megadetector 5.0.5__py3-none-any.whl → 5.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- api/batch_processing/data_preparation/manage_local_batch.py +302 -263
- api/batch_processing/data_preparation/manage_video_batch.py +81 -2
- api/batch_processing/postprocessing/add_max_conf.py +1 -0
- api/batch_processing/postprocessing/categorize_detections_by_size.py +50 -19
- api/batch_processing/postprocessing/compare_batch_results.py +110 -60
- api/batch_processing/postprocessing/load_api_results.py +56 -70
- api/batch_processing/postprocessing/md_to_coco.py +1 -1
- api/batch_processing/postprocessing/md_to_labelme.py +2 -1
- api/batch_processing/postprocessing/postprocess_batch_results.py +240 -81
- api/batch_processing/postprocessing/render_detection_confusion_matrix.py +625 -0
- api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +71 -23
- api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +1 -1
- api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +227 -75
- api/batch_processing/postprocessing/subset_json_detector_output.py +132 -5
- api/batch_processing/postprocessing/top_folders_to_bottom.py +1 -1
- api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +2 -2
- classification/prepare_classification_script.py +191 -191
- data_management/coco_to_yolo.py +68 -45
- data_management/databases/integrity_check_json_db.py +7 -5
- data_management/generate_crops_from_cct.py +3 -3
- data_management/get_image_sizes.py +8 -6
- data_management/importers/add_timestamps_to_icct.py +79 -0
- data_management/importers/animl_results_to_md_results.py +160 -0
- data_management/importers/auckland_doc_test_to_json.py +4 -4
- data_management/importers/auckland_doc_to_json.py +1 -1
- data_management/importers/awc_to_json.py +5 -5
- data_management/importers/bellevue_to_json.py +5 -5
- data_management/importers/carrizo_shrubfree_2018.py +5 -5
- data_management/importers/carrizo_trail_cam_2017.py +5 -5
- data_management/importers/cct_field_adjustments.py +2 -3
- data_management/importers/channel_islands_to_cct.py +4 -4
- data_management/importers/ena24_to_json.py +5 -5
- data_management/importers/helena_to_cct.py +10 -10
- data_management/importers/idaho-camera-traps.py +12 -12
- data_management/importers/idfg_iwildcam_lila_prep.py +8 -8
- data_management/importers/jb_csv_to_json.py +4 -4
- data_management/importers/missouri_to_json.py +1 -1
- data_management/importers/noaa_seals_2019.py +1 -1
- data_management/importers/pc_to_json.py +5 -5
- data_management/importers/prepare-noaa-fish-data-for-lila.py +4 -4
- data_management/importers/prepare_zsl_imerit.py +5 -5
- data_management/importers/rspb_to_json.py +4 -4
- data_management/importers/save_the_elephants_survey_A.py +5 -5
- data_management/importers/save_the_elephants_survey_B.py +6 -6
- data_management/importers/snapshot_safari_importer.py +9 -9
- data_management/importers/snapshot_serengeti_lila.py +9 -9
- data_management/importers/timelapse_csv_set_to_json.py +5 -7
- data_management/importers/ubc_to_json.py +4 -4
- data_management/importers/umn_to_json.py +4 -4
- data_management/importers/wellington_to_json.py +1 -1
- data_management/importers/wi_to_json.py +2 -2
- data_management/importers/zamba_results_to_md_results.py +181 -0
- data_management/labelme_to_coco.py +35 -7
- data_management/labelme_to_yolo.py +229 -0
- data_management/lila/add_locations_to_island_camera_traps.py +1 -1
- data_management/lila/add_locations_to_nacti.py +147 -0
- data_management/lila/create_lila_blank_set.py +474 -0
- data_management/lila/create_lila_test_set.py +2 -1
- data_management/lila/create_links_to_md_results_files.py +106 -0
- data_management/lila/download_lila_subset.py +46 -21
- data_management/lila/generate_lila_per_image_labels.py +23 -14
- data_management/lila/get_lila_annotation_counts.py +17 -11
- data_management/lila/lila_common.py +14 -11
- data_management/lila/test_lila_metadata_urls.py +116 -0
- data_management/ocr_tools.py +829 -0
- data_management/resize_coco_dataset.py +13 -11
- data_management/yolo_output_to_md_output.py +84 -12
- data_management/yolo_to_coco.py +38 -20
- detection/process_video.py +36 -14
- detection/pytorch_detector.py +23 -8
- detection/run_detector.py +76 -19
- detection/run_detector_batch.py +178 -63
- detection/run_inference_with_yolov5_val.py +326 -57
- detection/run_tiled_inference.py +153 -43
- detection/video_utils.py +34 -8
- md_utils/ct_utils.py +172 -1
- md_utils/md_tests.py +372 -51
- md_utils/path_utils.py +167 -39
- md_utils/process_utils.py +26 -7
- md_utils/split_locations_into_train_val.py +215 -0
- md_utils/string_utils.py +10 -0
- md_utils/url_utils.py +0 -2
- md_utils/write_html_image_list.py +9 -26
- md_visualization/plot_utils.py +12 -8
- md_visualization/visualization_utils.py +106 -7
- md_visualization/visualize_db.py +16 -8
- md_visualization/visualize_detector_output.py +208 -97
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/METADATA +3 -6
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/RECORD +98 -121
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/WHEEL +1 -1
- taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +1 -1
- taxonomy_mapping/map_new_lila_datasets.py +43 -39
- taxonomy_mapping/prepare_lila_taxonomy_release.py +5 -2
- taxonomy_mapping/preview_lila_taxonomy.py +27 -27
- taxonomy_mapping/species_lookup.py +33 -13
- taxonomy_mapping/taxonomy_csv_checker.py +7 -5
- api/synchronous/api_core/yolov5/detect.py +0 -252
- api/synchronous/api_core/yolov5/export.py +0 -607
- api/synchronous/api_core/yolov5/hubconf.py +0 -146
- api/synchronous/api_core/yolov5/models/__init__.py +0 -0
- api/synchronous/api_core/yolov5/models/common.py +0 -738
- api/synchronous/api_core/yolov5/models/experimental.py +0 -104
