minicpmo-utils 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cosyvoice/__init__.py +17 -0
- cosyvoice/bin/average_model.py +93 -0
- cosyvoice/bin/export_jit.py +103 -0
- cosyvoice/bin/export_onnx.py +120 -0
- cosyvoice/bin/inference_deprecated.py +126 -0
- cosyvoice/bin/train.py +195 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +209 -0
- cosyvoice/cli/frontend.py +238 -0
- cosyvoice/cli/model.py +386 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +151 -0
- cosyvoice/dataset/processor.py +434 -0
- cosyvoice/flow/decoder.py +494 -0
- cosyvoice/flow/flow.py +281 -0
- cosyvoice/flow/flow_matching.py +227 -0
- cosyvoice/flow/length_regulator.py +70 -0
- cosyvoice/hifigan/discriminator.py +230 -0
- cosyvoice/hifigan/f0_predictor.py +58 -0
- cosyvoice/hifigan/generator.py +582 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/llm.py +610 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- cosyvoice/tokenizer/tokenizer.py +279 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +302 -0
- cosyvoice/transformer/encoder.py +474 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/transformer/upsample_encoder.py +320 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/common.py +186 -0
- cosyvoice/utils/executor.py +176 -0
- cosyvoice/utils/file_utils.py +129 -0
- cosyvoice/utils/frontend_utils.py +136 -0
- cosyvoice/utils/losses.py +57 -0
- cosyvoice/utils/mask.py +265 -0
- cosyvoice/utils/scheduler.py +738 -0
- cosyvoice/utils/train_utils.py +367 -0
- cosyvoice/vllm/cosyvoice2.py +103 -0
- matcha/__init__.py +0 -0
- matcha/app.py +357 -0
- matcha/cli.py +418 -0
- matcha/hifigan/__init__.py +0 -0
- matcha/hifigan/config.py +28 -0
- matcha/hifigan/denoiser.py +64 -0
- matcha/hifigan/env.py +17 -0
- matcha/hifigan/meldataset.py +217 -0
- matcha/hifigan/models.py +368 -0
- matcha/hifigan/xutils.py +60 -0
- matcha/models/__init__.py +0 -0
- matcha/models/baselightningmodule.py +209 -0
- matcha/models/components/__init__.py +0 -0
- matcha/models/components/decoder.py +443 -0
- matcha/models/components/flow_matching.py +132 -0
- matcha/models/components/text_encoder.py +410 -0
- matcha/models/components/transformer.py +316 -0
- matcha/models/matcha_tts.py +239 -0
- matcha/onnx/__init__.py +0 -0
- matcha/onnx/export.py +181 -0
- matcha/onnx/infer.py +168 -0
- matcha/text/__init__.py +53 -0
- matcha/text/cleaners.py +116 -0
- matcha/text/numbers.py +71 -0
- matcha/text/symbols.py +17 -0
- matcha/train.py +122 -0
- matcha/utils/__init__.py +5 -0
- matcha/utils/audio.py +82 -0
- matcha/utils/generate_data_statistics.py +111 -0
- matcha/utils/instantiators.py +56 -0
- matcha/utils/logging_utils.py +53 -0
- matcha/utils/model.py +90 -0
- matcha/utils/monotonic_align/__init__.py +22 -0
- matcha/utils/monotonic_align/setup.py +7 -0
- matcha/utils/pylogger.py +21 -0
- matcha/utils/rich_utils.py +101 -0
- matcha/utils/utils.py +219 -0
- minicpmo/__init__.py +24 -0
- minicpmo/utils.py +636 -0
- minicpmo/version.py +2 -0
- minicpmo_utils-0.1.0.dist-info/METADATA +72 -0
- minicpmo_utils-0.1.0.dist-info/RECORD +148 -0
- minicpmo_utils-0.1.0.dist-info/WHEEL +5 -0
- minicpmo_utils-0.1.0.dist-info/top_level.txt +5 -0
- s3tokenizer/__init__.py +153 -0
- s3tokenizer/assets/BAC009S0764W0121.wav +0 -0
- s3tokenizer/assets/BAC009S0764W0122.wav +0 -0
- s3tokenizer/assets/mel_filters.npz +0 -0
- s3tokenizer/cli.py +183 -0
- s3tokenizer/model.py +546 -0
- s3tokenizer/model_v2.py +605 -0
- s3tokenizer/utils.py +390 -0
- stepaudio2/__init__.py +40 -0
- stepaudio2/cosyvoice2/__init__.py +1 -0
- stepaudio2/cosyvoice2/flow/__init__.py +0 -0
- stepaudio2/cosyvoice2/flow/decoder_dit.py +585 -0
- stepaudio2/cosyvoice2/flow/flow.py +230 -0
- stepaudio2/cosyvoice2/flow/flow_matching.py +205 -0
- stepaudio2/cosyvoice2/transformer/__init__.py +0 -0
