minicpmo-utils 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cosyvoice/__init__.py +17 -0
- cosyvoice/bin/average_model.py +93 -0
- cosyvoice/bin/export_jit.py +103 -0
- cosyvoice/bin/export_onnx.py +120 -0
- cosyvoice/bin/inference_deprecated.py +126 -0
- cosyvoice/bin/train.py +195 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +209 -0
- cosyvoice/cli/frontend.py +238 -0
- cosyvoice/cli/model.py +386 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +151 -0
- cosyvoice/dataset/processor.py +434 -0
- cosyvoice/flow/decoder.py +494 -0
- cosyvoice/flow/flow.py +281 -0
- cosyvoice/flow/flow_matching.py +227 -0
- cosyvoice/flow/length_regulator.py +70 -0
- cosyvoice/hifigan/discriminator.py +230 -0
- cosyvoice/hifigan/f0_predictor.py +58 -0
- cosyvoice/hifigan/generator.py +582 -0
- cosyvoice/hifigan/hifigan.py +67 -0
- cosyvoice/llm/llm.py +610 -0
- cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- cosyvoice/tokenizer/tokenizer.py +279 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +302 -0
- cosyvoice/transformer/encoder.py +474 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/transformer/upsample_encoder.py +320 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/common.py +186 -0
- cosyvoice/utils/executor.py +176 -0
- cosyvoice/utils/file_utils.py +129 -0
- cosyvoice/utils/frontend_utils.py +136 -0
- cosyvoice/utils/losses.py +57 -0
- cosyvoice/utils/mask.py +265 -0
- cosyvoice/utils/scheduler.py +738 -0
- cosyvoice/utils/train_utils.py +367 -0
- cosyvoice/vllm/cosyvoice2.py +103 -0
- matcha/__init__.py +0 -0
- matcha/app.py +357 -0
- matcha/cli.py +418 -0
- matcha/hifigan/__init__.py +0 -0
- matcha/hifigan/config.py +28 -0
- matcha/hifigan/denoiser.py +64 -0
- matcha/hifigan/env.py +17 -0
- matcha/hifigan/meldataset.py +217 -0
- matcha/hifigan/models.py +368 -0
- matcha/hifigan/xutils.py +60 -0
- matcha/models/__init__.py +0 -0
- matcha/models/baselightningmodule.py +209 -0
- matcha/models/components/__init__.py +0 -0
- matcha/models/components/decoder.py +443 -0
- matcha/models/components/flow_matching.py +132 -0
- matcha/models/components/text_encoder.py +410 -0
- matcha/models/components/transformer.py +316 -0
- matcha/models/matcha_tts.py +239 -0
- matcha/onnx/__init__.py +0 -0
- matcha/onnx/export.py +181 -0
- matcha/onnx/infer.py +168 -0
- matcha/text/__init__.py +53 -0
- matcha/text/cleaners.py +116 -0
- matcha/text/numbers.py +71 -0
- matcha/text/symbols.py +17 -0
- matcha/train.py +122 -0
- matcha/utils/__init__.py +5 -0
- matcha/utils/audio.py +82 -0
- matcha/utils/generate_data_statistics.py +111 -0
- matcha/utils/instantiators.py +56 -0
- matcha/utils/logging_utils.py +53 -0
- matcha/utils/model.py +90 -0
- matcha/utils/monotonic_align/__init__.py +22 -0
- matcha/utils/monotonic_align/setup.py +7 -0
- matcha/utils/pylogger.py +21 -0
- matcha/utils/rich_utils.py +101 -0
- matcha/utils/utils.py +219 -0
- minicpmo/__init__.py +24 -0
- minicpmo/utils.py +636 -0
- minicpmo/version.py +2 -0
- minicpmo_utils-0.1.0.dist-info/METADATA +72 -0
- minicpmo_utils-0.1.0.dist-info/RECORD +148 -0
- minicpmo_utils-0.1.0.dist-info/WHEEL +5 -0
- minicpmo_utils-0.1.0.dist-info/top_level.txt +5 -0
- s3tokenizer/__init__.py +153 -0
- s3tokenizer/assets/BAC009S0764W0121.wav +0 -0
- s3tokenizer/assets/BAC009S0764W0122.wav +0 -0
