minicpmo-utils 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cosyvoice/__init__.py +17 -0
- cosyvoice/bin/average_model.py +93 -0
- cosyvoice/bin/export_jit.py +103 -0
- cosyvoice/bin/export_onnx.py +120 -0
- cosyvoice/bin/inference_deprecated.py +126 -0
- cosyvoice/bin/train.py +195 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +209 -0
- cosyvoice/cli/frontend.py +238 -0
- cosyvoice/cli/model.py +386 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +151 -0
- cosyvoice/dataset/processor.py +434 -0
- cosyvoice/flow/decoder.py +494 -0
- cosyvoice/flow/flow.py +281 -0
- cosyvoice/flow/flow_matching.py +227 -0
- cosyvoice/flow/length_regulator.py +70 -0
- cosyvoice/hifigan/discriminator.py +230 -0
- cosyvoice/hifigan/f0_predictor.py +58 -0
- cosyvoice/hifigan/generator.py +582 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/llm.py +610 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- cosyvoice/tokenizer/tokenizer.py +279 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +302 -0
- cosyvoice/transformer/encoder.py +474 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/transformer/upsample_encoder.py +320 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/common.py +186 -0
- cosyvoice/utils/executor.py +176 -0
- cosyvoice/utils/file_utils.py +129 -0
- cosyvoice/utils/frontend_utils.py +136 -0
- cosyvoice/utils/losses.py +57 -0
- cosyvoice/utils/mask.py +265 -0
- cosyvoice/utils/scheduler.py +738 -0
- cosyvoice/utils/train_utils.py +367 -0
- cosyvoice/vllm/cosyvoice2.py +103 -0
- matcha/__init__.py +0 -0
- matcha/app.py +357 -0
- matcha/cli.py +418 -0
- matcha/hifigan/__init__.py +0 -0
- matcha/hifigan/config.py +28 -0
- matcha/hifigan/denoiser.py +64 -0
- matcha/hifigan/env.py +17 -0
- matcha/hifigan/meldataset.py +217 -0
- matcha/hifigan/models.py +368 -0
- matcha/hifigan/xutils.py +60 -0
- matcha/models/__init__.py +0 -0
- matcha/models/baselightningmodule.py +209 -0
- matcha/models/components/__init__.py +0 -0
- matcha/models/components/decoder.py +443 -0
- matcha/models/components/flow_matching.py +132 -0
- matcha/models/components/text_encoder.py +410 -0
- matcha/models/components/transformer.py +316 -0
- matcha/models/matcha_tts.py +239 -0
- matcha/onnx/__init__.py +0 -0
- matcha/onnx/export.py +181 -0
- matcha/onnx/infer.py +168 -0
- matcha/text/__init__.py +53 -0
- matcha/text/cleaners.py +116 -0
- matcha/text/numbers.py +71 -0
- matcha/text/symbols.py +17 -0
- matcha/train.py +122 -0
- matcha/utils/__init__.py +5 -0
- matcha/utils/audio.py +82 -0
- matcha/utils/generate_data_statistics.py +111 -0
- matcha/utils/instantiators.py +56 -0
- matcha/utils/logging_utils.py +53 -0
- matcha/utils/model.py +90 -0
- matcha/utils/monotonic_align/__init__.py +22 -0
- matcha/utils/monotonic_align/setup.py +7 -0
- matcha/utils/pylogger.py +21 -0
- matcha/utils/rich_utils.py +101 -0
- matcha/utils/utils.py +219 -0
- minicpmo/__init__.py +24 -0
- minicpmo/utils.py +636 -0
- minicpmo/version.py +2 -0
- minicpmo_utils-0.1.0.dist-info/METADATA +72 -0
- minicpmo_utils-0.1.0.dist-info/RECORD +148 -0
- minicpmo_utils-0.1.0.dist-info/WHEEL +5 -0
- minicpmo_utils-0.1.0.dist-info/top_level.txt +5 -0
- s3tokenizer/__init__.py +153 -0
- s3tokenizer/assets/BAC009S0764W0121.wav +0 -0
- s3tokenizer/assets/BAC009S0764W0122.wav +0 -0
- s3tokenizer/assets/mel_filters.npz +0 -0
- s3tokenizer/cli.py +183 -0
- s3tokenizer/model.py +546 -0
- s3tokenizer/model_v2.py +605 -0
- s3tokenizer/utils.py +390 -0
- stepaudio2/__init__.py +40 -0
- stepaudio2/cosyvoice2/__init__.py +1 -0
- stepaudio2/cosyvoice2/flow/__init__.py +0 -0
