minicpmo-utils 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cosyvoice/__init__.py +17 -0
- cosyvoice/bin/average_model.py +93 -0
- cosyvoice/bin/export_jit.py +103 -0
- cosyvoice/bin/export_onnx.py +120 -0
- cosyvoice/bin/inference_deprecated.py +126 -0
- cosyvoice/bin/train.py +195 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +209 -0
- cosyvoice/cli/frontend.py +238 -0
- cosyvoice/cli/model.py +386 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +151 -0
- cosyvoice/dataset/processor.py +434 -0
- cosyvoice/flow/decoder.py +494 -0
- cosyvoice/flow/flow.py +281 -0
- cosyvoice/flow/flow_matching.py +227 -0
- cosyvoice/flow/length_regulator.py +70 -0
- cosyvoice/hifigan/discriminator.py +230 -0
- cosyvoice/hifigan/f0_predictor.py +58 -0
- cosyvoice/hifigan/generator.py +582 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/llm.py +610 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- cosyvoice/tokenizer/tokenizer.py +279 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +302 -0
- cosyvoice/transformer/encoder.py +474 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/transformer/upsample_encoder.py +320 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/common.py +186 -0
- cosyvoice/utils/executor.py +176 -0
- cosyvoice/utils/file_utils.py +129 -0
- cosyvoice/utils/frontend_utils.py +136 -0
- cosyvoice/utils/losses.py +57 -0
- cosyvoice/utils/mask.py +265 -0
- cosyvoice/utils/scheduler.py +738 -0
- cosyvoice/utils/train_utils.py +367 -0
- cosyvoice/vllm/cosyvoice2.py +103 -0
- matcha/__init__.py +0 -0
- matcha/app.py +357 -0
- matcha/cli.py +418 -0
- matcha/hifigan/__init__.py +0 -0
- matcha/hifigan/config.py +28 -0
- matcha/hifigan/denoiser.py +64 -0
- matcha/hifigan/env.py +17 -0
- matcha/hifigan/meldataset.py +217 -0
- matcha/hifigan/models.py +368 -0
- matcha/hifigan/xutils.py +60 -0
- matcha/models/__init__.py +0 -0
- matcha/models/baselightningmodule.py +209 -0
- matcha/models/components/__init__.py +0 -0
- matcha/models/components/decoder.py +443 -0
- matcha/models/components/flow_matching.py +132 -0
- matcha/models/components/text_encoder.py +410 -0
- matcha/models/components/transformer.py +316 -0
- matcha/models/matcha_tts.py +239 -0
- matcha/onnx/__init__.py +0 -0
- matcha/onnx/export.py +181 -0
- matcha/onnx/infer.py +168 -0
- matcha/text/__init__.py +53 -0
- matcha/text/cleaners.py +116 -0
- matcha/text/numbers.py +71 -0
- matcha/text/symbols.py +17 -0
- matcha/train.py +122 -0
- matcha/utils/__init__.py +5 -0
- matcha/utils/audio.py +82 -0
- matcha/utils/generate_data_statistics.py +111 -0
- matcha/utils/instantiators.py +56 -0
- matcha/utils/logging_utils.py +53 -0
- matcha/utils/model.py +90 -0
- matcha/utils/monotonic_align/__init__.py +22 -0
- matcha/utils/monotonic_align/setup.py +7 -0
- matcha/utils/pylogger.py +21 -0
- matcha/utils/rich_utils.py +101 -0
- matcha/utils/utils.py +219 -0
- minicpmo/__init__.py +24 -0
- minicpmo/utils.py +636 -0
- minicpmo/version.py +2 -0
- minicpmo_utils-0.1.0.dist-info/METADATA +72 -0
- minicpmo_utils-0.1.0.dist-info/RECORD +148 -0
- minicpmo_utils-0.1.0.dist-info/WHEEL +5 -0
- minicpmo_utils-0.1.0.dist-info/top_level.txt +5 -0
- s3tokenizer/__init__.py +153 -0
- s3tokenizer/assets/BAC009S0764W0121.wav +0 -0
- s3tokenizer/assets/BAC009S0764W0122.wav +0 -0
- s3tokenizer/assets/mel_filters.npz +0 -0
- s3tokenizer/cli.py +183 -0
- s3tokenizer/model.py +546 -0
- s3tokenizer/model_v2.py +605 -0
- s3tokenizer/utils.py +390 -0
- stepaudio2/__init__.py +40 -0
- stepaudio2/cosyvoice2/__init__.py +1 -0
