minicpmo-utils 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cosyvoice/__init__.py +17 -0
- cosyvoice/bin/average_model.py +93 -0
- cosyvoice/bin/export_jit.py +103 -0
- cosyvoice/bin/export_onnx.py +120 -0
- cosyvoice/bin/inference_deprecated.py +126 -0
- cosyvoice/bin/train.py +195 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +209 -0
- cosyvoice/cli/frontend.py +238 -0
- cosyvoice/cli/model.py +386 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +151 -0
- cosyvoice/dataset/processor.py +434 -0
- cosyvoice/flow/decoder.py +494 -0
- cosyvoice/flow/flow.py +281 -0
- cosyvoice/flow/flow_matching.py +227 -0
- cosyvoice/flow/length_regulator.py +70 -0
- cosyvoice/hifigan/discriminator.py +230 -0
- cosyvoice/hifigan/f0_predictor.py +58 -0
- cosyvoice/hifigan/generator.py +582 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/llm.py +610 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- cosyvoice/tokenizer/tokenizer.py +279 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +302 -0
- cosyvoice/transformer/encoder.py +474 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/transformer/upsample_encoder.py +320 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/common.py +186 -0
- cosyvoice/utils/executor.py +176 -0
- cosyvoice/utils/file_utils.py +129 -0
- cosyvoice/utils/frontend_utils.py +136 -0
- cosyvoice/utils/losses.py +57 -0
- cosyvoice/utils/mask.py +265 -0
- cosyvoice/utils/scheduler.py +738 -0
- cosyvoice/utils/train_utils.py +367 -0
- cosyvoice/vllm/cosyvoice2.py +103 -0
- matcha/__init__.py +0 -0
- matcha/app.py +357 -0
- matcha/cli.py +418 -0
- matcha/hifigan/__init__.py +0 -0
- matcha/hifigan/config.py +28 -0
- matcha/hifigan/denoiser.py +64 -0
- matcha/hifigan/env.py +17 -0
- matcha/hifigan/meldataset.py +217 -0
- matcha/hifigan/models.py +368 -0
- matcha/hifigan/xutils.py +60 -0
- matcha/models/__init__.py +0 -0
- matcha/models/baselightningmodule.py +209 -0
- matcha/models/components/__init__.py +0 -0
- matcha/models/components/decoder.py +443 -0
- matcha/models/components/flow_matching.py +132 -0
- matcha/models/components/text_encoder.py +410 -0
- matcha/models/components/transformer.py +316 -0
- matcha/models/matcha_tts.py +239 -0
- matcha/onnx/__init__.py +0 -0
- matcha/onnx/export.py +181 -0
- matcha/onnx/infer.py +168 -0
- matcha/text/__init__.py +53 -0
- matcha/text/cleaners.py +116 -0
- matcha/text/numbers.py +71 -0
- matcha/text/symbols.py +17 -0
- matcha/train.py +122 -0
- matcha/utils/__init__.py +5 -0
- matcha/utils/audio.py +82 -0
- matcha/utils/generate_data_statistics.py +111 -0
- matcha/utils/instantiators.py +56 -0
- matcha/utils/logging_utils.py +53 -0
- matcha/utils/model.py +90 -0
- matcha/utils/monotonic_align/__init__.py +22 -0
- matcha/utils/monotonic_align/setup.py +7 -0
- matcha/utils/pylogger.py +21 -0
- matcha/utils/rich_utils.py +101 -0
- matcha/utils/utils.py +219 -0
- minicpmo/__init__.py +24 -0
- minicpmo/utils.py +636 -0
- minicpmo/version.py +2 -0
- minicpmo_utils-0.1.0.dist-info/METADATA +72 -0
- minicpmo_utils-0.1.0.dist-info/RECORD +148 -0
- minicpmo_utils-0.1.0.dist-info/WHEEL +5 -0
- minicpmo_utils-0.1.0.dist-info/top_level.txt +5 -0
- s3tokenizer/__init__.py +153 -0
- s3tokenizer/assets/BAC009S0764W0121.wav +0 -0
- s3tokenizer/assets/BAC009S0764W0122.wav +0 -0
- s3tokenizer/assets/mel_filters.npz +0 -0
- s3tokenizer/cli.py +183 -0
- s3tokenizer/model.py +546 -0
- s3tokenizer/model_v2.py +605 -0
- s3tokenizer/utils.py +390 -0
- stepaudio2/__init__.py +40 -0
- stepaudio2/cosyvoice2/__init__.py +1 -0
- stepaudio2/cosyvoice2/flow/__init__.py +0 -0
- stepaudio2/cosyvoice2/flow/decoder_dit.py +585 -0
- stepaudio2/cosyvoice2/flow/flow.py +230 -0
- stepaudio2/cosyvoice2/flow/flow_matching.py +205 -0
- stepaudio2/cosyvoice2/transformer/__init__.py +0 -0
- stepaudio2/cosyvoice2/transformer/attention.py +328 -0
- stepaudio2/cosyvoice2/transformer/embedding.py +119 -0
- stepaudio2/cosyvoice2/transformer/encoder_layer.py +163 -0
- stepaudio2/cosyvoice2/transformer/positionwise_feed_forward.py +56 -0
- stepaudio2/cosyvoice2/transformer/subsampling.py +79 -0