- s3tokenizer/assets/mel_filters.npz +0 -0
- s3tokenizer/cli.py +183 -0
- s3tokenizer/model.py +546 -0
- s3tokenizer/model_v2.py +605 -0
- s3tokenizer/utils.py +390 -0
- stepaudio2/__init__.py +40 -0
- stepaudio2/cosyvoice2/__init__.py +1 -0
- stepaudio2/cosyvoice2/flow/__init__.py +0 -0
- stepaudio2/cosyvoice2/flow/decoder_dit.py +585 -0
- stepaudio2/cosyvoice2/flow/flow.py +230 -0
- stepaudio2/cosyvoice2/flow/flow_matching.py +205 -0
- stepaudio2/cosyvoice2/transformer/__init__.py +0 -0
- stepaudio2/cosyvoice2/transformer/attention.py +328 -0
- stepaudio2/cosyvoice2/transformer/embedding.py +119 -0
- stepaudio2/cosyvoice2/transformer/encoder_layer.py +163 -0
- stepaudio2/cosyvoice2/transformer/positionwise_feed_forward.py +56 -0
- stepaudio2/cosyvoice2/transformer/subsampling.py +79 -0
- stepaudio2/cosyvoice2/transformer/upsample_encoder_v2.py +483 -0
- stepaudio2/cosyvoice2/utils/__init__.py +1 -0
- stepaudio2/cosyvoice2/utils/class_utils.py +41 -0
- stepaudio2/cosyvoice2/utils/common.py +101 -0
- stepaudio2/cosyvoice2/utils/mask.py +49 -0
- stepaudio2/flashcosyvoice/__init__.py +0 -0
- stepaudio2/flashcosyvoice/cli.py +424 -0
- stepaudio2/flashcosyvoice/config.py +80 -0
- stepaudio2/flashcosyvoice/cosyvoice2.py +160 -0
- stepaudio2/flashcosyvoice/cosyvoice3.py +1 -0
- stepaudio2/flashcosyvoice/engine/__init__.py +0 -0
- stepaudio2/flashcosyvoice/engine/block_manager.py +114 -0
- stepaudio2/flashcosyvoice/engine/llm_engine.py +125 -0
- stepaudio2/flashcosyvoice/engine/model_runner.py +310 -0
- stepaudio2/flashcosyvoice/engine/scheduler.py +77 -0
- stepaudio2/flashcosyvoice/engine/sequence.py +90 -0
- stepaudio2/flashcosyvoice/modules/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow.py +198 -0
- stepaudio2/flashcosyvoice/modules/flow_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/flow_components/estimator.py +974 -0
- stepaudio2/flashcosyvoice/modules/flow_components/upsample_encoder.py +998 -0
- stepaudio2/flashcosyvoice/modules/hifigan.py +249 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/hifigan_components/layers.py +433 -0
- stepaudio2/flashcosyvoice/modules/qwen2.py +92 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/__init__.py +0 -0
- stepaudio2/flashcosyvoice/modules/qwen2_components/layers.py +616 -0
- stepaudio2/flashcosyvoice/modules/sampler.py +231 -0
- stepaudio2/flashcosyvoice/utils/__init__.py +0 -0
- stepaudio2/flashcosyvoice/utils/audio.py +77 -0
- stepaudio2/flashcosyvoice/utils/context.py +28 -0
- stepaudio2/flashcosyvoice/utils/loader.py +116 -0
- stepaudio2/flashcosyvoice/utils/memory.py +19 -0
- stepaudio2/stepaudio2.py +204 -0
- stepaudio2/token2wav.py +248 -0
- stepaudio2/utils.py +91 -0
|
@@ -0,0 +1,367 @@
|
|
|
1
|
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
|
2
|
+
# 2023 Horizon Inc. (authors: Xingchen Song)
|
|
3
|
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
|
|
17
|
+
import logging
|
|
18
|
+
import os
|
|
19
|
+
import torch
|
|
20
|
+
import json
|
|
21
|
+
import re
|
|
22
|
+
import datetime
|
|
23
|
+
import yaml
|
|
24
|
+
|
|
25
|
+
import deepspeed
|
|
26
|
+
import torch.optim as optim
|
|
27
|
+
import torch.distributed as dist
|
|
28
|
+
|
|
29
|
+
from torch.utils.tensorboard import SummaryWriter
|
|
30
|
+
from torch.utils.data import DataLoader
|
|
31
|
+
from torch.nn.utils import clip_grad_norm_
