mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +10 -1
- mteb/_create_dataloaders.py +8 -3
- mteb/_evaluators/any_sts_evaluator.py +14 -12
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
- mteb/_evaluators/pair_classification_evaluator.py +3 -1
- mteb/_evaluators/retrieval_metrics.py +0 -9
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_stratification.py +1 -1
- mteb/abstasks/abstask.py +6 -1
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/dataset_card_template.md +1 -1
- mteb/abstasks/multilabel_classification.py +2 -2
- mteb/abstasks/retrieval.py +2 -1
- mteb/abstasks/retrieval_dataset_loaders.py +1 -1
- mteb/abstasks/task_metadata.py +2 -1
- mteb/benchmarks/_create_table.py +1 -3
- mteb/benchmarks/benchmark.py +18 -1
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +125 -16
- mteb/benchmarks/get_benchmark.py +3 -1
- mteb/cache.py +7 -3
- mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
- mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
- mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
- mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
- mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
- mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
- mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
- mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
- mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
- mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
- mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
- mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
- mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
- mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
- mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
- mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
- mteb/evaluate.py +26 -6
- mteb/languages/check_language_code.py +11 -3
- mteb/languages/language_scripts.py +4 -0
- mteb/leaderboard/app.py +5 -3
- mteb/leaderboard/benchmark_selector.py +4 -2
- mteb/leaderboard/text_segments.py +1 -1
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/instruct_wrapper.py +3 -0
- mteb/models/model_implementations/align_models.py +6 -0
- mteb/models/model_implementations/andersborges.py +51 -0
- mteb/models/model_implementations/ara_models.py +7 -0
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +1 -3
- mteb/models/model_implementations/blip2_models.py +9 -0
- mteb/models/model_implementations/blip_models.py +19 -0
- mteb/models/model_implementations/bmretriever_models.py +1 -1
- mteb/models/model_implementations/cadet_models.py +8 -0
- mteb/models/model_implementations/cde_models.py +12 -0
- mteb/models/model_implementations/codefuse_models.py +15 -0
- mteb/models/model_implementations/codesage_models.py +12 -0
- mteb/models/model_implementations/cohere_models.py +1 -1
- mteb/models/model_implementations/colqwen_models.py +57 -0
- mteb/models/model_implementations/emillykkejensen_models.py +70 -0
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/ibm_granite_models.py +1 -1
- mteb/models/model_implementations/inf_models.py +3 -3
- mteb/models/model_implementations/jasper_models.py +253 -2
- mteb/models/model_implementations/jina_models.py +12 -2
- mteb/models/model_implementations/kalm_models.py +159 -25
- mteb/models/model_implementations/llm2vec_models.py +1 -1
- mteb/models/model_implementations/misc_models.py +8 -2
- mteb/models/model_implementations/moco_models.py +9 -0
- mteb/models/model_implementations/mxbai_models.py +1 -1
- mteb/models/model_implementations/openclip_models.py +16 -0
- mteb/models/model_implementations/piccolo_models.py +6 -0
- mteb/models/model_implementations/rasgaard_models.py +33 -0
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/salesforce_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
- mteb/models/model_implementations/tarka_models.py +374 -0
- mteb/models/model_implementations/voyage_models.py +6 -7
- mteb/models/model_implementations/voyage_v.py +10 -9
- mteb/models/model_implementations/yuan_models.py +33 -0
- mteb/models/search_wrappers.py +6 -5
- mteb/results/task_result.py +19 -17
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +2 -3
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/__init__.py +16 -0
