mteb 2.0.5__py3-none-any.whl → 2.1.19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +10 -1
- mteb/_create_dataloaders.py +8 -3
- mteb/_evaluators/any_sts_evaluator.py +14 -12
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +2 -2
- mteb/_evaluators/pair_classification_evaluator.py +3 -1
- mteb/_evaluators/retrieval_metrics.py +0 -9
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_stratification.py +1 -1
- mteb/abstasks/abstask.py +6 -1
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/dataset_card_template.md +1 -1
- mteb/abstasks/multilabel_classification.py +2 -2
- mteb/abstasks/retrieval.py +2 -1
- mteb/abstasks/retrieval_dataset_loaders.py +1 -1
- mteb/abstasks/task_metadata.py +2 -1
- mteb/benchmarks/_create_table.py +1 -3
- mteb/benchmarks/benchmark.py +18 -1
- mteb/benchmarks/benchmarks/__init__.py +4 -0
- mteb/benchmarks/benchmarks/benchmarks.py +125 -16
- mteb/benchmarks/get_benchmark.py +3 -1
- mteb/cache.py +7 -3
- mteb/descriptive_stats/Classification/DutchColaClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchGovernmentBiasClassification.json +54 -0
- mteb/descriptive_stats/Classification/DutchNewsArticlesClassification.json +90 -0
- mteb/descriptive_stats/Classification/DutchSarcasticHeadlinesClassification.json +54 -0
- mteb/descriptive_stats/Classification/IconclassClassification.json +96 -0
- mteb/descriptive_stats/Classification/OpenTenderClassification.json +222 -0
- mteb/descriptive_stats/Classification/VaccinChatNLClassification.json +1068 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringP2P.json +45 -0
- mteb/descriptive_stats/Clustering/DutchNewsArticlesClusteringS2S.json +45 -0
- mteb/descriptive_stats/Clustering/IconclassClusteringS2S.json +48 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringP2P.json +111 -0
- mteb/descriptive_stats/Clustering/OpenTenderClusteringS2S.json +111 -0
- mteb/descriptive_stats/Clustering/VABBClusteringP2P.json +60 -0
- mteb/descriptive_stats/Clustering/VABBClusteringS2S.json +60 -0
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XFlickr30kCoT2IRetrieval.json +243 -153
- mteb/descriptive_stats/Image/Any2AnyMultilingualRetrieval/XM3600T2IRetrieval.json +999 -629
- mteb/descriptive_stats/Image/Any2AnyRetrieval/OVENIT2TRetrieval.json +33 -17
- mteb/descriptive_stats/Image/DocumentUnderstanding/MIRACLVisionRetrieval.json +574 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/MultilabelClassification/CovidDisinformationNLMultiLabelClassification.json +84 -0
- mteb/descriptive_stats/MultilabelClassification/VABBMultiLabelClassification.json +156 -0
- mteb/descriptive_stats/PairClassification/SICKNLPairClassification.json +35 -0
- mteb/descriptive_stats/PairClassification/XLWICNLPairClassification.json +35 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/ClimateFEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DBPediaHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/DutchNewsArticlesRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/FEVERHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/HotpotQAHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/LegalQANLRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/OpenTenderRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/QuoraRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/RiaNewsRetrievalHardNegatives.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/VABBRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/VDRMultilingualRetrieval.json +184 -0
- mteb/descriptive_stats/Retrieval/WinoGrande.json +14 -14
- mteb/descriptive_stats/Retrieval/bBSARDNLRetrieval.json +30 -0
- mteb/descriptive_stats/STS/SICK-NL-STS.json +28 -0
- mteb/evaluate.py +26 -6
- mteb/languages/check_language_code.py +11 -3
- mteb/languages/language_scripts.py +4 -0
- mteb/leaderboard/app.py +5 -3
- mteb/leaderboard/benchmark_selector.py +4 -2
- mteb/leaderboard/text_segments.py +1 -1
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/instruct_wrapper.py +3 -0
- mteb/models/model_implementations/align_models.py +6 -0
- mteb/models/model_implementations/andersborges.py +51 -0
- mteb/models/model_implementations/ara_models.py +7 -0
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +1 -3
- mteb/models/model_implementations/blip2_models.py +9 -0
- mteb/models/model_implementations/blip_models.py +19 -0
- mteb/models/model_implementations/bmretriever_models.py +1 -1
- mteb/models/model_implementations/cadet_models.py +8 -0
- mteb/models/model_implementations/cde_models.py +12 -0
- mteb/models/model_implementations/codefuse_models.py +15 -0
- mteb/models/model_implementations/codesage_models.py +12 -0
- mteb/models/model_implementations/cohere_models.py +1 -1
- mteb/models/model_implementations/colqwen_models.py +57 -0
- mteb/models/model_implementations/emillykkejensen_models.py +70 -0
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/ibm_granite_models.py +1 -1
