
@@ -46,8 +46,7 @@ Polpanumas, Charin},
46
46
  class WisesightSentimentClassificationV2(AbsTaskClassification):
47
47
  metadata = TaskMetadata(
48
48
  name="WisesightSentimentClassification.v2",
49
- description="""Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment label (positive, neutral, negative, question)
50
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
49
+ description="Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment label (positive, neutral, negative, question) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
51
50
  reference="https://github.com/PyThaiNLP/wisesight-sentiment",
52
51
  dataset={
53
52
  "path": "mteb/wisesight_sentiment",
@@ -5,7 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class WongnaiReviewsClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="WongnaiReviewsClassification",
8
- description="Wongnai features over 200,000 restaurants, beauty salons, and spas across Thailand on its platform, with detailed information about each merchant and user reviews. In this dataset there are 5 classes corressponding each star rating",
8
+ description="Wongnai features over 200,000 restaurants, beauty salons, and spas across Thailand on its platform, with detailed information about each merchant and user reviews. In this dataset there are 5 classes corresponding each star rating",
9
9
  reference="https://github.com/wongnai/wongnai-corpus",
10
10
  dataset={
11
11
  "path": "Wongnai/wongnai_reviews",
@@ -43,8 +43,7 @@ class TswanaNewsClassification(AbsTaskClassification):
43
43
  class TswanaNewsClassificationV2(AbsTaskClassification):
44
44
  metadata = TaskMetadata(
45
45
  name="TswanaNewsClassification.v2",
46
- description="""Tswana News Classification Dataset
47
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
46
+ description="Tswana News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
48
47
  reference="https://link.springer.com/chapter/10.1007/978-3-031-49002-6_17",
49
48
  dataset={
50
49
  "path": "mteb/tswana_news",
@@ -45,8 +45,7 @@ class TurkishMovieSentimentClassification(AbsTaskClassification):
45
45
  class TurkishMovieSentimentClassificationV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="TurkishMovieSentimentClassification.v2",
48
- description="""Turkish Movie Review Dataset
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
48
+ description="Turkish Movie Review Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
50
49
  reference="https://www.win.tue.nl/~mpechen/publications/pubs/MT_WISDOM2013.pdf",
51
50
  dataset={
52
51
  "path": "mteb/turkish_movie_sentiment",
@@ -40,8 +40,7 @@ class TurkishProductSentimentClassification(AbsTaskClassification):
40
40
  class TurkishProductSentimentClassificationV2(AbsTaskClassification):
41
41
  metadata = TaskMetadata(
42
42
  name="TurkishProductSentimentClassification.v2",
43
- description="""Turkish Product Review Dataset
44
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
43
+ description="Turkish Product Review Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
45
44
  reference="https://www.win.tue.nl/~mpechen/publications/pubs/MT_WISDOM2013.pdf",
46
45
  dataset={
47
46
  "path": "mteb/turkish_product_sentiment",
@@ -5,13 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class UkrFormalityClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="UkrFormalityClassification",
8
- description="""
9
- This dataset contains Ukrainian Formality Classification dataset obtained by
10
- trainslating English GYAFC data.
11
- English data source: https://aclanthology.org/N18-1012/
12
- Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M
13
- Additionally, the dataset was balanced, witha labels: 0 - informal, 1 - formal.
14
- """,
8
+ description="This dataset contains Ukrainian Formality Classification dataset obtained by trainslating English GYAFC data. English data source: https://aclanthology.org/N18-1012/ Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal.",
15
9
  dataset={
16
10
  "path": "ukr-detect/ukr-formality-dataset-translated-gyafc",
17
11
  "revision": "671d1e6bbf45a74ef21af351fd4ef7b32b7856f8",
@@ -56,14 +50,7 @@ Tetreault, Joel},
56
50
  class UkrFormalityClassificationV2(AbsTaskClassification):
57
51
  metadata = TaskMetadata(
58
52
  name="UkrFormalityClassification.v2",
59
- description="""
60
- This dataset contains Ukrainian Formality Classification dataset obtained by
61
- trainslating English GYAFC data.
62
- English data source: https://aclanthology.org/N18-1012/
63
- Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M
64
- Additionally, the dataset was balanced, witha labels: 0 - informal, 1 - formal.