- stepaudio2/cosyvoice2/transformer/upsample_encoder_v2.py +483 -0
- stepaudio2/cosyvoice2/utils/__init__.py +1 -0
- stepaudio2/cosyvoice2/utils/class_utils.py +41 -0
- stepaudio2/cosyvoice2/utils/common.py +101 -0
- stepaudio2/cosyvoice2/utils/mask.py +49 -0
- stepaudio2/flashcosyvoice/__init__.py +0 -0
- stepaudio2/flashcosyvoice/cli.py +424 -0
- stepaudio2/flashcosyvoice/config.py +80 -0
- stepaudio2/flashcosyvoice/cosyvoice2.py +160 -0
- stepaudio2/flashcosyvoice/cosyvoice3.py +1 -0
- stepaudio2/flashcosyvoice/engine/__init__.py +0 -0
- stepaudio2/flashcosyvoice/engine/block_manager.py +114 -0
- stepaudio2/flashcosyvoice/engine/llm_engine.py +125 -0
- stepaudio2/flashcosyvoice/engine/model_runner.py +310 -0
- stepaudio2/flashcosyvoice/engine/scheduler.py +77 -0
- stepaudio2/flashcosyvoice/engine/sequence.py +90 -0
- stepaudio2/flashcosyvoice/modules/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow.py +198 -0
- stepaudio2/flashcosyvoice/modules/flow_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow_components/estimator.py +974 -0
- stepaudio2/flashcosyvoice/modules/flow_components/upsample_encoder.py +998 -0
- stepaudio2/flashcosyvoice/modules/hifigan.py +249 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/layers.py +433 -0
- stepaudio2/flashcosyvoice/modules/qwen2.py +92 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/layers.py +616 -0
- stepaudio2/flashcosyvoice/modules/sampler.py +231 -0
- stepaudio2/flashcosyvoice/utils/__init__.py +0 -0
- stepaudio2/flashcosyvoice/utils/audio.py +77 -0
- stepaudio2/flashcosyvoice/utils/context.py +28 -0
- stepaudio2/flashcosyvoice/utils/loader.py +116 -0
- stepaudio2/flashcosyvoice/utils/memory.py +19 -0
- stepaudio2/stepaudio2.py +204 -0
- stepaudio2/token2wav.py +248 -0
- stepaudio2/utils.py +91 -0
cosyvoice/cli/model.py
ADDED
|
@@ -0,0 +1,386 @@
|
|
|
1
|
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
2
|
+
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
import os
|
|
16
|
+
from typing import Generator
|
|
17
|
+
import torch
|
|
18
|
+
import numpy as np
|
|
19
|
+
import threading
|
|
20
|
+
import time
|
|
21
|
+
from torch.nn import functional as F
|
|
22
|
+
from contextlib import nullcontext
|
|
23
|
+
import uuid
|
|
24
|
+
from cosyvoice.utils.common import fade_in_out
|
|
25
|
+
from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
|
|
26
|
+
from cosyvoice.utils.common import TrtContextWrapper
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class CosyVoiceModel:
|
|
30
|
+
|
|
31
|
+
def __init__(self,
|
|
32
|
+
llm: torch.nn.Module,
|
|
33
|
+
flow: torch.nn.Module,
|
|
34
|
+
hift: torch.nn.Module,
|
|
35
|
+
fp16: bool = False):
|
|
36
|
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
37
|
+
self.llm = llm
|
|
38
|
+
self.flow = flow
|
|
39
|
+
self.hift = hift
|
|
40
|
+
self.fp16 = fp16
|
|
41
|
+
if self.fp16 is True:
|
|
42
|
+
self.llm.half()
|
|
43
|
+
self.flow.half()
|
|
44
|
+
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
|
45
|
+
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
|
46
|
+
self.token_overlap_len = 20
|
|
47
|
+
# mel fade in out
|
|
48
|
+
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
|
49
|
+
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
|
50
|
+
# hift cache
|
|
51
|
+
self.mel_cache_len = 20
|
|
52
|
+
self.source_cache_len = int(self.mel_cache_len * 256)
|
|
53
|
+
# speech fade in out
|
|
54
|
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
|
55
|
+
# rtf and decoding related
|
|
56
|
+
self.stream_scale_factor = 1
|
|
57
|
+
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
|
58
|
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
59
|
+
self.lock = threading.Lock()
|
|
60
|
+
# dict used to store session related variable
|
|
61
|
+
self.tts_speech_token_dict = {}
|
|
62
|
+
self.llm_end_dict = {}
|
|
63
|
+
self.mel_overlap_dict = {}
|
|
64
|
+
self.flow_cache_dict = {}
|
|
65
|
+
self.hift_cache_dict = {}
|
|
66
|
+
|
|
67
|
+
def load(self, llm_model, flow_model, hift_model):
|
|
68
|
+
