minicpmo-utils 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cosyvoice/__init__.py +17 -0
- cosyvoice/bin/average_model.py +93 -0
- cosyvoice/bin/export_jit.py +103 -0
- cosyvoice/bin/export_onnx.py +120 -0
- cosyvoice/bin/inference_deprecated.py +126 -0
- cosyvoice/bin/train.py +195 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +209 -0
- cosyvoice/cli/frontend.py +238 -0
- cosyvoice/cli/model.py +386 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +151 -0
- cosyvoice/dataset/processor.py +434 -0
- cosyvoice/flow/decoder.py +494 -0
- cosyvoice/flow/flow.py +281 -0
- cosyvoice/flow/flow_matching.py +227 -0
- cosyvoice/flow/length_regulator.py +70 -0
- cosyvoice/hifigan/discriminator.py +230 -0
- cosyvoice/hifigan/f0_predictor.py +58 -0
- cosyvoice/hifigan/generator.py +582 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/llm.py +610 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- cosyvoice/tokenizer/tokenizer.py +279 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +302 -0
- cosyvoice/transformer/encoder.py +474 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/transformer/upsample_encoder.py +320 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/common.py +186 -0
- cosyvoice/utils/executor.py +176 -0
- cosyvoice/utils/file_utils.py +129 -0
- cosyvoice/utils/frontend_utils.py +136 -0
- cosyvoice/utils/losses.py +57 -0
- cosyvoice/utils/mask.py +265 -0
- cosyvoice/utils/scheduler.py +738 -0
- cosyvoice/utils/train_utils.py +367 -0
- cosyvoice/vllm/cosyvoice2.py +103 -0
- matcha/__init__.py +0 -0
- matcha/app.py +357 -0
- matcha/cli.py +418 -0
- matcha/hifigan/__init__.py +0 -0
- matcha/hifigan/config.py +28 -0
- matcha/hifigan/denoiser.py +64 -0
- matcha/hifigan/env.py +17 -0
- matcha/hifigan/meldataset.py +217 -0
- matcha/hifigan/models.py +368 -0
- matcha/hifigan/xutils.py +60 -0
- matcha/models/__init__.py +0 -0
- matcha/models/baselightningmodule.py +209 -0
- matcha/models/components/__init__.py +0 -0
- matcha/models/components/decoder.py +443 -0
- matcha/models/components/flow_matching.py +132 -0
- matcha/models/components/text_encoder.py +410 -0
- matcha/models/components/transformer.py +316 -0
- matcha/models/matcha_tts.py +239 -0
- matcha/onnx/__init__.py +0 -0
- matcha/onnx/export.py +181 -0
- matcha/onnx/infer.py +168 -0
- matcha/text/__init__.py +53 -0
- matcha/text/cleaners.py +116 -0
- matcha/text/numbers.py +71 -0
- matcha/text/symbols.py +17 -0
- matcha/train.py +122 -0
- matcha/utils/__init__.py +5 -0
- matcha/utils/audio.py +82 -0
- matcha/utils/generate_data_statistics.py +111 -0
- matcha/utils/instantiators.py +56 -0
- matcha/utils/logging_utils.py +53 -0
- matcha/utils/model.py +90 -0
- matcha/utils/monotonic_align/__init__.py +22 -0
- matcha/utils/monotonic_align/setup.py +7 -0
- matcha/utils/pylogger.py +21 -0
- matcha/utils/rich_utils.py +101 -0
- matcha/utils/utils.py +219 -0
- minicpmo/__init__.py +24 -0
- minicpmo/utils.py +636 -0
- minicpmo/version.py +2 -0
- minicpmo_utils-0.1.0.dist-info/METADATA +72 -0
- minicpmo_utils-0.1.0.dist-info/RECORD +148 -0
- minicpmo_utils-0.1.0.dist-info/WHEEL +5 -0
- minicpmo_utils-0.1.0.dist-info/top_level.txt +5 -0
- s3tokenizer/__init__.py +153 -0
- s3tokenizer/assets/BAC009S0764W0121.wav +0 -0
- s3tokenizer/assets/BAC009S0764W0122.wav +0 -0