- stepaudio2/cosyvoice2/flow/decoder_dit.py +585 -0
- stepaudio2/cosyvoice2/flow/flow.py +230 -0
- stepaudio2/cosyvoice2/flow/flow_matching.py +205 -0
- stepaudio2/cosyvoice2/transformer/__init__.py +0 -0
- stepaudio2/cosyvoice2/transformer/attention.py +328 -0
- stepaudio2/cosyvoice2/transformer/embedding.py +119 -0
- stepaudio2/cosyvoice2/transformer/encoder_layer.py +163 -0
- stepaudio2/cosyvoice2/transformer/positionwise_feed_forward.py +56 -0
- stepaudio2/cosyvoice2/transformer/subsampling.py +79 -0
- stepaudio2/cosyvoice2/transformer/upsample_encoder_v2.py +483 -0
- stepaudio2/cosyvoice2/utils/__init__.py +1 -0
- stepaudio2/cosyvoice2/utils/class_utils.py +41 -0
- stepaudio2/cosyvoice2/utils/common.py +101 -0
- stepaudio2/cosyvoice2/utils/mask.py +49 -0
- stepaudio2/flashcosyvoice/__init__.py +0 -0
- stepaudio2/flashcosyvoice/cli.py +424 -0
- stepaudio2/flashcosyvoice/config.py +80 -0
- stepaudio2/flashcosyvoice/cosyvoice2.py +160 -0
- stepaudio2/flashcosyvoice/cosyvoice3.py +1 -0
- stepaudio2/flashcosyvoice/engine/__init__.py +0 -0
- stepaudio2/flashcosyvoice/engine/block_manager.py +114 -0
- stepaudio2/flashcosyvoice/engine/llm_engine.py +125 -0
- stepaudio2/flashcosyvoice/engine/model_runner.py +310 -0
- stepaudio2/flashcosyvoice/engine/scheduler.py +77 -0
- stepaudio2/flashcosyvoice/engine/sequence.py +90 -0
- stepaudio2/flashcosyvoice/modules/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow.py +198 -0
- stepaudio2/flashcosyvoice/modules/flow_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow_components/estimator.py +974 -0
- stepaudio2/flashcosyvoice/modules/flow_components/upsample_encoder.py +998 -0
- stepaudio2/flashcosyvoice/modules/hifigan.py +249 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/layers.py +433 -0
- stepaudio2/flashcosyvoice/modules/qwen2.py +92 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/layers.py +616 -0
- stepaudio2/flashcosyvoice/modules/sampler.py +231 -0
- stepaudio2/flashcosyvoice/utils/__init__.py +0 -0
- stepaudio2/flashcosyvoice/utils/audio.py +77 -0
- stepaudio2/flashcosyvoice/utils/context.py +28 -0
- stepaudio2/flashcosyvoice/utils/loader.py +116 -0
- stepaudio2/flashcosyvoice/utils/memory.py +19 -0
- stepaudio2/stepaudio2.py +204 -0
- stepaudio2/token2wav.py +248 -0
- stepaudio2/utils.py +91 -0
|
@@ -0,0 +1,209 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This is a base lightning module that can be used to train a model.
|
|
3
|
+
The benefit of this abstraction is that all the logic outside of model definition can be reused for different models.
|
|
4
|
+
"""
|
|
5
|
+
import inspect
|
|
6
|
+
from abc import ABC
|
|
7
|
+
from typing import Any, Dict
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
from lightning import LightningModule
|
|
11
|
+
from lightning.pytorch.utilities import grad_norm
|
|
12
|
+
|
|
13
|
+
from matcha import utils
|
|
14
|
+
from matcha.utils.utils import plot_tensor
|
|
15
|
+
|
|
16
|
+
log = utils.get_pylogger(__name__)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class BaseLightningClass(LightningModule, ABC):
|
|
20
|
+
def update_data_statistics(self, data_statistics):
|
|
21
|
+
if data_statistics is None:
|
|
22
|
+
data_statistics = {
|
|
23
|
+
"mel_mean": 0.0,
|
|
24
|
+
"mel_std": 1.0,
|
|
25
|
+
}
|
|
26
|
+
|
|
27
|
+
self.register_buffer("mel_mean", torch.tensor(data_statistics["mel_mean"]))
|
|
28
|
+
self.register_buffer("mel_std", torch.tensor(data_statistics["mel_std"]))
|
|
29
|
+
|
|
30
|
+
def configure_optimizers(self) -> Any:
|
|
31
|
+
optimizer = self.hparams.optimizer(params=self.parameters())