|
|
32
|
+
|
|
33
|
+
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
|
34
|
+
|
|
35
|
+
from cosyvoice.dataset.dataset import Dataset
|
|
36
|
+
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def init_distributed(args):
|
|
40
|
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
|
41
|
+
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
|
42
|
+
rank = int(os.environ.get('RANK', 0))
|
|
43
|
+
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
|
|
44
|
+
', rank {}, world_size {}'.format(rank, world_size))
|
|
45
|
+
if args.train_engine == 'torch_ddp':
|
|
46
|
+
torch.cuda.set_device(local_rank)
|
|
47
|
+
dist.init_process_group(args.dist_backend)
|
|
48
|
+
else:
|
|
49
|
+
deepspeed.init_distributed(dist_backend=args.dist_backend)
|
|
50
|
+
return world_size, local_rank, rank
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def init_dataset_and_dataloader(args, configs, gan, dpo):
|
|
54
|
+
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
|
55
|
+
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=True, partition=True)
|
|
56
|
+
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=False, partition=False)
|
|
57
|
+
|
|
58
|
+
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
|
59
|
+
train_data_loader = DataLoader(train_dataset,
|
|
60
|
+
batch_size=None,
|
|
61
|
+
pin_memory=args.pin_memory,
|
|
62
|
+
num_workers=args.num_workers,
|
|
63
|
+
prefetch_factor=args.prefetch)
|
|
64
|
+
cv_data_loader = DataLoader(cv_dataset,
|
|
65
|
+
batch_size=None,
|
|
66
|
+
pin_memory=args.pin_memory,
|
|
67
|
+
num_workers=args.num_workers,
|
|
68
|
+
prefetch_factor=args.prefetch)
|
|
69
|
+
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def check_modify_and_save_config(args, configs):
|
|
73
|
+
if args.train_engine == "torch_ddp":
|
|
74
|
+
configs['train_conf']["dtype"] = 'fp32'
|
|
75
|
+
else:
|
|
76
|
+
with open(args.deepspeed_config, 'r') as fin:
|
|
77
|
+
ds_configs = json.load(fin)
|
|
78
|
+
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
|
|
79
|
+
configs['train_conf']["dtype"] = "fp16"
|
|
80
|
+
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
|
|
81
|
+
configs['train_conf']["dtype"] = "bf16"
|
|
82
|
+
else:
|
|
83
|
+
configs['train_conf']["dtype"] = "fp32"
|
|
84
|
+
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
|
85
|
+
# if use deepspeed, override ddp config
|
|
86
|
+
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
|
|
87
|
+
configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
|
88
|
+
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
|
89
|
+
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
|
90
|
+
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
|
91
|
+
return configs
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def wrap_cuda_model(args, model):
|
|
95
|
+
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
|
|
96
|
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
|
97
|
+
if args.train_engine == "torch_ddp": # native pytorch ddp
|
|
98
|
+
assert (torch.cuda.is_available())
|
|
99
|
+
model.cuda()
|
|
100
|
+
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
|
|
101
|
+
else:
|
|
102
|
+
if int(os.environ.get('RANK', 0)) == 0:
|
|
103
|
+
logging.info("Estimating model states memory needs (zero2)...")