- stepaudio2/cosyvoice2/flow/__init__.py +0 -0
- stepaudio2/cosyvoice2/flow/decoder_dit.py +585 -0
- stepaudio2/cosyvoice2/flow/flow.py +230 -0
- stepaudio2/cosyvoice2/flow/flow_matching.py +205 -0
- stepaudio2/cosyvoice2/transformer/__init__.py +0 -0
- stepaudio2/cosyvoice2/transformer/attention.py +328 -0
- stepaudio2/cosyvoice2/transformer/embedding.py +119 -0
- stepaudio2/cosyvoice2/transformer/encoder_layer.py +163 -0
- stepaudio2/cosyvoice2/transformer/positionwise_feed_forward.py +56 -0
- stepaudio2/cosyvoice2/transformer/subsampling.py +79 -0
- stepaudio2/cosyvoice2/transformer/upsample_encoder_v2.py +483 -0
- stepaudio2/cosyvoice2/utils/__init__.py +1 -0
- stepaudio2/cosyvoice2/utils/class_utils.py +41 -0
- stepaudio2/cosyvoice2/utils/common.py +101 -0
- stepaudio2/cosyvoice2/utils/mask.py +49 -0
- stepaudio2/flashcosyvoice/__init__.py +0 -0
- stepaudio2/flashcosyvoice/cli.py +424 -0
- stepaudio2/flashcosyvoice/config.py +80 -0
- stepaudio2/flashcosyvoice/cosyvoice2.py +160 -0
- stepaudio2/flashcosyvoice/cosyvoice3.py +1 -0
- stepaudio2/flashcosyvoice/engine/__init__.py +0 -0
- stepaudio2/flashcosyvoice/engine/block_manager.py +114 -0
- stepaudio2/flashcosyvoice/engine/llm_engine.py +125 -0
- stepaudio2/flashcosyvoice/engine/model_runner.py +310 -0
- stepaudio2/flashcosyvoice/engine/scheduler.py +77 -0
- stepaudio2/flashcosyvoice/engine/sequence.py +90 -0
- stepaudio2/flashcosyvoice/modules/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow.py +198 -0
- stepaudio2/flashcosyvoice/modules/flow_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow_components/estimator.py +974 -0
- stepaudio2/flashcosyvoice/modules/flow_components/upsample_encoder.py +998 -0
- stepaudio2/flashcosyvoice/modules/hifigan.py +249 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/layers.py +433 -0
- stepaudio2/flashcosyvoice/modules/qwen2.py +92 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/layers.py +616 -0
- stepaudio2/flashcosyvoice/modules/sampler.py +231 -0
- stepaudio2/flashcosyvoice/utils/__init__.py +0 -0
- stepaudio2/flashcosyvoice/utils/audio.py +77 -0
- stepaudio2/flashcosyvoice/utils/context.py +28 -0
- stepaudio2/flashcosyvoice/utils/loader.py +116 -0
- stepaudio2/flashcosyvoice/utils/memory.py +19 -0
- stepaudio2/stepaudio2.py +204 -0
- stepaudio2/token2wav.py +248 -0
- stepaudio2/utils.py +91 -0
minicpmo/utils.py
ADDED
|
@@ -0,0 +1,636 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# MiniCPM-o utils: 视频 / 音频处理等通用工具。
|
|
4
|
+
#
|
|
5
|
+
# 该模块设计为可以通过:
|
|
6
|
+
# from minicpmo.utils import ...
|
|
7
|
+
# 在外部项目中直接使用。
|
|
8
|
+
|
|
9
|
+
import base64
|
|
10
|
+
import logging
|
|
11
|
+
import math
|
|
12
|
+
import os
|
|
13
|
+
import subprocess
|
|
14
|
+
import tempfile
|
|
15
|
+
from io import BytesIO
|
|
16
|
+
|
|
17
|
+
import librosa
|
|
18
|
+
import numpy as np
|
|
19
|
+
from decord import cpu
|
|
20
|
+
from decord import VideoReader
|
|
21
|
+
from PIL import Image
|
|
22
|
+
|
|
23
|
+
logger = logging.getLogger(__name__)
|
|
24
|
+
|
|
25
|
+
MAX_NUM_FRAMES = int(os.getenv("MAX_NUM_FRAMES", 64))
|
|
26
|
+
VIDEO_MME_DURATION = os.getenv("VIDEO_MME_DURATION", "ALL")
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def concat_images(images, bg_color=(255, 255, 255), cell_size=None, line_color=(0, 0, 0), line_width=6):
|
|
30
|
+
"""
|
|
31
|
+
images: List[PIL.Image.Image]
|
|
32
|
+
Layout rules: 3 images -> 1x3; 4 images -> 2x2; 9 images -> 3x3; others: 1xN
|
|
33
|
+
Only draw separator lines at joints (no outer border).