|
|
32
|
+
if self.hparams.scheduler not in (None, {}):
|
|
33
|
+
scheduler_args = {}
|
|
34
|
+
# Manage last epoch for exponential schedulers
|
|
35
|
+
if "last_epoch" in inspect.signature(self.hparams.scheduler.scheduler).parameters:
|
|
36
|
+
if hasattr(self, "ckpt_loaded_epoch"):
|
|
37
|
+
current_epoch = self.ckpt_loaded_epoch - 1
|
|
38
|
+
else:
|
|
39
|
+
current_epoch = -1
|
|
40
|
+
|
|
41
|
+
scheduler_args.update({"optimizer": optimizer})
|
|
42
|
+
scheduler = self.hparams.scheduler.scheduler(**scheduler_args)
|
|
43
|
+
scheduler.last_epoch = current_epoch
|
|
44
|
+
return {
|
|
45
|
+
"optimizer": optimizer,
|
|
46
|
+
"lr_scheduler": {
|
|
47
|
+
"scheduler": scheduler,
|
|
48
|
+
"interval": self.hparams.scheduler.lightning_args.interval,
|
|
49
|
+
"frequency": self.hparams.scheduler.lightning_args.frequency,
|
|
50
|
+
"name": "learning_rate",
|
|
51
|
+
},
|
|
52
|
+
}
|
|
53
|
+
|
|
54
|
+
return {"optimizer": optimizer}
|
|
55
|
+
|
|
56
|
+
def get_losses(self, batch):
|
|
57
|
+
x, x_lengths = batch["x"], batch["x_lengths"]
|
|
58
|
+
y, y_lengths = batch["y"], batch["y_lengths"]
|
|
59
|
+
spks = batch["spks"]
|
|
60
|
+
|
|
61
|
+
dur_loss, prior_loss, diff_loss = self(
|
|
62
|
+
x=x,
|
|
63
|
+
x_lengths=x_lengths,
|
|
64
|
+
y=y,
|
|
65
|
+
y_lengths=y_lengths,
|
|
66
|
+
spks=spks,
|
|
67
|
+
out_size=self.out_size,
|
|
68
|
+
)
|
|
69
|
+
return {
|
|
70
|
+
"dur_loss": dur_loss,
|
|
71
|
+
"prior_loss": prior_loss,
|
|
72
|
+
"diff_loss": diff_loss,
|
|
73
|
+
}
|
|
74
|
+
|
|
75
|
+
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
|
76
|
+
self.ckpt_loaded_epoch = checkpoint["epoch"] # pylint: disable=attribute-defined-outside-init
|
|
77
|
+
|
|
78
|
+
def training_step(self, batch: Any, batch_idx: int):
|
|
79
|
+
loss_dict = self.get_losses(batch)
|
|
80
|
+
self.log(
|
|
81
|
+
"step",
|
|
82
|
+
float(self.global_step),
|
|
83
|
+
on_step=True,
|
|
84
|
+
prog_bar=True,
|
|
85
|
+
logger=True,
|
|
86
|
+
sync_dist=True,
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
self.log(
|
|
90
|
+
"sub_loss/train_dur_loss",
|
|
91
|
+
loss_dict["dur_loss"],
|
|
92
|
+
on_step=True,
|
|
93
|
+
on_epoch=True,
|
|
94
|
+
logger=True,
|
|
95
|
+
sync_dist=True,
|
|
96
|
+
)
|
|
97
|
+
self.log(
|
|
98
|
+
"sub_loss/train_prior_loss",
|
|
99
|
+
loss_dict["prior_loss"],
|
|
100
|
+
on_step=True,
|
|
101
|
+
on_epoch=True,
|
|
102
|
+
logger=True,
|
|
103
|
+
sync_dist=True,
|
|
104
|
+
)
|
|
105
|
+
self.log(
|
|
106
|
+
"sub_loss/train_diff_loss",
|
|
107
|
+
loss_dict["diff_loss"],
|
|
108
|
+
on_step=True,
|
|
109
|
+
on_epoch=True,
|
|
110
|
+
logger=True,
|
|
111
|
+
sync_dist=True,
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
total_loss = sum(loss_dict.values())
|
|
115
|
+
self.log(
|
|
116
|
+
"loss/train",
|
|
117
|
+
total_loss,
|
|
118
|
+
on_step=True,
|
|
119
|
+
on_epoch=True,
|
|
120
|
+
logger=True,
|
|
121
|
+
prog_bar=True,
|
|
122
|
+
sync_dist=True,
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
return {"loss": total_loss, "log": loss_dict}
|
|
126
|
+
|
|
127
|
+
def validation_step(self, batch: Any, batch_idx: int):
|
|
128
|
+
loss_dict = self.get_losses(batch)
|
|
129
|
+
self.log(
|
|
130
|
+
"sub_loss/val_dur_loss",
|
|
131
|
+
loss_dict["dur_loss"],
|
|
132
|
+
on_step=True,
|
|
133
|
+
on_epoch=True,
|
|
134
|
+
logger=True,
|
|
135
|
+
sync_dist=True,
|
|
136
|
+
)
|
|
137
|
+
self.log(
|
|
138
|
+
"sub_loss/val_prior_loss",
|
|
139
|
+
loss_dict["prior_loss"],
|
|
140
|
+
on_step=True,
|
|
141
|
+
on_epoch=True,
|
|
142
|
+
logger=True,
|
|
143