- mteb/models/model_implementations/inf_models.py +3 -3
- mteb/models/model_implementations/jasper_models.py +253 -2
- mteb/models/model_implementations/jina_models.py +12 -2
- mteb/models/model_implementations/kalm_models.py +159 -25
- mteb/models/model_implementations/llm2vec_models.py +1 -1
- mteb/models/model_implementations/misc_models.py +8 -2
- mteb/models/model_implementations/moco_models.py +9 -0
- mteb/models/model_implementations/mxbai_models.py +1 -1
- mteb/models/model_implementations/openclip_models.py +16 -0
- mteb/models/model_implementations/piccolo_models.py +6 -0
- mteb/models/model_implementations/rasgaard_models.py +33 -0
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/salesforce_models.py +1 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +26 -0
- mteb/models/model_implementations/tarka_models.py +374 -0
- mteb/models/model_implementations/voyage_models.py +6 -7
- mteb/models/model_implementations/voyage_v.py +10 -9
- mteb/models/model_implementations/yuan_models.py +33 -0
- mteb/models/search_wrappers.py +6 -5
- mteb/results/task_result.py +19 -17
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +1 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +2 -3
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +15 -121
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +1 -2
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +2 -3
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/__init__.py +16 -0
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +41 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +40 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +33 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +39 -0
- mteb/tasks/classification/nld/iconclass_classification.py +44 -0
- mteb/tasks/classification/nld/open_tender_classification.py +41 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +49 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/__init__.py +1 -0
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/__init__.py +17 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +40 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +40 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +50 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +44 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +54 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +54 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/__init__.py +1 -0
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/__init__.py +9 -0
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +91 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +47 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/__init__.py +1 -0
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +9 -8
- mteb/tasks/pair_classification/nld/__init__.py +7 -0
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +39 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +44 -0
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/code_rag.py +8 -8
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +2 -2
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/__init__.py +18 -4
- mteb/tasks/retrieval/eng/climate_fever_retrieval.py +68 -77
- mteb/tasks/retrieval/eng/dbpedia_retrieval.py +55 -50
- mteb/tasks/retrieval/eng/fever_retrieval.py +62 -67
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/hotpot_qa_retrieval.py +57 -67
- mteb/tasks/retrieval/eng/legal_summarization_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +0 -3
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/oven_it2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/quora_retrieval.py +51 -46
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +0 -4
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/eng/wino_grande_retrieval.py +1 -1
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_gov_faqs_retrieval.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/miracl_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +2 -9
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +0 -2
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +6 -5
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +3 -4
- mteb/tasks/retrieval/nld/__init__.py +18 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +44 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +33 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +42 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +41 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +44 -0
- mteb/tasks/retrieval/nob/norquad.py +2 -2
- mteb/tasks/retrieval/nob/snl_retrieval.py +2 -2
- mteb/tasks/retrieval/rus/__init__.py +11 -2
- mteb/tasks/retrieval/rus/ria_news_retrieval.py +48 -44
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/tur/tur_hist_quad.py +2 -2
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/__init__.py +1 -0
- mteb/tasks/sts/nld/__init__.py +5 -0