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
- mteb/tasks/classification/nld/iconclass_classification.py +44 -0
- mteb/tasks/classification/nld/open_tender_classification.py +41 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/__init__.py +1 -0
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/__init__.py +17 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/__init__.py +1 -0
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/__init__.py +1 -0
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
- mteb/tasks/pair_classification/nld/__init__.py +7 -0
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +8 -8
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +18 -4
- mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
- mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
- mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
- mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
- mteb/tasks/retrieval/nld/__init__.py +18 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/rus/__init__.py +11 -2
- mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/__init__.py +1 -0
- mteb/tasks/sts/nld/__init__.py +5 -0
- mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb-2.1.19.dist-info/METADATA +253 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
- mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
- mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
- mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
- mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
- mteb-2.0.5.dist-info/METADATA +0 -455
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
|
@@ -2,8 +2,24 @@ from .dutch_book_review_sentiment_classification import (
|
|
|
2
2
|
DutchBookReviewSentimentClassification,
|
|
3
3
|
DutchBookReviewSentimentClassificationV2,
|
|
4
4
|
)
|
|
5
|
+
from .dutch_cola_classification import DutchColaClassification
|
|
6
|
+
from .dutch_government_bias_classification import DutchGovernmentBiasClassification
|
|
7
|
+
from .dutch_news_articles_classification import DutchNewsArticlesClassification
|
|
8
|
+
from .dutch_sarcastic_headlines_classification import (
|
|
9
|
+
DutchSarcasticHeadlinesClassification,
|
|
10
|
+
)
|
|
11
|
+
from .iconclass_classification import IconclassClassification
|
|
12
|
+
from .open_tender_classification import OpenTenderClassification
|
|
13
|
+
from .vaccin_chat_nl_classification import VaccinChatNLClassification
|
|
5
14
|
|
|
6
15
|
__all__ = [
|
|
7
16
|
"DutchBookReviewSentimentClassification",
|
|
8
17
|
"DutchBookReviewSentimentClassificationV2",
|
|
18
|
+
"DutchColaClassification",
|
|
19
|
+
"DutchGovernmentBiasClassification",
|
|
20
|
+
"DutchNewsArticlesClassification",
|
|
21
|
+
"DutchSarcasticHeadlinesClassification",
|
|
22
|
+
"IconclassClassification",
|
|
23
|
+
"OpenTenderClassification",
|
|
24
|
+
"VaccinChatNLClassification",
|
|
9
25
|
]
|
|
@@ -48,8 +48,7 @@ Suzan, Verberne},
|
|
|
48
48
|
class DutchBookReviewSentimentClassificationV2(AbsTaskClassification):
|
|
49
49
|
metadata = TaskMetadata(
|
|
50
50
|
name="DutchBookReviewSentimentClassification.v2",
|
|
51
|
-
description="
|
|
52
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
51
|
+
description="A Dutch book review for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900). Additionally, a Dutch prompt was included.",
|
|
53
52
|
reference="https://github.com/benjaminvdb/DBRD",
|
|
54
53
|
dataset={
|
|
55
54
|
"path": "mteb/dutch_book_review_sentiment",
|
|
@@ -86,4 +85,7 @@ Suzan, Verberne},
|
|
|
86
85
|
}
|
|
87
86
|
""",
|
|
88
87
|
adapted_from=["DutchBookReviewSentimentClassification"],
|
|
88
|
+
prompt={
|
|
89
|
+
"query": "Classificeer de gegeven boekrecensie als positieve of negatieve sentiment"
|
|
90
|
+
},
|
|
89
91
|
)
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchColaClassification(AbsTaskClassification):
|
|
6
|
+
samples_per_label = 128
|
|
7
|
+
metadata = TaskMetadata(
|
|
8
|
+
name="DutchColaClassification",
|
|
9
|
+
description="Dutch CoLA is a corpus of linguistic acceptability for Dutch.",
|
|
10
|
+
reference="https://huggingface.co/datasets/GroNLP/dutch-cola",
|
|
11
|
+
dataset={
|
|
12
|
+
