megadetector 5.0.5__py3-none-any.whl → 5.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- api/batch_processing/data_preparation/manage_local_batch.py +302 -263
- api/batch_processing/data_preparation/manage_video_batch.py +81 -2
- api/batch_processing/postprocessing/add_max_conf.py +1 -0
- api/batch_processing/postprocessing/categorize_detections_by_size.py +50 -19
- api/batch_processing/postprocessing/compare_batch_results.py +110 -60
- api/batch_processing/postprocessing/load_api_results.py +56 -70
- api/batch_processing/postprocessing/md_to_coco.py +1 -1
- api/batch_processing/postprocessing/md_to_labelme.py +2 -1
- api/batch_processing/postprocessing/postprocess_batch_results.py +240 -81
- api/batch_processing/postprocessing/render_detection_confusion_matrix.py +625 -0
- api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +71 -23
- api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +1 -1
- api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +227 -75
- api/batch_processing/postprocessing/subset_json_detector_output.py +132 -5
- api/batch_processing/postprocessing/top_folders_to_bottom.py +1 -1
- api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +2 -2
- classification/prepare_classification_script.py +191 -191
- data_management/coco_to_yolo.py +68 -45
- data_management/databases/integrity_check_json_db.py +7 -5
- data_management/generate_crops_from_cct.py +3 -3
- data_management/get_image_sizes.py +8 -6
- data_management/importers/add_timestamps_to_icct.py +79 -0
- data_management/importers/animl_results_to_md_results.py +160 -0
- data_management/importers/auckland_doc_test_to_json.py +4 -4
- data_management/importers/auckland_doc_to_json.py +1 -1
- data_management/importers/awc_to_json.py +5 -5
- data_management/importers/bellevue_to_json.py +5 -5
- data_management/importers/carrizo_shrubfree_2018.py +5 -5
- data_management/importers/carrizo_trail_cam_2017.py +5 -5
- data_management/importers/cct_field_adjustments.py +2 -3
- data_management/importers/channel_islands_to_cct.py +4 -4
- data_management/importers/ena24_to_json.py +5 -5
- data_management/importers/helena_to_cct.py +10 -10
- data_management/importers/idaho-camera-traps.py +12 -12
- data_management/importers/idfg_iwildcam_lila_prep.py +8 -8
- data_management/importers/jb_csv_to_json.py +4 -4
- data_management/importers/missouri_to_json.py +1 -1
- data_management/importers/noaa_seals_2019.py +1 -1
- data_management/importers/pc_to_json.py +5 -5
- data_management/importers/prepare-noaa-fish-data-for-lila.py +4 -4
- data_management/importers/prepare_zsl_imerit.py +5 -5
- data_management/importers/rspb_to_json.py +4 -4
- data_management/importers/save_the_elephants_survey_A.py +5 -5
- data_management/importers/save_the_elephants_survey_B.py +6 -6
- data_management/importers/snapshot_safari_importer.py +9 -9
- data_management/importers/snapshot_serengeti_lila.py +9 -9
- data_management/importers/timelapse_csv_set_to_json.py +5 -7
- data_management/importers/ubc_to_json.py +4 -4
- data_management/importers/umn_to_json.py +4 -4
- data_management/importers/wellington_to_json.py +1 -1
- data_management/importers/wi_to_json.py +2 -2
- data_management/importers/zamba_results_to_md_results.py +181 -0
- data_management/labelme_to_coco.py +35 -7
- data_management/labelme_to_yolo.py +229 -0
- data_management/lila/add_locations_to_island_camera_traps.py +1 -1
- data_management/lila/add_locations_to_nacti.py +147 -0
- data_management/lila/create_lila_blank_set.py +474 -0
- data_management/lila/create_lila_test_set.py +2 -1
- data_management/lila/create_links_to_md_results_files.py +106 -0
- data_management/lila/download_lila_subset.py +46 -21
- data_management/lila/generate_lila_per_image_labels.py +23 -14
- data_management/lila/get_lila_annotation_counts.py +17 -11