|
|
104
|
+
estimate_zero2_model_states_mem_needs_all_live(
|
|
105
|
+
model,
|
|
106
|
+
num_gpus_per_node=local_world_size,
|
|
107
|
+
num_nodes=world_size // local_world_size)
|
|
108
|
+
return model
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def init_optimizer_and_scheduler(args, configs, model, gan):
|
|
112
|
+
if gan is False:
|
|
113
|
+
if configs['train_conf']['optim'] == 'adam':
|
|
114
|
+
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
|
115
|
+
elif configs['train_conf']['optim'] == 'adamw':
|
|
116
|
+
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
|
117
|
+
else:
|
|
118
|
+
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
|
119
|
+
|
|
120
|
+
if configs['train_conf']['scheduler'] == 'warmuplr':
|
|
121
|
+
scheduler_type = WarmupLR
|
|
122
|
+
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
|
123
|
+
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
|
124
|
+
scheduler_type = NoamHoldAnnealing
|
|
125
|
+
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
|
126
|
+
elif configs['train_conf']['scheduler'] == 'constantlr':
|
|
127
|
+
scheduler_type = ConstantLR
|
|
128
|
+
scheduler = ConstantLR(optimizer)
|
|
129
|
+
else:
|
|
130
|
+
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
|
131
|
+
|
|
132
|
+
# use deepspeed optimizer for speedup
|
|
133
|
+
if args.train_engine == "deepspeed":
|
|
134
|
+
def scheduler(opt):
|
|
135
|
+
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
|
136
|
+
model, optimizer, _, scheduler = deepspeed.initialize(
|
|
137
|
+
args=args,
|
|
138
|
+
model=model,
|
|
139
|
+
optimizer=None,
|
|
140
|
+
lr_scheduler=scheduler,
|
|
141
|
+
model_parameters=model.parameters())
|
|
142
|
+
|
|
143
|
+
optimizer_d, scheduler_d = None, None
|
|
144
|
+
|
|
145
|
+
else:
|
|
146
|
+
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
|
|
147
|
+
if configs['train_conf']['optim'] == 'adam':
|
|
148
|
+
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
|
149
|
+
elif configs['train_conf']['optim'] == 'adamw':
|
|
150
|
+
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
|
151
|
+
else:
|
|
152
|
+
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
|
153
|
+
|
|
154
|
+
if configs['train_conf']['scheduler'] == 'warmuplr':
|
|
155
|
+
scheduler_type = WarmupLR
|
|
156
|
+
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
|
157
|
+
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
|
158
|
+
scheduler_type = NoamHoldAnnealing
|
|
159
|
+
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
|
160
|
+
elif configs['train_conf']['scheduler'] == 'constantlr':
|
|
161
|
+
scheduler_type = ConstantLR
|
|
162
|
+
scheduler = ConstantLR(optimizer)
|
|
163
|
+
else:
|
|
164
|
+
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
|
165
|
+
|
|
166
|
+
if configs['train_conf']['optim_d'] == 'adam':
|
|
167
|
+
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
|
168
|
+
elif configs['train_conf']['optim_d'] == 'adamw':
|
|
169
|
+
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
|
170
|
+
else:
|
|
171
|
+
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
|
172
|
+
|
|
173
|
+
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
|
174
|
+
scheduler_type = WarmupLR
|
|
175
|
+
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
|
176
|
+
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
|
177
|
+
scheduler_type = NoamHoldAnnealing
|
|
178
|
+
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
|
179
|
+
elif configs['train_conf']['scheduler'] == 'constantlr':
|
|
180
|
+
scheduler_type = ConstantLR
|
|
181
|
+
scheduler_d = ConstantLR(optimizer_d)
|
|
182
|
+
else:
|
|
183
|
+
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
|
184
|
+
return model, optimizer, scheduler, optimizer_d, scheduler_d
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
def init_summarywriter(args):
|
|
188
|
+
writer = None
|
|
189
|
+
if int(os.environ.get('RANK', 0)) == 0:
|
|
190
|
+
os.makedirs(args.model_dir, exist_ok=True)
|
|
191
|
+
writer = SummaryWriter(args.tensorboard_dir)
|
|
192
|
+
return writer
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def save_model(model, model_name, info_dict):
|
|
196
|
+
rank = int(os.environ.get('RANK', 0))
|
|
197
|
+
model_dir = info_dict["model_dir"]
|
|
198
|
+
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
|
|
199
|
+
|
|
200
|
+
if info_dict["train_engine"] == "torch_ddp":
|
|
201
|
+
if rank == 0:
|
|
202
|
+
torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
|
|
203
|
+
else:
|
|
204
|
+
with torch.no_grad():
|
|
205
|
+
model.save_checkpoint(save_dir=model_dir,
|
|
206
|
+
tag=model_name,
|
|
207
|
+
client_state=info_dict)
|
|
208
|
+
if rank == 0:
|
|
209
|
+
info_path = re.sub('.pt$', '.yaml', save_model_path)
|
|
210
|
+
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
|
211
|
+
with open(info_path, 'w') as fout:
|
|
212
|
+
data = yaml.dump(info_dict)
|
|
213
|
+
fout.write(data)
|
|
214
|
+
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
def cosyvoice_join(group_join, info_dict):
|
|
218
|
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
|
219
|
+
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
|
220
|
+
rank = int(os.environ.get('RANK', 0))
|
|
221
|
+
|
|
222
|
+
if info_dict["batch_idx"] != 0:
|
|
223
|
+
# we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
|
|
224
|
+
try:
|
|
225
|
+
dist.monitored_barrier(group=group_join,
|
|
226
|
+
timeout=group_join.options._timeout)
|
|
227
|
+
return False
|
|
228
|
+
except RuntimeError as e:
|
|
229
|
+
logging.info("Detected uneven workload distribution: {}\n".format(e) +
|
|
230
|
+
"Break current worker to manually join all workers, " +
|
|
231
|
+
"world_size {}, current rank {}, current local_rank {}\n".