# self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
|
69
|
+
# self.llm.to(self.device).eval()
|
|
70
|
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
|
71
|
+
self.flow.to(self.device).eval()
|
|
72
|
+
# in case hift_model is a hifigan model
|
|
73
|
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
|
74
|
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
|
75
|
+
self.hift.to(self.device).eval()
|
|
76
|
+
|
|
77
|
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
|
78
|
+
# llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
|
79
|
+
# self.llm.text_encoder = llm_text_encoder
|
|
80
|
+
# llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
|
81
|
+
# self.llm.llm = llm_llm
|
|
82
|
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
|
83
|
+
self.flow.encoder = flow_encoder
|
|
84
|
+
|
|
85
|
+
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
|
|
86
|
+
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
|
87
|
+
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
|
|
88
|
+
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
|
|
89
|
+
del self.flow.decoder.estimator
|
|
90
|
+
import tensorrt as trt
|
|
91
|
+
with open(flow_decoder_estimator_model, 'rb') as f:
|
|
92
|
+
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
|
93
|
+
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
|
94
|
+
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
|
|
95
|
+
|
|
96
|
+
def get_trt_kwargs(self):
|
|
97
|
+
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
|
|
98
|
+
opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
|
|
99
|
+
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
|
|
100
|
+
input_names = ["x", "mask", "mu", "cond"]
|
|
101
|
+
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
|
102
|
+
|
|
103
|
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
|
104
|
+
with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
|
|
105
|
+
if isinstance(text, Generator):
|
|
106
|
+
assert isinstance(self, CosyVoice2Model) and not hasattr(self.llm, 'vllm'), 'streaming input text is only implemented for CosyVoice2 and do not support vllm!'
|
|
107
|
+
for i in self.llm.inference_bistream(text=text,
|
|
108
|
+
prompt_text=prompt_text.to(self.device),
|
|
109
|
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
|
110
|
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
111
|
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
112
|
+
embedding=llm_embedding.to(self.device)):
|
|
113
|
+
self.tts_speech_token_dict[uuid].append(i)
|
|
114
|
+
else:
|
|
115
|
+
for i in self.llm.inference(text=text.to(self.device),
|
|
116
|
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
|
117
|
+
prompt_text=prompt_text.to(self.device),
|
|
118
|
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
|
119
|
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
120
|
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
121
|
+
embedding=llm_embedding.to(self.device),
|
|
122
|
+
uuid=uuid):
|
|
123
|
+
self.tts_speech_token_dict[uuid].append(i)
|
|
124
|
+
self.llm_end_dict[uuid] = True
|
|
125
|
+
|
|
126
|
+
def vc_job(self, source_speech_token, uuid):
|
|
127
|
+
self.tts_speech_token_dict[uuid] = source_speech_token.flatten().tolist()
|
|
128
|
+
self.llm_end_dict[uuid] = True
|
|
129
|
+
|
|
130
|
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
|
131
|
+
with torch.cuda.amp.autocast(self.fp16):
|
|
132
|
+
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
|
133
|
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
134
|
+
prompt_token=prompt_token.to(self.device),
|
|
135
|
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
136
|
+
prompt_feat=prompt_feat.to(self.device),
|
|
137
|
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
138
|
+
embedding=embedding.to(self.device),
|
|
139
|
+
flow_cache=self.flow_cache_dict[uuid])
|
|
140
|
+
|
|
141
|
+
# mel overlap fade in out
|
|
142
|
+
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
|
143
|
+
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
|
144
|
+
# append hift cache
|
|
145