- api/synchronous/api_core/yolov5/models/tf.py +0 -574
- api/synchronous/api_core/yolov5/models/yolo.py +0 -338
- api/synchronous/api_core/yolov5/train.py +0 -670
- api/synchronous/api_core/yolov5/utils/__init__.py +0 -36
- api/synchronous/api_core/yolov5/utils/activations.py +0 -103
- api/synchronous/api_core/yolov5/utils/augmentations.py +0 -284
- api/synchronous/api_core/yolov5/utils/autoanchor.py +0 -170
- api/synchronous/api_core/yolov5/utils/autobatch.py +0 -66
- api/synchronous/api_core/yolov5/utils/aws/__init__.py +0 -0
- api/synchronous/api_core/yolov5/utils/aws/resume.py +0 -40
- api/synchronous/api_core/yolov5/utils/benchmarks.py +0 -148
- api/synchronous/api_core/yolov5/utils/callbacks.py +0 -71
- api/synchronous/api_core/yolov5/utils/dataloaders.py +0 -1087
- api/synchronous/api_core/yolov5/utils/downloads.py +0 -178
- api/synchronous/api_core/yolov5/utils/flask_rest_api/example_request.py +0 -19
- api/synchronous/api_core/yolov5/utils/flask_rest_api/restapi.py +0 -46
- api/synchronous/api_core/yolov5/utils/general.py +0 -1018
- api/synchronous/api_core/yolov5/utils/loggers/__init__.py +0 -187
- api/synchronous/api_core/yolov5/utils/loggers/wandb/__init__.py +0 -0
- api/synchronous/api_core/yolov5/utils/loggers/wandb/log_dataset.py +0 -27
- api/synchronous/api_core/yolov5/utils/loggers/wandb/sweep.py +0 -41
- api/synchronous/api_core/yolov5/utils/loggers/wandb/wandb_utils.py +0 -577
- api/synchronous/api_core/yolov5/utils/loss.py +0 -234
- api/synchronous/api_core/yolov5/utils/metrics.py +0 -355
- api/synchronous/api_core/yolov5/utils/plots.py +0 -489
- api/synchronous/api_core/yolov5/utils/torch_utils.py +0 -314
- api/synchronous/api_core/yolov5/val.py +0 -394
- md_utils/matlab_porting_tools.py +0 -97
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/LICENSE +0 -0
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/top_level.txt +0 -0
|
@@ -1,1018 +0,0 @@
|
|
|
1
|
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
|
2
|
-
"""
|
|
3
|
-
General utils
|
|
4
|
-
"""
|
|
5
|
-
|
|
6
|
-
import contextlib
|
|
7
|
-
import glob
|
|
8
|
-
import inspect
|
|
9
|
-
import logging
|
|
10
|
-
import math
|
|
11
|
-
import os
|
|
12
|
-
import platform
|
|
13
|
-
import random
|
|
14
|
-
import re
|
|
15
|
-
import shutil
|
|
16
|
-
import signal
|
|
17
|
-
import threading
|
|
18
|
-
import time
|
|
19
|
-
import urllib
|
|
20
|
-
from datetime import datetime
|
|
21
|
-
from itertools import repeat
|
|
22
|
-
from multiprocessing.pool import ThreadPool
|
|
23
|
-
from pathlib import Path
|
|
24
|
-
from subprocess import check_output
|
|
25
|
-
from typing import Optional
|
|
26
|
-
from zipfile import ZipFile
|
|
27
|
-
|
|
28
|
-
import cv2
|
|
29
|
-
import numpy as np
|
|
30
|
-
import pandas as pd
|
|
31
|
-
import pkg_resources as pkg
|
|
32
|
-
import torch
|
|
33
|
-
import torchvision
|
|
34
|
-
import yaml
|
|
35
|
-
|
|
36
|
-
from utils.downloads import gsutil_getsize
|
|
37
|
-
from utils.metrics import box_iou, fitness
|
|
38
|
-
|
|
39
|
-
FILE = Path(__file__).resolve()
|
|
40
|
-
ROOT = FILE.parents[1] # YOLOv5 root directory
|
|
41
|
-
RANK = int(os.getenv('RANK', -1))
|
|
42
|
-
|
|
43
|
-
# Settings
|
|
44
|
-
DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory
|
|
45
|
-
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
|
46
|
-
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
|
47
|
-
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
|
48
|
-
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
|
49
|
-
|
|
50
|
-
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
|
51
|
-
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
|
52
|
-
pd.options.display.max_columns = 10
|
|
53
|
-
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
|
54
|
-
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
|
|
55
|
-
os.environ['OMP_NUM_THREADS'] = str(NUM_THREADS) # OpenMP max threads (PyTorch and SciPy)
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
def is_kaggle():
|
|
59
|
-
# Is environment a Kaggle Notebook?
|
|
60
|
-
try:
|
|
61
|
-
assert os.environ.get('PWD') == '/kaggle/working'
|
|
62
|
-
assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
|
|
63
|
-
return True
|
|
64
|
-
except AssertionError:
|
|
65
|
-
return False
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
def is_writeable(dir, test=False):
|
|
69
|
-
# Return True if directory has write permissions, test opening a file with write permissions if test=True
|
|
70
|
-
if not test:
|
|
71
|
-
return os.access(dir, os.R_OK) # possible issues on Windows
|
|
72
|
-
file = Path(dir) / 'tmp.txt'
|
|
73
|
-
try:
|
|
74
|
-
with open(file, 'w'): # open file with write permissions
|
|
75
|
-
pass
|
|
76
|
-
file.unlink() # remove file
|
|
77
|
-
return True
|
|
78
|
-
except OSError:
|
|
79
|
-
return False
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
def set_logging(name=None, verbose=VERBOSE):
|
|
83
|
-
# Sets level and returns logger
|
|
84
|
-
if is_kaggle():
|
|
85
|
-
for h in logging.root.handlers:
|
|
86
|
-
logging.root.removeHandler(h) # remove all handlers associated with the root logger object
|
|
87
|
-
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
|
|
88
|
-
level = logging.INFO if verbose and rank in {-1, 0} else logging.WARNING
|
|
89
|
-
log = logging.getLogger(name)
|
|
90
|
-
log.setLevel(level)
|
|
91
|
-
handler = logging.StreamHandler()
|
|
92
|
-
handler.setFormatter(logging.Formatter("%(message)s"))
|
|
93
|
-
handler.setLevel(level)
|
|
94
|
-
log.addHandler(handler)
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
set_logging() # run before defining LOGGER
|
|
98
|
-
LOGGER = logging.getLogger("yolov5") # define globally (used in train.py, val.py, detect.py, etc.)