- mteb/tasks/sts/nld/sick_nl_sts.py +42 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb-2.1.19.dist-info/METADATA +253 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/RECORD +398 -330
- mteb/descriptive_stats/Classification/PersianTextTone.json +0 -56
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchCount.json +0 -37
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDepth.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchDistance.json +0 -25
- mteb/descriptive_stats/Image/Any2TextMutipleChoice/CVBenchRelation.json +0 -25
- mteb/descriptive_stats/Image/VisualSTS/STS12VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS13VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS14VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS15VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS16VisualSTS.json +0 -20
- mteb/descriptive_stats/Image/VisualSTS/STS17MultilingualVisualSTS.json +0 -220
- mteb/descriptive_stats/Image/VisualSTS/STSBenchmarkMultilingualVisualSTS.json +0 -402
- mteb/descriptive_stats/Reranking/InstructIR.json +0 -31
- mteb-2.0.5.dist-info/METADATA +0 -455
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/WHEEL +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/entry_points.txt +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.0.5.dist-info → mteb-2.1.19.dist-info}/top_level.txt +0 -0
|
@@ -156,16 +156,15 @@ class VoyageModel(AbsEncoder):
|
|
|
156
156
|
and len(batch) < batch_size
|
|
157
157
|
and batch_tokens < self._max_tokens_per_batch
|
|
158
158
|
):
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
)
|
|
159
|
+
txt = sentences[index] if len(sentences[index]) > 0 else " "
|
|
160
|
+
n_tokens = len(self._client.tokenize([txt], model=self._model_name)[0])
|
|
162
161
|
if (
|
|
163
162
|
batch_tokens + n_tokens > self._max_tokens_per_batch
|
|
164
163
|
and len(batch) > 0
|
|
165
164
|
):
|
|
166
165
|
break
|
|
167
166
|
batch_tokens += n_tokens
|
|
168
|
-
batch.append(
|
|
167
|
+
batch.append(txt)
|
|
169
168
|
index += 1
|
|
170
169
|
|
|
171
170
|
embeddings.extend(
|
|
@@ -249,7 +248,7 @@ voyage_3_5 = ModelMeta(
|
|
|
249
248
|
n_parameters=None,
|
|
250
249
|
memory_usage_mb=None,
|
|
251
250
|
license=None,
|
|
252
|
-
reference="https://
|
|
251
|
+
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
253
252
|
similarity_fn_name="cosine",
|
|
254
253
|
framework=["API"],
|
|
255
254
|
use_instructions=True,
|
|
@@ -274,7 +273,7 @@ voyage_3_5_int8 = ModelMeta(
|
|
|
274
273
|
n_parameters=None,
|
|
275
274
|
memory_usage_mb=None,
|
|
276
275
|
license=None,
|
|
277
|
-
reference="https://
|
|
276
|
+
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
278
277
|
similarity_fn_name="cosine",
|
|
279
278
|
framework=["API"],
|
|
280
279
|
use_instructions=True,
|
|
@@ -300,7 +299,7 @@ voyage_3_5_binary = ModelMeta(
|
|
|
300
299
|
n_parameters=None,
|
|
301
300
|
memory_usage_mb=None,
|
|
302
301
|
license=None,
|
|
303
|
-
reference="https://
|
|
302
|
+
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
304
303
|
similarity_fn_name="cosine",
|
|
305
304
|
framework=["API"],
|
|
306
305
|
use_instructions=True,
|
|
@@ -51,7 +51,13 @@ def _downsample_image(
|
|
|
51
51
|
def voyage_v_loader(model_name, **kwargs):
|
|
52
52
|
requires_package(
|
|
53
53
|
voyage_v_loader,
|
|
54
|
-
"voyageai
|
|
54
|
+
"voyageai",
|
|
55
|
+
model_name,
|
|
56
|
+
"pip install 'mteb[voyage_v]'",
|
|
57
|
+
)
|
|
58
|
+
requires_package(
|
|
59
|
+
voyage_v_loader,
|
|
60
|
+
"tenacity",
|
|
55
61
|
model_name,
|
|
56
62
|
"pip install 'mteb[voyage_v]'",
|
|
57
63
|
)
|
|
@@ -65,11 +71,9 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
65
71
|
**kwargs: Any,
|
|
66
72
|
):
|
|
67
73
|
requires_image_dependencies()
|
|
68
|
-
from torchvision import transforms
|
|
69
74
|
|
|
70
75
|
self.model_name = model_name.split("/")[-1]
|
|
71
76
|
self.vo = voyageai.Client()
|
|
72
|
-
self.tensor_to_image = transforms.Compose([transforms.PILToTensor()])
|
|
73
77
|
|
|
74
78
|
@retry(
|
|
75
79
|
stop=stop_after_attempt(6), # Stop after 6 attempts
|
|
@@ -126,10 +130,7 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
126
130
|
for batch in tqdm(
|
|
127
131
|
images, disable=not show_progress_bar, desc="Image Encoding"
|
|
128
132
|
):
|
|
129
|
-
batch_images = [
|
|
130
|
-
[_downsample_image(self.tensor_to_image(image))]
|
|
131
|
-
for image in batch["image"]
|
|
132
|
-
]
|
|
133
|
+
batch_images = [[_downsample_image(image)] for image in batch["image"]]
|
|
133
134
|
embeddings = self._multimodal_embed(
|
|
134
135
|
batch_images, model=self.model_name, input_type=input_type
|
|
135
136
|
).embeddings
|
|
@@ -148,6 +149,7 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
148
149
|
show_progress_bar: bool = True,
|
|
149
150
|
**kwargs: Any,
|
|
150
151
|
) -> Array:
|
|
152
|
+
input_type = "document" # default
|
|
151
153
|
if prompt_type is not None:
|
|
152
154
|
if prompt_type == PromptType.document:
|
|
153
155
|