65
-
66
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
53
+ description="This dataset contains Ukrainian Formality Classification dataset obtained by trainslating English GYAFC data. English data source: https://aclanthology.org/N18-1012/ Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
67
54
  dataset={
68
55
  "path": "mteb/ukr_formality",
69
56
  "revision": "e0b2dfa57d505f207deb571e58b0bd0b81180bd4",
@@ -40,8 +40,7 @@ class UrduRomanSentimentClassification(AbsTaskClassification):
40
40
  class UrduRomanSentimentClassificationV2(AbsTaskClassification):
41
41
  metadata = TaskMetadata(
42
42
  name="UrduRomanSentimentClassification.v2",
43
- description="""The Roman Urdu dataset is a data corpus comprising of more than 20000 records tagged for sentiment (Positive, Negative, Neutral)
44
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
43
+ description="The Roman Urdu dataset is a data corpus comprising of more than 20000 records tagged for sentiment (Positive, Negative, Neutral) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
45
44
  reference="https://archive.ics.uci.edu/dataset/458/roman+urdu+data+set",
46
45
  dataset={
47
46
  "path": "mteb/urdu_roman_sentiment",
@@ -11,12 +11,7 @@ class AmazonCounterfactualVNClassification(AbsTaskClassification):
11
11
  "path": "GreenNode/amazon-counterfactual-vn",
12
12
  "revision": "b48bc27d383cfca5b6a47135a52390fa5f66b253",
13
13
  },
14
- description="""A collection of translated Amazon customer reviews annotated for counterfactual detection pair classification.
15
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
16
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
17
- - Applies advanced embedding models to filter the translations.
18
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
19
- """,
14
+ description="A collection of translated Amazon customer reviews annotated for counterfactual detection pair classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
20
15
  reference="https://arxiv.org/abs/2104.06893",
21
16
  category="t2c",
22
17
  type="Classification",
@@ -5,12 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class AmazonPolarityVNClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="AmazonPolarityVNClassification",
8
- description="""A collection of translated Amazon customer reviews annotated for polarity classification.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
13
- """,
8
+ description="A collection of translated Amazon customer reviews annotated for polarity classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
14
9
  reference="https://huggingface.co/datasets/amazon_polarity",
15
10
  dataset={
16
11
  "path": "GreenNode/amazon-polarity-vn",
@@ -9,11 +9,7 @@ class AmazonReviewsVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/amazon-reviews-multi-vn",
10
10
  "revision": "27da94deb6d4f44af789a3d70750fa506b79f189",
11
11
  },
12
- description="""A collection of translated Amazon reviews specifically designed to aid research in multilingual text classification.
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A collection of translated Amazon reviews specifically designed to aid research in multilingual text classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/abs/2010.02573",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class Banking77VNClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="Banking77VNClassification",
8
- description="""A translated dataset composed of online banking queries annotated with their corresponding intents.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset composed of online banking queries annotated with their corresponding intents. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  reference="https://arxiv.org/abs/2003.04807",
14
10
  dataset={
15
11
  "path": "GreenNode/banking77-vn",
@@ -7,11 +7,7 @@ class EmotionVNClassification(AbsTaskClassification):
7
7
 
8
8
  metadata = TaskMetadata(
9
9
  name="EmotionVNClassification",
10
- description="""Emotion is a translated dataset of Vietnamese from English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
11
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
12
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
13
- - Applies advanced embedding models to filter the translations.
14
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
10
+ description="Emotion is a translated dataset of Vietnamese from English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
15
11
  reference="https://www.aclweb.org/anthology/D18-1404",
16
12
  dataset={
17
13
  "path": "GreenNode/emotion-vn",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class ImdbVNClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="ImdbVNClassification",
8
- description="""A translated dataset of large movie reviews annotated for sentiment classification.
9
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
10
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
11
- - Applies advanced embedding models to filter the translations.