- s3tokenizer/assets/mel_filters.npz +0 -0
- s3tokenizer/cli.py +183 -0
- s3tokenizer/model.py +546 -0
- s3tokenizer/model_v2.py +605 -0
- s3tokenizer/utils.py +390 -0
- stepaudio2/__init__.py +40 -0
- stepaudio2/cosyvoice2/__init__.py +1 -0
- stepaudio2/cosyvoice2/flow/__init__.py +0 -0
- stepaudio2/cosyvoice2/flow/decoder_dit.py +585 -0
- stepaudio2/cosyvoice2/flow/flow.py +230 -0
- stepaudio2/cosyvoice2/flow/flow_matching.py +205 -0
- stepaudio2/cosyvoice2/transformer/__init__.py +0 -0
- stepaudio2/cosyvoice2/transformer/attention.py +328 -0
- stepaudio2/cosyvoice2/transformer/embedding.py +119 -0
- stepaudio2/cosyvoice2/transformer/encoder_layer.py +163 -0
- stepaudio2/cosyvoice2/transformer/positionwise_feed_forward.py +56 -0
- stepaudio2/cosyvoice2/transformer/subsampling.py +79 -0
- stepaudio2/cosyvoice2/transformer/upsample_encoder_v2.py +483 -0
- stepaudio2/cosyvoice2/utils/__init__.py +1 -0
- stepaudio2/cosyvoice2/utils/class_utils.py +41 -0
- stepaudio2/cosyvoice2/utils/common.py +101 -0
- stepaudio2/cosyvoice2/utils/mask.py +49 -0
- stepaudio2/flashcosyvoice/__init__.py +0 -0
- stepaudio2/flashcosyvoice/cli.py +424 -0
- stepaudio2/flashcosyvoice/config.py +80 -0
- stepaudio2/flashcosyvoice/cosyvoice2.py +160 -0
- stepaudio2/flashcosyvoice/cosyvoice3.py +1 -0
- stepaudio2/flashcosyvoice/engine/__init__.py +0 -0
- stepaudio2/flashcosyvoice/engine/block_manager.py +114 -0
- stepaudio2/flashcosyvoice/engine/llm_engine.py +125 -0
- stepaudio2/flashcosyvoice/engine/model_runner.py +310 -0
- stepaudio2/flashcosyvoice/engine/scheduler.py +77 -0
- stepaudio2/flashcosyvoice/engine/sequence.py +90 -0
- stepaudio2/flashcosyvoice/modules/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow.py +198 -0
- stepaudio2/flashcosyvoice/modules/flow_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow_components/estimator.py +974 -0
- stepaudio2/flashcosyvoice/modules/flow_components/upsample_encoder.py +998 -0
- stepaudio2/flashcosyvoice/modules/hifigan.py +249 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/layers.py +433 -0
- stepaudio2/flashcosyvoice/modules/qwen2.py +92 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/layers.py +616 -0
- stepaudio2/flashcosyvoice/modules/sampler.py +231 -0
- stepaudio2/flashcosyvoice/utils/__init__.py +0 -0
- stepaudio2/flashcosyvoice/utils/audio.py +77 -0
- stepaudio2/flashcosyvoice/utils/context.py +28 -0
- stepaudio2/flashcosyvoice/utils/loader.py +116 -0
- stepaudio2/flashcosyvoice/utils/memory.py +19 -0
- stepaudio2/stepaudio2.py +204 -0
- stepaudio2/token2wav.py +248 -0
- stepaudio2/utils.py +91 -0
|
@@ -0,0 +1,494 @@
|
|
|
1
|
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
from typing import Tuple
|
|
15
|
+
import torch
|
|
16
|
+
import torch.nn as nn
|
|
17
|
+
import torch.nn.functional as F
|
|
18
|
+
from einops import pack, rearrange, repeat
|
|
19
|
+
from cosyvoice.utils.common import mask_to_bias
|
|
20
|
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
|
21
|
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
|
22
|
+
from matcha.models.components.transformer import BasicTransformerBlock
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class Transpose(torch.nn.Module):
|
|
26
|
+
def __init__(self, dim0: int, dim1: int):
|
|
27
|