|
+
sync_dist=True,
|
|
144
|
+
)
|
|
145
|
+
self.log(
|
|
146
|
+
"sub_loss/val_diff_loss",
|
|
147
|
+
loss_dict["diff_loss"],
|
|
148
|
+
on_step=True,
|
|
149
|
+
on_epoch=True,
|
|
150
|
+
logger=True,
|
|
151
|
+
sync_dist=True,
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
total_loss = sum(loss_dict.values())
|
|
155
|
+
self.log(
|
|
156
|
+
"loss/val",
|
|
157
|
+
total_loss,
|
|
158
|
+
on_step=True,
|
|
159
|
+
on_epoch=True,
|
|
160
|
+
logger=True,
|
|
161
|
+
prog_bar=True,
|
|
162
|
+
sync_dist=True,
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
return total_loss
|
|
166
|
+
|
|
167
|
+
def on_validation_end(self) -> None:
|
|
168
|
+
if self.trainer.is_global_zero:
|
|
169
|
+
one_batch = next(iter(self.trainer.val_dataloaders))
|
|
170
|
+
if self.current_epoch == 0:
|
|
171
|
+
log.debug("Plotting original samples")
|
|
172
|
+
for i in range(2):
|
|
173
|
+
y = one_batch["y"][i].unsqueeze(0).to(self.device)
|
|
174
|
+
self.logger.experiment.add_image(
|
|
175
|
+
f"original/{i}",
|
|
176
|
+
plot_tensor(y.squeeze().cpu()),
|
|
177
|
+
self.current_epoch,
|
|
178
|
+
dataformats="HWC",
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
log.debug("Synthesising...")
|
|
182
|
+
for i in range(2):
|
|
183
|
+
x = one_batch["x"][i].unsqueeze(0).to(self.device)
|
|
184
|
+
x_lengths = one_batch["x_lengths"][i].unsqueeze(0).to(self.device)
|
|
185
|
+
spks = one_batch["spks"][i].unsqueeze(0).to(self.device) if one_batch["spks"] is not None else None
|
|
186
|
+
output = self.synthesise(x[:, :x_lengths], x_lengths, n_timesteps=10, spks=spks)
|
|
187
|
+
y_enc, y_dec = output["encoder_outputs"], output["decoder_outputs"]
|
|
188
|
+
attn = output["attn"]
|
|
189
|
+
self.logger.experiment.add_image(
|
|
190
|
+
f"generated_enc/{i}",
|
|
191
|
+
plot_tensor(y_enc.squeeze().cpu()),
|
|
192
|
+
self.current_epoch,
|
|
193
|
+
dataformats="HWC",
|
|
194
|
+
)
|
|
195
|
+
self.logger.experiment.add_image(
|
|
196
|
+
f"generated_dec/{i}",
|
|
197
|
+
plot_tensor(y_dec.squeeze().cpu()),
|
|
198
|
+
self.current_epoch,
|
|
199
|
+
dataformats="HWC",
|
|
200
|
+
)
|
|
201
|
+
self.logger.experiment.add_image(
|
|
202
|
+
f"alignment/{i}",
|
|
203
|
+
plot_tensor(attn.squeeze().cpu()),
|
|
204
|
+
self.current_epoch,
|
|
205
|
+
dataformats="HWC",
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
def on_before_optimizer_step(self, optimizer):
|
|
209
|
+
self.log_dict({f"grad_norm/{k}": v for k, v in grad_norm(self, norm_type=2).items()})
|
|
File without changes
|
|
@@ -0,0 +1,443 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn as nn
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
from conformer import ConformerBlock
|
|
8
|
+
from diffusers.models.activations import get_activation
|
|
9
|
+
from einops import pack, rearrange, repeat
|
|
10
|
+
|
|
11
|
+
from matcha.models.components.transformer import BasicTransformerBlock
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class SinusoidalPosEmb(torch.nn.Module):
|
|
15
|
+
def __init__(self, dim):
|
|
16
|
+
super().__init__()
|
|
17
|
+
self.dim = dim
|
|
18
|
+
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
|
|
19
|
+
|
|
20
|
+
def forward(self, x, scale=1000):
|
|
21
|
+
if x.ndim < 1:
|
|
22
|
+
x = x.unsqueeze(0)
|
|
23
|
+
device = x.device
|
|
24
|
+
half_dim = self.dim // 2
|
|
25
|
+
emb = math.log(10000) / (half_dim - 1)
|
|
26
|
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
|
27
|
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
|
28
|
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
|
29
|
+
return emb