12
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
8
+ description="A translated dataset of large movie reviews annotated for sentiment classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
13
9
  dataset={
14
10
  "path": "GreenNode/imdb-vn",
15
11
  "revision": "0dccb383ee26c90c99d03c8674cf40de642f099a",
@@ -9,11 +9,7 @@ class MassiveIntentVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/amazon-massive-intent-vn",
10
10
  "revision": "35c7ced69f958dbbaa24f792db4a9250e461866d",
11
11
  },
12
- description="""A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -9,11 +9,7 @@ class MassiveScenarioVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/amazon-massive-scenario-vn",
10
10
  "revision": "a82e282d9f5aec1a8cf7d868ce40f70669c16b89",
11
11
  },
12
- description="""A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -9,11 +9,7 @@ class MTOPDomainVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/mtop-domain-vn",
10
10
  "revision": "6e1ec8c54c018151c77472d94b1c0765230cf6ca",
11
11
  },
12
- description="""A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/pdf/2008.09335.pdf",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -9,11 +9,7 @@ class MTOPIntentVNClassification(AbsTaskClassification):
9
9
  "path": "GreenNode/mtop-intent-vn",
10
10
  "revision": "c4e81a5c9a813a0142d905e261e5a446cc6fbc4a",
11
11
  },
12
- description="""A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing
13
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
14
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
15
- - Applies advanced embedding models to filter the translations.
16
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
12
+ description="A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
17
13
  reference="https://arxiv.org/pdf/2008.09335.pdf",
18
14
  category="t2c",
19
15
  type="Classification",
@@ -7,11 +7,7 @@ class ToxicConversationsVNClassification(AbsTaskClassification):
7
7
 
8
8
  metadata = TaskMetadata(
9
9
  name="ToxicConversationsVNClassification",
10
- description="""A translated dataset from Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not.
11
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
12
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
13
- - Applies advanced embedding models to filter the translations.
14
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
10
+ description="A translated dataset from Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
15
11
  reference="https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/overview",
16
12
  dataset={
17
13
  "path": "GreenNode/toxic-conversations-50k-vn",
@@ -7,11 +7,7 @@ class TweetSentimentExtractionVNClassification(AbsTaskClassification):
7
7
 
8
8
  metadata = TaskMetadata(
9
9
  name="TweetSentimentExtractionVNClassification",
10
- description="""A collection of translated tweets annotated for sentiment extraction.
11
- The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
12
- - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
13
- - Applies advanced embedding models to filter the translations.
14
- - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
10
+ description="A collection of translated tweets annotated for sentiment extraction. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
15
11
  reference="https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview",
16
12
  dataset={
17
13
  "path": "GreenNode/tweet-sentiment-extraction-vn",
@@ -45,8 +45,7 @@ class VieStudentFeedbackClassification(AbsTaskClassification):
45
45
  class VieStudentFeedbackClassificationV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="VieStudentFeedbackClassification.v2",
48
- description="""A Vietnamese dataset for classification of student feedback
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
48
+ description="A Vietnamese dataset for classification of student feedback This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
50
49
  reference="https://ieeexplore.ieee.org/document/8573337",
51
50
  dataset={
52
51
  "path": "mteb/vie_student_feedback",
@@ -79,8 +79,7 @@ Lan, Zhenzhong },
79
79
  class TNewsV2(AbsTaskClassification):
80
80
  metadata = TaskMetadata(
81
81
  name="TNews.v2",
82
- description="""Short Text Classification for News
83
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
82
+ description="Short Text Classification for News This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
84
83
  reference="https://www.cluebenchmarks.com/introduce.html",
85
84
  dataset={
86
85
  "path": "mteb/t_news",
@@ -229,8 +228,7 @@ Lan, Zhenzhong },
229
228
  class IFlyTekV2(AbsTaskClassification):
230
229
  metadata = TaskMetadata(
231
230
  name="IFlyTek.v2",
232
- description="""Long Text classification for the description of Apps
233
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