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
146
|
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
147
|
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
148
|
+
else:
|
|
149
|
+
hift_cache_source = torch.zeros(1, 1, 0)
|
|
150
|
+
# keep overlap mel and hift cache
|
|
151
|
+
if finalize is False:
|
|
152
|
+
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
153
|
+
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
154
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
155
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
156
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
157
|
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
|
158
|
+
'source': tts_source[:, :, -self.source_cache_len:],
|
|
159
|
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
|
160
|
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
161
|
+
else:
|
|
162
|
+
if speed != 1.0:
|
|
163
|
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
|
164
|
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
|
165
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
166
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
167
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
168
|
+
return tts_speech
|
|
169
|
+
|
|
170
|
+
def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
|
|
171
|
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
|
172
|
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
173
|
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
174
|
+
prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
|
|
175
|
+
# this_uuid is used to track variables related to this inference thread
|
|
176
|
+
this_uuid = str(uuid.uuid1())
|
|
177
|
+
with self.lock:
|
|
178
|
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
|
179
|
+
self.hift_cache_dict[this_uuid] = None
|
|
180
|
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
|
181
|
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
|
182
|
+
if source_speech_token.shape[1] == 0:
|
|
183
|
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
|
184
|
+
else:
|
|
185
|
+
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
|
186
|
+
p.start()
|
|
187
|
+
if stream is True:
|
|
188
|
+
token_hop_len = self.token_min_hop_len
|
|
189
|
+
while True:
|
|
190
|
+
time.sleep(0.1)
|
|
191
|
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
192
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
|
193
|
+
.unsqueeze(dim=0)
|
|
194
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
195
|
+
prompt_token=flow_prompt_speech_token,
|
|
196
|
+
prompt_feat=prompt_speech_feat,
|
|
197
|
+
embedding=flow_embedding,
|
|
198
|
+
uuid=this_uuid,
|
|
199
|
+
finalize=False)
|
|
200
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
201
|
+
with self.lock:
|
|
202
|
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
|
203
|
+
# increase token_hop_len for better speech quality
|
|
204
|
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
|
205
|
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
|
206
|
+
break
|
|
207
|
+
p.join()
|
|
208
|
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
209
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
210
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
211
|
+
prompt_token=flow_prompt_speech_token,
|
|
212
|
+
prompt_feat=prompt_speech_feat,
|
|
213
|
+
embedding=flow_embedding,
|
|
214
|
+
uuid=this_uuid,
|
|
215
|
+
finalize=True)
|
|
216
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
217
|
+
else:
|
|
218
|
+
# deal with all tokens
|
|
219
|
+
p.join()
|
|
220
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
221
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
222
|
+
prompt_token=flow_prompt_speech_token,
|
|
223
|
+
prompt_feat=prompt_speech_feat,
|
|
224
|
+
embedding=flow_embedding,
|
|
225
|
+
uuid=this_uuid,
|
|
226
|
+
finalize=True,
|
|
227
|
+
speed=speed)
|
|
228
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
229
|
+
with self.lock:
|
|
230
|
+
self.tts_speech_token_dict.pop(this_uuid)
|
|
231
|
+
self.llm_end_dict.pop(this_uuid)
|
|
232
|