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
_converted_images = []
|
|
37
|
+
for im in images:
|
|
38
|
+
if isinstance(im, Image.Image):
|
|
39
|
+
_converted_images.append(im)
|
|
40
|
+
elif isinstance(im, (bytes, bytearray)):
|
|
41
|
+
_converted_images.append(Image.open(BytesIO(im)).convert("RGB"))
|
|
42
|
+
elif isinstance(im, str):
|
|
43
|
+
b64 = im.split(",")[-1] if ";base64," in im else im
|
|
44
|
+
img_bytes = base64.b64decode(b64)
|
|
45
|
+
_converted_images.append(Image.open(BytesIO(img_bytes)).convert("RGB"))
|
|
46
|
+
else:
|
|
47
|
+
raise TypeError(f"Unsupported image type: {type(im)}")
|
|
48
|
+
images = _converted_images
|
|
49
|
+
n = len(images)
|
|
50
|
+
if n == 0:
|
|
51
|
+
raise ValueError("images is empty")
|
|
52
|
+
|
|
53
|
+
if n == 4:
|
|
54
|
+
rows, cols = 2, 2
|
|
55
|
+
elif n == 3:
|
|
56
|
+
# 动态选择 1x3 / 3x1,使得最终画布更接近正方形
|
|
57
|
+
if cell_size is None:
|
|
58
|
+
cell_w = max(im.width for im in images)
|
|
59
|
+
cell_h = max(im.height for im in images)
|
|
60
|
+
else:
|
|
61
|
+
cell_w, cell_h = cell_size
|
|
62
|
+
|
|
63
|
+
candidates = [(1, 3), (3, 1)]
|
|
64
|
+
|
|
65
|
+
def canvas_ratio(r, c):
|
|
66
|
+
W = c * cell_w + (c - 1) * line_width
|
|
67
|
+
H = r * cell_h + (r - 1) * line_width
|
|
68
|
+
return W / max(1, H)
|
|
69
|
+
|
|
70
|
+
ratios = [abs(canvas_ratio(r, c) - 1.0) for (r, c) in candidates]
|
|
71
|
+
best_idx = int(np.argmin(ratios))
|
|
72
|
+
rows, cols = candidates[best_idx]
|
|
73
|
+
elif n == 1:
|
|
74
|
+
rows, cols = 1, 1
|
|
75
|
+
elif n == 2:
|
|
76
|
+
# 动态选择 1x2 / 2x1,使得最终画布更接近正方形
|
|
77
|
+
if cell_size is None:
|
|
78
|
+
cell_w = max(im.width for im in images)
|
|
79
|
+
cell_h = max(im.height for im in images)
|
|
80
|
+
else:
|
|
81
|
+
cell_w, cell_h = cell_size
|
|
82
|
+
candidates = [(1, 2), (2, 1)]
|
|
83
|
+
|
|
84
|
+
def canvas_ratio(r, c):
|
|
85
|
+
W = c * cell_w + (c - 1) * line_width
|
|
86
|
+
H = r * cell_h + (r - 1) * line_width
|
|
87
|
+
return W / max(1, H)
|
|
88
|
+
|
|
89
|
+
ratios = [abs(canvas_ratio(r, c) - 1.0) for (r, c) in candidates]
|
|
90
|
+
if ratios[0] == ratios[1]:
|
|
91
|
+
avg_ar = np.mean([im.width / max(1, im.height) for im in images])
|
|
92
|
+
rows, cols = (1, 2) if avg_ar >= 1.0 else (2, 1)
|
|
93
|
+
else:
|
|
94
|
+
best_idx = int(np.argmin(ratios))
|
|
95
|
+
rows, cols = candidates[best_idx]
|
|
96
|
+
else:
|
|
97
|
+
rows, cols = 1, n
|
|
98
|
+
|
|
99
|
+
if cell_size is None:
|
|
100
|
+
cell_w = max(im.width for im in images)
|
|
101
|
+
cell_h = max(im.height for im in images)
|
|
102
|
+
else:
|
|
103
|
+
cell_w, cell_h = cell_size
|
|
104
|
+
|
|
105
|
+
def letterbox(im, tw, th):
|
|
106
|
+
im = im.convert("RGB")
|
|
107
|
+
w, h = im.size
|
|
108
|
+
s = min(tw / w, th / h)
|
|
109
|
+
nw, nh = max(1, int(round(w * s))), max(1, int(round(h * s)))
|
|
110
|
+
try:
|
|
111
|
+
im_r = im.resize((nw, nh), Image.Resampling.BICUBIC)
|
|
112
|
+
except AttributeError:
|
|
113
|
+
im_r = im.resize((nw, nh), Image.BICUBIC)
|
|
114
|
+
canvas = Image.new("RGB", (tw, th), bg_color)
|
|
115
|
+
canvas.paste(im_r, ((tw - nw) // 2, (th - nh) // 2))
|
|
116
|
+
return canvas
|
|
117
|
+
|
|
118
|
+
W = cols * cell_w + (cols - 1) * line_width
|
|
119
|
+
H = rows * cell_h + (rows - 1) * line_width
|
|
120
|
+
canvas = Image.new("RGB", (W, H), line_color)
|
|
121
|
+
|
|
122
|
+
for i, im in enumerate(images[: rows * cols]):
|
|
123
|
+
r, c = divmod(i, cols)
|
|
124
|
+
cell = letterbox(im, cell_w, cell_h)
|
|
125
|
+
x = c * (cell_w + line_width)
|
|
126
|
+
y = r * (cell_h + line_width)
|
|
127
|
+
canvas.paste(cell, (x, y))
|
|
128
|
+
|
|
129
|
+
return canvas
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
def uniform_sample(l, n):
|
|
133
|
+
if len(l) <= n:
|
|
134
|
+
return l
|
|
135
|
+
idxs = np.linspace(0, len(l) - 1, n, dtype=int)
|
|
136
|
+
return [l[i] for i in idxs]