"path": "clips/mteb-nl-dutch-cola",
|
|
13
|
+
"revision": "2269ed7d95d8abaab829f1592b4b2047372e9f81",
|
|
14
|
+
},
|
|
15
|
+
type="Classification",
|
|
16
|
+
category="t2c",
|
|
17
|
+
modalities=["text"],
|
|
18
|
+
date=("2024-03-01", "2024-05-01"),
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["nld-Latn"],
|
|
21
|
+
main_score="f1",
|
|
22
|
+
domains=["Written"],
|
|
23
|
+
task_subtypes=["Linguistic acceptability"],
|
|
24
|
+
license="not specified", # specified as unknown
|
|
25
|
+
annotations_creators="expert-annotated",
|
|
26
|
+
dialect=[],
|
|
27
|
+
sample_creation="found",
|
|
28
|
+
bibtex_citation=r"""
|
|
29
|
+
@misc{gronlp_2024,
|
|
30
|
+
author = {Bylinina, Lisa and Abdi, Silvana and Brouwer, Hylke and Elzinga, Martine and Gunput, Shenza and Huisman, Sem and Krooneman, Collin and Poot, David and Top, Jelmer and Weideman, Cain},
|
|
31
|
+
doi = { 10.57967/hf/3825 },
|
|
32
|
+
publisher = { Hugging Face },
|
|
33
|
+
title = { {Dutch-CoLA (Revision 5a4196c)} },
|
|
34
|
+
url = { https://huggingface.co/datasets/GroNLP/dutch-cola },
|
|
35
|
+
year = {2024},
|
|
36
|
+
}
|
|
37
|
+
""",
|
|
38
|
+
prompt={
|
|
39
|
+
"query": "Classificeer de gegeven zin als grammaticaal aanvaardbaar of niet aanvaardbaar"
|
|
40
|
+
},
|
|
41
|
+
)
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchGovernmentBiasClassification(AbsTaskClassification):
|
|
6
|
+
samples_per_label = 32
|
|
7
|
+
metadata = TaskMetadata(
|
|
8
|
+
name="DutchGovernmentBiasClassification",
|
|
9
|
+
description="The Dutch Government Data for Bias Detection (DGDB) is a dataset sourced from the Dutch House of Representatives and annotated for bias by experts",
|
|
10
|
+
reference="https://dl.acm.org/doi/pdf/10.1145/3696410.3714526",
|
|
11
|
+
dataset={
|
|
12
|
+
"path": "clips/mteb-nl-dutch-government-bias-detection",
|
|
13
|
+
"revision": "bf5e20ee2d3ce2e24e4de50f5dd8573e0e0e2fec",
|
|
14
|
+
},
|
|
15
|
+
type="Classification",
|
|
16
|
+
category="t2c",
|
|
17
|
+
modalities=["text"],
|
|
18
|
+
date=("2019-10-04", "2019-10-04"),
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["nld-Latn"],
|
|
21
|
+
main_score="f1",
|
|
22
|
+
domains=["Written", "Government"],
|
|
23
|
+
task_subtypes=[],
|
|
24
|
+
license="cc-by-nc-sa-4.0",
|
|
25
|
+
annotations_creators="expert-annotated",
|
|
26
|
+
dialect=[],
|
|
27
|
+
sample_creation="found",
|
|
28
|
+
bibtex_citation=r"""
|
|
29
|
+
@inproceedings{de2025detecting,
|
|
30
|
+
author = {de Swart, Milena and Den Hengst, Floris and Chen, Jieying},
|
|
31
|
+
booktitle = {Proceedings of the ACM on Web Conference 2025},
|
|
32
|
+
pages = {5034--5044},
|
|
33
|
+
title = {Detecting Linguistic Bias in Government Documents Using Large language Models},
|
|
34
|
+
year = {2025},
|
|
35
|
+
}
|
|
36
|
+
""",
|
|
37
|
+
prompt={
|
|
38
|
+
"query": "Classificeer het gegeven overheidsdocument als bevooroordeeld of niet bevooroordeeld"
|
|
39
|
+
},
|
|
40
|
+
)
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchNewsArticlesClassification(AbsTaskClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="DutchNewsArticlesClassification",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "clips/mteb-nl-news-articles-cls",
|
|
10
|
+
"revision": "0a7227d31f85c5676be92767f8df5405ea93de54",
|
|
11
|
+
},
|
|
12
|
+
description="This dataset contains all the articles published by the NOS as of the 1st of January 2010. The "
|
|
13
|
+
"data is obtained by scraping the NOS website. The NOS is one of the biggest (online) news "
|
|
14
|
+
"organizations in the Netherlands.",
|
|
15
|
+
reference="https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles",
|
|
16
|
+
type="Classification",
|
|
17
|
+
category="t2c",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["nld-Latn"],
|
|
21
|
+
main_score="f1",
|
|
22
|
+
date=("2009-11-01", "2010-01-01"),
|
|
23
|
+
domains=["Written", "News"],
|
|
24
|
+
task_subtypes=["Topic classification"],
|
|
25
|
+
license="cc-by-nc-sa-4.0",
|
|
26
|
+
annotations_creators="derived",
|
|
27
|
+
dialect=[],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation="",
|
|
30
|
+
prompt={
|
|
31
|
+
"query": "Classificeer het gegeven nieuwsartikel in het juiste onderwerp of thema"