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
|
|
102
|
-
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
|
|
103
|
-
env = os.getenv(env_var)
|
|
104
|
-
if env:
|
|
105
|
-
path = Path(env) # use environment variable
|
|
106
|
-
else:
|
|
107
|
-
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
|
|
108
|
-
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
|
|
109
|
-
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
|
|
110
|
-
path.mkdir(exist_ok=True) # make if required
|
|
111
|
-
return path
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
class Profile(contextlib.ContextDecorator):
|
|
118
|
-
# Usage: @Profile() decorator or 'with Profile():' context manager
|
|
119
|
-
def __enter__(self):
|
|
120
|
-
self.start = time.time()
|
|
121
|
-
|
|
122
|
-
def __exit__(self, type, value, traceback):
|
|
123
|
-
print(f'Profile results: {time.time() - self.start:.5f}s')
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
class Timeout(contextlib.ContextDecorator):
|
|
127
|
-
# Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
|
|
128
|
-
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
|
|
129
|
-
self.seconds = int(seconds)
|
|
130
|
-
self.timeout_message = timeout_msg
|
|
131
|
-
self.suppress = bool(suppress_timeout_errors)
|
|
132
|
-
|
|
133
|
-
def _timeout_handler(self, signum, frame):
|
|
134
|
-
raise TimeoutError(self.timeout_message)
|
|
135
|
-
|
|
136
|
-
def __enter__(self):
|
|
137
|
-
if platform.system() != 'Windows': # not supported on Windows
|
|
138
|
-
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
|
|
139
|
-
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
|
|
140
|
-
|
|
141
|
-
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
142
|
-
if platform.system() != 'Windows':
|
|
143
|
-
signal.alarm(0) # Cancel SIGALRM if it's scheduled
|
|
144
|
-
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
|
|
145
|
-
return True
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
class WorkingDirectory(contextlib.ContextDecorator):
|
|
149
|
-
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
|
150
|
-
def __init__(self, new_dir):
|
|
151
|
-
self.dir = new_dir # new dir
|
|
152
|
-
self.cwd = Path.cwd().resolve() # current dir
|
|
153
|
-
|
|
154
|
-
def __enter__(self):
|
|
155
|
-
os.chdir(self.dir)
|
|
156
|
-
|
|
157
|
-
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
158
|
-
os.chdir(self.cwd)
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
def try_except(func):
|
|
162
|
-
# try-except function. Usage: @try_except decorator
|
|
163
|
-
def handler(*args, **kwargs):
|
|
164
|
-
try:
|
|
165
|
-
func(*args, **kwargs)
|
|
166
|
-
except Exception as e:
|
|
167
|
-
print(e)
|
|
168
|
-
|
|
169
|
-
return handler
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
def threaded(func):
|
|
173
|
-
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
|
174
|
-
def wrapper(*args, **kwargs):
|
|
175
|
-
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
|
176
|
-
thread.start()
|
|
177
|
-
return thread
|
|
178
|
-
|
|
179
|
-
return wrapper
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
def methods(instance):
|
|
183
|
-
# Get class/instance methods
|
|
184
|
-
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
|
|
188
|
-
# Print function arguments (optional args dict)
|
|
189
|
-
x = inspect.currentframe().f_back # previous frame
|
|
190
|
-
file, _, fcn, _, _ = inspect.getframeinfo(x)
|
|
191
|
-
if args is None: # get args automatically
|
|
192
|
-
args, _, _, frm = inspect.getargvalues(x)
|
|
193
|
-
args = {k: v for k, v in frm.items() if k in args}
|
|
194
|
-
s = (f'{Path(file).stem}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '')
|
|
195
|
-
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
def init_seeds(seed=0):
|
|
199
|
-
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
|
|
200
|
-
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
|
|
201
|
-
import torch.backends.cudnn as cudnn
|
|
202
|
-
random.seed(seed)
|
|
203
|
-
np.random.seed(seed)
|
|
204
|
-
torch.manual_seed(seed)
|
|
205
|
-
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
def intersect_dicts(da, db, exclude=()):
|
|
209
|
-
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
|
210
|
-
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
def get_latest_run(search_dir='.'):
|
|
214
|
-
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
|
215
|
-
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
|
216
|
-
return max(last_list, key=os.path.getctime) if last_list else ''
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
def is_docker():
|
|
220
|
-
# Is environment a Docker container?
|
|
221
|
-
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
def is_colab():
|
|
225
|
-
# Is environment a Google Colab instance?
|
|
226
|
-
try:
|
|
227
|
-
import google.colab
|
|
228
|
-
return True
|
|
229
|
-
except ImportError:
|
|
230
|
-
return False
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
def is_pip():
|
|
234
|
-
# Is file in a pip package?
|
|
235
|
-
return 'site-packages' in Path(__file__).resolve().parts
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
def is_ascii(s=''):
|
|
239
|
-
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
|
|
240
|
-
s = str(s) # convert list, tuple, None, etc. to str
|
|
241
|
-
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
def is_chinese(s='人工智能'):