input_type = "document"
|
|
@@ -163,8 +165,7 @@ def voyage_v_loader(model_name, **kwargs):
|
|
|
163
165
|
inputs, disable=not show_progress_bar, desc="Interleaved Encoding"
|
|
164
166
|
):
|
|
165
167
|
batch_images = [
|
|
166
|
-
_downsample_image(
|
|
167
|
-
for image in batch["image"]
|
|
168
|
+
_downsample_image(image) for image in batch["image"]
|
|
168
169
|
]
|
|
169
170
|
batch_texts = batch["text"]
|
|
170
171
|
interleaved_inputs = [
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
from mteb.models import ModelMeta, sentence_transformers_loader
|
|
2
|
+
|
|
3
|
+
yuan_emb_zh_datasets = {
|
|
4
|
+
"CMedQAv2-reranking",
|
|
5
|
+
"DuRetrieval",
|
|
6
|
+
"MMarcoReranking",
|
|
7
|
+
"T2Reranking",
|
|
8
|
+
"T2Retrieval",
|
|
9
|
+
}
|
|
10
|
+
|
|
11
|
+
# not in mteb
|
|
12
|
+
# "Multi-CPR":"http://github.com/Alibaba-NLP/Multi-CPR",
|
|
13
|
+
|
|
14
|
+
yuan_embedding_2_zh = ModelMeta(
|
|
15
|
+
name="IEITYuan/Yuan-embedding-2.0-zh",
|
|
16
|
+
loader=sentence_transformers_loader,
|
|
17
|
+
languages=["zho-Hans"],
|
|
18
|
+
open_weights=True,
|
|
19
|
+
revision="b5ebcace6f4fc6e5a4d1852557eb2dc2d1040cee",
|
|
20
|
+
release_date="2025-11-24",
|
|
21
|
+
n_parameters=326000000,
|
|
22
|
+
memory_usage_mb=1242,
|
|
23
|
+
embed_dim=1792,
|
|
24
|
+
license="apache-2.0",
|
|
25
|
+
max_tokens=512,
|
|
26
|
+
reference="https://huggingface.co/IEITYuan/Yuan-embedding-2.0-zh",
|
|
27
|
+
similarity_fn_name="cosine",
|
|
28
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
29
|
+
use_instructions=False,
|
|
30
|
+
public_training_code=None,
|
|
31
|
+
public_training_data=None,
|
|
32
|
+
training_datasets=yuan_emb_zh_datasets,
|
|
33
|
+
)
|
mteb/models/search_wrappers.py
CHANGED
|
@@ -90,7 +90,7 @@ class SearchEncoderWrapper:
|
|
|
90
90
|
queries,
|
|
91
91
|
task_metadata,
|
|
92
92
|
prompt_type=PromptType.query,
|
|
93
|
-
|
|
93
|
+
**encode_kwargs,
|
|
94
94
|
)
|
|
95
95
|
|
|
96
96
|
query_embeddings = self.model.encode(
|
|
@@ -165,7 +165,7 @@ class SearchEncoderWrapper:
|
|
|
165
165
|
sub_corpus,
|
|
166
166
|
task_metadata,
|
|
167
167
|
prompt_type=PromptType.document,
|
|
168
|
-
|
|
168
|
+
**encode_kwargs,
|
|
169
169
|
),
|
|
170
170
|
task_metadata=task_metadata,
|
|
171
171
|
hf_split=hf_split,
|
|
@@ -191,6 +191,7 @@ class SearchEncoderWrapper:
|
|
|
191
191
|
cos_scores_top_k_idx = cos_scores_top_k_idx.cpu().tolist()
|
|
192
192
|
cos_scores_top_k_values = cos_scores_top_k_values.cpu().tolist()
|
|
193
193
|
|
|
194
|
+
sub_corpus_ids = list(sub_corpus_ids)
|
|
194
195
|
for query_itr in range(len(query_embeddings)):
|
|
195
196
|
query_id = query_idx_to_id[query_itr]
|
|
196
197
|
for sub_corpus_id, score in zip(
|
|
@@ -230,7 +231,7 @@ class SearchEncoderWrapper:
|
|
|
230
231
|
self.task_corpus,
|
|
231
232
|
task_metadata,
|
|
232
233
|
prompt_type=PromptType.document,
|
|
233
|
-
|
|
234
|
+
**encode_kwargs,
|
|
234
235
|
),
|
|
235
236
|
task_metadata=task_metadata,
|
|
236
237
|
hf_split=hf_split,
|
|
@@ -407,13 +408,13 @@ class SearchCrossEncoderWrapper:
|
|
|
407
408
|
Dataset.from_list(total_queries),
|
|
408
409
|
task_metadata,
|
|
409
410
|
prompt_type=PromptType.document,
|
|
410
|
-
|
|
411
|
+
**encode_kwargs,
|
|
411
412
|
)
|
|
412
413
|
corpus_loader = create_dataloader(
|
|
413
414
|
Dataset.from_list(total_docs),
|
|
414
415
|
task_metadata,
|
|
415
416
|
prompt_type=PromptType.document,
|
|
416
|
-
|
|
417
|
+
**encode_kwargs,
|
|
417
418
|
)
|
|
418
419
|
predictions = self.model.predict(
|
|
419
420
|
inputs1=queries_loader,
|
mteb/results/task_result.py
CHANGED
|
@@ -32,7 +32,7 @@ from mteb.types import (
|
|
|
32
32
|
logger = logging.getLogger(__name__)
|
|
33
33
|
|
|
34
34
|
|
|
35
|
-
class
|
|
35
|
+
class Criteria(HelpfulStrEnum):
|
|
36
36
|
"""Enum for criteria to check when merging TaskResult objects."""
|
|
37
37
|
|
|
38
38
|
MTEB_VERSION = "mteb_version"
|
|
@@ -671,7 +671,7 @@ class TaskResult(BaseModel):
|
|
|
671
671
|
def is_mergeable(
|
|
672
672
|
self,
|
|
673
673
|
result: TaskResult | AbsTask,
|
|
674
|
-
criteria: list[str] | list[
|
|
674
|
+
criteria: list[str] | list[Criteria] = [
|
|
675
675
|
"mteb_version",
|
|
676
676
|
"dataset_revision",
|
|
677
677
|
],
|
|
@@ -688,9 +688,7 @@ class TaskResult(BaseModel):
|
|
|
688
688
|
Returns:
|
|
689
689
|
True if the TaskResult object can be merged with the other object, False otherwise.
|
|
690
690
|
"""
|
|
691
|
-
criteria = [
|
|
692
|
-
Criterias.from_str(c) if isinstance(c, str) else c for c in criteria
|
|
693
|
-
]
|
|
691
|
+
criteria = [Criteria.from_str(c) if isinstance(c, str) else c for c in criteria]
|
|
694
692
|
if isinstance(result, TaskResult):
|
|
695
693
|
name = result.task_name
|
|
696
694
|
revision = result.dataset_revision
|
|
@@ -700,27 +698,31 @@ class TaskResult(BaseModel):
|
|
|
700
698
|
name = result.metadata.name
|
|
701
699
|
revision = result.metadata.revision
|
|
702