|
|
32
|
+
},
|
|
33
|
+
)
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DutchSarcasticHeadlinesClassification(AbsTaskClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="DutchSarcasticHeadlinesClassification",
|
|
8
|
+
description="This dataset contains news headlines of two Dutch news websites. All sarcastic headlines were "
|
|
9
|
+
"collected from the Speld.nl (the Dutch equivalent of The Onion) whereas all 'normal' headlines "
|
|
10
|
+
"were collected from the news website Nu.nl.",
|
|
11
|
+
reference="https://www.kaggle.com/datasets/harrotuin/dutch-news-headlines",
|
|
12
|
+
dataset={
|
|
13
|
+
"path": "clips/mteb-nl-sarcastic-headlines",
|
|
14
|
+
"revision": "7e520e36394795859583f84f81fcb97de915d05a",
|
|
15
|
+
},
|
|
16
|
+
type="Classification",
|
|
17
|
+
category="t2c",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
date=("2019-01-01", "2020-01-01"),
|
|
20
|
+
eval_splits=["test"],
|
|
21
|
+
eval_langs=["nld-Latn"],
|
|
22
|
+
main_score="f1",
|
|
23
|
+
domains=["News", "Written", "Fiction"],
|
|
24
|
+
task_subtypes=[],
|
|
25
|
+
license="cc0-1.0",
|
|
26
|
+
annotations_creators="derived",
|
|
27
|
+
dialect=[],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation="""""",
|
|
30
|
+
prompt={
|
|
31
|
+
"query": "Classificeer de gegeven krantenkop als sarcastisch of niet sarcastisch"
|
|
32
|
+
},
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
def dataset_transform(self):
|
|
36
|
+
for split in self.dataset:
|
|
37
|
+
self.dataset[split] = self.dataset[split].rename_columns(
|
|
38
|
+
{"headline": "text", "is_sarcastic": "label"}
|
|
39
|
+
)
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class IconclassClassification(AbsTaskClassification):
|
|
6
|
+
samples_per_label = 32
|
|
7
|
+
metadata = TaskMetadata(
|
|
8
|
+
name="IconclassClassification",
|
|
9
|
+
description="Iconclass is an iconographic thesaurus, which is widely used in the digital heritage domain to "
|
|
10
|
+
"describe subjects depicted in artworks. The task is to classify the first layer of Iconclass",
|
|
11
|
+
reference="https://dl.acm.org/doi/pdf/10.1145/3575865",
|
|
12
|
+
dataset={
|
|
13
|
+
"path": "clips/mteb-nl-iconclass-cls",
|
|
14
|
+
"revision": "1cd02f1579dab39fedc95de8cc15fd620557a9f2",
|
|
15
|
+
},
|
|
16
|
+
type="Classification",
|
|
17
|
+
category="t2c",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
date=("2020-01-01", "2020-05-01"),
|
|
20
|
+
eval_splits=["test"],
|
|
21
|
+
eval_langs=["nld-Latn"],
|
|
22
|
+
main_score="f1",
|
|
23
|
+
domains=["Written", "Fiction"],
|
|
24
|
+
task_subtypes=[],
|
|
25
|
+
license="cc-by-nc-sa-4.0",
|
|
26
|
+
annotations_creators="expert-annotated",
|
|
27
|
+
dialect=[],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation=r"""
|
|
30
|
+
@article{banar2023transfer,
|
|
31
|
+
author = {Banar, Nikolay and Daelemans, Walter and Kestemont, Mike},
|
|
32
|
+
journal = {ACM Journal on Computing and Cultural Heritage},
|
|
33
|
+
number = {2},
|
|
34
|
+
pages = {1--16},
|
|
35
|
+
publisher = {ACM New York, NY},
|
|
36
|
+
title = {Transfer learning for the visual arts: The multi-modal retrieval of iconclass codes},
|
|
37
|
+
volume = {16},
|
|
38
|
+
year = {2023},
|
|
39
|
+
}
|
|
40
|
+
""",
|
|
41
|
+
prompt={
|
|
42
|
+
"query": "Classificeer de gegeven titel van het kunstwerk in het juiste onderwerp of thema"
|
|
43
|
+
},
|
|
44
|
+
)
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class OpenTenderClassification(AbsTaskClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="OpenTenderClassification",
|
|
8
|
+
dataset={
|
|
9
|
+
"path": "clips/mteb-nl-opentender-cls-pr",
|
|
10
|
+
"revision": "9af5657575a669dc18c7f897a67287ff7d1a0c65",
|
|
11
|
+
},
|
|
12
|
+
description="This dataset contains Belgian and Dutch tender calls from OpenTender in Dutch",
|
|
13
|
+
reference="https://arxiv.org/abs/2509.12340",
|
|
14
|
+
type="Classification",
|
|
15
|
+
category="t2c",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["nld-Latn"],
|
|
19
|
+
main_score="f1",
|
|
20
|
+
date=("2025-08-01", "2025-08-10"),
|
|
21
|
+
domains=["Government", "Written"],
|
|
22
|
+
task_subtypes=[],
|
|
23
|
+
license="cc-by-4.0",