|
|
245
|
-
# Is string composed of any Chinese characters?
|
|
246
|
-
return bool(re.search('[\u4e00-\u9fff]', str(s)))
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
def emojis(str=''):
|
|
250
|
-
# Return platform-dependent emoji-safe version of string
|
|
251
|
-
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
def file_age(path=__file__):
|
|
255
|
-
# Return days since last file update
|
|
256
|
-
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
|
|
257
|
-
return dt.days # + dt.seconds / 86400 # fractional days
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
def file_date(path=__file__):
|
|
261
|
-
# Return human-readable file modification date, i.e. '2021-3-26'
|
|
262
|
-
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
|
|
263
|
-
return f'{t.year}-{t.month}-{t.day}'
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
def file_size(path):
|
|
267
|
-
# Return file/dir size (MB)
|
|
268
|
-
mb = 1 << 20 # bytes to MiB (1024 ** 2)
|
|
269
|
-
path = Path(path)
|
|
270
|
-
if path.is_file():
|
|
271
|
-
return path.stat().st_size / mb
|
|
272
|
-
elif path.is_dir():
|
|
273
|
-
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
|
|
274
|
-
else:
|
|
275
|
-
return 0.0
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
def check_online():
|
|
279
|
-
# Check internet connectivity
|
|
280
|
-
import socket
|
|
281
|
-
try:
|
|
282
|
-
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
|
|
283
|
-
return True
|
|
284
|
-
except OSError:
|
|
285
|
-
return False
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
def git_describe(path=ROOT): # path must be a directory
|
|
289
|
-
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
|
290
|
-
try:
|
|
291
|
-
assert (Path(path) / '.git').is_dir()
|
|
292
|
-
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
|
293
|
-
except Exception:
|
|
294
|
-
return ''
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
@try_except
|
|
298
|
-
@WorkingDirectory(ROOT)
|
|
299
|
-
def check_git_status():
|
|
300
|
-
# Recommend 'git pull' if code is out of date
|
|
301
|
-
msg = ', for updates see https://github.com/ultralytics/yolov5'
|
|
302
|
-
s = colorstr('github: ') # string
|
|
303
|
-
assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
|
|
304
|
-
assert not is_docker(), s + 'skipping check (Docker image)' + msg
|
|
305
|
-
assert check_online(), s + 'skipping check (offline)' + msg
|
|
306
|
-
|
|
307
|
-
cmd = 'git fetch && git config --get remote.origin.url'
|
|
308
|
-
url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch
|
|
309
|
-
branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
|
310
|
-
n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
|
|
311
|
-
if n > 0:
|
|
312
|
-
s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
|
|
313
|
-
else:
|
|
314
|
-
s += f'up to date with {url} ✅'
|
|
315
|
-
LOGGER.info(emojis(s)) # emoji-safe
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
def check_python(minimum='3.7.0'):
|
|
319
|
-
# Check current python version vs. required python version
|
|
320
|
-
check_version(platform.python_version(), minimum, name='Python ', hard=True)
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
|
|
324
|
-
# Check version vs. required version
|
|
325
|
-
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
|
326
|
-
result = (current == minimum) if pinned else (current >= minimum) # bool
|
|
327
|
-
s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' # string
|
|
328
|
-
if hard:
|
|
329
|
-
assert result, s # assert min requirements met
|
|
330
|
-
if verbose and not result:
|
|
331
|
-
LOGGER.warning(s)
|
|
332
|
-
return result
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
@try_except
|
|
336
|
-
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=()):
|
|
337
|
-
# Check installed dependencies meet requirements (pass *.txt file or list of packages)
|
|
338
|
-
prefix = colorstr('red', 'bold', 'requirements:')
|
|
339
|
-
check_python() # check python version
|
|
340
|
-
if isinstance(requirements, (str, Path)): # requirements.txt file
|
|
341
|
-
file = Path(requirements)
|
|
342
|
-
assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
|
|
343
|
-
with file.open() as f:
|
|
344
|
-
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
|
|
345
|
-
else: # list or tuple of packages
|
|
346
|
-
requirements = [x for x in requirements if x not in exclude]
|
|
347
|
-
|
|
348
|
-
n = 0 # number of packages updates
|
|
349
|
-
for i, r in enumerate(requirements):
|
|
350
|
-
try:
|
|
351
|
-
pkg.require(r)
|
|
352
|
-
except Exception: # DistributionNotFound or VersionConflict if requirements not met
|
|
353
|
-
s = f"{prefix} {r} not found and is required by YOLOv5"
|
|
354
|
-
if install and AUTOINSTALL: # check environment variable
|
|
355
|
-
LOGGER.info(f"{s}, attempting auto-update...")
|
|
356
|
-
try:
|
|
357
|
-
assert check_online(), f"'pip install {r}' skipped (offline)"
|
|
358
|
-
LOGGER.info(check_output(f'pip install "{r}" {cmds[i] if cmds else ""}', shell=True).decode())
|
|
359
|
-
n += 1
|
|
360
|
-
except Exception as e:
|
|
361
|
-
LOGGER.warning(f'{prefix} {e}')
|
|
362
|
-
else:
|
|
363
|
-
LOGGER.info(f'{s}. Please install and rerun your command.')
|
|
364
|
-
|
|
365
|
-
if n: # if packages updated
|
|
366
|
-
source = file.resolve() if 'file' in locals() else requirements
|
|
367
|
-
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
|
368
|
-
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
|
369
|
-
LOGGER.info(emojis(s))
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
def check_img_size(imgsz, s=32, floor=0):
|
|
373
|
-
# Verify image size is a multiple of stride s in each dimension
|
|
374
|
-
if isinstance(imgsz, int): # integer i.e. img_size=640
|
|
375
|
-
new_size = max(make_divisible(imgsz, int(s)), floor)
|
|
376
|
-
else: # list i.e. img_size=[640, 480]
|
|
377
|
-
imgsz = list(imgsz) # convert to list if tuple
|
|
378
|
-
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
|
379
|
-
if new_size != imgsz:
|
|
380
|
-
LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
|
381
|
-
return new_size
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
def check_imshow():
|
|
385
|
-
# Check if environment supports image displays
|
|
386
|
-
try:
|
|
387
|
-
assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
|
|
388
|
-
assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
|
|
389
|
-
cv2.imshow('test', np.zeros((1, 1, 3)))
|
|
390
|
-
cv2.waitKey(1)
|
|
391
|
-
cv2.destroyAllWindows()
|
|
392
|
-
cv2.waitKey(1)
|
|
393
|
-
return True
|
|
394
|
-
except Exception as e:
|
|
395
|
-
LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
|
|
396
|
-
return False
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
|
|
400
|
-
# Check file(s) for acceptable suffix
|
|
401
|
-
if file and suffix:
|
|
402
|
-
if isinstance(suffix, str):
|
|
403
|
-
suffix = [suffix]
|
|
404
|
-
for f in file if isinstance(file, (list, tuple)) else [file]:
|
|
405
|
-
s = Path(f).suffix.lower() # file suffix
|
|
406
|
-
if len(s):
|
|
407
|
-
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
def check_yaml(file, suffix=('.yaml', '.yml')):
|
|
411
|
-
# Search/download YAML file (if necessary) and return path, checking suffix
|
|
412
|
-
return check_file(file, suffix)
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
def check_file(file, suffix=''):
|
|
416
|
-
# Search/download file (if necessary) and return path
|
|
417
|
-
check_suffix(file, suffix) # optional
|
|
418
|
-
file = str(file) # convert to str()
|
|
419
|
-
if Path(file).is_file() or not file: # exists
|
|
420
|
-
return file
|
|
421
|
-
elif file.startswith(('http:/', 'https:/')): # download
|
|
422
|
-
url = file # warning: Pathlib turns :// -> :/
|
|
423
|
-
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
|
|
424
|
-
if Path(file).is_file():
|
|
425
|
-
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
|
426
|
-
else:
|
|
427
|
-
LOGGER.info(f'Downloading {url} to {file}...')