700
|
else:
|
|
701
|
+
msg = "result must be a TaskResult or AbsTask object"
|
|
702
|
+
if raise_error:
|
|
703
|
+
raise ValueError(msg)
|
|
704
|
+
logger.debug(msg)
|
|
703
705
|
return False
|
|
704
706
|
|
|
705
707
|
if self.task_name != name:
|
|
708
|
+
msg = f"Cannot merge TaskResult objects as they are derived from different tasks ({self.task_name} and {name})"
|
|
706
709
|
if raise_error:
|
|
707
|
-
raise ValueError(
|
|
708
|
-
|
|
709
|
-
)
|
|
710
|
+
raise ValueError(msg)
|
|
711
|
+
logger.debug(msg)
|
|
710
712
|
return False
|
|
711
713
|
|
|
712
|
-
if
|
|
714
|
+
if Criteria.MTEB_VERSION in criteria and self.mteb_version != mteb_version:
|
|
715
|
+
msg = f"Cannot merge TaskResult objects as they are derived from different MTEB versions ({self.mteb_version} (loaded) and {mteb_version} (current))"
|
|
713
716
|
if raise_error:
|
|
714
|
-
raise ValueError(
|
|
715
|
-
|
|
716
|
-
)
|
|
717
|
+
raise ValueError(msg)
|
|
718
|
+
logger.debug(msg)
|
|
717
719
|
return False
|
|
718
720
|
|
|
719
|
-
if
|
|
721
|
+
if Criteria.DATASET_REVISION in criteria and self.dataset_revision != revision:
|
|
722
|
+
msg = f"Cannot merge TaskResult objects as they are derived from different dataset revisions ({self.dataset_revision} and {revision})"
|
|
720
723
|
if raise_error:
|
|
721
|
-
raise ValueError(
|
|
722
|
-
|
|
723
|
-
)
|
|
724
|
+
raise ValueError(msg)
|
|
725
|
+
logger.debug(msg)
|
|
724
726
|
return False
|
|
725
727
|
|
|
726
728
|
return True
|
|
@@ -728,7 +730,7 @@ class TaskResult(BaseModel):
|
|
|
728
730
|
def merge(
|
|
729
731
|
self,
|
|
730
732
|
new_results: TaskResult,
|
|
731
|
-
criteria: list[str] | list[
|
|
733
|
+
criteria: list[str] | list[Criteria] = [
|
|
732
734
|
"mteb_version",
|
|
733
735
|
"dataset_revision",
|
|
734
736
|
],
|
|
@@ -23,7 +23,7 @@ class BUCCBitextMining(AbsTaskBitextMining):
|
|
|
23
23
|
"path": "mteb/BUCC",
|
|
24
24
|
"revision": "414572247440f0ccacf7eb0bb70a31533a0e5443",
|
|
25
25
|
},
|
|
26
|
-
description="BUCC bitext mining dataset",
|
|
26
|
+
description="BUCC bitext mining dataset train split.",
|
|
27
27
|
reference="https://comparable.limsi.fr/bucc2018/bucc2018-task.html",
|
|
28
28
|
type="BitextMining",
|
|
29
29
|
category="t2t",
|
|
@@ -71,7 +71,9 @@ Rapp, Reinhard},
|
|
|
71
71
|
|
|
72
72
|
sentence1 = data["sentence1"][0]
|
|
73
73
|
sentence2 = data["sentence2"][0]
|
|
74
|
-
sentence1 = [
|
|
74
|
+
sentence1 = [
|
|
75
|
+
sentence1[i] for (i, j) in gold
|
|
76
|
+
] # keep only sentences in gold. The 2nd value is meant for sentence2 but not used here. This is fixed in BUCC.v2.
|
|
75
77
|
logger.info(f"Lang {lang} num gold {len(gold)}")
|
|
76
78
|
logger.info(f"Lang {lang} num sentence1 {len(sentence1)}")
|
|
77
79
|
logger.info(f"Lang {lang} num sentence2 {len(sentence2)}")
|
|
@@ -20,7 +20,7 @@ class BUCCBitextMiningFast(AbsTaskBitextMining):
|
|
|
20
20
|
"path": "mteb/bucc-bitext-mining",
|
|
21
21
|
"revision": "1739dc11ffe9b7bfccd7f3d585aeb4c544fc6677",
|
|
22
22
|
},
|
|
23
|
-
description="BUCC bitext mining dataset",
|
|
23
|
+
description="BUCC bitext mining dataset train split, gold set only.",
|
|
24
24
|
reference="https://comparable.limsi.fr/bucc2018/bucc2018-task.html",
|
|
25
25
|
type="BitextMining",
|
|
26
26
|
category="t2t",
|
|
@@ -10,11 +10,7 @@ class RuSciBenchBitextMining(AbsTaskBitextMining):
|
|
|
10
10
|
"path": "mlsa-iai-msu-lab/ru_sci_bench_bitext_mining",
|
|
11
11
|
"revision": "e5840033c5cf2573932db027ac8001fe0a7eb6fa",
|
|
12
12
|
},
|
|
13
|
-
description="
|
|
14
|
-
The dataset is sourced from eLibrary, Russia's largest electronic library of scientific publications.
|
|
15
|
-
Russian authors often provide English translations for their abstracts and titles,
|
|
16
|
-
and the data consists of these paired titles and abstracts. The task evaluates a model's ability
|
|
17
|
-
to match an article's Russian title and abstract to its English counterpart, or vice versa.""",
|
|
13
|
+
description="This task focuses on finding translations of scientific articles. The dataset is sourced from eLibrary, Russia's largest electronic library of scientific publications. Russian authors often provide English translations for their abstracts and titles, and the data consists of these paired titles and abstracts. The task evaluates a model's ability to match an article's Russian title and abstract to its English counterpart, or vice versa.",
|
|
18
14
|
reference="https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb",
|
|
19
15
|
type="BitextMining",
|
|
20
16
|
category="t2c",
|
|
@@ -198,9 +198,7 @@ _SPLITS = ["default"]
|
|
|
198
198
|
class WebFAQBitextMiningQuestions(AbsTaskBitextMining):
|
|
199
199
|
metadata = TaskMetadata(
|
|
200
200
|
name="WebFAQBitextMiningQuestions",
|
|
201
|
-
description=
|
|
202
|
-
A sentence in the "WebFAQBitextMiningQuestions" task is the question originating from an aligned QA.