|
|
232
|
+
format(world_size, rank, local_rank))
|
|
233
|
+
return True
|
|
234
|
+
else:
|
|
235
|
+
return False
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def batch_forward(model, batch, scaler, info_dict, ref_model=None, dpo_loss=None):
|
|
239
|
+
device = int(os.environ.get('LOCAL_RANK', 0))
|
|
240
|
+
|
|
241
|
+
dtype = info_dict["dtype"]
|
|
242
|
+
if dtype == "fp16":
|
|
243
|
+
dtype = torch.float16
|
|
244
|
+
elif dtype == "bf16":
|
|
245
|
+
dtype = torch.bfloat16
|
|
246
|
+
else: # fp32
|
|
247
|
+
dtype = torch.float32
|
|
248
|
+
|
|
249
|
+
if info_dict['train_engine'] == 'torch_ddp':
|
|
250
|
+
autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
|
|
251
|
+
else:
|
|
252
|
+
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
|
253
|
+
|
|
254
|
+
with autocast:
|
|
255
|
+
info_dict['loss_dict'] = model(batch, device)
|
|
256
|
+
if ref_model is not None and dpo_loss is not None:
|
|
257
|
+
chosen_logps = info_dict['loss_dict']["chosen_logps"]
|
|
258
|
+
rejected_logps = info_dict['loss_dict']["rejected_logps"]
|
|
259
|
+
sft_loss = info_dict['loss_dict']['loss']
|
|
260
|
+
with torch.no_grad():
|
|
261
|
+
ref_loss_dict = ref_model(batch, device)
|
|
262
|
+
reference_chosen_logps = ref_loss_dict["chosen_logps"]
|
|
263
|
+
reference_rejected_logps = ref_loss_dict["rejected_logps"]
|
|
264
|
+
preference_loss, chosen_reward, reject_reward = dpo_loss(
|
|
265
|
+
chosen_logps, rejected_logps, reference_chosen_logps, reference_rejected_logps
|
|
266
|
+
)
|
|
267
|
+
dpo_acc = (chosen_reward > reject_reward).float().mean()
|
|
268
|
+
info_dict['loss_dict']["loss"] = preference_loss + sft_loss
|
|
269
|
+
info_dict['loss_dict']["sft_loss"] = sft_loss
|
|
270
|
+
info_dict['loss_dict']["dpo_loss"] = preference_loss
|
|
271
|
+
info_dict['loss_dict']["dpo_acc"] = dpo_acc
|
|
272
|
+
info_dict['loss_dict']["chosen_reward"] = chosen_reward.mean()
|
|
273
|
+
info_dict['loss_dict']["reject_reward"] = reject_reward.mean()
|
|
274
|
+
return info_dict
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
def batch_backward(model, scaler, info_dict):
|
|
278
|
+
if info_dict["train_engine"] == "deepspeed":
|
|
279
|
+
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
|
280
|
+
else:
|
|
281
|
+
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
|
282
|
+
if scaler is not None:
|
|
283
|
+
scaler.scale(scaled_loss).backward()
|
|
284
|
+
else:
|
|
285
|
+
scaled_loss.backward()
|
|
286
|
+
|
|
287
|
+
info_dict['loss_dict']['loss'] = scaled_loss
|
|
288
|
+
return info_dict
|
|
289
|
+
|
|
290
|
+
|
|
291
|
+
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
|
292
|
+
grad_norm = 0.0
|
|
293
|
+
if info_dict['train_engine'] == "deepspeed":
|
|
294
|
+
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
|
295
|
+
model.step()
|
|
296
|
+
grad_norm = model.get_global_grad_norm()
|
|
297
|
+
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
|
298
|
+
# Use mixed precision training
|
|
299
|
+
if scaler is not None:
|
|
300
|
+
scaler.unscale_(optimizer)