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def get_audio_segments(
|
|
140
|
+
timestamps, duration, video_path, audio_path=None, sr=16000, adjust_length=False, use_ffmpeg=False
|
|
141
|
+
):
|
|
142
|
+
"""
|
|
143
|
+
根据时间戳切分音频。
|
|
144
|
+
"""
|
|
145
|
+
import subprocess
|
|
146
|
+
import warnings
|
|
147
|
+
|
|
148
|
+
if audio_path is None:
|
|
149
|
+
if use_ffmpeg:
|
|
150
|
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
|
|
151
|
+
temp_audio_path = temp_audio_file.name
|
|
152
|
+
try:
|
|
153
|
+
cmd = ["ffmpeg", "-y", "-i", video_path, "-vn", "-ac", "1", "-ar", str(sr), temp_audio_path]
|
|
154
|
+
subprocess.run(cmd, check=True, capture_output=True)
|
|
155
|
+
with warnings.catch_warnings():
|
|
156
|
+
warnings.filterwarnings("ignore", message="PySoundFile failed")
|
|
157
|
+
audio_np, sr = librosa.load(temp_audio_path, sr=sr, mono=True)
|
|
158
|
+
finally:
|
|
159
|
+
if os.path.exists(temp_audio_path):
|
|
160
|
+
os.remove(temp_audio_path)
|
|
161
|
+
else:
|
|
162
|
+
try:
|
|
163
|
+
with warnings.catch_warnings():
|
|
164
|
+
warnings.filterwarnings("ignore", message="PySoundFile failed")
|
|
165
|
+
audio_np, sr = librosa.load(video_path, sr=sr, mono=True)
|
|
166
|
+
except Exception:
|
|
167
|
+
try:
|
|
168
|
+
from moviepy import VideoFileClip # moviepy >= 2.0
|
|
169
|
+
except ImportError:
|
|
170
|
+
from moviepy.editor import VideoFileClip # moviepy < 2.0
|
|
171
|
+
|
|
172
|
+
video_clip = VideoFileClip(video_path)
|
|
173
|
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
|
|
174
|
+
temp_audio_file_path = temp_audio_file.name
|
|
175
|
+
video_clip.audio.write_audiofile(temp_audio_file_path, codec="pcm_s16le", fps=sr)
|
|
176
|
+
with warnings.catch_warnings():
|
|
177
|
+
warnings.filterwarnings("ignore", message="PySoundFile failed")
|
|
178
|
+
audio_np, sr = librosa.load(temp_audio_file_path, sr=sr, mono=True)
|
|
179
|
+
else:
|
|
180
|
+
with warnings.catch_warnings():
|
|
181
|
+
warnings.filterwarnings("ignore", message="PySoundFile failed")
|
|
182
|
+
audio_np, sr = librosa.load(audio_path, sr=sr, mono=True)
|
|
183
|
+
|
|
184
|
+
if adjust_length:
|
|
185
|
+
num_frames = len(timestamps)
|
|
186
|
+
target_length = num_frames * sr
|
|
187
|
+
current_length = len(audio_np)
|
|
188
|
+
if current_length < target_length:
|
|
189
|
+
padding = np.zeros(target_length - current_length, dtype=audio_np.dtype)
|
|
190
|
+
audio_np = np.concatenate([audio_np, padding])
|
|
191
|
+
elif current_length > target_length:
|
|
192
|
+
audio_np = audio_np[:target_length]
|
|
193
|
+
|
|
194
|
+
audio_segments = []
|
|
195
|
+
for i in range(len(timestamps)):
|
|
196
|
+
start_sample = i * sr
|
|
197
|
+
end_sample = (i + 1) * sr
|
|
198
|
+
segment = audio_np[start_sample:end_sample]
|
|
199
|
+
audio_segments.append(segment)
|
|
200
|
+
else:
|
|
201
|
+
audio_segments = []
|
|
202
|
+
for i in range(len(timestamps)):
|
|
203
|
+
start_time = timestamps[i]
|
|
204
|
+
if i < len(timestamps) - 1:
|
|
205
|
+
end_time = timestamps[i + 1]
|
|
206
|
+
else:
|
|
207
|
+
end_time = duration
|
|
208
|
+
|
|
209
|
+
start_sample = int(start_time * sr)
|
|
210
|
+
end_sample = int(end_time * sr)
|
|
211
|
+
segment = audio_np[start_sample:end_sample]
|
|
212
|
+
|
|
213
|
+
if i == len(timestamps) - 1 and len(segment) < 1600:
|
|
214
|
+
segment = np.concatenate([segment, np.zeros(1600 - len(segment), dtype=segment.dtype)])
|
|
215
|
+
audio_segments.append(segment)
|
|
216
|
+
|
|
217
|
+
return audio_segments
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
def get_video_duration(video_path: str) -> float:
|
|
221
|
+
cmd = [
|
|
222
|
+
"ffprobe",
|
|
223
|
+
"-v",
|
|
224
|
+
"error",
|
|
225
|
+
"-show_entries",
|
|
226
|
+
"format=duration",
|
|
227
|
+
"-of",
|
|
228
|
+
"default=noprint_wrappers=1:nokey=1",
|
|
229
|
+
video_path,
|
|
230
|
+
]
|
|
231
|
+
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
|
|
232
|
+