+
super().__init__()
|
|
28
|
+
self.dim0 = dim0
|
|
29
|
+
self.dim1 = dim1
|
|
30
|
+
|
|
31
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
32
|
+
x = torch.transpose(x, self.dim0, self.dim1)
|
|
33
|
+
return x
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class CausalConv1d(torch.nn.Conv1d):
|
|
37
|
+
def __init__(
|
|
38
|
+
self,
|
|
39
|
+
in_channels: int,
|
|
40
|
+
out_channels: int,
|
|
41
|
+
kernel_size: int,
|
|
42
|
+
stride: int = 1,
|
|
43
|
+
dilation: int = 1,
|
|
44
|
+
groups: int = 1,
|
|
45
|
+
bias: bool = True,
|
|
46
|
+
padding_mode: str = 'zeros',
|
|
47
|
+
device=None,
|
|
48
|
+
dtype=None
|
|
49
|
+
) -> None:
|
|
50
|
+
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
|
51
|
+
kernel_size, stride,
|
|
52
|
+
padding=0, dilation=dilation,
|
|
53
|
+
groups=groups, bias=bias,
|
|
54
|
+
padding_mode=padding_mode,
|
|
55
|
+
device=device, dtype=dtype)
|
|
56
|
+
assert stride == 1
|
|
57
|
+
self.causal_padding = kernel_size - 1
|
|
58
|
+
|
|
59
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
60
|
+
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
|
61
|
+
x = super(CausalConv1d, self).forward(x)
|
|
62
|
+
return x
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
class CausalBlock1D(Block1D):
|
|
66
|
+
def __init__(self, dim: int, dim_out: int):
|
|
67
|
+
super(CausalBlock1D, self).__init__(dim, dim_out)
|
|
68
|
+
self.block = torch.nn.Sequential(
|
|
69
|
+
CausalConv1d(dim, dim_out, 3),
|
|
70
|
+
Transpose(1, 2),
|
|
71
|
+
nn.LayerNorm(dim_out),
|
|
72
|
+
Transpose(1, 2),
|
|
73
|
+
nn.Mish(),
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
77
|
+
output = self.block(x * mask)
|
|
78
|
+
return output * mask
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class CausalResnetBlock1D(ResnetBlock1D):
|
|
82
|
+
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
|
83
|
+
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
|
84
|
+
self.block1 = CausalBlock1D(dim, dim_out)
|
|
85
|
+
self.block2 = CausalBlock1D(dim_out, dim_out)
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
class ConditionalDecoder(nn.Module):
|
|
89
|
+
def __init__(
|
|
90
|
+
self,
|
|
91
|
+
in_channels,
|
|
92
|
+
out_channels,
|
|
93
|
+
channels=(256, 256),
|
|
94
|
+
dropout=0.05,
|
|
95
|
+
attention_head_dim=64,
|
|
96
|
+
n_blocks=1,
|
|
97
|
+
num_mid_blocks=2,
|
|
98
|
+
num_heads=4,
|
|
99
|
+
act_fn="snake",
|
|
100
|
+
):
|
|
101
|
+
"""
|
|
102
|
+
This decoder requires an input with the same shape of the target. So, if your text content
|
|
103
|
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
|
104
|
+
"""
|
|
105
|
+
super().__init__()
|
|
106
|
+
channels = tuple(channels)
|
|
107
|
+
self.in_channels = in_channels
|
|
108
|
+
self.out_channels = out_channels
|
|
109
|
+
|
|
110
|
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
|
111
|
+
time_embed_dim = channels[0] * 4
|
|
112
|
+
self.time_mlp = TimestepEmbedding(
|
|
113
|
+
in_channels=in_channels,
|
|
114
|
+
time_embed_dim=time_embed_dim,
|
|
115
|
+
act_fn="silu",
|
|
116
|
+
)
|
|
117
|
+
self.down_blocks = nn.ModuleList([])
|
|
118
|
+
self.mid_blocks = nn.ModuleList([])
|
|
119
|
+
self.up_blocks = nn.ModuleList([])
|
|
120
|
+
|
|
121
|
+
output_channel = in_channels
|
|
122