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class Block1D(torch.nn.Module):
|
|
33
|
+
def __init__(self, dim, dim_out, groups=8):
|
|
34
|
+
super().__init__()
|
|
35
|
+
self.block = torch.nn.Sequential(
|
|
36
|
+
torch.nn.Conv1d(dim, dim_out, 3, padding=1),
|
|
37
|
+
torch.nn.GroupNorm(groups, dim_out),
|
|
38
|
+
nn.Mish(),
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
def forward(self, x, mask):
|
|
42
|
+
output = self.block(x * mask)
|
|
43
|
+
return output * mask
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class ResnetBlock1D(torch.nn.Module):
|
|
47
|
+
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
|
48
|
+
super().__init__()
|
|
49
|
+
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
|
|
50
|
+
|
|
51
|
+
self.block1 = Block1D(dim, dim_out, groups=groups)
|
|
52
|
+
self.block2 = Block1D(dim_out, dim_out, groups=groups)
|
|
53
|
+
|
|
54
|
+
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
|
|
55
|
+
|
|
56
|
+
def forward(self, x, mask, time_emb):
|
|
57
|
+
h = self.block1(x, mask)
|
|
58
|
+
h += self.mlp(time_emb).unsqueeze(-1)
|
|
59
|
+
h = self.block2(h, mask)
|
|
60
|
+
output = h + self.res_conv(x * mask)
|
|
61
|
+
return output
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class Downsample1D(nn.Module):
|
|
65
|
+
def __init__(self, dim):
|
|
66
|
+
super().__init__()
|
|
67
|
+
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
|
|
68
|
+
|
|
69
|
+
def forward(self, x):
|
|
70
|
+
return self.conv(x)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
class TimestepEmbedding(nn.Module):
|
|
74
|
+
def __init__(
|
|
75
|
+
self,
|
|
76
|
+
in_channels: int,
|
|
77
|
+
time_embed_dim: int,
|
|
78
|
+
act_fn: str = "silu",
|
|
79
|
+
out_dim: int = None,
|
|
80
|
+
post_act_fn: Optional[str] = None,
|
|
81
|
+
cond_proj_dim=None,
|
|
82
|
+
):
|
|
83
|
+
super().__init__()
|
|
84
|
+
|
|
85
|
+
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
|
|
86
|
+
|
|
87
|
+
if cond_proj_dim is not None:
|
|
88
|
+
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
|
|
89
|
+
else:
|
|
90
|
+
self.cond_proj = None
|
|
91
|
+
|
|
92
|
+
self.act = get_activation(act_fn)
|
|
93
|
+
|
|
94
|
+
if out_dim is not None:
|
|
95
|
+
time_embed_dim_out = out_dim
|
|
96
|
+
else:
|
|
97
|
+
time_embed_dim_out = time_embed_dim
|
|
98
|
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
|
|
99
|
+
|
|
100
|
+
if post_act_fn is None:
|
|
101
|
+
self.post_act = None
|
|
102
|
+
else:
|
|
103
|
+
self.post_act = get_activation(post_act_fn)
|
|
104
|
+
|
|
105
|
+
def forward(self, sample, condition=None):
|
|
106
|
+
if condition is not None:
|
|
107
|
+
sample = sample + self.cond_proj(condition)
|
|
108
|
+
sample = self.linear_1(sample)
|
|
109
|
+
|
|
110
|
+
if self.act is not None:
|
|
111
|
+
sample = self.act(sample)
|
|
112
|
+
|
|
113
|
+
sample = self.linear_2(sample)
|
|
114
|
+
|
|
115
|
+
if self.post_act is not None:
|
|
116
|
+
sample = self.post_act(sample)
|
|
117
|
+
return sample
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
class Upsample1D(nn.Module):
|
|
121
|
+
"""A 1D upsampling layer with an optional convolution.
|
|
122
|
+
|
|
123
|
+
Parameters:
|
|
124
|
+
channels (`int`):
|
|
125
|
+
number of channels in the inputs and outputs.
|
|
126
|
+
use_conv (`bool`, default `False`):
|
|
127
|
+
option to use a convolution.
|
|
128
|
+
use_conv_transpose (`bool`, default `False`):
|
|
129
|
+
option to use a convolution transpose.
|
|
130
|
+
out_channels (`int`, optional):
|
|
131
|
+
number of output channels. Defaults to `channels`.