+
self.mel_overlap_dict.pop(this_uuid)
|
|
233
|
+
self.hift_cache_dict.pop(this_uuid)
|
|
234
|
+
self.flow_cache_dict.pop(this_uuid)
|
|
235
|
+
if torch.cuda.is_available():
|
|
236
|
+
torch.cuda.empty_cache()
|
|
237
|
+
torch.cuda.current_stream().synchronize()
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
class CosyVoice2Model(CosyVoiceModel):
|
|
241
|
+
|
|
242
|
+
def __init__(self,
|
|
243
|
+
llm: torch.nn.Module,
|
|
244
|
+
flow: torch.nn.Module,
|
|
245
|
+
hift: torch.nn.Module,
|
|
246
|
+
fp16: bool = False):
|
|
247
|
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
248
|
+
# self.llm = llm
|
|
249
|
+
self.flow = flow
|
|
250
|
+
self.hift = hift
|
|
251
|
+
self.fp16 = fp16
|
|
252
|
+
if self.fp16 is True:
|
|
253
|
+
# self.llm.half()
|
|
254
|
+
self.flow.half()
|
|
255
|
+
# NOTE must matching training static_chunk_size
|
|
256
|
+
self.token_hop_len = 25
|
|
257
|
+
# hift cache
|
|
258
|
+
self.mel_cache_len = 8
|
|
259
|
+
self.source_cache_len = int(self.mel_cache_len * 480)
|
|
260
|
+
# speech fade in out
|
|
261
|
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
|
262
|
+
# rtf and decoding related
|
|
263
|
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
264
|
+
self.lock = threading.Lock()
|
|
265
|
+
# dict used to store session related variable
|
|
266
|
+
self.tts_speech_token_dict = {}
|
|
267
|
+
self.llm_end_dict = {}
|
|
268
|
+
self.hift_cache_dict = {}
|
|
269
|
+
|
|
270
|
+
def load_jit(self, flow_encoder_model):
|
|
271
|
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
|
272
|
+
self.flow.encoder = flow_encoder
|
|
273
|
+
|
|
274
|
+
def load_vllm(self, model_dir):
|
|
275
|
+
export_cosyvoice2_vllm(self.llm, model_dir, self.device)
|
|
276
|
+
from vllm import EngineArgs, LLMEngine
|
|
277
|
+
engine_args = EngineArgs(model=model_dir,
|
|
278
|
+
skip_tokenizer_init=True,
|
|
279
|
+
enable_prompt_embeds=True,
|
|
280
|
+
gpu_memory_utilization=0.2)
|
|
281
|
+
self.llm.vllm = LLMEngine.from_engine_args(engine_args)
|
|
282
|
+
self.llm.lock = threading.Lock()
|
|
283
|
+
del self.llm.llm.model.model.layers
|
|
284
|
+
|
|
285
|
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
|
286
|
+
with torch.cuda.amp.autocast(self.fp16):
|
|
287
|
+
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
|
288
|
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
289
|
+
prompt_token=prompt_token.to(self.device),
|
|
290
|
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
291
|
+
prompt_feat=prompt_feat.to(self.device),
|
|
292
|
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
293
|
+
embedding=embedding.to(self.device),
|
|
294
|
+
streaming=stream,
|
|
295
|
+
finalize=finalize)
|
|
296
|
+
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
|
297
|
+
# append hift cache
|
|
298
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
299
|
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
300
|
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
301
|
+
else:
|
|
302
|
+
hift_cache_source = torch.zeros(1, 1, 0)
|
|
303
|
+
# keep overlap mel and hift cache
|
|
304
|
+
if finalize is False:
|
|
305
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
306
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
307
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
308
|
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
|
309
|
+
'source': tts_source[:, :, -self.source_cache_len:],
|
|
310
|
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
|
311
|
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
312
|
+
else:
|
|
313
|
+
if speed != 1.0:
|
|
314
|
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
|
315
|
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
|
316
|
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
|
317
|
+
if self.hift_cache_dict[uuid] is not None:
|
|
318
|
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
|
319
|
+
return tts_speech
|
|
320
|
+
|
|
321
|
+
def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
|
|
322
|
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
|
323