return float(result.stdout.strip())
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
def get_video_frame_audio_segments(
|
|
236
|
+
video_path, audio_path=None, last_vad_timestamp=None, stack_frames=1, use_ffmpeg=False, adjust_audio_length=False
|
|
237
|
+
):
|
|
238
|
+
"""
|
|
239
|
+
同时抽取视频帧和对应音频片段,返回:
|
|
240
|
+
- video_segments: List[PIL.Image]
|
|
241
|
+
- audio_segments: List[np.ndarray]
|
|
242
|
+
- stacked_video_segments: List[PIL.Image] or None
|
|
243
|
+
"""
|
|
244
|
+
|
|
245
|
+
if use_ffmpeg:
|
|
246
|
+
_duration = get_video_duration(video_path)
|
|
247
|
+
_temp_dir = tempfile.TemporaryDirectory()
|
|
248
|
+
_temp_dir_path = _temp_dir.name
|
|
249
|
+
|
|
250
|
+
def _get_duration_and_fps():
|
|
251
|
+
return _duration, None
|
|
252
|
+
|
|
253
|
+
def _extract_frames_by_timestamps(timestamps, is_long_video):
|
|
254
|
+
frames_dir = os.path.join(_temp_dir_path, "frames_1fps")
|
|
255
|
+
os.makedirs(frames_dir, exist_ok=True)
|
|
256
|
+
|
|
257
|
+
if is_long_video:
|
|
258
|
+
fps_to_extract = 10
|
|
259
|
+
else:
|
|
260
|
+
fps_to_extract = 1
|
|
261
|
+
|
|
262
|
+
frame_cmd = [
|
|
263
|
+
"ffmpeg",
|
|
264
|
+
"-y",
|
|
265
|
+
"-i",
|
|
266
|
+
video_path,
|
|
267
|
+
"-vf",
|
|
268
|
+
f"fps={fps_to_extract}",
|
|
269
|
+
os.path.join(frames_dir, "frame_%06d.jpg"),
|
|
270
|
+
]
|
|
271
|
+
subprocess.run(frame_cmd, capture_output=True, check=True)
|
|
272
|
+
|
|
273
|
+
frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith(".jpg")])
|
|
274
|
+
|
|
275
|
+
if is_long_video:
|
|
276
|
+
total_frames = len(frame_files)
|
|
277
|
+
sampled_indices = uniform_sample(list(range(total_frames)), MAX_NUM_FRAMES)
|
|
278
|
+
new_timestamps = [round(i / fps_to_extract, 1) for i in sampled_indices]
|
|
279
|
+
frames = []
|
|
280
|
+
for idx in sampled_indices:
|
|
281
|
+
frame_path = os.path.join(frames_dir, frame_files[idx])
|
|
282
|
+
frames.append(Image.open(frame_path).convert("RGB"))
|
|
283
|
+
return frames, new_timestamps
|
|
284
|
+
else:
|
|
285
|
+
new_timestamps = list(range(len(frame_files)))
|
|
286
|
+
frames = []
|
|
287
|
+
for f in frame_files:
|
|
288
|
+
frame_path = os.path.join(frames_dir, f)
|
|
289
|
+
frames.append(Image.open(frame_path).convert("RGB"))
|
|
290
|
+
return frames, new_timestamps
|
|
291
|
+
|
|
292
|
+
def _extract_stack_frames(all_frame_timestamps, duration, num_seconds):
|
|
293
|
+
stack_frames_dir = os.path.join(_temp_dir_path, "frames_stack")
|
|
294
|
+
os.makedirs(stack_frames_dir, exist_ok=True)
|
|
295
|
+
|
|
296
|
+
frame_cmd = [
|
|
297
|
+
"ffmpeg",
|
|
298
|
+
"-y",
|
|
299
|
+
"-i",
|
|
300
|
+
video_path,
|
|
301
|
+
"-vf",
|
|
302
|
+
f"fps={stack_frames}",
|
|
303
|
+
os.path.join(stack_frames_dir, "frame_%06d.jpg"),
|
|
304
|
+
]
|
|
305
|
+
subprocess.run(frame_cmd, capture_output=True, check=True)
|
|
306
|
+
|
|
307
|
+
stack_frame_files = sorted([f for f in os.listdir(stack_frames_dir) if f.endswith(".jpg")])
|
|
308
|
+
|
|
309
|
+
new_timestamps = []
|
|
310
|
+
valid_frame_indices = []
|
|
311
|
+
for i, f in enumerate(stack_frame_files):
|
|
312
|
+
if i % stack_frames != 0:
|
|
313
|
+
ts = i / stack_frames
|
|
314
|
+
if ts < duration:
|
|
315
|
+
new_timestamps.append(ts)
|
|
316
|
+
valid_frame_indices.append(i)
|
|
317
|
+
|
|
318
|
+
max_stack_frames_count = MAX_NUM_FRAMES * (stack_frames - 1)
|
|
319
|
+
if len(valid_frame_indices) > max_stack_frames_count:
|
|
320
|
+
sampled = uniform_sample(list(zip(valid_frame_indices, new_timestamps)), max_stack_frames_count)
|
|
321
|
+
valid_frame_indices = [x[0] for x in sampled]
|
|
322
|
+
new_timestamps = [x[1] for x in sampled]
|
|
323
|
+
|
|
324
|
+
frames = []
|
|
325
|
+
for idx in valid_frame_indices:
|
|
326
|
+
frame_path = os.path.join(stack_frames_dir, stack_frame_files[idx])
|
|
327
|
+
frames.append(Image.open(frame_path).convert("RGB"))
|
|
328
|
+
|
|
329
|
+
return frames, new_timestamps
|
|
330
|
+
|
|
331