|
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
|
123
|
+
input_channel = output_channel
|
|
124
|
+
output_channel = channels[i]
|
|
125
|
+
is_last = i == len(channels) - 1
|
|
126
|
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
127
|
+
transformer_blocks = nn.ModuleList(
|
|
128
|
+
[
|
|
129
|
+
BasicTransformerBlock(
|
|
130
|
+
dim=output_channel,
|
|
131
|
+
num_attention_heads=num_heads,
|
|
132
|
+
attention_head_dim=attention_head_dim,
|
|
133
|
+
dropout=dropout,
|
|
134
|
+
activation_fn=act_fn,
|
|
135
|
+
)
|
|
136
|
+
for _ in range(n_blocks)
|
|
137
|
+
]
|
|
138
|
+
)
|
|
139
|
+
downsample = (
|
|
140
|
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
141
|
+
)
|
|
142
|
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
|
143
|
+
|
|
144
|
+
for _ in range(num_mid_blocks):
|
|
145
|
+
input_channel = channels[-1]
|
|
146
|
+
out_channels = channels[-1]
|
|
147
|
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
148
|
+
|
|
149
|
+
transformer_blocks = nn.ModuleList(
|
|
150
|
+
[
|
|
151
|
+
BasicTransformerBlock(
|
|
152
|
+
dim=output_channel,
|
|
153
|
+
num_attention_heads=num_heads,
|
|
154
|
+
attention_head_dim=attention_head_dim,
|
|
155
|
+
dropout=dropout,
|
|
156
|
+
activation_fn=act_fn,
|
|
157
|
+
)
|
|
158
|
+
for _ in range(n_blocks)
|
|
159
|
+
]
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
|
163
|
+
|
|
164
|
+
channels = channels[::-1] + (channels[0],)
|
|
165
|
+
for i in range(len(channels) - 1):
|
|
166
|
+
input_channel = channels[i] * 2
|
|
167
|
+
output_channel = channels[i + 1]
|
|
168
|
+
is_last = i == len(channels) - 2
|
|
169
|
+
resnet = ResnetBlock1D(
|
|
170
|
+
dim=input_channel,
|
|
171
|
+
dim_out=output_channel,
|
|
172
|
+
time_emb_dim=time_embed_dim,
|
|
173
|
+
)
|
|
174
|
+
transformer_blocks = nn.ModuleList(
|
|
175
|
+
[
|
|
176
|
+
BasicTransformerBlock(
|
|
177
|
+
dim=output_channel,
|
|
178
|
+
num_attention_heads=num_heads,
|
|
179
|
+
attention_head_dim=attention_head_dim,
|
|
180
|
+
dropout=dropout,
|
|
181
|
+
activation_fn=act_fn,
|
|
182
|
+
)
|
|
183
|
+
for _ in range(n_blocks)
|
|
184
|
+
]
|
|
185
|
+
)
|
|
186
|
+
upsample = (
|
|
187
|
+
Upsample1D(output_channel, use_conv_transpose=True)
|
|
188
|
+
if not is_last
|
|
189
|
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
190
|
+
)
|
|
191
|
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
|
192
|
+
self.final_block = Block1D(channels[-1], channels[-1])
|
|
193
|
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
|
194
|
+
self.initialize_weights()
|
|
195
|
+
|
|
196
|
+
def initialize_weights(self):
|
|
197
|
+
for m in self.modules():
|
|
198
|
+
if isinstance(m, nn.Conv1d):
|
|
199
|
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
200
|
+
if m.bias is not None:
|
|
201
|
+
nn.init.constant_(m.bias, 0)
|
|
202
|
+
elif isinstance(m, nn.GroupNorm):
|
|
203
|
+
nn.init.constant_(m.weight, 1)
|
|
204
|
+
nn.init.constant_(m.bias, 0)
|
|
205
|
+
elif isinstance(m, nn.Linear):
|
|
206
|
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
207
|
+
if m.bias is not None:
|
|
208
|
+
nn.init.constant_(m.bias, 0)
|
|
209
|
+
|
|
210
|
+
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
|
211
|
+
"""Forward pass of the UNet1DConditional model.