|
|
203
|
-
The dataset is sourced from FAQ pages on the web.""",
|
|
201
|
+
description='The WebFAQ Bitext Dataset consists of natural FAQ-style Question-Answer pairs that align across languages. A sentence in the "WebFAQBitextMiningQuestions" task is the question originating from an aligned QA. The dataset is sourced from FAQ pages on the web.',
|
|
204
202
|
reference="https://huggingface.co/PaDaS-Lab",
|
|
205
203
|
dataset={
|
|
206
204
|
"path": "PaDaS-Lab/webfaq-bitexts",
|
|
@@ -254,9 +252,7 @@ The dataset is sourced from FAQ pages on the web.""",
|
|
|
254
252
|
class WebFAQBitextMiningQAs(AbsTaskBitextMining):
|
|
255
253
|
metadata = TaskMetadata(
|
|
256
254
|
name="WebFAQBitextMiningQAs",
|
|
257
|
-
description=
|
|
258
|
-
A sentence in the "WebFAQBitextMiningQAs" task is a concatenation of a question and its corresponding answer.
|
|
259
|
-
The dataset is sourced from FAQ pages on the web.""",
|
|
255
|
+
description='The WebFAQ Bitext Dataset consists of natural FAQ-style Question-Answer pairs that align across languages. A sentence in the "WebFAQBitextMiningQAs" task is a concatenation of a question and its corresponding answer. The dataset is sourced from FAQ pages on the web.',
|
|
260
256
|
reference="https://huggingface.co/PaDaS-Lab",
|
|
261
257
|
dataset={
|
|
262
258
|
"path": "PaDaS-Lab/webfaq-bitexts",
|
|
@@ -45,8 +45,7 @@ class AJGTV2(AbsTaskClassification):
|
|
|
45
45
|
"path": "mteb/ajgt",
|
|
46
46
|
"revision": "0a3dea7301ee0c051891f04d32f3e8577a9eae36",
|
|
47
47
|
},
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
48
|
+
description="Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets (900 for training and 900 for testing) annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
50
49
|
reference="https://link.springer.com/chapter/10.1007/978-3-319-60042-0_66/",
|
|
51
50
|
type="Classification",
|
|
52
51
|
category="t2c",
|
|
@@ -45,8 +45,7 @@ class HotelReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
45
45
|
"path": "mteb/HotelReviewSentimentClassification",
|
|
46
46
|
"revision": "f5e6a24acbed4182114ffdf46747090b3f51e836",
|
|
47
47
|
},
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
48
|
+
description="HARD is a dataset of Arabic hotel reviews collected from the Booking.com website. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
50
49
|
reference="https://link.springer.com/chapter/10.1007/978-3-319-67056-0_3",
|
|
51
50
|
type="Classification",
|
|
52
51
|
category="t2c",
|
|
@@ -41,8 +41,7 @@ class OnlineStoreReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
41
41
|
"path": "mteb/online_store_review_sentiment",
|
|
42
42
|
"revision": "de0e8eed65adf1cbc58f8743a5f5c5df556de4c4",
|
|
43
43
|
},
|
|
44
|
-
description="
|
|
45
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
44
|
+
description="This dataset contains Arabic reviews of products from the SHEIN online store. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
46
45
|
reference="https://huggingface.co/datasets/Ruqiya/Arabic_Reviews_of_SHEIN",
|
|
47
46
|
type="Classification",
|
|
48
47
|
category="t2c",
|
|
@@ -52,8 +52,7 @@ class RestaurantReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
52
52
|
"path": "mteb/restaurant_review_sentiment",
|
|
53
53
|
"revision": "5d28c1e8fb393173a849696ed178b90a6f78754a",
|
|
54
54
|
},
|
|
55
|
-
description="
|
|
56
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
55
|
+
description="Dataset of 8156 restaurant reviews from qaym.com in Arabic for sentiment analysis This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
57
56
|
reference="https://link.springer.com/chapter/10.1007/978-3-319-18117-2_2",
|
|
58
57
|
type="Classification",
|
|
59
58
|
category="t2c",
|
|
@@ -45,8 +45,7 @@ class TweetEmotionClassificationV2(AbsTaskClassification):
|
|
|
45
45
|
"path": "mteb/TweetEmotionClassification",
|
|
46
46
|
"revision": "930d65840c089406ceed5241b1a9ba7294e5eeae",
|
|
47
47
|
},
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
48
|
+
description="A dataset of 10,012 tweets that was created with the aim of covering the most frequently used emotion categories in Arabic tweets. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
50
49
|
reference="https://link.springer.com/chapter/10.1007/978-3-319-77116-8_8",
|
|
51
50
|
type="Classification",
|
|
52
51
|
category="t2c",
|
|
@@ -62,8 +62,7 @@ class TweetSarcasmClassificationV2(AbsTaskClassification):
|
|
|
62
62
|
"path": "mteb/tweet_sarcasm",
|
|
63
63
|
"revision": "3a20898e2ea3303844e907d55f7a815a7644150d",
|
|
64
64
|
},
|
|
65
|
-
description="
|
|
66
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
65
|
+
description="Arabic sarcasm detection dataset, which was created through the reannotation of available Arabic sentiment analysis datasets. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
67
66
|
reference="https://aclanthology.org/2020.osact-1.5/",
|
|
68
67
|
type="Classification",
|
|
69
68
|
category="t2c",
|
|
@@ -55,8 +55,7 @@ Islam, Tanvir},
|
|
|
55
55
|
class BengaliDocumentClassificationV2(AbsTaskClassification):
|
|
56
56
|
metadata = TaskMetadata(
|
|
57
57
|
name="BengaliDocumentClassification.v2",