|
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
324
|
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
325
|
+
prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
|
|
326
|
+
# this_uuid is used to track variables related to this inference thread
|
|
327
|
+
this_uuid = str(uuid.uuid1())
|
|
328
|
+
with self.lock:
|
|
329
|
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
|
330
|
+
self.hift_cache_dict[this_uuid] = None
|
|
331
|
+
if source_speech_token.shape[1] == 0:
|
|
332
|
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
|
333
|
+
else:
|
|
334
|
+
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
|
335
|
+
p.start()
|
|
336
|
+
if stream is True:
|
|
337
|
+
token_offset = 0
|
|
338
|
+
prompt_token_pad = int(np.ceil(flow_prompt_speech_token.shape[1] / self.token_hop_len) * self.token_hop_len - flow_prompt_speech_token.shape[1])
|
|
339
|
+
while True:
|
|
340
|
+
time.sleep(0.1)
|
|
341
|
+
this_token_hop_len = self.token_hop_len + prompt_token_pad if token_offset == 0 else self.token_hop_len
|
|
342
|
+
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= this_token_hop_len + self.flow.pre_lookahead_len:
|
|
343
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + this_token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
|
344
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
345
|
+
prompt_token=flow_prompt_speech_token,
|
|
346
|
+
prompt_feat=prompt_speech_feat,
|
|
347
|
+
embedding=flow_embedding,
|
|
348
|
+
token_offset=token_offset,
|
|
349
|
+
uuid=this_uuid,
|
|
350
|
+
stream=stream,
|
|
351
|
+
finalize=False)
|
|
352
|
+
token_offset += this_token_hop_len
|
|
353
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
354
|
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < this_token_hop_len + self.flow.pre_lookahead_len:
|
|
355
|
+
break
|
|
356
|
+
p.join()
|
|
357
|
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
358
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
359
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
360
|
+
prompt_token=flow_prompt_speech_token,
|
|
361
|
+
prompt_feat=prompt_speech_feat,
|
|
362
|
+
embedding=flow_embedding,
|
|
363
|
+
token_offset=token_offset,
|
|
364
|
+
uuid=this_uuid,
|
|
365
|
+
finalize=True)
|
|
366
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
367
|
+
else:
|
|
368
|
+
# deal with all tokens
|
|
369
|
+
p.join()
|
|
370
|
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
371
|
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
372
|
+
prompt_token=flow_prompt_speech_token,
|
|
373
|
+
prompt_feat=prompt_speech_feat,
|
|
374
|
+
embedding=flow_embedding,
|
|
375
|
+
token_offset=0,
|
|
376
|
+
uuid=this_uuid,
|
|
377
|
+
finalize=True,
|
|
378
|
+
speed=speed)
|
|
379
|
+
yield {'tts_speech': this_tts_speech.cpu()}
|
|
380
|
+
with self.lock:
|
|
381
|
+
self.tts_speech_token_dict.pop(this_uuid)
|
|
382
|
+
self.llm_end_dict.pop(this_uuid)
|
|
383
|
+
self.hift_cache_dict.pop(this_uuid)
|
|
384
|
+
if torch.cuda.is_available():
|
|
385
|
+
torch.cuda.empty_cache()
|
|
386
|
+
torch.cuda.current_stream().synchronize()
|
|
File without changes
|
|
@@ -0,0 +1,151 @@
|
|
|
1
|
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
|
2
|
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import random
|
|
17
|
+
import math
|
|
18
|
+
from functools import partial
|
|
19
|
+
|
|
20
|
+
import torch
|
|
21
|
+
import torch.distributed as dist
|
|
22
|
+
from torch.utils.data import IterableDataset
|
|
23
|
+
from cosyvoice.utils.file_utils import read_lists
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class Processor(IterableDataset):
|
|
27
|
+
|
|
28
|
+
def __init__(self, source, f, *args, **kw):
|
|
29
|
+
assert callable(f)
|
|
30
|
+
self.source = source
|
|
31
|
+
self.f = f
|
|
32
|
+
self.args = args
|
|
33
|
+
self.kw = kw
|
|
34
|
+
|
|
35
|
+
def set_epoch(self, epoch):
|
|
36
|
+
self.source.set_epoch(epoch)
|
|
37
|
+
|
|
38
|
+
def __iter__(self):
|
|
39
|
+
""" Return an iterator over the source dataset processed by the
|
|
40
|
+
given processor.