|
|
428
|
-
torch.hub.download_url_to_file(url, file)
|
|
429
|
-
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
|
|
430
|
-
return file
|
|
431
|
-
else: # search
|
|
432
|
-
files = []
|
|
433
|
-
for d in 'data', 'models', 'utils': # search directories
|
|
434
|
-
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
|
|
435
|
-
assert len(files), f'File not found: {file}' # assert file was found
|
|
436
|
-
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
|
437
|
-
return files[0] # return file
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
def check_font(font=FONT, progress=False):
|
|
441
|
-
# Download font to CONFIG_DIR if necessary
|
|
442
|
-
font = Path(font)
|
|
443
|
-
file = CONFIG_DIR / font.name
|
|
444
|
-
if not font.exists() and not file.exists():
|
|
445
|
-
url = "https://ultralytics.com/assets/" + font.name
|
|
446
|
-
LOGGER.info(f'Downloading {url} to {file}...')
|
|
447
|
-
torch.hub.download_url_to_file(url, str(file), progress=progress)
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
def check_dataset(data, autodownload=True):
|
|
451
|
-
# Download, check and/or unzip dataset if not found locally
|
|
452
|
-
|
|
453
|
-
# Download (optional)
|
|
454
|
-
extract_dir = ''
|
|
455
|
-
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
|
|
456
|
-
download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1)
|
|
457
|
-
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
|
|
458
|
-
extract_dir, autodownload = data.parent, False
|
|
459
|
-
|
|
460
|
-
# Read yaml (optional)
|
|
461
|
-
if isinstance(data, (str, Path)):
|
|
462
|
-
with open(data, errors='ignore') as f:
|
|
463
|
-
data = yaml.safe_load(f) # dictionary
|
|
464
|
-
|
|
465
|
-
# Checks
|
|
466
|
-
for k in 'train', 'val', 'nc':
|
|
467
|
-
assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
|
|
468
|
-
if 'names' not in data:
|
|
469
|
-
LOGGER.warning(emojis("data.yaml 'names:' field missing ⚠, assigning default names 'class0', 'class1', etc."))
|
|
470
|
-
data['names'] = [f'class{i}' for i in range(data['nc'])] # default names
|
|
471
|
-
|
|
472
|
-
# Resolve paths
|
|
473
|
-
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
|
|
474
|
-
if not path.is_absolute():
|
|
475
|
-
path = (ROOT / path).resolve()
|
|
476
|
-
for k in 'train', 'val', 'test':
|
|
477
|
-
if data.get(k): # prepend path
|
|
478
|
-
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
|
|
479
|
-
|
|
480
|
-
# Parse yaml
|
|
481
|
-
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
|
|
482
|
-
if val:
|
|
483
|
-
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
|
484
|
-
if not all(x.exists() for x in val):
|
|
485
|
-
LOGGER.info(emojis('\nDataset not found ⚠, missing paths %s' % [str(x) for x in val if not x.exists()]))
|
|
486
|
-
if not s or not autodownload:
|
|
487
|
-
raise Exception(emojis('Dataset not found ❌'))
|
|
488
|
-
t = time.time()
|
|
489
|
-
root = path.parent if 'path' in data else '..' # unzip directory i.e. '../'
|
|
490
|
-
if s.startswith('http') and s.endswith('.zip'): # URL
|
|
491
|
-
f = Path(s).name # filename
|
|
492
|
-
LOGGER.info(f'Downloading {s} to {f}...')
|
|
493
|
-
torch.hub.download_url_to_file(s, f)
|
|
494
|
-
Path(root).mkdir(parents=True, exist_ok=True) # create root
|
|
495
|
-
ZipFile(f).extractall(path=root) # unzip
|
|
496
|
-
Path(f).unlink() # remove zip
|
|
497
|
-
r = None # success
|
|
498
|
-
elif s.startswith('bash '): # bash script
|
|
499
|
-
LOGGER.info(f'Running {s} ...')
|
|
500
|
-
r = os.system(s)
|
|
501
|
-
else: # python script
|
|
502
|
-
r = exec(s, {'yaml': data}) # return None
|
|
503
|
-
dt = f'({round(time.time() - t, 1)}s)'
|
|
504
|
-
s = f"success ✅ {dt}, saved to {colorstr('bold', root)}" if r in (0, None) else f"failure {dt} ❌"
|
|
505
|
-
LOGGER.info(emojis(f"Dataset download {s}"))
|
|
506
|
-
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
|
|
507
|
-
return data # dictionary
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
def check_amp(model):
|
|
511
|
-
# Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
|
|
512
|
-
from models.common import AutoShape, DetectMultiBackend
|
|
513
|
-
|
|
514
|
-
def amp_allclose(model, im):
|
|
515
|
-
# All close FP32 vs AMP results
|
|
516
|
-
m = AutoShape(model, verbose=False) # model
|
|
517
|
-
a = m(im).xywhn[0] # FP32 inference
|
|
518
|
-
m.amp = True
|
|
519
|
-
b = m(im).xywhn[0] # AMP inference
|
|
520
|
-
return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance
|
|
521
|
-
|
|
522
|
-
prefix = colorstr('AMP: ')
|
|
523
|
-
device = next(model.parameters()).device # get model device
|
|
524
|
-
if device.type == 'cpu':
|
|
525
|
-
return False # AMP disabled on CPU
|
|
526
|
-
f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check
|
|
527
|
-
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
|
|
528
|
-
try:
|
|
529
|
-
assert amp_allclose(model, im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im)
|
|
530
|
-
LOGGER.info(emojis(f'{prefix}checks passed ✅'))
|
|
531
|
-
return True
|
|
532
|
-
except Exception:
|
|
533
|
-
help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
|
|
534
|
-
LOGGER.warning(emojis(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}'))
|
|
535
|
-
return False
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
def url2file(url):
|
|
539
|
-
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
|
|
540
|
-
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
|
|
541
|
-
return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
|
|
545
|
-
# Multi-threaded file download and unzip function, used in data.yaml for autodownload
|
|
546
|
-
def download_one(url, dir):
|
|
547
|
-
# Download 1 file
|
|
548
|
-
success = True
|
|
549
|
-
f = dir / Path(url).name # filename
|
|
550
|
-
if Path(url).is_file(): # exists in current path
|
|
551
|
-
Path(url).rename(f) # move to dir
|
|
552
|
-
elif not f.exists():
|
|
553
|
-
LOGGER.info(f'Downloading {url} to {f}...')
|
|
554
|
-
for i in range(retry + 1):
|
|
555
|
-
if curl:
|
|
556
|
-
s = 'sS' if threads > 1 else '' # silent
|
|
557
|
-
r = os.system(f'curl -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
|
|
558
|
-
success = r == 0
|
|
559
|
-
else:
|
|
560
|
-
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
|
|
561
|
-
success = f.is_file()
|
|
562
|
-
if success:
|
|
563
|
-
break
|
|
564
|
-
elif i < retry:
|
|
565
|
-
LOGGER.warning(f'Download failure, retrying {i + 1}/{retry} {url}...')