|
|
58
|
-
description="
|
|
59
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
58
|
+
description="Dataset for News Classification, categorized with 13 domains. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
60
59
|
reference="https://aclanthology.org/2023.eacl-main.4",
|
|
61
60
|
dataset={
|
|
62
61
|
"path": "mteb/bengali_document",
|
|
@@ -45,8 +45,7 @@ class BengaliHateSpeechClassification(AbsTaskClassification):
|
|
|
45
45
|
class BengaliHateSpeechClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="BengaliHateSpeechClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
48
|
+
description="The Bengali Hate Speech Dataset is a Bengali-language dataset of news articles collected from various Bengali media sources and categorized based on the type of hate in the text. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
50
49
|
reference="https://huggingface.co/datasets/bn_hate_speech",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/bengali_hate_speech",
|
|
@@ -45,8 +45,7 @@ class BengaliSentimentAnalysis(AbsTaskClassification):
|
|
|
45
45
|
class BengaliSentimentAnalysisV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="BengaliSentimentAnalysis.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
|
|
48
|
+
description="dataset contains 2854 Negative reviews and 7238 Positive reviews collected and manually annotated from Youtube Bengali drama. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
|
|
50
49
|
reference="https://data.mendeley.com/datasets/p6zc7krs37/4",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/bengali_sentiment_analysis",
|
|
@@ -51,8 +51,7 @@ class CSFDCZMovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
51
51
|
class CSFDCZMovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
52
52
|
metadata = TaskMetadata(
|
|
53
53
|
name="CSFDCZMovieReviewSentimentClassification.v2",
|
|
54
|
-
description="
|
|
55
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
54
|
+
description="The dataset contains 30k user reviews from csfd.cz in Czech. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
56
55
|
reference="https://arxiv.org/abs/2304.01922",
|
|
57
56
|
dataset={
|
|
58
57
|
"path": "mteb/csfdcz_movie_review_sentiment",
|
|
@@ -58,8 +58,7 @@ Montoyo, Andres},
|
|
|
58
58
|
class CzechProductReviewSentimentClassificationV2(AbsTaskClassification):
|
|
59
59
|
metadata = TaskMetadata(
|
|
60
60
|
name="CzechProductReviewSentimentClassification.v2",
|
|
61
|
-
description="
|
|
62
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
61
|
+
description="User reviews of products on Czech e-shop Mall.cz with 3 sentiment classes (positive, neutral, negative) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
63
62
|
reference="https://aclanthology.org/W13-1609/",
|
|
64
63
|
dataset={
|
|
65
64
|
"path": "mteb/czech_product_review_sentiment",
|
|
@@ -55,8 +55,7 @@ Montoyo, Andres},
|
|
|
55
55
|
class CzechSoMeSentimentClassificationV2(AbsTaskClassification):
|
|
56
56
|
metadata = TaskMetadata(
|
|
57
57
|
name="CzechSoMeSentimentClassification.v2",
|
|
58
|
-
description="
|
|
59
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
58
|
+
description="User comments on Facebook This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
60
59
|
reference="https://aclanthology.org/W13-1609/",
|
|
61
60
|
dataset={
|
|
62
61
|
"path": "mteb/czech_so_me_sentiment",
|
|
@@ -9,7 +9,7 @@ class AngryTweetsClassification(AbsTaskClassification):
|
|
|
9
9
|
"path": "DDSC/angry-tweets",
|
|
10
10
|
"revision": "20b0e6081892e78179356fada741b7afa381443d",
|
|
11
11
|
},
|
|
12
|
-
description="A sentiment dataset with 3 classes (
|
|
12
|
+
description="A sentiment dataset with 3 classes (positive, negative, neutral) for Danish tweets",
|
|
13
13
|
reference="https://aclanthology.org/2021.nodalida-main.53/",
|
|
14
14
|
type="Classification",
|
|
15
15
|
category="t2c",
|
|
@@ -47,8 +47,7 @@ class AngryTweetsClassificationV2(AbsTaskClassification):
|
|
|
47
47
|
"path": "mteb/angry_tweets",
|
|
48
48
|
"revision": "b9475fb66a13befda4fa9871cd92343bb2c0eb77",
|
|
49
49
|
},
|
|
50
|
-
description="
|
|
51
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
50
|
+
description="A sentiment dataset with 3 classes (positive, negative, neutral) for Danish tweets This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
52
51
|
reference="https://aclanthology.org/2021.nodalida-main.53/",
|
|
53
52
|
type="Classification",
|
|
54
53
|
category="t2c",
|
|
@@ -49,8 +49,7 @@ class DanishPoliticalCommentsClassificationV2(AbsTaskClassification):
|
|
|
49
49
|
"path": "mteb/danish_political_comments",
|
|
50
50
|
"revision": "476a9e7327aba70ad3e97a169d7310b86be9b245",
|
|
51
51
|
},
|
|
52
|
-
description="
|
|
53
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
52
|
+
description="A dataset of Danish political comments rated for sentiment This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
54
53
|
reference="https://huggingface.co/datasets/danish_political_comments",
|
|
55
54
|
type="Classification",
|
|
56
55
|
category="t2c",
|
|
@@ -69,8 +69,7 @@ class DdiscoCohesionClassificationV2(AbsTaskClassification):