- data_management/lila/lila_common.py +14 -11
- data_management/lila/test_lila_metadata_urls.py +116 -0
- data_management/ocr_tools.py +829 -0
- data_management/resize_coco_dataset.py +13 -11
- data_management/yolo_output_to_md_output.py +84 -12
- data_management/yolo_to_coco.py +38 -20
- detection/process_video.py +36 -14
- detection/pytorch_detector.py +23 -8
- detection/run_detector.py +76 -19
- detection/run_detector_batch.py +178 -63
- detection/run_inference_with_yolov5_val.py +326 -57
- detection/run_tiled_inference.py +153 -43
- detection/video_utils.py +34 -8
- md_utils/ct_utils.py +172 -1
- md_utils/md_tests.py +372 -51
- md_utils/path_utils.py +167 -39
- md_utils/process_utils.py +26 -7
- md_utils/split_locations_into_train_val.py +215 -0
- md_utils/string_utils.py +10 -0
- md_utils/url_utils.py +0 -2
- md_utils/write_html_image_list.py +9 -26
- md_visualization/plot_utils.py +12 -8
- md_visualization/visualization_utils.py +106 -7
- md_visualization/visualize_db.py +16 -8
- md_visualization/visualize_detector_output.py +208 -97
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/METADATA +3 -6
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/RECORD +98 -121
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/WHEEL +1 -1
- taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +1 -1
- taxonomy_mapping/map_new_lila_datasets.py +43 -39
- taxonomy_mapping/prepare_lila_taxonomy_release.py +5 -2
- taxonomy_mapping/preview_lila_taxonomy.py +27 -27
- taxonomy_mapping/species_lookup.py +33 -13
- taxonomy_mapping/taxonomy_csv_checker.py +7 -5
- api/synchronous/api_core/yolov5/detect.py +0 -252
- api/synchronous/api_core/yolov5/export.py +0 -607
- api/synchronous/api_core/yolov5/hubconf.py +0 -146
- api/synchronous/api_core/yolov5/models/__init__.py +0 -0
- api/synchronous/api_core/yolov5/models/common.py +0 -738
- api/synchronous/api_core/yolov5/models/experimental.py +0 -104
- api/synchronous/api_core/yolov5/models/tf.py +0 -574
- api/synchronous/api_core/yolov5/models/yolo.py +0 -338
- api/synchronous/api_core/yolov5/train.py +0 -670
- api/synchronous/api_core/yolov5/utils/__init__.py +0 -36
- api/synchronous/api_core/yolov5/utils/activations.py +0 -103
- api/synchronous/api_core/yolov5/utils/augmentations.py +0 -284
- api/synchronous/api_core/yolov5/utils/autoanchor.py +0 -170
- api/synchronous/api_core/yolov5/utils/autobatch.py +0 -66
- api/synchronous/api_core/yolov5/utils/aws/__init__.py +0 -0
- api/synchronous/api_core/yolov5/utils/aws/resume.py +0 -40
- api/synchronous/api_core/yolov5/utils/benchmarks.py +0 -148
- api/synchronous/api_core/yolov5/utils/callbacks.py +0 -71
- api/synchronous/api_core/yolov5/utils/dataloaders.py +0 -1087
- api/synchronous/api_core/yolov5/utils/downloads.py +0 -178
- api/synchronous/api_core/yolov5/utils/flask_rest_api/example_request.py +0 -19
- api/synchronous/api_core/yolov5/utils/flask_rest_api/restapi.py +0 -46
- api/synchronous/api_core/yolov5/utils/general.py +0 -1018
- api/synchronous/api_core/yolov5/utils/loggers/__init__.py +0 -187
- api/synchronous/api_core/yolov5/utils/loggers/wandb/__init__.py +0 -0
- api/synchronous/api_core/yolov5/utils/loggers/wandb/log_dataset.py +0 -27
- api/synchronous/api_core/yolov5/utils/loggers/wandb/sweep.py +0 -41
- api/synchronous/api_core/yolov5/utils/loggers/wandb/wandb_utils.py +0 -577
- api/synchronous/api_core/yolov5/utils/loss.py +0 -234
- api/synchronous/api_core/yolov5/utils/metrics.py +0 -355
- api/synchronous/api_core/yolov5/utils/plots.py +0 -489
- api/synchronous/api_core/yolov5/utils/torch_utils.py +0 -314
- api/synchronous/api_core/yolov5/val.py +0 -394
- md_utils/matlab_porting_tools.py +0 -97
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/LICENSE +0 -0
- {megadetector-5.0.5.dist-info → megadetector-5.0.7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,229 @@