|
|
212
|
+
|
|
213
|
+
Args:
|
|
214
|
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
|
215
|
+
mask (_type_): shape (batch_size, 1, time)
|
|
216
|
+
t (_type_): shape (batch_size)
|
|
217
|
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
|
218
|
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
|
219
|
+
|
|
220
|
+
Raises:
|
|
221
|
+
ValueError: _description_
|
|
222
|
+
ValueError: _description_
|
|
223
|
+
|
|
224
|
+
Returns:
|
|
225
|
+
_type_: _description_
|
|
226
|
+
"""
|
|
227
|
+
|
|
228
|
+
t = self.time_embeddings(t).to(t.dtype)
|
|
229
|
+
t = self.time_mlp(t)
|
|
230
|
+
|
|
231
|
+
x = pack([x, mu], "b * t")[0]
|
|
232
|
+
|
|
233
|
+
if spks is not None:
|
|
234
|
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
235
|
+
x = pack([x, spks], "b * t")[0]
|
|
236
|
+
if cond is not None:
|
|
237
|
+
x = pack([x, cond], "b * t")[0]
|
|
238
|
+
|
|
239
|
+
hiddens = []
|
|
240
|
+
masks = [mask]
|
|
241
|
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
|
242
|
+
mask_down = masks[-1]
|
|
243
|
+
x = resnet(x, mask_down, t)
|
|
244
|
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
245
|
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
|
246
|
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
247
|
+
for transformer_block in transformer_blocks:
|
|
248
|
+
x = transformer_block(
|
|
249
|
+
hidden_states=x,
|
|
250
|
+
attention_mask=attn_mask,
|
|
251
|
+
timestep=t,
|
|
252
|
+
)
|
|
253
|
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
254
|
+
hiddens.append(x) # Save hidden states for skip connections
|
|
255
|
+
x = downsample(x * mask_down)
|
|
256
|
+
masks.append(mask_down[:, :, ::2])
|
|
257
|
+
masks = masks[:-1]
|
|
258
|
+
mask_mid = masks[-1]
|
|
259
|
+
|
|
260
|
+
for resnet, transformer_blocks in self.mid_blocks:
|
|
261
|
+
x = resnet(x, mask_mid, t)
|
|
262
|
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
263
|
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
|
264
|
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
265
|
+
for transformer_block in transformer_blocks:
|
|
266
|
+
x = transformer_block(
|
|
267
|
+
hidden_states=x,
|
|
268
|
+
attention_mask=attn_mask,
|
|
269
|
+
timestep=t,
|
|
270
|
+
)
|
|
271
|
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
272
|
+
|
|
273
|
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
|
274
|
+
mask_up = masks.pop()
|
|
275
|
+
skip = hiddens.pop()
|
|
276
|
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
|
277
|
+
x = resnet(x, mask_up, t)
|
|
278
|
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
279
|
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
|
280
|
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
281
|
+
for transformer_block in transformer_blocks:
|
|
282
|
+
x = transformer_block(
|
|
283
|
+
hidden_states=x,
|
|
284
|
+
attention_mask=attn_mask,
|
|
285
|
+
timestep=t,
|
|
286
|
+
)
|
|
287
|
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
288
|
+
x = upsample(x * mask_up)
|
|
289
|
+
x = self.final_block(x, mask_up)
|
|
290
|
+
output = self.final_proj(x * mask_up)
|
|
291
|
+
return output * mask
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
class CausalConditionalDecoder(ConditionalDecoder):
|
|
295
|
+
def __init__(
|
|
296
|
+
self,
|
|
297
|
+
in_channels,
|
|
298
|
+
out_channels,
|
|
299
|
+
channels=(256, 256),
|
|
300
|
+
dropout=0.05,
|
|
301
|
+
attention_head_dim=64,
|
|
302
|
+
n_blocks=1,
|
|
303
|
+
num_mid_blocks=2,
|
|
304
|
+
num_heads=4,
|
|
305
|
+
act_fn="snake",
|
|
306
|
+
static_chunk_size=50,
|
|
307
|
+
num_decoding_left_chunks=2,
|
|
308
|
+
):
|
|
309
|
+
"""
|
|
310
|
+