|
+
def _cleanup():
|
|
332
|
+
_temp_dir.cleanup()
|
|
333
|
+
|
|
334
|
+
else:
|
|
335
|
+
_vr = VideoReader(str(video_path), ctx=cpu(0))
|
|
336
|
+
_avg_fps = _vr.get_avg_fps()
|
|
337
|
+
_duration = len(_vr) / _avg_fps
|
|
338
|
+
|
|
339
|
+
def _get_duration_and_fps():
|
|
340
|
+
return _duration, _avg_fps
|
|
341
|
+
|
|
342
|
+
def _extract_frames_by_timestamps(timestamps, is_long_video):
|
|
343
|
+
if is_long_video:
|
|
344
|
+
frame_idx = [min(int(ts * _avg_fps), len(_vr) - 1) for ts in timestamps]
|
|
345
|
+
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
|
|
346
|
+
new_timestamps = uniform_sample(timestamps, MAX_NUM_FRAMES)
|
|
347
|
+
else:
|
|
348
|
+
num_seconds = len(timestamps)
|
|
349
|
+
frame_idx = [int(i * _avg_fps) for i in range(num_seconds)]
|
|
350
|
+
new_timestamps = timestamps
|
|
351
|
+
|
|
352
|
+
video = _vr.get_batch(frame_idx).asnumpy()
|
|
353
|
+
frames = [Image.fromarray(v.astype("uint8")).convert("RGB") for v in video]
|
|
354
|
+
return frames, new_timestamps
|
|
355
|
+
|
|
356
|
+
def _extract_stack_frames(all_frame_timestamps, duration, num_seconds):
|
|
357
|
+
stack_frame_idx = [min(int(ts * _avg_fps), len(_vr) - 1) for ts in all_frame_timestamps]
|
|
358
|
+
|
|
359
|
+
max_stack_frames_count = MAX_NUM_FRAMES * (stack_frames - 1)
|
|
360
|
+
if len(stack_frame_idx) > max_stack_frames_count:
|
|
361
|
+
stack_frame_idx = uniform_sample(stack_frame_idx, max_stack_frames_count)
|
|
362
|
+
new_timestamps = uniform_sample(all_frame_timestamps, max_stack_frames_count)
|
|
363
|
+
else:
|
|
364
|
+
new_timestamps = all_frame_timestamps
|
|
365
|
+
|
|
366
|
+
stack_video = _vr.get_batch(stack_frame_idx).asnumpy()
|
|
367
|
+
frames = [Image.fromarray(v.astype("uint8")).convert("RGB") for v in stack_video]
|
|
368
|
+
return frames, new_timestamps
|
|
369
|
+
|
|
370
|
+
def _cleanup():
|
|
371
|
+
pass
|
|
372
|
+
|
|
373
|
+
try:
|
|
374
|
+
duration, avg_fps = _get_duration_and_fps()
|
|
375
|
+
if last_vad_timestamp is not None:
|
|
376
|
+
duration = last_vad_timestamp
|
|
377
|
+
|
|
378
|
+
num_seconds = math.ceil(duration)
|
|
379
|
+
second_timestamps = list(range(num_seconds))
|
|
380
|
+
|
|
381
|
+
is_long_video = duration > MAX_NUM_FRAMES
|
|
382
|
+
if is_long_video:
|
|
383
|
+
timestamps = [round(i * 0.1, 1) for i in range(int(duration / 0.1))]
|
|
384
|
+
else:
|
|
385
|
+
timestamps = second_timestamps
|
|
386
|
+
|
|
387
|
+
video_segments, timestamps = _extract_frames_by_timestamps(timestamps, is_long_video)
|
|
388
|
+
|
|
389
|
+
stacked_video_segments = None
|
|
390
|
+
if stack_frames > 1:
|
|
391
|
+
all_frame_timestamps = []
|
|
392
|
+
for sec in range(num_seconds):
|
|
393
|
+
for i in range(1, stack_frames):
|
|
394
|
+
ts = sec + i / stack_frames
|
|
395
|
+
if ts < duration:
|
|
396
|
+
all_frame_timestamps.append(ts)
|
|
397
|
+
|
|
398
|
+
all_frames, all_frame_timestamps = _extract_stack_frames(all_frame_timestamps, duration, num_seconds)
|
|
399
|
+
|
|
400
|
+
stacked_video_segments = []
|
|
401
|
+
frame_cursor = 0
|
|
402
|
+
for sec in range(num_seconds):
|
|
403
|
+
frames_this_second = []
|
|
404
|
+
while frame_cursor < len(all_frame_timestamps) and all_frame_timestamps[frame_cursor] < sec + 1:
|
|
405
|
+
frames_this_second.append(all_frames[frame_cursor])
|
|
406
|
+
frame_cursor += 1
|
|
407
|
+
|
|
408
|
+
if len(frames_this_second) > 0:
|
|
409
|
+
stacked_frame = concat_images(frames_this_second)
|
|
410
|
+
stacked_video_segments.append(stacked_frame)
|
|
411
|
+
else:
|
|
412
|
+
stacked_video_segments.append(None)
|
|
413
|
+
|
|
414
|
+
audio_segments = get_audio_segments(
|
|
415
|
+
timestamps, duration, video_path, audio_path, adjust_length=adjust_audio_length, use_ffmpeg=use_ffmpeg
|
|
416
|
+
)
|
|
417
|
+
|
|
418
|
+
return video_segments, audio_segments, stacked_video_segments
|
|
419
|
+
|
|
420
|
+
finally:
|
|
421
|
+
_cleanup()