|
|
24
|
+
annotations_creators="human-annotated",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@misc{banar2025mtebnle5nlembeddingbenchmark,
|
|
29
|
+
archiveprefix = {arXiv},
|
|
30
|
+
author = {Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
|
|
31
|
+
eprint = {2509.12340},
|
|
32
|
+
primaryclass = {cs.CL},
|
|
33
|
+
title = {MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch},
|
|
34
|
+
url = {https://arxiv.org/abs/2509.12340},
|
|
35
|
+
year = {2025},
|
|
36
|
+
}
|
|
37
|
+
""",
|
|
38
|
+
prompt={
|
|
39
|
+
"query": "Classificeer de gegeven aanbestedingsbeschrijving in het juiste onderwerp of thema"
|
|
40
|
+
},
|
|
41
|
+
)
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class VaccinChatNLClassification(AbsTaskClassification):
|
|
6
|
+
metadata = TaskMetadata(
|
|
7
|
+
name="VaccinChatNLClassification",
|
|
8
|
+
description="VaccinChatNL is a Flemish Dutch FAQ dataset on the topic of COVID-19 vaccinations in Flanders.",
|
|
9
|
+
reference="https://huggingface.co/datasets/clips/VaccinChatNL",
|
|
10
|
+
dataset={
|
|
11
|
+
"path": "clips/VaccinChatNL",
|
|
12
|
+
"revision": "bd27d0058bea2ad52470d9072a3b5da6b97c1ac3",
|
|
13
|
+
},
|
|
14
|
+
type="Classification",
|
|
15
|
+
category="t2c",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
date=("2022-01-01", "2022-09-01"),
|
|
18
|
+
eval_splits=["test"],
|
|
19
|
+
eval_langs=["nld-Latn"],
|
|
20
|
+
main_score="f1",
|
|
21
|
+
domains=["Spoken", "Web"],
|
|
22
|
+
task_subtypes=[],
|
|
23
|
+
license="cc-by-4.0",
|
|
24
|
+
annotations_creators="expert-annotated",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="created",
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@inproceedings{buhmann-etal-2022-domain,
|
|
29
|
+
address = {Gyeongju, Republic of Korea},
|
|
30
|
+
author = {Buhmann, Jeska and De Bruyn, Maxime and Lotfi, Ehsan and Daelemans, Walter},
|
|
31
|
+
booktitle = {Proceedings of the 29th International Conference on Computational Linguistics},
|
|
32
|
+
month = oct,
|
|
33
|
+
pages = {3539--3549},
|
|
34
|
+
publisher = {International Committee on Computational Linguistics},
|
|
35
|
+
title = {Domain- and Task-Adaptation for {V}accin{C}hat{NL}, a {D}utch {COVID}-19 {FAQ} Answering Corpus and Classification Model},
|
|
36
|
+
url = {https://aclanthology.org/2022.coling-1.312},
|
|
37
|
+
year = {2022},
|
|
38
|
+
}
|
|
39
|
+
""",
|
|
40
|
+
prompt={
|
|
41
|
+
"query": "Gegeven een gebruikersuiting als query, bepaal de gebruikersintenties"
|
|
42
|
+
},
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
def dataset_transform(self):
|
|
46
|
+
for split in self.dataset:
|
|
47
|
+
self.dataset[split] = self.dataset[split].rename_columns(
|
|
48
|
+
{"sentence1": "text"}
|
|
49
|
+
)
|
|
@@ -64,8 +64,7 @@ Tokunaga, Takenobu},
|
|
|
64
64
|
class NoRecClassificationV2(AbsTaskClassification):
|
|
65
65
|
metadata = TaskMetadata(
|
|
66
66
|
name="NoRecClassification.v2",
|
|
67
|
-
description="
|
|
68
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
67
|
+
description="A Norwegian dataset for sentiment classification on review This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
69
68
|
reference="https://aclanthology.org/L18-1661/",
|
|
70
69
|
dataset={
|
|
71
70
|
# using the mini version to keep results ~comparable to the ScandEval benchmark
|
|
@@ -51,8 +51,7 @@ Brygfjeld, Svein Arne},
|
|
|
51
51
|
class NorwegianParliamentClassificationV2(AbsTaskClassification):
|
|
52
52
|
metadata = TaskMetadata(
|
|
53
53
|
name="NorwegianParliamentClassification.v2",
|
|
54
|
-
description="
|
|
55
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
54
|
+
description="Norwegian parliament speeches annotated for sentiment This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
56
55
|
reference="https://huggingface.co/datasets/NbAiLab/norwegian_parliament",
|
|
57
56
|
dataset={
|
|
58
57
|
"path": "mteb/norwegian_parliament",
|
|
@@ -43,8 +43,7 @@ class OdiaNewsClassification(AbsTaskClassification):
|
|
|
43
43
|
class OdiaNewsClassificationV2(AbsTaskClassification):
|
|
44
44
|
metadata = TaskMetadata(
|
|
45
45
|
name="OdiaNewsClassification.v2",
|
|
46
|
-
description="
|
|
47