|
|
132
|
+
"""
|
|
133
|
+
|
|
134
|
+
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
|
|
135
|
+
super().__init__()
|
|
136
|
+
self.channels = channels
|
|
137
|
+
self.out_channels = out_channels or channels
|
|
138
|
+
self.use_conv = use_conv
|
|
139
|
+
self.use_conv_transpose = use_conv_transpose
|
|
140
|
+
self.name = name
|
|
141
|
+
|
|
142
|
+
self.conv = None
|
|
143
|
+
if use_conv_transpose:
|
|
144
|
+
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
|
|
145
|
+
elif use_conv:
|
|
146
|
+
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
|
|
147
|
+
|
|
148
|
+
def forward(self, inputs):
|
|
149
|
+
assert inputs.shape[1] == self.channels
|
|
150
|
+
if self.use_conv_transpose:
|
|
151
|
+
return self.conv(inputs)
|
|
152
|
+
|
|
153
|
+
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
|
|
154
|
+
|
|
155
|
+
if self.use_conv:
|
|
156
|
+
outputs = self.conv(outputs)
|
|
157
|
+
|
|
158
|
+
return outputs
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class ConformerWrapper(ConformerBlock):
|
|
162
|
+
def __init__( # pylint: disable=useless-super-delegation
|
|
163
|
+
self,
|
|
164
|
+
*,
|
|
165
|
+
dim,
|
|
166
|
+
dim_head=64,
|
|
167
|
+
heads=8,
|
|
168
|
+
ff_mult=4,
|
|
169
|
+
conv_expansion_factor=2,
|
|
170
|
+
conv_kernel_size=31,
|
|
171
|
+
attn_dropout=0,
|
|
172
|
+
ff_dropout=0,
|
|
173
|
+
conv_dropout=0,
|
|
174
|
+
conv_causal=False,
|
|
175
|
+
):
|
|
176
|
+
super().__init__(
|
|
177
|
+
dim=dim,
|
|
178
|
+
dim_head=dim_head,
|
|
179
|
+
heads=heads,
|
|
180
|
+
ff_mult=ff_mult,
|
|
181
|
+
conv_expansion_factor=conv_expansion_factor,
|
|
182
|
+
conv_kernel_size=conv_kernel_size,
|
|
183
|
+
attn_dropout=attn_dropout,
|
|
184
|
+
ff_dropout=ff_dropout,
|
|
185
|
+
conv_dropout=conv_dropout,
|
|
186
|
+
conv_causal=conv_causal,
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
def forward(
|
|
190
|
+
self,
|
|
191
|
+
hidden_states,
|
|
192
|
+
attention_mask,
|
|
193
|
+
encoder_hidden_states=None,
|
|
194
|
+
encoder_attention_mask=None,
|
|
195
|
+
timestep=None,
|
|
196
|
+
):
|
|
197
|
+
return super().forward(x=hidden_states, mask=attention_mask.bool())
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
class Decoder(nn.Module):
|
|
201
|
+
def __init__(
|
|
202
|
+
self,
|
|
203
|
+
in_channels,
|
|
204
|
+
out_channels,
|
|
205
|
+
channels=(256, 256),
|
|
206
|
+
dropout=0.05,
|
|
207
|
+
attention_head_dim=64,
|
|
208
|
+
n_blocks=1,
|
|
209
|
+
num_mid_blocks=2,
|
|
210
|
+
num_heads=4,
|
|
211
|
+
act_fn="snake",
|
|
212
|
+
down_block_type="transformer",
|
|
213
|
+
mid_block_type="transformer",
|
|
214
|
+
up_block_type="transformer",
|
|
215
|
+
):
|
|
216
|
+
super().__init__()
|
|
217
|
+
channels = tuple(channels)
|
|
218
|
+
self.in_channels = in_channels
|
|
219
|
+
self.out_channels = out_channels
|
|
220
|
+
|
|
221
|
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
|
222
|
+
time_embed_dim = channels[0] * 4
|
|
223
|
+
self.time_mlp = TimestepEmbedding(
|
|
224
|
+
in_channels=in_channels,
|
|
225
|
+
time_embed_dim=time_embed_dim,
|
|
226
|
+
act_fn="silu",
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
self.down_blocks = nn.ModuleList([])
|
|
230
|
+
self.mid_blocks = nn.ModuleList([])
|
|
231
|
+
self.up_blocks = nn.ModuleList([])
|
|
232
|
+
|
|
233
|
+
output_channel = in_channels
|
|
234
|
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
|
235
|
+
input_channel = output_channel
|
|
236
|
+
output_channel = channels[i]
|
|
237
|
+
is_last = i == len(channels) - 1
|
|
238
|
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
239
|
+
transformer_blocks = nn.ModuleList(
|
|
240
|
+
[
|
|
241
|
+
self.get_block(
|
|