|
|
566
|
-
else:
|
|
567
|
-
LOGGER.warning(f'Failed to download {url}...')
|
|
568
|
-
|
|
569
|
-
if unzip and success and f.suffix in ('.zip', '.gz'):
|
|
570
|
-
LOGGER.info(f'Unzipping {f}...')
|
|
571
|
-
if f.suffix == '.zip':
|
|
572
|
-
ZipFile(f).extractall(path=dir) # unzip
|
|
573
|
-
elif f.suffix == '.gz':
|
|
574
|
-
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
|
|
575
|
-
if delete:
|
|
576
|
-
f.unlink() # remove zip
|
|
577
|
-
|
|
578
|
-
dir = Path(dir)
|
|
579
|
-
dir.mkdir(parents=True, exist_ok=True) # make directory
|
|
580
|
-
if threads > 1:
|
|
581
|
-
pool = ThreadPool(threads)
|
|
582
|
-
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
|
|
583
|
-
pool.close()
|
|
584
|
-
pool.join()
|
|
585
|
-
else:
|
|
586
|
-
for u in [url] if isinstance(url, (str, Path)) else url:
|
|
587
|
-
download_one(u, dir)
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
def make_divisible(x, divisor):
|
|
591
|
-
# Returns nearest x divisible by divisor
|
|
592
|
-
if isinstance(divisor, torch.Tensor):
|
|
593
|
-
divisor = int(divisor.max()) # to int
|
|
594
|
-
return math.ceil(x / divisor) * divisor
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
def clean_str(s):
|
|
598
|
-
# Cleans a string by replacing special characters with underscore _
|
|
599
|
-
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
|
600
|
-
|
|
601
|
-
|
|
602
|
-
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
|
603
|
-
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
|
604
|
-
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
def colorstr(*input):
|
|
608
|
-
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
|
609
|
-
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
|
610
|
-
colors = {
|
|
611
|
-
'black': '\033[30m', # basic colors
|
|
612
|
-
'red': '\033[31m',
|
|
613
|
-
'green': '\033[32m',
|
|
614
|
-
'yellow': '\033[33m',
|
|
615
|
-
'blue': '\033[34m',
|
|
616
|
-
'magenta': '\033[35m',
|
|
617
|
-
'cyan': '\033[36m',
|
|
618
|
-
'white': '\033[37m',
|
|
619
|
-
'bright_black': '\033[90m', # bright colors
|
|
620
|
-
'bright_red': '\033[91m',
|
|
621
|
-
'bright_green': '\033[92m',
|
|
622
|
-
'bright_yellow': '\033[93m',
|
|
623
|
-
'bright_blue': '\033[94m',
|
|
624
|
-
'bright_magenta': '\033[95m',
|
|
625
|
-
'bright_cyan': '\033[96m',
|
|
626
|
-
'bright_white': '\033[97m',
|
|
627
|
-
'end': '\033[0m', # misc
|
|
628
|
-
'bold': '\033[1m',
|
|
629
|
-
'underline': '\033[4m'}
|
|
630
|
-
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
def labels_to_class_weights(labels, nc=80):
|
|
634
|
-
# Get class weights (inverse frequency) from training labels
|
|
635
|
-
if labels[0] is None: # no labels loaded
|
|
636
|
-
return torch.Tensor()
|
|
637
|
-
|
|
638
|
-
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
|
639
|
-
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
|
640
|
-
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
|
641
|
-
|
|
642
|
-
# Prepend gridpoint count (for uCE training)
|
|
643
|
-
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
|
644
|
-
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
|
645
|
-
|
|
646
|
-
weights[weights == 0] = 1 # replace empty bins with 1
|
|
647
|
-
weights = 1 / weights # number of targets per class
|
|
648
|
-
weights /= weights.sum() # normalize
|
|
649
|
-
return torch.from_numpy(weights)
|
|
650
|
-
|
|
651
|
-
|
|
652
|
-
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
|
653
|
-
# Produces image weights based on class_weights and image contents
|
|
654
|
-
# Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample
|
|
655
|
-
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
|
656
|
-
return (class_weights.reshape(1, nc) * class_counts).sum(1)
|
|
657
|
-
|
|
658
|
-
|
|
659
|
-
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
|
660
|
-
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
|
661
|
-
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
|
662
|
-
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
|
663
|
-
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
|
664
|
-
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
|
665
|
-
return [
|
|
666
|
-
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
|
667
|
-
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
668
|
-
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
|
669
|
-
|
|
670
|
-
|
|
671
|
-
def xyxy2xywh(x):
|
|
672
|
-
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
|
673
|
-
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
674
|
-
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
|
675
|
-
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
|
676
|
-
y[:, 2] = x[:, 2] - x[:, 0] # width
|
|
677
|
-
y[:, 3] = x[:, 3] - x[:, 1] # height
|
|
678
|
-
return y
|
|
679
|
-
|
|
680
|
-
|
|
681
|
-
def xywh2xyxy(x):
|
|
682
|
-
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
683
|
-
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
684
|
-
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
|
685
|
-
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
|
686
|
-
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
|
687
|
-
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
|
688
|
-
return y
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
|
692
|
-
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
693
|
-
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
694
|
-
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
|
695
|
-
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
|
696
|
-
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
|
697
|
-
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
|
698
|
-
return y
|
|
699
|
-
|
|
700
|
-
|
|
701
|
-
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
|
702
|
-
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
|
703
|
-
if clip:
|
|
704
|
-
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip
|
|
705
|
-
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
706
|
-
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
|
|
707
|
-
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
|
|
708
|
-
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
|
|
709
|
-
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
|
|
710
|
-
return y