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
46
|
+
description="A Odia dataset for 3-class classification of Odia news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
48
47
|
reference="https://github.com/goru001/nlp-for-odia",
|
|
49
48
|
dataset={
|
|
50
49
|
"path": "mteb/odia_news",
|
|
@@ -42,8 +42,7 @@ class CbdClassification(AbsTaskClassification):
|
|
|
42
42
|
class CbdClassificationV2(AbsTaskClassification):
|
|
43
43
|
metadata = TaskMetadata(
|
|
44
44
|
name="CBD.v2",
|
|
45
|
-
description="
|
|
46
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
45
|
+
description="Polish Tweets annotated for cyberbullying detection. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
47
46
|
reference="http://2019.poleval.pl/files/poleval2019.pdf",
|
|
48
47
|
dataset={
|
|
49
48
|
"path": "mteb/cbd",
|
|
@@ -274,8 +273,7 @@ Tetreault, Joel},
|
|
|
274
273
|
class AllegroReviewsClassificationV2(AbsTaskClassification):
|
|
275
274
|
metadata = TaskMetadata(
|
|
276
275
|
name="AllegroReviews.v2",
|
|
277
|
-
description="
|
|
278
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
276
|
+
description="A Polish dataset for sentiment classification on reviews from e-commerce marketplace Allegro. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
279
277
|
reference="https://aclanthology.org/2020.acl-main.111.pdf",
|
|
280
278
|
dataset={
|
|
281
279
|
"path": "mteb/allegro_reviews",
|
|
@@ -362,8 +360,7 @@ class PacClassification(AbsTaskClassification):
|
|
|
362
360
|
class PacClassificationV2(AbsTaskClassification):
|
|
363
361
|
metadata = TaskMetadata(
|
|
364
362
|
name="PAC.v2",
|
|
365
|
-
description="
|
|
366
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
363
|
+
description="Polish Paraphrase Corpus This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
367
364
|
reference="https://arxiv.org/pdf/2211.13112.pdf",
|
|
368
365
|
dataset={
|
|
369
366
|
"path": "mteb/pac",
|
|
@@ -47,8 +47,7 @@ class MorocoV2(AbsTaskClassification):
|
|
|
47
47
|
"path": "mteb/moroco",
|
|
48
48
|
"revision": "6e70588dbd3d583da8b85989c1c3ab3d4bd2e7c4",
|
|
49
49
|
},
|
|
50
|
-
description="
|
|
51
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
50
|
+
description="The Moldavian and Romanian Dialectal Corpus. The MOROCO data set contains Moldavian and Romanian samples of text collected from the news domain. The samples belong to one of the following six topics: (0) culture, (1) finance, (2) politics, (3) science, (4) sports, (5) tech This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
52
51
|
reference="https://huggingface.co/datasets/moroco",
|
|
53
52
|
type="Classification",
|
|
54
53
|
category="t2c",
|
|
@@ -39,8 +39,7 @@ class RomanianReviewsSentiment(AbsTaskClassification):
|
|
|
39
39
|
class RomanianReviewsSentimentV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="RomanianReviewsSentiment.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="LaRoSeDa (A Large Romanian Sentiment Data Set) contains 15,000 reviews written in Romanian This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://arxiv.org/abs/2101.04197",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/romanian_reviews_sentiment",
|
|
@@ -41,8 +41,7 @@ class RomanianSentimentClassification(AbsTaskClassification):
|
|
|
41
41
|
class RomanianSentimentClassificationV2(AbsTaskClassification):
|
|
42
42
|
metadata = TaskMetadata(
|
|
43
43
|
name="RomanianSentimentClassification.v2",
|
|
44
|
-
description="
|
|
45
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
44
|
+
description="An Romanian dataset for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
46
45
|
reference="https://arxiv.org/abs/2009.08712",
|
|
47
46
|
dataset={
|
|
48
47
|
"path": "mteb/romanian_sentiment",
|
|
@@ -37,8 +37,7 @@ class GeoreviewClassificationV2(AbsTaskClassification):
|
|
|
37
37
|
"path": "mteb/georeview",
|
|
38
38
|
"revision": "5194395f82217bc31212fd6a275002fb405f9dfb",
|
|
39
39
|
},
|
|
40
|
-
description="
|
|
41
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
40
|
+
description="Review classification (5-point scale) based on Yandex Georeview dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
42
41
|