- stepaudio2/cosyvoice2/transformer/attention.py +328 -0
- stepaudio2/cosyvoice2/transformer/embedding.py +119 -0
- stepaudio2/cosyvoice2/transformer/encoder_layer.py +163 -0
- stepaudio2/cosyvoice2/transformer/positionwise_feed_forward.py +56 -0
- stepaudio2/cosyvoice2/transformer/subsampling.py +79 -0
- stepaudio2/cosyvoice2/transformer/upsample_encoder_v2.py +483 -0
- stepaudio2/cosyvoice2/utils/__init__.py +1 -0
- stepaudio2/cosyvoice2/utils/class_utils.py +41 -0
- stepaudio2/cosyvoice2/utils/common.py +101 -0
- stepaudio2/cosyvoice2/utils/mask.py +49 -0
- stepaudio2/flashcosyvoice/__init__.py +0 -0
- stepaudio2/flashcosyvoice/cli.py +424 -0
- stepaudio2/flashcosyvoice/config.py +80 -0
- stepaudio2/flashcosyvoice/cosyvoice2.py +160 -0
- stepaudio2/flashcosyvoice/cosyvoice3.py +1 -0
- stepaudio2/flashcosyvoice/engine/__init__.py +0 -0
- stepaudio2/flashcosyvoice/engine/block_manager.py +114 -0
- stepaudio2/flashcosyvoice/engine/llm_engine.py +125 -0
- stepaudio2/flashcosyvoice/engine/model_runner.py +310 -0
- stepaudio2/flashcosyvoice/engine/scheduler.py +77 -0
- stepaudio2/flashcosyvoice/engine/sequence.py +90 -0
- stepaudio2/flashcosyvoice/modules/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow.py +198 -0
- stepaudio2/flashcosyvoice/modules/flow_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow_components/estimator.py +974 -0
- stepaudio2/flashcosyvoice/modules/flow_components/upsample_encoder.py +998 -0
- stepaudio2/flashcosyvoice/modules/hifigan.py +249 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/layers.py +433 -0
- stepaudio2/flashcosyvoice/modules/qwen2.py +92 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/layers.py +616 -0
- stepaudio2/flashcosyvoice/modules/sampler.py +231 -0
- stepaudio2/flashcosyvoice/utils/__init__.py +0 -0
- stepaudio2/flashcosyvoice/utils/audio.py +77 -0
- stepaudio2/flashcosyvoice/utils/context.py +28 -0
- stepaudio2/flashcosyvoice/utils/loader.py +116 -0
- stepaudio2/flashcosyvoice/utils/memory.py +19 -0
- stepaudio2/stepaudio2.py +204 -0
- stepaudio2/token2wav.py +248 -0
- stepaudio2/utils.py +91 -0
|
@@ -0,0 +1,585 @@
|
|
|
1
|
+
import math
|
|
2
|
+
import torch
|
|
3
|
+
import numpy as np
|
|
4
|
+
from typing import Optional
|
|
5
|
+
from einops import pack, rearrange, repeat
|
|
6
|
+
import torch.nn as nn
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
"""
|
|
12
|
+
DiT-v5
|
|
13
|
+
- Add convolution in DiTBlock to increase high-freq component
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class MLP(torch.nn.Module):
|
|
18
|
+
def __init__(
|
|
19
|
+
self,
|
|
20
|
+
in_features:int,
|
|
21
|
+
hidden_features:Optional[int]=None,
|
|
22
|
+
out_features:Optional[int]=None,
|
|
23
|
+
act_layer=nn.GELU,
|
|
24
|
+
norm_layer=None,
|
|
25
|
+
bias=True,
|
|
26
|
+
drop=0.,
|
|
27
|
+
):
|
|
28
|
+
super().__init__()
|
|
29
|
+
hidden_features = hidden_features or in_features
|
|
30
|
+
out_features = out_features or in_features
|
|
31
|
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
|
32
|
+
self.act = act_layer()
|
|
33
|
+
self.drop1 = nn.Dropout(drop)
|
|
34
|
+
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
|
35
|
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
|
36
|
+
self.drop2 = nn.Dropout(drop)
|
|
37
|
+
|
|
38
|
+
def forward(self, x):
|
|
39
|
+
x = self.fc1(x)
|
|
40
|
+
x = self.act(x)
|
|
41
|
+
x = self.drop1(x)
|
|
42
|
+
x = self.norm(x)
|
|
43
|
+
x = self.fc2(x)
|
|
44
|
+
x = self.drop2(x)
|
|
45
|
+
return x
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class Attention(torch.nn.Module):
|
|
49
|
+
def __init__(
|
|
50
|
+
self,
|
|
51
|
+
dim: int,
|
|
52
|
+
num_heads: int = 8,
|
|
53
|
+
head_dim: int = 64,
|
|
54
|
+
qkv_bias: bool = False,
|
|
55
|
+
qk_norm: bool = False,
|
|
56
|
+
attn_drop: float = 0.,
|
|
57
|
+