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
|
714
|
-
# Convert normalized segments into pixel segments, shape (n,2)
|
|
715
|
-
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
716
|
-
y[:, 0] = w * x[:, 0] + padw # top left x
|
|
717
|
-
y[:, 1] = h * x[:, 1] + padh # top left y
|
|
718
|
-
return y
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
def segment2box(segment, width=640, height=640):
|
|
722
|
-
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
|
723
|
-
x, y = segment.T # segment xy
|
|
724
|
-
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
|
725
|
-
x, y, = x[inside], y[inside]
|
|
726
|
-
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
|
727
|
-
|
|
728
|
-
|
|
729
|
-
def segments2boxes(segments):
|
|
730
|
-
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
|
731
|
-
boxes = []
|
|
732
|
-
for s in segments:
|
|
733
|
-
x, y = s.T # segment xy
|
|
734
|
-
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
|
735
|
-
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
def resample_segments(segments, n=1000):
|
|
739
|
-
# Up-sample an (n,2) segment
|
|
740
|
-
for i, s in enumerate(segments):
|
|
741
|
-
s = np.concatenate((s, s[0:1, :]), axis=0)
|
|
742
|
-
x = np.linspace(0, len(s) - 1, n)
|
|
743
|
-
xp = np.arange(len(s))
|
|
744
|
-
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
|
745
|
-
return segments
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
|
749
|
-
# Rescale coords (xyxy) from img1_shape to img0_shape
|
|
750
|
-
if ratio_pad is None: # calculate from img0_shape
|
|
751
|
-
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
752
|
-
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|
753
|
-
else:
|
|
754
|
-
gain = ratio_pad[0][0]
|
|
755
|
-
pad = ratio_pad[1]
|
|
756
|
-
|
|
757
|
-
coords[:, [0, 2]] -= pad[0] # x padding
|
|
758
|
-
coords[:, [1, 3]] -= pad[1] # y padding
|
|
759
|
-
coords[:, :4] /= gain
|
|
760
|
-
clip_coords(coords, img0_shape)
|
|
761
|
-
return coords
|
|
762
|
-
|
|
763
|
-
|
|
764
|
-
def clip_coords(boxes, shape):
|
|
765
|
-
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
|
766
|
-
if isinstance(boxes, torch.Tensor): # faster individually
|
|
767
|
-
boxes[:, 0].clamp_(0, shape[1]) # x1
|
|
768
|
-
boxes[:, 1].clamp_(0, shape[0]) # y1
|
|
769
|
-
boxes[:, 2].clamp_(0, shape[1]) # x2
|
|
770
|
-
boxes[:, 3].clamp_(0, shape[0]) # y2
|
|
771
|
-
else: # np.array (faster grouped)
|
|
772
|
-
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
|
773
|
-
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
|
774
|
-
|
|
775
|
-
|
|
776
|
-
def non_max_suppression(prediction,
|
|
777
|
-
conf_thres=0.25,
|
|
778
|
-
iou_thres=0.45,
|
|
779
|
-
classes=None,
|
|
780
|
-
agnostic=False,
|
|
781
|
-
multi_label=False,
|
|
782
|
-
labels=(),
|
|
783
|
-
max_det=300):
|
|
784
|
-
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes
|
|
785
|
-
|
|
786
|
-
Returns:
|
|
787
|
-
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
|
788
|
-
"""
|
|
789
|
-
|
|
790
|
-
bs = prediction.shape[0] # batch size
|
|
791
|
-
nc = prediction.shape[2] - 5 # number of classes
|
|
792
|
-
xc = prediction[..., 4] > conf_thres # candidates
|
|
793
|
-
|
|
794
|
-
# Checks
|
|
795
|
-
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
|
796
|
-
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
|
797
|
-
|
|
798
|
-
# Settings
|
|
799
|
-
# min_wh = 2 # (pixels) minimum box width and height
|
|
800
|
-
max_wh = 7680 # (pixels) maximum box width and height
|
|
801
|
-
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
|
802
|
-
time_limit = 0.3 + 0.03 * bs # seconds to quit after
|
|
803
|
-
redundant = True # require redundant detections
|
|
804
|
-
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
|
805
|
-
merge = False # use merge-NMS
|
|
806
|
-
|
|
807
|
-
t = time.time()
|
|
808
|
-
output = [torch.zeros((0, 6), device=prediction.device)] * bs
|
|
809
|
-
for xi, x in enumerate(prediction): # image index, image inference
|
|
810
|
-
# Apply constraints
|
|
811
|
-
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
|
812
|
-
x = x[xc[xi]] # confidence
|
|
813
|
-
|
|
814
|
-
# Cat apriori labels if autolabelling
|
|
815
|
-
if labels and len(labels[xi]):
|
|
816
|
-
lb = labels[xi]
|
|
817
|
-
v = torch.zeros((len(lb), nc + 5), device=x.device)
|
|
818
|
-
v[:, :4] = lb[:, 1:5] # box
|
|
819
|
-
v[:, 4] = 1.0 # conf
|
|
820
|
-
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
|
|
821
|
-
x = torch.cat((x, v), 0)
|
|
822
|
-
|
|
823
|
-
# If none remain process next image
|
|
824
|
-
if not x.shape[0]:
|
|
825
|
-
continue
|
|
826
|
-
|
|
827
|
-
# Compute conf
|
|
828
|
-
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
|
829
|
-
|
|
830
|
-
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
|
831
|
-
box = xywh2xyxy(x[:, :4])
|
|
832
|
-
|
|
833
|
-
# Detections matrix nx6 (xyxy, conf, cls)
|
|
834
|
-
if multi_label:
|
|
835
|
-
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
|
836
|
-
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
|
837
|
-
else: # best class only
|
|
838
|
-
conf, j = x[:, 5:].max(1, keepdim=True)
|
|
839
|
-
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
|
840
|
-
|
|
841
|
-
# Filter by class
|
|
842
|
-
if classes is not None:
|
|
843
|
-
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
|
844
|
-
|
|
845
|
-
# Apply finite constraint
|
|
846
|
-
# if not torch.isfinite(x).all():
|
|
847
|
-
# x = x[torch.isfinite(x).all(1)]
|
|
848
|
-
|
|
849
|
-
# Check shape
|
|
850
|
-
n = x.shape[0] # number of boxes
|
|
851
|
-
if not n: # no boxes
|
|
852
|
-
continue
|
|
853
|
-
elif n > max_nms: # excess boxes
|
|
854
|
-
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
|
855
|
-
|
|
856
|
-
# Batched NMS
|
|
857
|
-
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
|
858
|
-
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
|
859
|
-
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
|
860
|
-
if i.shape[0] > max_det: # limit detections
|
|
861
|
-
i = i[:max_det]
|
|
862
|
-
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
|
863
|
-
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
|
864
|
-
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
|
865
|
-