reference="https://github.com/yandex/geo-reviews-dataset-2023",
|
|
43
42
|
type="Classification",
|
|
44
43
|
category="t2c",
|
|
@@ -66,8 +66,7 @@ class HeadlineClassificationV2(AbsTaskClassification):
|
|
|
66
66
|
"path": "mteb/headline",
|
|
67
67
|
"revision": "6bd88e7778ee2e3bd8d0ade1be3ad5b6d969145a",
|
|
68
68
|
},
|
|
69
|
-
description="
|
|
70
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
69
|
+
description="Headline rubric classification based on the paraphraser plus dataset. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
71
70
|
reference="https://aclanthology.org/2020.ngt-1.6/",
|
|
72
71
|
type="Classification",
|
|
73
72
|
category="t2c",
|
|
@@ -70,8 +70,7 @@ class InappropriatenessClassificationV2(AbsTaskClassification):
|
|
|
70
70
|
"path": "mteb/inappropriateness",
|
|
71
71
|
"revision": "2bdbb71d9b972709173f1477d7dd33c3d67f51ac",
|
|
72
72
|
},
|
|
73
|
-
description="
|
|
74
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
73
|
+
description="Inappropriateness identification in the form of binary classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
75
74
|
reference="https://aclanthology.org/2021.bsnlp-1.4",
|
|
76
75
|
type="Classification",
|
|
77
76
|
category="t2c",
|
|
@@ -55,8 +55,7 @@ class RuReviewsClassificationV2(AbsTaskClassification):
|
|
|
55
55
|
"path": "mteb/ru_reviews",
|
|
56
56
|
"revision": "46d80ee5ac51be8234725558677e59050b9c418e",
|
|
57
57
|
},
|
|
58
|
-
description="
|
|
59
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
58
|
+
description="Product review classification (3-point scale) based on RuRevies dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
60
59
|
reference="https://github.com/sismetanin/rureviews",
|
|
61
60
|
type="Classification",
|
|
62
61
|
category="t2c",
|
|
@@ -39,8 +39,7 @@ class RuToxicOKMLCUPClassificationV2(AbsTaskClassification):
|
|
|
39
39
|
"path": "mteb/ru_toxic_okmlcup",
|
|
40
40
|
"revision": "729025d2cfa68fcbc587ea80014a42d569cd9048",
|
|
41
41
|
},
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="On the Odnoklassniki social network, users post a huge number of comments of various directions and nature every day. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://cups.online/ru/contests/okmlcup2020",
|
|
45
44
|
type="Classification",
|
|
46
45
|
category="t2t",
|
|
@@ -46,8 +46,7 @@ class SentiRuEval2016ClassificationV2(AbsTaskClassification):
|
|
|
46
46
|
"path": "mteb/senti_ru_eval2016",
|
|
47
47
|
"revision": "bfa4cbec1753ffed29a8244a4ec208cc9e6c09a0",
|
|
48
48
|
},
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="Russian sentiment analysis evaluation SentiRuEval-2016 devoted to reputation monitoring of banks and telecom companies in Twitter. We describe the task, data, the procedure of data preparation, and participants’ results. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://github.com/mokoron/sentirueval",
|
|
52
51
|
type="Classification",
|
|
53
52
|
category="t2t",
|
|
@@ -54,8 +54,7 @@ class SinhalaNewsClassification(AbsTaskClassification):
|
|
|
54
54
|
class SinhalaNewsClassificationV2(AbsTaskClassification):
|
|
55
55
|
metadata = TaskMetadata(
|
|
56
56
|
name="SinhalaNewsClassification.v2",
|
|
57
|
-
description="
|
|
58
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
57
|
+
description="This file contains news texts (sentences) belonging to 5 different news categories (political, business, technology, sports and Entertainment). The original dataset was released by Nisansa de Silva (Sinhala Text Classification: Observations from the Perspective of a Resource Poor Language, 2015). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
59
58
|
dataset={
|
|
60
59
|
"path": "mteb/sinhala_news",
|
|
61
60
|
"revision": "e0b6e93ed5f086fe358595dff1aaad9eb877667a",
|
|
@@ -45,8 +45,7 @@ class SinhalaNewsSourceClassification(AbsTaskClassification):
|
|
|
45
45
|
class SinhalaNewsSourceClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="SinhalaNewsSourceClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="This dataset contains Sinhala news headlines extracted from 9 news sources (websites) (Sri Lanka Army, Dinamina, GossipLanka, Hiru, ITN, Lankapuwath, NewsLK, Newsfirst, World Socialist Web Site-Sinhala). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