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
def format_srt_time(seconds: float) -> str:
|
|
425
|
+
"""Convert seconds to SRT time format HH:MM:SS,mmm"""
|
|
426
|
+
hours = int(seconds // 3600)
|
|
427
|
+
minutes = int((seconds % 3600) // 60)
|
|
428
|
+
secs = int(seconds % 60)
|
|
429
|
+
millis = int((seconds % 1) * 1000)
|
|
430
|
+
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
def generate_srt_from_results(results_log: list, video_duration: float, output_srt_path: str) -> int:
|
|
434
|
+
"""
|
|
435
|
+
从推理结果生成 SRT 字幕文件。
|
|
436
|
+
"""
|
|
437
|
+
|
|
438
|
+
special_tokens = ["<|tts_pad|>", "<|turn_eos|>", "<|chunk_eos|>", "<|listen|>", "<|speak|>"]
|
|
439
|
+
|
|
440
|
+
srt_lines = []
|
|
441
|
+
subtitle_index = 1
|
|
442
|
+
|
|
443
|
+
for result in results_log:
|
|
444
|
+
chunk_idx = result["chunk_idx"]
|
|
445
|
+
text = result.get("text", "")
|
|
446
|
+
is_listen = result.get("is_listen", True)
|
|
447
|
+
|
|
448
|
+
if not text or is_listen:
|
|
449
|
+
continue
|
|
450
|
+
|
|
451
|
+
clean_text = text
|
|
452
|
+
for token in special_tokens:
|
|
453
|
+
clean_text = clean_text.replace(token, "")
|
|
454
|
+
clean_text = clean_text.strip()
|
|
455
|
+
|
|
456
|
+
if not clean_text:
|
|
457
|
+
continue
|
|
458
|
+
|
|
459
|
+
start_time = chunk_idx + 1
|
|
460
|
+
end_time = chunk_idx + 2
|
|
461
|
+
|
|
462
|
+
if start_time >= video_duration:
|
|
463
|
+
continue
|
|
464
|
+
end_time = min(end_time, video_duration)
|
|
465
|
+
|
|
466
|
+
start_str = format_srt_time(start_time)
|
|
467
|
+
end_str = format_srt_time(end_time)
|
|
468
|
+
|
|
469
|
+
srt_lines.append(f"{subtitle_index}")
|
|
470
|
+
srt_lines.append(f"{start_str} --> {end_str}")
|
|
471
|
+
srt_lines.append(clean_text)
|
|
472
|
+
srt_lines.append("")
|
|
473
|
+
|
|
474
|
+
subtitle_index += 1
|
|
475
|
+
|
|
476
|
+
with open(output_srt_path, "w", encoding="utf-8") as f:
|
|
477
|
+
f.write("\n".join(srt_lines))
|
|
478
|
+
|
|
479
|
+
return subtitle_index - 1
|
|
480
|
+
|
|
481
|
+
|
|
482
|
+
def generate_ai_audio_file(
|
|
483
|
+
timed_output_audio: list,
|
|
484
|
+
video_duration: float,
|
|
485
|
+
output_sample_rate: int,
|
|
486
|
+
) -> str:
|
|
487
|
+
import soundfile as sf
|
|
488
|
+
|
|
489
|
+
max_end_time = 0
|
|
490
|
+
for chunk_idx, audio in timed_output_audio:
|
|
491
|
+
start_time = chunk_idx + 1
|
|
492
|
+
duration = len(audio) / output_sample_rate
|
|
493
|
+
end_time = start_time + duration
|
|
494
|
+
max_end_time = max(max_end_time, end_time)
|
|
495
|
+
|
|
496
|
+
total_duration = max(video_duration, max_end_time)
|
|
497
|
+
total_samples = int(total_duration * output_sample_rate)
|
|
498
|
+
ai_audio_track = np.zeros(total_samples, dtype=np.float32)
|
|
499
|
+
|
|
500
|
+
for chunk_idx, audio in timed_output_audio:
|
|
501
|
+
start_time = chunk_idx + 1
|
|
502
|
+
start_sample = int(start_time * output_sample_rate)
|
|
503
|
+
end_sample = start_sample + len(audio)
|
|
504
|
+
|
|
505
|
+
if end_sample <= len(ai_audio_track):
|
|
506
|
+
ai_audio_track[start_sample:end_sample] += audio
|
|
507
|
+
else:
|
|
508
|
+
available_len = len(ai_audio_track) - start_sample
|
|
509
|
+
if available_len > 0:
|
|
510
|
+
ai_audio_track[start_sample:] += audio[:available_len]
|
|
511
|
+
|
|
512
|
+
ai_audio_track = np.clip(ai_audio_track, -1.0, 1.0)
|
|
513
|
+
|
|
514
|
+
ai_audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
|
|
515
|
+
sf.write(
|
|
516
|
+
ai_audio_path,
|
|
517
|
+
(ai_audio_track * 32768).astype(np.int16),
|
|
518
|
+
output_sample_rate,
|
|
519
|
+
subtype="PCM_16",
|
|
520
|
+
)
|
|
521
|
+
|
|
522
|
+
return ai_audio_path
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
def generate_duplex_video(
|
|
526
|
+
video_path: str,
|
|
527
|
+
output_video_path: str,
|
|
528
|
+
results_log: list,
|
|
529
|
+
timed_output_audio: list,
|
|
530
|
+
output_sample_rate: int = 24000,
|
|
531
|
+
):
|
|
532
|
+
"""
|
|
533
|
+