weights = iou * scores[None] # box weights
|
|
866
|
-
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
|
867
|
-
if redundant:
|
|
868
|
-
i = i[iou.sum(1) > 1] # require redundancy
|
|
869
|
-
|
|
870
|
-
output[xi] = x[i]
|
|
871
|
-
if (time.time() - t) > time_limit:
|
|
872
|
-
LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded')
|
|
873
|
-
break # time limit exceeded
|
|
874
|
-
|
|
875
|
-
return output
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
|
879
|
-
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
|
880
|
-
x = torch.load(f, map_location=torch.device('cpu'))
|
|
881
|
-
if x.get('ema'):
|
|
882
|
-
x['model'] = x['ema'] # replace model with ema
|
|
883
|
-
for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates': # keys
|
|
884
|
-
x[k] = None
|
|
885
|
-
x['epoch'] = -1
|
|
886
|
-
x['model'].half() # to FP16
|
|
887
|
-
for p in x['model'].parameters():
|
|
888
|
-
p.requires_grad = False
|
|
889
|
-
torch.save(x, s or f)
|
|
890
|
-
mb = os.path.getsize(s or f) / 1E6 # filesize
|
|
891
|
-
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
|
892
|
-
|
|
893
|
-
|
|
894
|
-
def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
|
|
895
|
-
evolve_csv = save_dir / 'evolve.csv'
|
|
896
|
-
evolve_yaml = save_dir / 'hyp_evolve.yaml'
|
|
897
|
-
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
|
|
898
|
-
'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
|
|
899
|
-
keys = tuple(x.strip() for x in keys)
|
|
900
|
-
vals = results + tuple(hyp.values())
|
|
901
|
-
n = len(keys)
|
|
902
|
-
|
|
903
|
-
# Download (optional)
|
|
904
|
-
if bucket:
|
|
905
|
-
url = f'gs://{bucket}/evolve.csv'
|
|
906
|
-
if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
|
|
907
|
-
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
|
|
908
|
-
|
|
909
|
-
# Log to evolve.csv
|
|
910
|
-
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
|
|
911
|
-
with open(evolve_csv, 'a') as f:
|
|
912
|
-
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
|
|
913
|
-
|
|
914
|
-
# Save yaml
|
|
915
|
-
with open(evolve_yaml, 'w') as f:
|
|
916
|
-
data = pd.read_csv(evolve_csv)
|
|
917
|
-
data = data.rename(columns=lambda x: x.strip()) # strip keys
|
|
918
|
-
i = np.argmax(fitness(data.values[:, :4])) #
|
|
919
|
-
generations = len(data)
|
|
920
|
-
f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
|
|
921
|
-
f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
|
|
922
|
-
'\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
|
|
923
|
-
yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
|
|
924
|
-
|
|
925
|
-
# Print to screen
|
|
926
|
-
LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
|
|
927
|
-
', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
|
|
928
|
-
for x in vals) + '\n\n')
|
|
929
|
-
|
|
930
|
-
if bucket:
|
|
931
|
-
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
def apply_classifier(x, model, img, im0):
|
|
935
|
-
# Apply a second stage classifier to YOLO outputs
|
|
936
|
-
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
|
|
937
|
-
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
|
938
|
-
for i, d in enumerate(x): # per image
|
|
939
|
-
if d is not None and len(d):
|
|
940
|
-
d = d.clone()
|
|
941
|
-
|
|
942
|
-
# Reshape and pad cutouts
|
|
943
|
-
b = xyxy2xywh(d[:, :4]) # boxes
|
|
944
|
-
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
|
945
|
-
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
|
946
|
-
d[:, :4] = xywh2xyxy(b).long()
|
|
947
|
-
|
|
948
|
-
# Rescale boxes from img_size to im0 size
|
|
949
|
-
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
|
950
|
-
|
|
951
|
-
# Classes
|
|
952
|
-
pred_cls1 = d[:, 5].long()
|
|
953
|
-
ims = []
|
|
954
|
-
for a in d:
|
|
955
|
-
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
|
956
|
-
im = cv2.resize(cutout, (224, 224)) # BGR
|
|
957
|
-
|
|
958
|
-
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
|
959
|
-
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
|
960
|
-
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|
961
|
-
ims.append(im)
|
|
962
|
-
|
|
963
|
-
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
|
964
|
-
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
|
965
|
-
|
|
966
|
-
return x
|
|
967
|
-
|
|
968
|
-
|
|
969
|
-
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
|
970
|
-
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
|
971
|
-
path = Path(path) # os-agnostic
|
|
972
|
-
if path.exists() and not exist_ok:
|
|
973
|
-
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
|
|
974
|
-
|
|
975
|
-
# Method 1
|
|
976
|
-
for n in range(2, 9999):
|
|
977
|
-
p = f'{path}{sep}{n}{suffix}' # increment path
|
|
978
|
-
if not os.path.exists(p): #
|
|
979
|
-
break
|
|
980
|
-
path = Path(p)
|
|
981
|
-
|
|
982
|
-
# Method 2 (deprecated)
|
|
983
|
-
# dirs = glob.glob(f"{path}{sep}*") # similar paths
|
|
984
|
-
# matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
|
|
985
|
-
# i = [int(m.groups()[0]) for m in matches if m] # indices
|
|
986
|
-
# n = max(i) + 1 if i else 2 # increment number
|
|
987
|
-
# path = Path(f"{path}{sep}{n}{suffix}") # increment path
|
|
988
|
-
|
|
989
|
-
if mkdir:
|
|
990
|
-
path.mkdir(parents=True, exist_ok=True) # make directory
|
|
991
|
-
|
|
992
|
-
return path
|
|
993
|
-
|
|
994
|
-
|
|
995
|
-
# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
|
|
996
|
-
imshow_ = cv2.imshow # copy to avoid recursion errors
|
|
997
|
-
|
|
998
|
-
|
|
999
|
-
def imread(path, flags=cv2.IMREAD_COLOR):
|
|
1000
|
-
return cv2.imdecode(np.fromfile(path, np.uint8), flags)
|
|
1001
|
-
|
|
1002
|
-
|
|
1003
|
-
def imwrite(path, im):
|
|
1004
|
-
try:
|
|
1005
|
-
cv2.imencode(Path(path).suffix, im)[1].tofile(path)
|
|
1006
|
-
return True
|
|
1007
|
-
except Exception:
|
|
1008
|
-
return False
|
|
1009
|
-
|
|
1010
|
-
|
|
1011
|
-
def imshow(path, im):
|
|
1012
|
-
imshow_(path.encode('unicode_escape').decode(), im)
|
|
1013
|
-
|
|
1014
|
-
|
|
1015
|
-
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
|
|
1016
|
-
|
|
1017
|
-
# Variables ------------------------------------------------------------------------------------------------------------
|
|
1018
|
-
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm
|