This decoder requires an input with the same shape of the target. So, if your text content
|
|
311
|
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
|
312
|
+
"""
|
|
313
|
+
torch.nn.Module.__init__(self)
|
|
314
|
+
channels = tuple(channels)
|
|
315
|
+
self.in_channels = in_channels
|
|
316
|
+
self.out_channels = out_channels
|
|
317
|
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
|
318
|
+
time_embed_dim = channels[0] * 4
|
|
319
|
+
self.time_mlp = TimestepEmbedding(
|
|
320
|
+
in_channels=in_channels,
|
|
321
|
+
time_embed_dim=time_embed_dim,
|
|
322
|
+
act_fn="silu",
|
|
323
|
+
)
|
|
324
|
+
self.static_chunk_size = static_chunk_size
|
|
325
|
+
self.num_decoding_left_chunks = num_decoding_left_chunks
|
|
326
|
+
self.down_blocks = nn.ModuleList([])
|
|
327
|
+
self.mid_blocks = nn.ModuleList([])
|
|
328
|
+
self.up_blocks = nn.ModuleList([])
|
|
329
|
+
|
|
330
|
+
output_channel = in_channels
|
|
331
|
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
|
332
|
+
input_channel = output_channel
|
|
333
|
+
output_channel = channels[i]
|
|
334
|
+
is_last = i == len(channels) - 1
|
|
335
|
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
336
|
+
transformer_blocks = nn.ModuleList(
|
|
337
|
+
[
|
|
338
|
+
BasicTransformerBlock(
|
|
339
|
+
dim=output_channel,
|
|
340
|
+
num_attention_heads=num_heads,
|
|
341
|
+
attention_head_dim=attention_head_dim,
|
|
342
|
+
dropout=dropout,
|
|
343
|
+
activation_fn=act_fn,
|
|
344
|
+
)
|
|
345
|
+
for _ in range(n_blocks)
|
|
346
|
+
]
|
|
347
|
+
)
|
|
348
|
+
downsample = (
|
|
349
|
+
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
|
|
350
|
+
)
|
|
351
|
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
|
352
|
+
|
|
353
|
+
for _ in range(num_mid_blocks):
|
|
354
|
+
input_channel = channels[-1]
|
|
355
|
+
out_channels = channels[-1]
|
|
356
|
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
357
|
+
|
|
358
|
+
transformer_blocks = nn.ModuleList(
|
|
359
|
+
[
|
|
360
|
+
BasicTransformerBlock(
|
|
361
|
+
dim=output_channel,
|
|
362
|
+
num_attention_heads=num_heads,
|
|
363
|
+
attention_head_dim=attention_head_dim,
|
|
364
|
+
dropout=dropout,
|
|
365
|
+
activation_fn=act_fn,
|
|
366
|
+
)
|
|
367
|
+
for _ in range(n_blocks)
|
|
368
|
+
]
|
|
369
|
+
)
|
|
370
|
+
|
|
371
|
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
|
372
|
+
|
|
373
|
+
channels = channels[::-1] + (channels[0],)
|
|
374
|
+
for i in range(len(channels) - 1):
|
|
375
|
+
input_channel = channels[i] * 2
|
|
376
|
+
output_channel = channels[i + 1]
|
|
377
|
+
is_last = i == len(channels) - 2
|
|
378
|
+
resnet = CausalResnetBlock1D(
|
|
379
|
+
dim=input_channel,
|
|
380
|
+
dim_out=output_channel,
|
|
381
|
+
time_emb_dim=time_embed_dim,
|
|
382
|
+
)
|
|
383
|
+
transformer_blocks = nn.ModuleList(
|
|
384
|
+
[
|
|
385
|
+
BasicTransformerBlock(
|
|
386
|
+
dim=output_channel,
|
|
387
|
+
num_attention_heads=num_heads,
|
|
388
|
+
attention_head_dim=attention_head_dim,
|
|
389
|
+
dropout=dropout,
|
|
390
|
+
activation_fn=act_fn,
|
|
391
|
+
)
|
|
392
|
+
for _ in range(n_blocks)
|
|
393
|
+
]
|
|
394
|
+
)
|
|
395
|
+
upsample = (
|
|
396
|
+
Upsample1D(output_channel, use_conv_transpose=True)
|
|
397
|
+
if not is_last
|
|
398
|
+
else CausalConv1d(output_channel, output_channel, 3)
|
|
399
|
+
)
|
|
400
|
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
|
401
|
+
self.final_block = CausalBlock1D(channels[-1], channels[-1])
|
|
402
|
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
|
403
|
+
self.initialize_weights()
|
|
404
|
+
|
|
405
|
+
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
|
|
406
|
+
"""Forward pass of the UNet1DConditional model.