proj_drop: float = 0.,
|
|
58
|
+
norm_layer: nn.Module = nn.LayerNorm,
|
|
59
|
+
) -> None:
|
|
60
|
+
super().__init__()
|
|
61
|
+
self.num_heads = num_heads
|
|
62
|
+
self.head_dim = head_dim
|
|
63
|
+
self.inner_dim = num_heads * head_dim
|
|
64
|
+
self.scale = head_dim ** -0.5
|
|
65
|
+
|
|
66
|
+
self.to_q = nn.Linear(dim, self.inner_dim, bias=qkv_bias)
|
|
67
|
+
self.to_k = nn.Linear(dim, self.inner_dim, bias=qkv_bias)
|
|
68
|
+
self.to_v = nn.Linear(dim, self.inner_dim, bias=qkv_bias)
|
|
69
|
+
|
|
70
|
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
71
|
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
72
|
+
|
|
73
|
+
self.attn_drop = nn.Dropout(attn_drop)
|
|
74
|
+
self.proj_drop = nn.Dropout(proj_drop)
|
|
75
|
+
|
|
76
|
+
self.proj = nn.Linear(self.inner_dim, dim)
|
|
77
|
+
|
|
78
|
+
def to_heads(self, ts:torch.Tensor):
|
|
79
|
+
b, t, c = ts.shape
|
|
80
|
+
# (b, t, nh, c)
|
|
81
|
+
ts = ts.reshape(b, t, self.num_heads, c // self.num_heads)
|
|
82
|
+
ts = ts.transpose(1, 2)
|
|
83
|
+
return ts
|
|
84
|
+
|
|
85
|
+
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor) -> torch.Tensor:
|
|
86
|
+
"""Args:
|
|
87
|
+
x(torch.Tensor): shape (b, t, c)
|
|
88
|
+
attn_mask(torch.Tensor): shape (b, t, t)
|
|
89
|
+
"""
|
|
90
|
+
b, t, c = x.shape
|
|
91
|
+
|
|
92
|
+
q = self.to_q(x)
|
|
93
|
+
k = self.to_k(x)
|
|
94
|
+
v = self.to_v(x)
|
|
95
|
+
|
|
96
|
+
q = self.to_heads(q) # (b, nh, t, c)
|
|
97
|
+
k = self.to_heads(k)
|
|
98
|
+
v = self.to_heads(v)
|
|
99
|
+
|
|
100
|
+
q = self.q_norm(q)
|
|
101
|
+
k = self.k_norm(k)
|
|
102
|
+
|
|
103
|
+
attn_mask = attn_mask.unsqueeze(1)
|
|
104
|
+
x = F.scaled_dot_product_attention(
|
|
105
|
+
q, k, v,
|
|
106
|
+
attn_mask=attn_mask,
|
|
107
|
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
|
108
|
+
) # (b, nh, t, c)
|
|
109
|
+
x = x.transpose(1, 2).reshape(b, t, -1)
|
|
110
|
+
x = self.proj(x)
|
|
111
|
+
x = self.proj_drop(x)
|
|
112
|
+
return x
|
|
113
|
+
|
|
114
|
+
def forward_chunk(self, x: torch.Tensor, att_cache: torch.Tensor=None, attn_mask: torch.Tensor=None):
|
|
115
|
+
"""
|
|
116
|
+
Args:
|
|
117
|
+
x: shape (b, dt, c)
|
|
118
|
+
att_cache: shape (b, nh, t, c*2)
|
|
119
|
+
"""
|
|
120
|
+
b, t, c = x.shape
|
|
121
|
+
|
|
122
|
+
q = self.to_q(x)
|
|
123
|
+
k = self.to_k(x)
|
|
124
|
+
v = self.to_v(x)
|
|
125
|
+
|
|
126
|
+
q = self.to_heads(q) # (b, nh, t, c)
|
|
127
|
+
k = self.to_heads(k)
|
|
128
|
+
v = self.to_heads(v)
|
|
129
|
+
|
|
130
|
+
q = self.q_norm(q)
|
|
131
|
+
k = self.k_norm(k)
|
|
132
|
+
|
|
133
|
+
# unpack {k,v}_cache
|
|
134
|
+
if att_cache is not None:
|
|
135
|
+
if attn_mask is not None:
|
|
136
|
+
k_cache, v_cache = att_cache.chunk(2, dim=3)
|
|
137
|
+
k = torch.cat([k, k_cache], dim=2)
|
|
138
|
+
v = torch.cat([v, v_cache], dim=2)
|
|
139
|
+
|
|
140
|
+
else:
|
|
141
|
+
k_cache, v_cache = att_cache.chunk(2, dim=3)
|
|
142
|
+
k = torch.cat([k, k_cache], dim=2)
|
|
143
|
+
v = torch.cat([v, v_cache], dim=2)
|
|
144
|
+
|
|
145
|
+
# new {k,v}_cache
|
|
146
|
+
new_att_cache = torch.cat([k, v], dim=3)
|
|
147
|
+
# attn_mask = torch.ones((b, 1, t, t1), dtype=torch.bool, device=x.device)
|
|
148
|
+
if attn_mask is not None:
|
|
149
|
+
attn_mask = attn_mask.unsqueeze(1)
|
|
150
|
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) # (b, nh, t, c)
|
|
151
|
+
x = x.transpose(1, 2).reshape(b, t, -1)
|
|
152
|
+
x = self.proj(x)
|
|
153
|
+
x = self.proj_drop(x)
|
|
154
|
+
return x, new_att_cache
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def modulate(x, shift, scale):
|
|
158
|
+
return x * (1 + scale) + shift
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class TimestepEmbedder(nn.Module):
|
|
162
|
+
"""
|
|
163
|
+
Embeds scalar timesteps into vector representations.