dataset={
|
|
51
50
|
"path": "mteb/sinhala_news_source",
|
|
52
51
|
"revision": "6902767dbfa6189cbe5f5b5b56ee6300b1702d33",
|
|
@@ -54,8 +54,7 @@ class CSFDSKMovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
54
54
|
class CSFDSKMovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
55
55
|
metadata = TaskMetadata(
|
|
56
56
|
name="CSFDSKMovieReviewSentimentClassification.v2",
|
|
57
|
-
description="
|
|
58
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
57
|
+
description="The dataset contains 30k user reviews from csfd.cz in Slovak. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
59
58
|
reference="https://arxiv.org/abs/2304.01922",
|
|
60
59
|
dataset={
|
|
61
60
|
"path": "mteb/csfdsk_movie_review_sentiment",
|
|
@@ -32,8 +32,7 @@ class SlovakHateSpeechClassification(AbsTaskClassification):
|
|
|
32
32
|
class SlovakHateSpeechClassificationV2(AbsTaskClassification):
|
|
33
33
|
metadata = TaskMetadata(
|
|
34
34
|
name="SlovakHateSpeechClassification.v2",
|
|
35
|
-
description="
|
|
36
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
35
|
+
description="The dataset contains posts from a social network with human annotations for hateful or offensive language in Slovak. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
37
36
|
reference="https://huggingface.co/datasets/TUKE-KEMT/hate_speech_slovak",
|
|
38
37
|
dataset={
|
|
39
38
|
"path": "mteb/slovak_hate_speech",
|
|
@@ -46,8 +46,7 @@ class SlovakMovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
46
46
|
class SlovakMovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
47
47
|
metadata = TaskMetadata(
|
|
48
48
|
name="SlovakMovieReviewSentimentClassification.v2",
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="User reviews of movies on the CSFD movie database, with 2 sentiment classes (positive, negative) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://arxiv.org/pdf/2304.01922",
|
|
52
51
|
dataset={
|
|
53
52
|
"path": "mteb/slovak_movie_review_sentiment",
|
|
@@ -42,8 +42,7 @@ class FrenkSlClassification(AbsTaskClassification):
|
|
|
42
42
|
class FrenkSlClassificationV2(AbsTaskClassification):
|
|
43
43
|
metadata = TaskMetadata(
|
|
44
44
|
name="FrenkSlClassification.v2",
|
|
45
|
-
description="
|
|
46
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
45
|
+
description="Slovenian subset of the FRENK dataset. Also available on HuggingFace dataset hub: English subset, Croatian subset. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
47
46
|
dataset={
|
|
48
47
|
"path": "mteb/frenk_sl",
|
|
49
48
|
"revision": "3b69facc14651fbd152fda173683a7ecf9125b82",
|
|
@@ -39,8 +39,7 @@ class SpanishNewsClassification(AbsTaskClassification):
|
|
|
39
39
|
class SpanishNewsClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="SpanishNewsClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="A Spanish dataset for news classification. The dataset includes articles from reputable Spanish news sources spanning 12 different categories. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://huggingface.co/datasets/MarcOrfilaCarreras/spanish-news",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/spanish_news",
|
|
@@ -56,8 +56,7 @@ Vylomova, Ekaterina},
|
|
|
56
56
|
class SpanishSentimentClassificationV2(AbsTaskClassification):
|
|
57
57
|
metadata = TaskMetadata(
|
|
58
58
|
name="SpanishSentimentClassification.v2",
|
|
59
|
-
description="
|
|
60
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
59
|
+
description="A Spanish dataset for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
61
60
|
reference="https://huggingface.co/datasets/sepidmnorozy/Spanish_sentiment",
|
|
62
61
|
dataset={
|
|
63
62
|
"path": "mteb/spanish_sentiment",
|
|
@@ -45,8 +45,7 @@ class SiswatiNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
class SiswatiNewsClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="SiswatiNewsClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="Siswati News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://huggingface.co/datasets/dsfsi/za-isizulu-siswati-news",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/siswati_news",
|