|
|
407
|
+
|
|
408
|
+
Args:
|
|
409
|
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
|
410
|
+
mask (_type_): shape (batch_size, 1, time)
|
|
411
|
+
t (_type_): shape (batch_size)
|
|
412
|
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
|
413
|
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
|
414
|
+
|
|
415
|
+
Raises:
|
|
416
|
+
ValueError: _description_
|
|
417
|
+
ValueError: _description_
|
|
418
|
+
|
|
419
|
+
Returns:
|
|
420
|
+
_type_: _description_
|
|
421
|
+
"""
|
|
422
|
+
t = self.time_embeddings(t).to(t.dtype)
|
|
423
|
+
t = self.time_mlp(t)
|
|
424
|
+
|
|
425
|
+
x = pack([x, mu], "b * t")[0]
|
|
426
|
+
|
|
427
|
+
if spks is not None:
|
|
428
|
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
429
|
+
x = pack([x, spks], "b * t")[0]
|
|
430
|
+
if cond is not None:
|
|
431
|
+
x = pack([x, cond], "b * t")[0]
|
|
432
|
+
|
|
433
|
+
hiddens = []
|
|
434
|
+
masks = [mask]
|
|
435
|
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
|
436
|
+
mask_down = masks[-1]
|
|
437
|
+
x = resnet(x, mask_down, t)
|
|
438
|
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
439
|
+
if streaming is True:
|
|
440
|
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
|
441
|
+
else:
|
|
442
|
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
|
443
|
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
444
|
+
for transformer_block in transformer_blocks:
|
|
445
|
+
x = transformer_block(
|
|
446
|
+
hidden_states=x,
|
|
447
|
+
attention_mask=attn_mask,
|
|
448
|
+
timestep=t,
|
|
449
|
+
)
|
|
450
|
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
451
|
+
hiddens.append(x) # Save hidden states for skip connections
|
|
452
|
+
x = downsample(x * mask_down)
|
|
453
|
+
masks.append(mask_down[:, :, ::2])
|
|
454
|
+
masks = masks[:-1]
|
|
455
|
+
mask_mid = masks[-1]
|
|
456
|
+
|
|
457
|
+
for resnet, transformer_blocks in self.mid_blocks:
|
|
458
|
+
x = resnet(x, mask_mid, t)
|
|
459
|
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
460
|
+
if streaming is True:
|
|
461
|
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
|
462
|
+
else:
|
|
463
|
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
|
464
|
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
465
|
+
for transformer_block in transformer_blocks:
|
|
466
|
+
x = transformer_block(
|
|
467
|
+
hidden_states=x,
|
|
468
|
+
attention_mask=attn_mask,
|
|
469
|
+
timestep=t,
|
|
470
|
+
)
|
|
471
|
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
472
|
+
|
|
473
|
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
|
474
|
+
mask_up = masks.pop()
|
|
475
|
+
skip = hiddens.pop()
|
|
476
|
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
|
477
|
+
x = resnet(x, mask_up, t)
|
|
478
|
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
479
|
+
if streaming is True:
|
|
480
|
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
|
481
|
+
else:
|
|
482
|
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
|
483
|
+
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
484
|
+
for transformer_block in transformer_blocks:
|
|
485
|
+
x = transformer_block(
|
|
486
|
+
hidden_states=x,
|
|
487
|
+
attention_mask=attn_mask,
|
|
488
|
+
timestep=t,
|
|
489
|
+
)
|
|
490
|
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
491
|
+
x = upsample(x * mask_up)
|
|
492
|
+
x = self.final_block(x, mask_up)
|
|
493
|
+
output = self.final_proj(x * mask_up)
|
|
494
|
+
return output * mask
|