|
|
164
|
+
"""
|
|
165
|
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
|
166
|
+
super().__init__()
|
|
167
|
+
self.mlp = nn.Sequential(
|
|
168
|
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
|
169
|
+
nn.SiLU(),
|
|
170
|
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
|
171
|
+
)
|
|
172
|
+
self.frequency_embedding_size = frequency_embedding_size
|
|
173
|
+
# from SinusoidalPosEmb
|
|
174
|
+
self.scale = 1000
|
|
175
|
+
|
|
176
|
+
@staticmethod
|
|
177
|
+
def timestep_embedding(t, dim, max_period=10000):
|
|
178
|
+
"""
|
|
179
|
+
Create sinusoidal timestep embeddings.
|
|
180
|
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
|
181
|
+
These may be fractional.
|
|
182
|
+
:param dim: the dimension of the output.
|
|
183
|
+
:param max_period: controls the minimum frequency of the embeddings.
|
|
184
|
+
:return: an (N, D) Tensor of positional embeddings.
|
|
185
|
+
"""
|
|
186
|
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
|
187
|
+
half = dim // 2
|
|
188
|
+
freqs = torch.exp(
|
|
189
|
+
-math.log(max_period) * torch.arange(start=0, end=half) / half
|
|
190
|
+
).to(t)
|
|
191
|
+
args = t[:, None] * freqs[None]
|
|
192
|
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
193
|
+
if dim % 2:
|
|
194
|
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
195
|
+
return embedding
|
|
196
|
+
|
|
197
|
+
def forward(self, t):
|
|
198
|
+
t_freq = self.timestep_embedding(t * self.scale, self.frequency_embedding_size)
|
|
199
|
+
t_emb = self.mlp(t_freq)
|
|
200
|
+
return t_emb
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
# Convolution related
|
|
204
|
+
class Transpose(torch.nn.Module):
|
|
205
|
+
def __init__(self, dim0: int, dim1: int):
|
|
206
|
+
super().__init__()
|
|
207
|
+
self.dim0 = dim0
|
|
208
|
+
self.dim1 = dim1
|
|
209
|
+
|
|
210
|
+
def forward(self, x: torch.Tensor):
|
|
211
|
+
x = torch.transpose(x, self.dim0, self.dim1)
|
|
212
|
+
return x
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
class CausalConv1d(torch.nn.Conv1d):
|
|
216
|
+
def __init__(
|
|
217
|
+
self,
|
|
218
|
+
in_channels: int,
|
|
219
|
+
out_channels: int,
|
|
220
|
+
kernel_size: int,
|
|
221
|
+
) -> None:
|
|
222
|
+
super(CausalConv1d, self).__init__(in_channels, out_channels, kernel_size)
|
|
223
|
+
self.causal_padding = (kernel_size - 1, 0)
|
|
224
|
+
|
|
225
|
+
def forward(self, x: torch.Tensor):
|
|
226
|
+
x = F.pad(x, self.causal_padding)
|
|
227
|
+
x = super(CausalConv1d, self).forward(x)
|
|
228
|
+
return x
|
|
229
|
+
|
|
230
|
+
def forward_chunk(self, x: torch.Tensor, cnn_cache: torch.Tensor=None):
|
|
231
|
+
if cnn_cache is None:
|
|
232
|
+
cnn_cache = x.new_zeros((x.shape[0], self.in_channels, self.causal_padding[0]))
|
|
233
|
+
x = torch.cat([cnn_cache, x], dim=2)
|
|
234
|
+
new_cnn_cache = x[..., -self.causal_padding[0]:]
|
|
235
|
+
x = super(CausalConv1d, self).forward(x)
|
|
236
|
+
return x, new_cnn_cache
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
class CausalConvBlock(nn.Module):
|
|
240
|
+
def __init__(self,
|
|
241
|
+
in_channels: int,
|
|
242
|
+
out_channels: int,
|
|
243
|
+
kernel_size: int = 3,
|
|
244
|
+
):
|
|
245
|
+
super().__init__()
|
|
246
|
+
self.in_channels = in_channels
|
|
247
|
+
self.out_channels = out_channels
|
|
248
|
+
self.kernel_size = kernel_size
|
|
249
|
+
|
|
250
|
+
self.block = torch.nn.Sequential(
|
|
251
|
+
# norm
|
|
252
|
+
# conv1
|
|
253
|
+
Transpose(1, 2),
|
|
254
|
+
CausalConv1d(in_channels, out_channels, kernel_size),
|
|
255
|
+
Transpose(1, 2),
|
|
256
|
+
# norm & act
|
|
257
|
+
nn.LayerNorm(out_channels),
|
|
258
|
+
nn.Mish(),
|
|
259
|
+
# conv2
|
|
260
|
+
Transpose(1, 2),
|
|
261
|
+
CausalConv1d(out_channels, out_channels, kernel_size),
|
|
262
|
+
Transpose(1, 2),
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
def forward(self, x: torch.Tensor, mask: torch.Tensor = None):
|
|
266
|
+
"""
|
|
267
|
+
Args:
|
|
268
|
+
x: shape (b, t, c)