242
|
+
down_block_type,
|
|
243
|
+
output_channel,
|
|
244
|
+
attention_head_dim,
|
|
245
|
+
num_heads,
|
|
246
|
+
dropout,
|
|
247
|
+
act_fn,
|
|
248
|
+
)
|
|
249
|
+
for _ in range(n_blocks)
|
|
250
|
+
]
|
|
251
|
+
)
|
|
252
|
+
downsample = (
|
|
253
|
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
|
257
|
+
|
|
258
|
+
for i in range(num_mid_blocks):
|
|
259
|
+
input_channel = channels[-1]
|
|
260
|
+
out_channels = channels[-1]
|
|
261
|
+
|
|
262
|
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
263
|
+
|
|
264
|
+
transformer_blocks = nn.ModuleList(
|
|
265
|
+
[
|
|
266
|
+
self.get_block(
|
|
267
|
+
mid_block_type,
|
|
268
|
+
output_channel,
|
|
269
|
+
attention_head_dim,
|
|
270
|
+
num_heads,
|
|
271
|
+
dropout,
|
|
272
|
+
act_fn,
|
|
273
|
+
)
|
|
274
|
+
for _ in range(n_blocks)
|
|
275
|
+
]
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
|
279
|
+
|
|
280
|
+
channels = channels[::-1] + (channels[0],)
|
|
281
|
+
for i in range(len(channels) - 1):
|
|
282
|
+
input_channel = channels[i]
|
|
283
|
+
output_channel = channels[i + 1]
|
|
284
|
+
is_last = i == len(channels) - 2
|
|
285
|
+
|
|
286
|
+
resnet = ResnetBlock1D(
|
|
287
|
+
dim=2 * input_channel,
|
|
288
|
+
dim_out=output_channel,
|
|
289
|
+
time_emb_dim=time_embed_dim,
|
|
290
|
+
)
|
|
291
|
+
transformer_blocks = nn.ModuleList(
|
|
292
|
+
[
|
|
293
|
+
self.get_block(
|
|
294
|
+
up_block_type,
|
|
295
|
+
output_channel,
|
|
296
|
+
attention_head_dim,
|
|
297
|
+
num_heads,
|
|
298
|
+
dropout,
|
|
299
|
+
act_fn,
|
|
300
|
+
)
|
|
301
|
+
for _ in range(n_blocks)
|
|
302
|
+
]
|
|
303
|
+
)
|
|
304
|
+
upsample = (
|
|
305
|
+
Upsample1D(output_channel, use_conv_transpose=True)
|
|
306
|
+
if not is_last
|
|
307
|
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
|
311
|
+
|
|
312
|
+
self.final_block = Block1D(channels[-1], channels[-1])
|
|
313
|
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
|
314
|
+
|
|
315
|
+
self.initialize_weights()
|
|
316
|
+
# nn.init.normal_(self.final_proj.weight)
|
|
317
|
+
|
|
318
|
+
@staticmethod
|
|
319
|
+
def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
|
|
320
|
+
if block_type == "conformer":
|
|
321
|
+
block = ConformerWrapper(
|
|
322
|
+
dim=dim,
|
|
323
|
+
dim_head=attention_head_dim,
|
|
324
|
+
heads=num_heads,
|
|
325
|
+
ff_mult=1,
|
|
326
|
+
conv_expansion_factor=2,
|
|
327
|
+
ff_dropout=dropout,
|
|
328
|
+
attn_dropout=dropout,
|
|
329
|
+
conv_dropout=dropout,
|
|
330
|
+
conv_kernel_size=31,
|
|
331
|
+
)
|
|
332
|
+
elif block_type == "transformer":
|
|
333
|
+
block = BasicTransformerBlock(
|
|
334
|
+
dim=dim,
|
|
335
|
+
num_attention_heads=num_heads,
|
|
336
|
+
attention_head_dim=attention_head_dim,
|
|
337
|
+
dropout=dropout,
|
|
338
|
+
activation_fn=act_fn,
|
|
339
|
+
)
|
|
340
|
+
else:
|
|
341
|
+
raise ValueError(f"Unknown block type {block_type}")
|
|
342
|
+
|
|
343
|
+
return block
|
|
344
|
+
|
|
345
|
+
def initialize_weights(self):
|
|
346
|
+
for m in self.modules():
|
|
347
|
+
if isinstance(m, nn.Conv1d):
|
|
348
|
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
349
|
+
|
|
350
|
+
if m.bias is not None:
|
|
351
|
+
nn.init.constant_(m.bias, 0)
|
|
352
|
+
|
|
353
|
+
elif isinstance(m, nn.GroupNorm):
|
|
354
|
+
nn.init.constant_(m.weight, 1)
|
|
355
|
+
nn.init.constant_(m.bias, 0)
|
|
356
|
+
|
|
357
|
+
elif isinstance(m, nn.Linear):
|
|
358
|
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
359
|
+
|
|
360
|
+
if m.bias is not None:
|
|
361
|
+
nn.init.constant_(m.bias, 0)
|
|
362
|
+
|
|
363
|
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
|
364
|
+
"""Forward pass of the UNet1DConditional model.