|
|
301
|
+
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
|
302
|
+
# We don't check grad here since that if the gradient
|
|
303
|
+
# has inf/nan values, scaler.step will skip
|
|
304
|
+
# optimizer.step().
|
|
305
|
+
if torch.isfinite(grad_norm):
|
|
306
|
+
scaler.step(optimizer)
|
|
307
|
+
else:
|
|
308
|
+
logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
|
|
309
|
+
scaler.update()
|
|
310
|
+
else:
|
|
311
|
+
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
|
312
|
+
if torch.isfinite(grad_norm):
|
|
313
|
+
optimizer.step()
|
|
314
|
+
else:
|
|
315
|
+
logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
|
|
316
|
+
optimizer.zero_grad()
|
|
317
|
+
scheduler.step()
|
|
318
|
+
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
|
319
|
+
info_dict["grad_norm"] = grad_norm
|
|
320
|
+
return info_dict
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
def log_per_step(writer, info_dict):
|
|
324
|
+
tag = info_dict["tag"]
|
|
325
|
+
epoch = info_dict.get('epoch', 0)
|
|
326
|
+
step = info_dict["step"]
|
|
327
|
+
batch_idx = info_dict["batch_idx"]
|
|
328
|
+
loss_dict = info_dict['loss_dict']
|
|
329
|
+
rank = int(os.environ.get('RANK', 0))
|
|
330
|
+
|
|
331
|
+
# only rank 0 write to tensorboard to avoid multi-process write
|
|
332
|
+
if writer is not None:
|
|
333
|
+
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
|
|
334
|
+
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
|
|
335
|
+
for k in ['epoch', 'lr', 'grad_norm']:
|
|
336
|
+
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
|
337
|
+
for k, v in loss_dict.items():
|
|
338
|
+
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
|
339
|
+
|
|
340
|
+
# TRAIN & CV, Shell log (stdout)
|
|
341
|
+
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
|
|
342
|
+
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
|
|
343
|
+
for name, value in loss_dict.items():
|
|
344
|
+
log_str += '{} {:.6f} '.format(name, value)
|
|
345
|
+
if tag == "TRAIN":
|
|
346
|
+
log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
|
|
347
|
+
info_dict["lr"], info_dict['grad_norm'])
|
|
348
|
+
log_str += ' rank {}'.format(rank)
|
|
349
|
+
logging.debug(log_str)
|
|
350
|
+
|
|
351
|
+
|
|
352
|
+
def log_per_save(writer, info_dict):
|
|
353
|
+
tag = info_dict["tag"]
|
|
354
|
+
epoch = info_dict["epoch"]
|
|
355
|
+
step = info_dict["step"]
|
|
356
|
+
loss_dict = info_dict["loss_dict"]
|
|
357
|
+
lr = info_dict['lr']
|
|
358
|
+
rank = int(os.environ.get('RANK', 0))
|
|
359
|
+
logging.info(
|
|
360
|
+
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
|
361
|
+
epoch, step + 1, lr, rank, ' '.join(['{} {}'.format(k, v) for k, v in loss_dict.items()])))
|
|
362
|
+
|
|
363
|
+
if writer is not None:
|
|
364
|
+
for k in ['epoch', 'lr']:
|
|
365
|
+
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
|
366
|
+
for k, v in loss_dict.items():