|
|
269
|
+
mask: shape (b, t, 1)
|
|
270
|
+
"""
|
|
271
|
+
if mask is not None: x = x * mask
|
|
272
|
+
x = self.block(x)
|
|
273
|
+
if mask is not None: x = x * mask
|
|
274
|
+
return x
|
|
275
|
+
|
|
276
|
+
def forward_chunk(self, x: torch.Tensor, cnn_cache: torch.Tensor=None):
|
|
277
|
+
"""
|
|
278
|
+
Args:
|
|
279
|
+
x: shape (b, dt, c)
|
|
280
|
+
cnn_cache: shape (b, c1+c2, 2)
|
|
281
|
+
"""
|
|
282
|
+
if cnn_cache is not None:
|
|
283
|
+
cnn_cache1, cnn_cache2 = cnn_cache.split((self.in_channels, self.out_channels), dim=1)
|
|
284
|
+
else:
|
|
285
|
+
cnn_cache1, cnn_cache2 = None, None
|
|
286
|
+
x = self.block[0](x)
|
|
287
|
+
x, new_cnn_cache1 = self.block[1].forward_chunk(x, cnn_cache1)
|
|
288
|
+
x = self.block[2:6](x)
|
|
289
|
+
x, new_cnn_cache2 = self.block[6].forward_chunk(x, cnn_cache2)
|
|
290
|
+
x = self.block[7](x)
|
|
291
|
+
new_cnn_cache = torch.cat((new_cnn_cache1, new_cnn_cache2), dim=1)
|
|
292
|
+
return x, new_cnn_cache
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
class DiTBlock(nn.Module):
|
|
296
|
+
"""
|
|
297
|
+
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
|
298
|
+
"""
|
|
299
|
+
def __init__(self, hidden_size, num_heads, head_dim, mlp_ratio=4.0, **block_kwargs):
|
|
300
|
+
super().__init__()
|
|
301
|
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
302
|
+
self.attn = Attention(hidden_size, num_heads=num_heads, head_dim=head_dim, qkv_bias=True, qk_norm=True, **block_kwargs)
|
|
303
|
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
304
|
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
|
305
|
+
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
|
306
|
+
self.mlp = MLP(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
|
|
307
|
+
self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
308
|
+
self.conv = CausalConvBlock(in_channels=hidden_size, out_channels=hidden_size, kernel_size=3)
|
|
309
|
+
self.adaLN_modulation = nn.Sequential(
|
|
310
|
+
nn.SiLU(),
|
|
311
|
+
nn.Linear(hidden_size, 9 * hidden_size, bias=True)
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
def forward(self, x:torch.Tensor, c:torch.Tensor, attn_mask:torch.Tensor):
|
|
315
|
+
"""Args
|
|
316
|
+
x: shape (b, t, c)
|
|
317
|
+
c: shape (b, 1, c)
|
|
318
|
+
attn_mask: shape (b, t, t), bool type attention mask
|
|
319
|
+
"""
|
|
320
|
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, shift_conv, scale_conv, gate_conv \
|
|
321
|
+
= self.adaLN_modulation(c).chunk(9, dim=-1)
|
|
322
|
+
# attention
|
|
323
|
+
x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), attn_mask)
|
|
324
|
+
# conv
|
|
325
|
+
x = x + gate_conv * self.conv(modulate(self.norm3(x), shift_conv, scale_conv))
|
|
326
|
+
# mlp
|
|
327
|
+
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
|
328
|
+
return x
|
|
329
|
+
|
|
330
|
+
def forward_chunk(self, x: torch.Tensor, c: torch.Tensor, cnn_cache: torch.Tensor=None, att_cache: torch.Tensor=None, mask: torch.Tensor=None):
|
|
331
|
+
"""
|
|
332
|
+
Args:
|
|
333
|
+
x: shape (b, dt, c)
|
|
334
|
+
c: shape (b, 1, c)
|
|
335
|
+
cnn_cache: shape (b, c1+c2, 2)
|
|
336
|
+
att_cache: shape (b, nh, t, c * 2)
|
|
337
|
+
"""
|
|
338
|
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, shift_conv, scale_conv, gate_conv \
|
|
339
|
+
= self.adaLN_modulation(c).chunk(9, dim=-1)
|
|
340
|
+
# attention
|
|
341
|
+
x_att, new_att_cache = self.attn.forward_chunk(modulate(self.norm1(x), shift_msa, scale_msa), att_cache, mask)
|
|
342
|
+
x = x + gate_msa * x_att
|
|
343
|
+
# conv
|
|
344
|
+
x_conv, new_cnn_cache = self.conv.forward_chunk(modulate(self.norm3(x), shift_conv, scale_conv), cnn_cache)
|
|
345
|
+
x = x + gate_conv * x_conv
|
|
346
|
+
# mlp
|
|
347
|
+
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
|
348
|
+
return x, new_cnn_cache, new_att_cache
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
class FinalLayer(nn.Module):
|
|
352
|
+
"""
|
|
353
|
+
The final layer of DiT.