231
+ description="Long Text classification for the description of Apps This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
234
232
  reference="https://www.cluebenchmarks.com/introduce.html",
235
233
  dataset={
236
234
  "path": "mteb/i_fly_tek",
@@ -335,8 +333,7 @@ class MultilingualSentiment(AbsTaskClassification):
335
333
  class MultilingualSentimentV2(AbsTaskClassification):
336
334
  metadata = TaskMetadata(
337
335
  name="MultilingualSentiment.v2",
338
- description="""A collection of multilingual sentiments datasets grouped into 3 classes -- positive, neutral, negative
339
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
336
+ description="A collection of multilingual sentiments datasets grouped into 3 classes -- positive, neutral, negative This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
340
337
  reference="https://github.com/tyqiangz/multilingual-sentiment-datasets",
341
338
  dataset={
342
339
  "path": "mteb/multilingual_sentiment",
@@ -403,8 +400,7 @@ class JDReview(AbsTaskClassification):
403
400
  class JDReviewV2(AbsTaskClassification):
404
401
  metadata = TaskMetadata(
405
402
  name="JDReview.v2",
406
- description="""review for iphone
407
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
403
+ description="review for iphone This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
408
404
  reference="https://aclanthology.org/2023.nodalida-1.20/",
409
405
  dataset={
410
406
  "path": "mteb/jd_review",
@@ -514,8 +510,7 @@ class Waimai(AbsTaskClassification):
514
510
  class WaimaiV2(AbsTaskClassification):
515
511
  metadata = TaskMetadata(
516
512
  name="Waimai.v2",
517
- description="""Sentiment Analysis of user reviews on takeaway platforms
518
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
513
+ description="Sentiment Analysis of user reviews on takeaway platforms This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
519
514
  reference="https://aclanthology.org/2023.nodalida-1.20/",
520
515
  dataset={
521
516
  "path": "mteb/waimai",
@@ -48,8 +48,7 @@ class YueOpenriceReviewClassification(AbsTaskClassification):
48
48
  class YueOpenriceReviewClassificationV2(AbsTaskClassification):
49
49
  metadata = TaskMetadata(
50
50
  name="YueOpenriceReviewClassification.v2",
51
- description="""A Cantonese dataset for review classification
52
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
51
+ description="A Cantonese dataset for review classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
53
52
  reference="https://github.com/Christainx/Dataset_Cantonese_Openrice",
54
53
  dataset={
55
54
  "path": "mteb/yue_openrice_review",
@@ -45,8 +45,7 @@ class IsiZuluNewsClassification(AbsTaskClassification):
45
45
  class IsiZuluNewsClassificationV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="IsiZuluNewsClassification.v2",
48
- description="""isiZulu News Classification Dataset
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
48
+ description="isiZulu News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
50
49
  reference="https://huggingface.co/datasets/dsfsi/za-isizulu-siswati-news",
51
50
  dataset={
52
51
  "path": "mteb/isi_zulu_news",
@@ -5,6 +5,7 @@ from .fra import *
5
5
  from .jpn import *
6
6
  from .kor import *
7
7
  from .multilingual import *
8
+ from .nld import *
8
9
  from .nob import *
9
10
  from .pol import *
10
11
  from .rom import *
@@ -8,9 +8,7 @@ class MewsC16JaClustering(AbsTaskClustering):
8
8
 
9
9
  metadata = TaskMetadata(
10
10
  name="MewsC16JaClustering",
11
- description="""MewsC-16 (Multilingual Short Text Clustering Dataset for News in 16 languages) is constructed from Wikinews.
12
- This dataset is the Japanese split of MewsC-16, containing topic sentences from Wikinews articles in 12 categories.
13
- More detailed information is available in the Appendix E of the citation.""",
11
+ description="MewsC-16 (Multilingual Short Text Clustering Dataset for News in 16 languages) is constructed from Wikinews. This dataset is the Japanese split of MewsC-16, containing topic sentences from Wikinews articles in 12 categories. More detailed information is available in the Appendix E of the citation.",
14
12
  reference="https://github.com/sbintuitions/JMTEB",
15
13
  dataset={
16
14
  "path": "mteb/MewsC16JaClustering",
@@ -210,12 +210,7 @@ class SIB200ClusteringFast(AbsTaskClustering):
210
210
 
211
211
  metadata = TaskMetadata(
212
212
  name="SIB200ClusteringS2S",
213
- description="""SIB-200 is the largest publicly available topic classification
214
- dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is
215
- annotated in English for the topics, science/technology, travel, politics, sports,
216
- health, entertainment, and geography. The labels are then transferred to the other languages
217
- in Flores-200 which are human-translated.