|
|
367
|
+
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
# Adapted from
|
|
4
|
+
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
|
|
5
|
+
# Copyright 2024 The Qwen team.
|
|
6
|
+
# Copyright 2023 The vLLM team.
|
|
7
|
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
8
|
+
#
|
|
9
|
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
10
|
+
# and OPT implementations in this library. It has been modified from its
|
|
11
|
+
# original forms to accommodate minor architectural differences compared
|
|
12
|
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
13
|
+
#
|
|
14
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
15
|
+
# you may not use this file except in compliance with the License.
|
|
16
|
+
# You may obtain a copy of the License at
|
|
17
|
+
#
|
|
18
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
19
|
+
#
|
|
20
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
21
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
22
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
23
|
+
# See the License for the specific language governing permissions and
|
|
24
|
+
# limitations under the License.
|
|
25
|
+
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
|
|
26
|
+
from vllm.model_executor.models.qwen2 import *
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class CosyVoice2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
|
30
|
+
packed_modules_mapping = {
|
|
31
|
+
"qkv_proj": [
|
|
32
|
+
"q_proj",
|
|
33
|
+
"k_proj",
|
|
34
|
+
"v_proj",
|
|
35
|
+
],
|
|
36
|
+
"gate_up_proj": [
|
|
37
|
+
"gate_proj",
|
|
38
|
+
"up_proj",
|
|
39
|
+
],
|
|
40
|
+
}
|
|
41
|
+
|
|
42
|
+
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
43
|
+
super().__init__()
|
|
44
|
+
config = vllm_config.model_config.hf_config
|
|
45
|
+
quant_config = vllm_config.quant_config
|
|
46
|
+
lora_config = vllm_config.lora_config
|
|
47
|
+
|
|
48
|
+
self.config = config
|
|
49
|
+
self.lora_config = lora_config
|
|
50
|
+
|
|
51
|
+
self.quant_config = quant_config
|
|
52
|
+
self.model = Qwen2Model(vllm_config=vllm_config,
|
|
53
|
+
prefix=maybe_prefix(prefix, "model"))
|
|
54
|
+
|
|
55
|
+
if get_pp_group().is_last_rank:
|
|
56
|
+
if config.tie_word_embeddings:
|
|
57
|
+
self.lm_head = self.model.embed_tokens
|
|
58
|
+
else:
|
|
59
|
+
self.lm_head = ParallelLMHead(config.vocab_size,
|
|
60
|
+
config.hidden_size,
|
|
61
|
+
True,
|
|
62
|
+
quant_config=quant_config,
|
|
63
|
+
prefix=maybe_prefix(
|
|
64
|
+
prefix, "lm_head"))
|
|
65
|
+
else:
|
|
66
|
+
self.lm_head = PPMissingLayer()
|
|
67
|
+
|
|
68
|
+
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
69
|
+
|
|
70
|
+
self.make_empty_intermediate_tensors = (
|
|
71
|
+
self.model.make_empty_intermediate_tensors)
|
|
72
|
+
|
|
73
|
+
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
74
|
+
return self.model.get_input_embeddings(input_ids)
|
|
75
|
+
|
|
76
|
+
def forward(
|
|
77
|
+
self,
|
|
78
|
+
input_ids: torch.Tensor,
|
|
79
|
+
positions: torch.Tensor,
|
|
80
|
+
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
81
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
|
82
|
+
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
83
|
+
hidden_states = self.model(input_ids, positions, intermediate_tensors,
|
|
84
|
+
inputs_embeds)
|
|
85
|
+
return hidden_states
|
|
86
|
+
|
|
87
|
+
def compute_logits(
|
|
88
|
+
self,
|
|
89
|
+
hidden_states: torch.Tensor,
|
|
90
|
+
sampling_metadata: SamplingMetadata,
|
|
91
|
+
) -> Optional[torch.Tensor]:
|
|
92
|
+
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
93
|
+
sampling_metadata, self.lm_head.bias)
|
|
94
|
+
return logits
|
|
95
|
+
|
|
96
|
+
def load_weights(self, weights: Iterable[tuple[str,
|
|
97
|
+
torch.Tensor]]) -> set[str]:
|
|
98
|
+
loader = AutoWeightsLoader(
|
|
99
|
+
self,
|
|
100
|
+
skip_prefixes=(["lm_head."]
|
|
101
|
+
if self.config.tie_word_embeddings else None),
|
|
102
|
+
)
|
|
103
|
+
return loader.load_weights(weights)
|
matcha/__init__.py
ADDED
|
File without changes
|