|
|
354
|
+
"""
|
|
355
|
+
def __init__(self, hidden_size, out_channels):
|
|
356
|
+
super().__init__()
|
|
357
|
+
self.adaLN_modulation = nn.Sequential(
|
|
358
|
+
nn.SiLU(),
|
|
359
|
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
|
360
|
+
)
|
|
361
|
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
|
362
|
+
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
|
|
363
|
+
|
|
364
|
+
def forward(self, x, c):
|
|
365
|
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
|
|
366
|
+
x = modulate(self.norm_final(x), shift, scale)
|
|
367
|
+
x = self.linear(x)
|
|
368
|
+
return x
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
class DiT(nn.Module):
|
|
372
|
+
"""
|
|
373
|
+
Diffusion model with a Transformer backbone.
|
|
374
|
+
"""
|
|
375
|
+
def __init__(
|
|
376
|
+
self,
|
|
377
|
+
in_channels: int,
|
|
378
|
+
out_channels: int,
|
|
379
|
+
mlp_ratio: float = 4.0,
|
|
380
|
+
depth: int = 28,
|
|
381
|
+
num_heads: int = 8,
|
|
382
|
+
head_dim: int = 64,
|
|
383
|
+
hidden_size: int = 256,
|
|
384
|
+
):
|
|
385
|
+
super().__init__()
|
|
386
|
+
self.in_channels = in_channels
|
|
387
|
+
self.out_channels = out_channels
|
|
388
|
+
self.t_embedder = TimestepEmbedder(hidden_size)
|
|
389
|
+
|
|
390
|
+
self.in_proj = nn.Linear(in_channels, hidden_size)
|
|
391
|
+
|
|
392
|
+
self.blocks = nn.ModuleList([
|
|
393
|
+
DiTBlock(hidden_size, num_heads, head_dim, mlp_ratio=mlp_ratio) for _ in range(depth)
|
|
394
|
+
])
|
|
395
|
+
self.final_layer = FinalLayer(hidden_size, self.out_channels)
|
|
396
|
+
|
|
397
|
+
self.initialize_weights()
|
|
398
|
+
|
|
399
|
+
self.enable_cuda_graph = False
|
|
400
|
+
self.use_cuda_graph = False
|
|
401
|
+
|
|
402
|
+
self.graph_chunk = {}
|
|
403
|
+
self.inference_buffers_chunk = {}
|
|
404
|
+
self.max_size_chunk = {}
|
|
405
|
+
|
|
406
|
+
self.register_buffer('att_cache_buffer', torch.zeros((16, 2, 8, 1000, 128)), persistent=False)
|
|
407
|
+
self.register_buffer('cnn_cache_buffer', torch.zeros((16, 2, 1024, 2)), persistent=False)
|
|
408
|
+
|
|
409
|
+
def initialize_weights(self):
|
|
410
|
+
# Initialize transformer layers:
|
|
411
|
+
def _basic_init(module):
|
|
412
|
+
if isinstance(module, nn.Linear):
|
|
413
|
+
torch.nn.init.xavier_uniform_(module.weight)
|
|
414
|
+
if module.bias is not None:
|
|
415
|
+
nn.init.constant_(module.bias, 0)
|
|
416
|
+
self.apply(_basic_init)
|
|
417
|
+
|
|
418
|
+
# Initialize timestep embedding MLP:
|
|
419
|
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
|
420
|
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
|
421
|
+
|
|
422
|
+
# Zero-out adaLN modulation layers in DiT blocks:
|
|
423
|
+
for block in self.blocks:
|
|
424
|
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
|
425
|
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
|
426
|
+
|
|
427
|
+
# Zero-out output layers:
|
|
428
|
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
|
429
|
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
|
430
|
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
|
431
|
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
|
432
|
+
|
|
433
|
+
def _init_cuda_graph_chunk(self):
|
|
434
|
+
# get dtype, device from registered buffer
|
|
435
|
+
dtype, device = self.cnn_cache_buffer.dtype, self.cnn_cache_buffer.device
|
|
436
|
+
# init cuda graph for streaming forward
|
|
437
|
+
with torch.no_grad():
|
|
438
|
+
for chunk_size in [30, 48, 96]:
|
|
439
|
+
if chunk_size == 30 or chunk_size == 48:
|
|
440
|
+
max_size = 500
|
|
441
|
+
self.max_size_chunk[chunk_size] = max_size
|
|
442
|
+
else:
|
|
443
|
+
max_size = 1000
|
|
444
|
+
self.max_size_chunk[chunk_size] = max_size
|
|
445
|
+
static_x1 = torch.zeros((2, 320, chunk_size), dtype=dtype, device=device)
|
|
446
|
+
static_t1 = torch.zeros((2, 1, 512), dtype=dtype, device=device)
|
|
447
|
+
static_mask1 = torch.ones((2, chunk_size, max_size+chunk_size), dtype=torch.bool, device=device)
|
|
448
|
+
static_att_cache = torch.zeros((16, 2, 8, max_size, 128), dtype=dtype, device=device)
|
|
449
|
+
static_cnn_cache = torch.zeros((16, 2, 1024, 2), dtype=dtype, device=device)
|
|
450
|
+
static_inputs1 = [
|
|
451
|
+
static_x1,
|
|
452
|
+
static_t1,
|
|
453
|
+
static_mask1,
|
|
454
|
+
static_cnn_cache,
|
|
455
|
+
static_att_cache,
|
|
456
|
+
]
|
|
457
|
+
static_new_cnn_cache = torch.zeros((16, 2, 1024, 2), dtype=dtype, device=device)
|
|
458
|
+
static_new_att_cache = torch.zeros((16, 2, 8, max_size+chunk_size, 128), dtype=dtype, device=device)
|
|
459
|
+
self.blocks_forward_chunk(
|
|
460
|
+
static_inputs1[0],
|
|
461
|
+
static_inputs1[1],
|
|
462
|
+
static_inputs1[2],
|
|
463
|
+
static_inputs1[3],
|
|
464
|
+
static_inputs1[4],
|
|
465
|
+
static_new_cnn_cache,
|
|
466
|
+
static_new_att_cache)
|
|
467
|
+
graph_chunk = torch.cuda.CUDAGraph()
|
|
468
|
+
with torch.cuda.graph(graph_chunk):
|
|
469
|
+
static_out1 = self.blocks_forward_chunk(static_x1, static_t1, static_mask1, static_cnn_cache, static_att_cache, static_new_cnn_cache, static_new_att_cache)
|
|
470
|
+
static_outputs1 = [static_out1, static_new_cnn_cache, static_new_att_cache]
|
|
471
|
+
self.inference_buffers_chunk[chunk_size] = {
|
|
472
|
+
'static_inputs': static_inputs1,
|
|
473
|
+
'static_outputs': static_outputs1
|
|
474
|
+
}
|
|
475
|
+
self.graph_chunk[chunk_size] = graph_chunk
|
|
476
|
+
|
|
477
|
+
def _init_cuda_graph_all(self):
|
|
478
|
+
self._init_cuda_graph_chunk()
|
|
479
|
+
self.use_cuda_graph = True
|
|
480
|
+
print(f"CUDA Graph initialized successfully for chunk decoder")
|
|
481
|
+
|
|
482
|
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
|
483
|
+
"""Args:
|
|
484
|
+
x: shape (b, c, t)
|
|
485
|
+
mask: shape (b, 1, t)
|
|
486
|
+
t: shape (b,)
|
|
487
|
+
spks: shape (b, c)
|
|
488
|
+
cond: shape (b, c, t)
|
|
489
|
+
"""
|
|
490
|
+
# (sfy) chunk training strategy should not be open-sourced
|
|
491
|
+
|
|
492
|
+
# time
|
|
493
|
+
t = self.t_embedder(t).unsqueeze(1) # (b, 1, c)
|
|
494
|
+
x = pack([x, mu], "b * t")[0]
|
|
495
|
+
if spks is not None:
|
|
496
|
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
497
|
+
x = pack([x, spks], "b * t")[0]
|
|
498
|
+
if cond is not None:
|
|
499
|
+
x = pack([x, cond], "b * t")[0]
|
|
500
|
+
|
|
501
|
+
return self.blocks_forward(x, t, mask)
|
|
502
|
+
|
|
503
|
+
def blocks_forward(self, x, t, mask):
|
|
504
|
+
x = x.transpose(1, 2)
|
|
505
|
+
attn_mask = mask.bool()
|
|
506
|
+
x = self.in_proj(x)
|
|
507
|
+
for block in self.blocks:
|
|
508
|
+
x = block(x, t, attn_mask)
|
|
509
|
+
x = self.final_layer(x, t)
|
|
510
|
+
x = x.transpose(1, 2)
|
|
511
|
+
return x
|
|
512
|
+
|
|
513
|
+
def forward_chunk(self,
|
|
514
|
+
x: torch.Tensor,
|
|
515
|
+
mu: torch.Tensor,
|
|
516
|
+
t: torch.Tensor,
|
|
517
|
+
spks: torch.Tensor,
|
|
518
|
+
cond: torch.Tensor,
|
|
519
|
+
cnn_cache: torch.Tensor = None,
|
|
520
|
+
att_cache: torch.Tensor = None,
|
|
521
|
+
):
|
|
522
|
+
"""
|
|
523
|
+
Args:
|
|
524
|
+
x: shape (b, dt, c)
|
|
525
|
+
mu: shape (b, dt, c)
|
|
526
|
+
t: shape (b,)
|
|
527
|
+
spks: shape (b, c)
|
|
528
|
+
cond: shape (b, dt, c)
|
|
529
|
+
cnn_cache: shape (depth, b, c1+c2, 2)
|
|
530
|
+
att_cache: shape (depth, b, nh, t, c * 2)
|
|
531
|
+
"""
|
|
532
|
+
|
|
533
|
+
# time
|
|
534
|
+
t = self.t_embedder(t).unsqueeze(1) # (b, 1, c)
|
|
535
|
+
x = pack([x, mu], "b * t")[0]
|
|
536
|
+
if spks is not None:
|
|
537
|
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
538
|
+
x = pack([x, spks], "b * t")[0]
|
|
539
|
+
if cond is not None:
|
|
540
|
+
x = pack([x, cond], "b * t")[0]
|
|
541
|
+
|
|
542
|
+
# create fake cache
|
|
543
|
+
if cnn_cache is None:
|
|
544
|
+
cnn_cache = [None] * len(self.blocks)
|
|
545
|
+
if att_cache is None:
|
|
546
|
+
att_cache = [None] * len(self.blocks)
|
|
547
|
+
if att_cache[0] is not None:
|
|
548
|
+
last_att_len = att_cache.shape[3]
|
|
549
|
+
else:
|
|
550
|
+
last_att_len = 0
|
|
551
|
+
chunk_size = x.shape[2]
|
|
552
|
+
mask = torch.ones(x.shape[0], chunk_size, last_att_len+chunk_size, dtype=torch.bool, device=x.device)
|
|
553
|
+
if self.use_cuda_graph and att_cache[0] is not None and chunk_size in self.graph_chunk and last_att_len <= self.max_size_chunk[chunk_size]:
|
|
554
|
+
padded_mask = torch.zeros((2, chunk_size, self.max_size_chunk[chunk_size]+chunk_size), dtype=mask.dtype, device=mask.device)
|
|
555
|
+
padded_mask[:, :, :mask.shape[-1]] = mask
|
|
556
|
+
padded_att_cache = torch.zeros((16, 2, 8, self.max_size_chunk[chunk_size], 128), dtype=att_cache.dtype, device=att_cache.device)
|
|
557
|
+
padded_att_cache[:, :, :, :last_att_len, :] = att_cache
|
|
558
|
+
self.inference_buffers_chunk[chunk_size]['static_inputs'][0].copy_(x)
|
|
559
|
+
self.inference_buffers_chunk[chunk_size]['static_inputs'][1].copy_(t)
|
|
560
|
+
self.inference_buffers_chunk[chunk_size]['static_inputs'][2].copy_(padded_mask)
|
|
561
|
+
self.inference_buffers_chunk[chunk_size]['static_inputs'][3].copy_(cnn_cache)
|
|
562
|
+
self.inference_buffers_chunk[chunk_size]['static_inputs'][4].copy_(padded_att_cache)
|
|
563
|
+
self.graph_chunk[chunk_size].replay()
|
|
564
|
+
x = self.inference_buffers_chunk[chunk_size]['static_outputs'][0][:, :, :chunk_size]
|
|
565
|
+
new_cnn_cache = self.inference_buffers_chunk[chunk_size]['static_outputs'][1]
|
|
566
|
+
new_att_cache = self.inference_buffers_chunk[chunk_size]['static_outputs'][2][:, :, :, :chunk_size+last_att_len, :]
|
|
567
|
+
else:
|
|
568
|
+
mask = None
|
|
569
|
+
x = self.blocks_forward_chunk(x, t, mask, cnn_cache, att_cache, self.cnn_cache_buffer, self.att_cache_buffer)
|
|
570
|
+
new_cnn_cache = self.cnn_cache_buffer
|
|
571
|
+
new_att_cache = self.att_cache_buffer[:, :, :, :last_att_len+chunk_size, :]
|
|
572
|
+
|
|
573
|
+
return x, new_cnn_cache, new_att_cache
|
|
574
|
+
|
|
575
|
+
def blocks_forward_chunk(self, x, t, mask, cnn_cache=None, att_cache=None, cnn_cache_buffer=None, att_cache_buffer=None):
|
|
576
|
+
x = x.transpose(1, 2)
|
|
577
|
+
x = self.in_proj(x)
|
|
578
|
+
for b_idx, block in enumerate(self.blocks):
|
|
579
|
+
x, this_new_cnn_cache, this_new_att_cache \
|
|
580
|
+
= block.forward_chunk(x, t, cnn_cache[b_idx], att_cache[b_idx], mask)
|
|
581
|
+
cnn_cache_buffer[b_idx] = this_new_cnn_cache
|
|
582
|
+
att_cache_buffer[b_idx][:, :, :this_new_att_cache.shape[2], :] = this_new_att_cache
|
|
583
|
+
x = self.final_layer(x, t)
|
|
584
|
+
x = x.transpose(1, 2)
|
|
585
|
+
return x
|