218
- """,
213
+ description="SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is annotated in English for the topics, science/technology, travel, politics, sports, health, entertainment, and geography. The labels are then transferred to the other languages in Flores-200 which are human-translated.",
219
214
  reference="https://arxiv.org/abs/2309.07445",
220
215
  dataset={
221
216
  "path": "mteb/sib200",
@@ -0,0 +1,17 @@
1
+ from .dutch_news_articles_clustering_p2p import DutchNewsArticlesClusteringP2P
2
+ from .dutch_news_articles_clustering_s2s import DutchNewsArticlesClusteringS2S
3
+ from .iconclass_clustering_s2s import IconclassClusteringS2S
4
+ from .open_tender_clustering_p2p import OpenTenderClusteringP2P
5
+ from .open_tender_clustering_s2s import OpenTenderClusteringS2S
6
+ from .vabb_clustering_p2p import VABBClusteringP2P
7
+ from .vabb_clustering_s2s import VABBClusteringS2S
8
+
9
+ __all__ = [
10
+ "DutchNewsArticlesClusteringP2P",
11
+ "DutchNewsArticlesClusteringS2S",
12
+ "IconclassClusteringS2S",
13
+ "OpenTenderClusteringP2P",
14
+ "OpenTenderClusteringS2S",
15
+ "VABBClusteringP2P",
16
+ "VABBClusteringS2S",
17
+ ]
@@ -0,0 +1,40 @@
1
+ from mteb.abstasks.clustering import AbsTaskClustering
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class DutchNewsArticlesClusteringP2P(AbsTaskClustering):
6
+ max_fraction_of_documents_to_embed = 1.0
7
+ metadata = TaskMetadata(
8
+ name="DutchNewsArticlesClusteringP2P",
9
+ dataset={
10
+ "path": "clips/mteb-nl-news-articles-cls",
11
+ "revision": "0a7227d31f85c5676be92767f8df5405ea93de54",
12
+ },
13
+ description="This dataset contains all the articles published by the NOS as of the 1st of January 2010. The "
14
+ "data is obtained by scraping the NOS website. The NOS is one of the biggest (online) news "
15
+ "organizations in the Netherlands.",
16
+ reference="https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles",
17
+ type="Clustering",
18
+ category="t2c",
19
+ modalities=["text"],
20
+ eval_splits=["test"],
21
+ eval_langs=["nld-Latn"],
22
+ main_score="v_measure",
23
+ date=("2009-11-01", "2010-01-01"),
24
+ domains=["Written", "News"],
25
+ task_subtypes=[],
26
+ license="cc-by-nc-sa-4.0",
27
+ annotations_creators="derived",
28
+ dialect=[],
29
+ sample_creation="found",
30
+ bibtex_citation="",
31
+ prompt={
32
+ "query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels en de inhoud"
33
+ },
34
+ )
35
+
36
+ def dataset_transform(self):
37
+ for split in self.dataset:
38
+ self.dataset[split] = self.dataset[split].rename_columns(
39
+ {"label": "labels", "text": "sentences"}
40
+ )
@@ -0,0 +1,40 @@
1
+ from mteb.abstasks.clustering import AbsTaskClustering
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+
5
+ class DutchNewsArticlesClusteringS2S(AbsTaskClustering):
6
+ max_fraction_of_documents_to_embed = 1.0
7
+ metadata = TaskMetadata(
8
+ name="DutchNewsArticlesClusteringS2S",
9
+ dataset={
10
+ "path": "clips/mteb-nl-news-articles-cls",
11
+ "revision": "0a7227d31f85c5676be92767f8df5405ea93de54",
12
+ },
13
+ description="This dataset contains all the articles published by the NOS as of the 1st of January 2010. The "
14
+ "data is obtained by scraping the NOS website. The NOS is one of the biggest (online) news "
15
+ "organizations in the Netherlands.",
16
+ reference="https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles",
17
+ type="Clustering",
18
+ category="t2c",
19
+ modalities=["text"],
20
+ eval_splits=["test"],
21
+ eval_langs=["nld-Latn"],
22
+ main_score="v_measure",
23
+ date=("2009-11-01", "2010-01-01"),
24
+ domains=["Written", "News"],
25
+ task_subtypes=[],
26
+ license="cc-by-nc-sa-4.0",
27
+ annotations_creators="derived",
28
+ dialect=[],
29
+ sample_creation="found",
30
+ bibtex_citation="",
31
+ prompt={
32
+ "query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels"
33
+ },
34
+ )
35
+
36
+ def dataset_transform(self):
37
+ for split in self.dataset:
38
+ self.dataset[split] = self.dataset[split].rename_columns(
39
+ {"label": "labels", "title": "sentences"}
40
+ )