使用 ffmpeg 合成带有 AI 回复与字幕的双声道视频。
|
|
534
|
+
"""
|
|
535
|
+
import soundfile as sf
|
|
536
|
+
|
|
537
|
+
try:
|
|
538
|
+
video_duration = get_video_duration(video_path)
|
|
539
|
+
except Exception as e:
|
|
540
|
+
video_duration = 60.0
|
|
541
|
+
logger.warning(f" ffprobe duration failed: {e}, using 60s default")
|
|
542
|
+
|
|
543
|
+
output_dir = os.path.dirname(output_video_path)
|
|
544
|
+
srt_path = os.path.join(output_dir, "subtitles.srt")
|
|
545
|
+
subtitle_count = generate_srt_from_results(results_log, video_duration, srt_path)
|
|
546
|
+
|
|
547
|
+
ai_audio_path = None
|
|
548
|
+
if timed_output_audio:
|
|
549
|
+
ai_audio_path = generate_ai_audio_file(timed_output_audio, video_duration, output_sample_rate)
|
|
550
|
+
|
|
551
|
+
has_original_audio = False
|
|
552
|
+
try:
|
|
553
|
+
probe_audio_cmd = [
|
|
554
|
+
"ffprobe",
|
|
555
|
+
"-v",
|
|
556
|
+
"error",
|
|
557
|
+
"-select_streams",
|
|
558
|
+
"a:0",
|
|
559
|
+
"-show_entries",
|
|
560
|
+
"stream=codec_type",
|
|
561
|
+
"-of",
|
|
562
|
+
"default=noprint_wrappers=1:nokey=1",
|
|
563
|
+
video_path,
|
|
564
|
+
]
|
|
565
|
+
result = subprocess.run(probe_audio_cmd, capture_output=True, text=True)
|
|
566
|
+
has_original_audio = result.stdout.strip() == "audio"
|
|
567
|
+
except Exception:
|
|
568
|
+
pass
|
|
569
|
+
|
|
570
|
+
has_subtitles = subtitle_count > 0 and os.path.exists(srt_path)
|
|
571
|
+
|
|
572
|
+
if has_subtitles:
|
|
573
|
+
srt_path_escaped = srt_path.replace("\\", "\\\\").replace("'", "'\\''").replace(":", "\\:")
|
|
574
|
+
subtitle_filter = (
|
|
575
|
+
f"subtitles='{srt_path_escaped}':"
|
|
576
|
+
f"force_style='FontSize=28,"
|
|
577
|
+
f"PrimaryColour=&H00FFFFFF,"
|
|
578
|
+
f"OutlineColour=&H00000000,"
|
|
579
|
+
f"BorderStyle=3,"
|
|
580
|
+
f"Outline=2,"
|
|
581
|
+
f"Shadow=1,"
|
|
582
|
+
f"MarginV=30,"
|
|
583
|
+
f"Alignment=2'"
|
|
584
|
+
)
|
|
585
|
+
|
|
586
|
+
cmd = ["ffmpeg", "-y", "-i", video_path]
|
|
587
|
+
|
|
588
|
+
if ai_audio_path:
|
|
589
|
+
cmd.extend(["-i", ai_audio_path])
|
|
590
|
+
|
|
591
|
+
if has_original_audio:
|
|
592
|
+
if has_subtitles:
|
|
593
|
+
filter_complex = f"[0:v]{subtitle_filter}[vout];[0:a][1:a]amix=inputs=2:duration=longest[aout]"
|
|
594
|
+
cmd.extend(["-filter_complex", filter_complex, "-map", "[vout]", "-map", "[aout]"])
|
|
595
|
+
else:
|
|
596
|
+
filter_complex = f"[0:a][1:a]amix=inputs=2:duration=longest[aout]"
|
|
597
|
+
cmd.extend(["-filter_complex", filter_complex, "-map", "0:v", "-map", "[aout]"])
|
|
598
|
+
else:
|
|
599
|
+
if has_subtitles:
|
|
600
|
+
filter_complex = f"[0:v]{subtitle_filter}[vout]"
|
|
601
|
+
cmd.extend(["-filter_complex", filter_complex, "-map", "[vout]", "-map", "1:a"])
|
|
602
|
+
else:
|
|
603
|
+
cmd.extend(["-map", "0:v", "-map", "1:a"])
|
|
604
|
+
else:
|
|
605
|
+
if has_subtitles:
|
|
606
|
+
cmd.extend(["-vf", subtitle_filter])
|
|
607
|
+
if has_original_audio:
|
|
608
|
+
cmd.extend(["-c:a", "copy"])
|
|
609
|
+
|
|
610
|
+
cmd.extend(["-c:v", "libx264", "-c:a", "aac", "-preset", "medium", "-crf", "23", output_video_path])
|
|
611
|
+
|
|
612
|
+
try:
|
|
613
|
+
_ = subprocess.run(cmd, capture_output=True, text=True, check=True)
|
|
614
|
+
except subprocess.CalledProcessError:
|
|
615
|
+
raise
|
|
616
|
+
finally:
|
|
617
|
+
if os.path.exists(srt_path):
|
|
618
|
+
os.remove(srt_path)
|
|
619
|
+
if ai_audio_path and os.path.exists(ai_audio_path):
|
|
620
|
+
os.remove(ai_audio_path)
|
|
621
|
+
|
|
622
|
+
return output_video_path
|
|
623
|
+
|
|
624
|
+
|
|
625
|
+
__all__ = [
|
|
626
|
+
"concat_images",
|
|
627
|
+
"uniform_sample",
|
|
628
|
+
"get_audio_segments",
|
|
629
|
+
"get_video_duration",
|
|
630
|
+
"get_video_frame_audio_segments",
|
|
631
|
+
"format_srt_time",
|
|
632
|
+
"generate_srt_from_results",
|
|
633
|
+
"generate_ai_audio_file",
|
|
634
|
+
"generate_duplex_video",
|
|
635
|
+
]
|
|
636
|
+
|
minicpmo/version.py
ADDED