|
|
365
|
+
|
|
366
|
+
Args:
|
|
367
|
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
|
368
|
+
mask (_type_): shape (batch_size, 1, time)
|
|
369
|
+
t (_type_): shape (batch_size)
|
|
370
|
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
|
371
|
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
|
372
|
+
|
|
373
|
+
Raises:
|
|
374
|
+
ValueError: _description_
|
|
375
|
+
ValueError: _description_
|
|
376
|
+
|
|
377
|
+
Returns:
|
|
378
|
+
_type_: _description_
|
|
379
|
+
"""
|
|
380
|
+
|
|
381
|
+
t = self.time_embeddings(t)
|
|
382
|
+
t = self.time_mlp(t)
|
|
383
|
+
|
|
384
|
+
x = pack([x, mu], "b * t")[0]
|
|
385
|
+
|
|
386
|
+
if spks is not None:
|
|
387
|
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
388
|
+
x = pack([x, spks], "b * t")[0]
|
|
389
|
+
|
|
390
|
+
hiddens = []
|
|
391
|
+
masks = [mask]
|
|
392
|
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
|
393
|
+
mask_down = masks[-1]
|
|
394
|
+
x = resnet(x, mask_down, t)
|
|
395
|
+
x = rearrange(x, "b c t -> b t c")
|
|
396
|
+
mask_down = rearrange(mask_down, "b 1 t -> b t")
|
|
397
|
+
for transformer_block in transformer_blocks:
|
|
398
|
+
x = transformer_block(
|
|
399
|
+
hidden_states=x,
|
|
400
|
+
attention_mask=mask_down,
|
|
401
|
+
timestep=t,
|
|
402
|
+
)
|
|
403
|
+
x = rearrange(x, "b t c -> b c t")
|
|
404
|
+
mask_down = rearrange(mask_down, "b t -> b 1 t")
|
|
405
|
+
hiddens.append(x) # Save hidden states for skip connections
|
|
406
|
+
x = downsample(x * mask_down)
|
|
407
|
+
masks.append(mask_down[:, :, ::2])
|
|
408
|
+
|
|
409
|
+
masks = masks[:-1]
|
|
410
|
+
mask_mid = masks[-1]
|
|
411
|
+
|
|
412
|
+
for resnet, transformer_blocks in self.mid_blocks:
|
|
413
|
+
x = resnet(x, mask_mid, t)
|
|
414
|
+
x = rearrange(x, "b c t -> b t c")
|
|
415
|
+
mask_mid = rearrange(mask_mid, "b 1 t -> b t")
|
|
416
|
+
for transformer_block in transformer_blocks:
|
|
417
|
+
x = transformer_block(
|
|
418
|
+
hidden_states=x,
|
|
419
|
+
attention_mask=mask_mid,
|
|
420
|
+
timestep=t,
|
|
421
|
+
)
|
|
422
|
+
x = rearrange(x, "b t c -> b c t")
|
|
423
|
+
mask_mid = rearrange(mask_mid, "b t -> b 1 t")
|
|
424
|
+
|
|
425
|
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
|
426
|
+
mask_up = masks.pop()
|
|
427
|
+
x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
|
|
428
|
+
x = rearrange(x, "b c t -> b t c")
|
|
429
|
+
mask_up = rearrange(mask_up, "b 1 t -> b t")
|
|
430
|
+
for transformer_block in transformer_blocks:
|
|
431
|
+
x = transformer_block(
|
|
432
|
+
hidden_states=x,
|
|
433
|
+
attention_mask=mask_up,
|
|
434
|
+
timestep=t,
|
|
435
|
+
)
|
|
436
|
+
x = rearrange(x, "b t c -> b c t")
|
|
437
|
+
mask_up = rearrange(mask_up, "b t -> b 1 t")
|
|
438
|
+
x = upsample(x * mask_up)
|
|
439
|
+
|
|
440
|
+
x = self.final_block(x, mask_up)
|
|
441
|
+
output = self.final_proj(x * mask_up)
|
|
442
|
+
|
|
443
|
+
return output * mask
|