|
|
41
|
+
"""
|
|
42
|
+
assert self.source is not None
|
|
43
|
+
assert callable(self.f)
|
|
44
|
+
return self.f(iter(self.source), *self.args, **self.kw)
|
|
45
|
+
|
|
46
|
+
def apply(self, f):
|
|
47
|
+
assert callable(f)
|
|
48
|
+
return Processor(self, f, *self.args, **self.kw)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class DistributedSampler:
|
|
52
|
+
|
|
53
|
+
def __init__(self, shuffle=True, partition=True):
|
|
54
|
+
self.epoch = -1
|
|
55
|
+
self.update()
|
|
56
|
+
self.shuffle = shuffle
|
|
57
|
+
self.partition = partition
|
|
58
|
+
|
|
59
|
+
def update(self):
|
|
60
|
+
assert dist.is_available()
|
|
61
|
+
if dist.is_initialized():
|
|
62
|
+
self.rank = dist.get_rank()
|
|
63
|
+
self.world_size = dist.get_world_size()
|
|
64
|
+
else:
|
|
65
|
+
self.rank = 0
|
|
66
|
+
self.world_size = 1
|
|
67
|
+
worker_info = torch.utils.data.get_worker_info()
|
|
68
|
+
if worker_info is None:
|
|
69
|
+
self.worker_id = 0
|
|
70
|
+
self.num_workers = 1
|
|
71
|
+
else:
|
|
72
|
+
self.worker_id = worker_info.id
|
|
73
|
+
self.num_workers = worker_info.num_workers
|
|
74
|
+
return dict(rank=self.rank,
|
|
75
|
+
world_size=self.world_size,
|
|
76
|
+
worker_id=self.worker_id,
|
|
77
|
+
num_workers=self.num_workers)
|
|
78
|
+
|
|
79
|
+
def set_epoch(self, epoch):
|
|
80
|
+
self.epoch = epoch
|
|
81
|
+
|
|
82
|
+
def sample(self, data):
|
|
83
|
+
""" Sample data according to rank/world_size/num_workers
|
|
84
|
+
|
|
85
|
+
Args:
|
|
86
|
+
data(List): input data list
|
|
87
|
+
|
|
88
|
+
Returns:
|
|
89
|
+
List: data list after sample
|
|
90
|
+
"""
|
|
91
|
+
data = list(range(len(data)))
|
|
92
|
+
# force datalist even
|
|
93
|
+
if self.partition:
|
|
94
|
+
if self.shuffle:
|
|
95
|
+
random.Random(self.epoch).shuffle(data)
|
|
96
|
+
if len(data) < self.world_size:
|
|
97
|
+
data = data * math.ceil(self.world_size / len(data))
|
|
98
|
+
data = data[:self.world_size]
|
|
99
|
+
data = data[self.rank::self.world_size]
|
|
100
|
+
if len(data) < self.num_workers:
|
|
101
|
+
data = data * math.ceil(self.num_workers / len(data))
|
|
102
|
+
data = data[:self.num_workers]
|
|
103
|
+
data = data[self.worker_id::self.num_workers]
|
|
104
|
+
return data
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class DataList(IterableDataset):
|
|
108
|
+
|
|
109
|
+
def __init__(self, lists, shuffle=True, partition=True):
|
|
110
|
+
self.lists = lists
|
|
111
|
+
self.sampler = DistributedSampler(shuffle, partition)
|
|
112
|
+
|
|
113
|
+
def set_epoch(self, epoch):
|
|
114
|
+
self.sampler.set_epoch(epoch)
|
|
115
|
+
|
|
116
|
+
def __iter__(self):
|
|
117
|
+
sampler_info = self.sampler.update()
|
|
118
|
+
indexes = self.sampler.sample(self.lists)
|
|
119
|
+
for index in indexes:
|
|
120
|
+
data = dict(src=self.lists[index])
|
|
121
|
+
data.update(sampler_info)
|
|
122
|
+
yield data
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def Dataset(data_list_file,
|
|
126
|
+
data_pipeline,
|
|
127
|
+
mode='train',
|
|
128
|
+
gan=False,
|
|
129
|
+
dpo=False,
|
|
130
|
+
shuffle=True,
|
|
131
|
+
partition=True):
|
|
132
|
+
""" Construct dataset from arguments
|
|
133
|
+
|
|
134
|
+
We have two shuffle stage in the Dataset. The first is global
|
|
135
|
+
shuffle at shards tar/raw file level. The second is global shuffle
|
|
136
|
+
at training samples level.
|
|
137
|
+
|
|
138
|
+
Args:
|
|
139
|
+
data_type(str): raw/shard
|
|
140
|
+
tokenizer (BaseTokenizer): tokenizer to tokenize
|
|
141
|
+
partition(bool): whether to do data partition in terms of rank
|
|
142
|
+
"""
|
|
143
|
+
lists = read_lists(data_list_file)
|
|
144
|
+
dataset = DataList(lists,
|
|
145
|
+
shuffle=shuffle,
|
|
146
|
+
partition=partition)
|
|
147
|
+
# map partial arg to padding func
|
|
148
|
+
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan, dpo=dpo)
|
|
149
|
+
for func in data_pipeline:
|
|
150
|
+
dataset = Processor(dataset, func, mode=mode)
|
|
151
|
+
return dataset
|