|
|
|
69
69
|
"path": "mteb/ddisco_cohesion",
|
|
70
70
|
"revision": "b5a05bdecdfc6efc14eebc8f7a86e0986edaf5ff",
|
|
71
71
|
},
|
|
72
|
-
description="
|
|
73
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
72
|
+
description="A Danish Discourse dataset with values for coherence and source (Wikipedia or Reddit) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
74
73
|
reference="https://aclanthology.org/2022.lrec-1.260/",
|
|
75
74
|
type="Classification",
|
|
76
75
|
category="t2c",
|
|
@@ -76,8 +76,7 @@ class DKHateClassificationV2(AbsTaskClassification):
|
|
|
76
76
|
"path": "mteb/dk_hate",
|
|
77
77
|
"revision": "0468ff11393992d8347cf4282fb706fe970608d4",
|
|
78
78
|
},
|
|
79
|
-
description="
|
|
80
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
79
|
+
description="Danish Tweets annotated for Hate Speech either being Offensive or not This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
81
80
|
reference="https://aclanthology.org/2020.lrec-1.430/",
|
|
82
81
|
type="Classification",
|
|
83
82
|
category="t2c",
|
|
@@ -56,8 +56,7 @@ Zesch, Torsten},
|
|
|
56
56
|
class GermanPoliticiansTwitterSentimentClassificationV2(AbsTaskClassification):
|
|
57
57
|
metadata = TaskMetadata(
|
|
58
58
|
name="GermanPoliticiansTwitterSentimentClassification.v2",
|
|
59
|
-
description="
|
|
60
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
59
|
+
description="GermanPoliticiansTwitterSentiment is a dataset of German tweets categorized with their sentiment (3 classes). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
61
60
|
reference="https://aclanthology.org/2022.konvens-1.9",
|
|
62
61
|
dataset={
|
|
63
62
|
"path": "mteb/german_politicians_twitter_sentiment",
|
|
@@ -43,8 +43,7 @@ class TenKGnadClassification(AbsTaskClassification):
|
|
|
43
43
|
class TenKGnadClassificationV2(AbsTaskClassification):
|
|
44
44
|
metadata = TaskMetadata(
|
|
45
45
|
name="TenKGnadClassification.v2",
|
|
46
|
-
description="
|
|
47
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
46
|
+
description="10k German News Articles Dataset (10kGNAD) contains news articles from the online Austrian newspaper website DER Standard with their topic classification (9 classes). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
48
47
|
reference="https://tblock.github.io/10kGNAD/",
|
|
49
48
|
dataset={
|
|
50
49
|
"path": "mteb/ten_k_gnad",
|
|
@@ -44,8 +44,7 @@ class AmazonPolarityClassification(AbsTaskClassification):
|
|
|
44
44
|
class AmazonPolarityClassificationV2(AbsTaskClassification):
|
|
45
45
|
metadata = TaskMetadata(
|
|
46
46
|
name="AmazonPolarityClassification.v2",
|
|
47
|
-
description="
|
|
48
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
47
|
+
description="Amazon Polarity Classification Dataset. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
49
48
|
reference="https://huggingface.co/datasets/amazon_polarity",
|
|
50
49
|
dataset={
|
|
51
50
|
"path": "mteb/amazon_polarity",
|
|
@@ -43,8 +43,7 @@ class ArxivClassification(AbsTaskClassification):
|
|
|
43
43
|
class ArxivClassificationV2(AbsTaskClassification):
|
|
44
44
|
metadata = TaskMetadata(
|
|
45
45
|
name="ArxivClassification.v2",
|
|
46
|
-
description="
|
|
47
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
46
|
+
description="Classification Dataset of Arxiv Papers This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
48
47
|
dataset={
|
|
49
48
|
"path": "mteb/arxiv",
|
|
50
49
|
"revision": "202e10e9a5d37a5068397b48184d0728346a7b4a",
|
|
@@ -61,8 +61,7 @@ Shah, Rushin},
|
|
|
61
61
|
class Banking77ClassificationV2(AbsTaskClassification):
|
|
62
62
|
metadata = TaskMetadata(
|
|
63
63
|
name="Banking77Classification.v2",
|
|
64
|
-
description="
|
|
65
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
64
|
+
description="Dataset composed of online banking queries annotated with their corresponding intents. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
66
65
|
reference="https://arxiv.org/abs/2003.04807",
|
|
67
66
|
dataset={
|
|
68
67
|
"path": "mteb/banking77",
|
|
@@ -50,8 +50,7 @@ class DBpediaClassification(AbsTaskClassification):
|
|
|
50
50
|
class DBpediaClassificationV2(AbsTaskClassification):
|
|
51
51
|
metadata = TaskMetadata(
|
|
52
52
|
name="DBpediaClassification.v2",
|
|
53
|
-
description="
|
|
54
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
53
|
+
description="DBpedia14 is a dataset of English texts from Wikipedia articles, categorized into 14 non-overlapping classes based on their DBpedia ontology. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
55
54
|
reference="https://arxiv.org/abs/1509.01626",
|
|
56
55
|
dataset={
|
|
57
56
|
"path": "mteb/d_bpedia",
|
|
@@ -59,8 +59,7 @@ Tsujii, Jun{'}ichi},
|
|
|
59
59
|
class EmotionClassificationV2(AbsTaskClassification):
|
|
60
60
|
metadata = TaskMetadata(
|
|
61
61
|
name="EmotionClassification.v2",
|
|
62
|
-
description="
|
|
63
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
62
|
+
description="Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
64
63
|
reference="https://www.aclweb.org/anthology/D18-1404",
|
|
65
64
|
dataset={
|
|
66
65
|
"path": "mteb/emotion",
|