|
|
|
1
|
+
########
|
|
2
|
+
#
|
|
3
|
+
# labelme_to_yolo.py
|
|
4
|
+
#
|
|
5
|
+
# Create YOLO .txt files in a folder containing labelme .json files.
|
|
6
|
+
#
|
|
7
|
+
########
|
|
8
|
+
|
|
9
|
+
#%% Imports
|
|
10
|
+
|
|
11
|
+
import os
|
|
12
|
+
import json
|
|
13
|
+
|
|
14
|
+
from md_utils.path_utils import recursive_file_list
|
|
15
|
+
from tqdm import tqdm
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
#%% Main function
|
|
19
|
+
|
|
20
|
+
def labelme_file_to_yolo_file(labelme_file,
|
|
21
|
+
category_name_to_category_id,
|
|
22
|
+
yolo_file=None,
|
|
23
|
+
required_token=None,
|
|
24
|
+
right_edge_quantization_threshold=None,
|
|
25
|
+
overwrite_behavior='overwrite'):
|
|
26
|
+
"""
|
|
27
|
+
Convert the single .json file labelme_file to yolo format, writing the results to the text
|
|
28
|
+
file yolo_file (defaults to s/json/txt).
|
|
29
|
+
|
|
30
|
+
If required_token is not None and the labelme_file does not contain the key [required_token],
|
|
31
|
+
no-ops.
|
|
32
|
+
|
|
33
|
+
right_edge_quantization_threshold is an off-by-default hack to handle cases where
|
|
34
|
+
boxes that really should be running off the right side of the image only extend like 99%
|
|
35
|
+
of the way there, due to what appears to be a slight bias inherent to MD. If a box extends
|
|
36
|
+
within [right_edge_quantization_threshold] (a small number, from 0 to 1, but probably around
|
|
37
|
+
0.02) of the right edge of the image, it will be extended to the far right edge.
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
assert os.path.isfile(labelme_file), 'Could not find labelme .json file {}'.format(labelme_file)
|
|
41
|
+
assert labelme_file.endswith('.json'), 'Illegal labelme .json file {}'.format(labelme_file)
|
|
42
|
+
|
|
43
|
+
if yolo_file is None:
|
|
44
|
+
yolo_file = os.path.splitext(labelme_file)[0] + '.txt'
|
|
45
|
+
|
|
46
|
+
if os.path.isfile(yolo_file):
|
|
47
|
+
if overwrite_behavior == 'skip':
|
|
48
|
+
return
|
|
49
|
+
else:
|
|
50
|
+
assert overwrite_behavior == 'overwrite', \
|
|
51
|
+
'Unrecognized overwrite behavior {}'.format(overwrite_behavior)
|
|
52
|
+
|
|
53
|
+
with open(labelme_file,'r') as f:
|
|
54
|
+
labelme_data = json.load(f)
|
|
55
|
+
|
|
56
|
+
if required_token is not None and required_token not in labelme_data:
|
|
57
|
+
return
|
|
58
|
+
|
|
59
|
+
im_height = labelme_data['imageHeight']
|
|
60
|
+
im_width = labelme_data['imageWidth']
|
|
61
|
+
|
|
62
|
+
yolo_lines = []
|
|
63
|
+
|
|
64
|
+
for shape in labelme_data['shapes']:
|
|
65
|
+
|
|
66
|
+
assert shape['shape_type'] == 'rectangle', \
|
|
67
|
+
'I only know how to convert rectangles to YOLO format'
|
|
68
|
+
assert shape['label'] in category_name_to_category_id, \
|
|
69
|
+
'Category {} not in category mapping'.format(shape['label'])
|
|
70
|
+
assert len(shape['points']) == 2, 'Illegal rectangle'
|
|
71
|
+
category_id = category_name_to_category_id[shape['label']]
|
|
72
|
+
|
|
73
|
+
p0 = shape['points'][0]
|
|
74
|
+
p1 = shape['points'][1]
|
|
75
|
+
|
|
76
|
+
# LabelMe: [[x0,y0],[x1,y1]] (arbitrarily sorted) (absolute coordinates)
|
|
77
|
+
#
|
|
78
|
+
# YOLO: [class, x_center, y_center, width, height] (normalized coordinates)
|
|
79
|
+
minx_abs = min(p0[0],p1[0])
|
|
80
|
+
maxx_abs = max(p0[0],p1[0])
|
|
81
|
+
miny_abs = min(p0[1],p1[1])
|
|
82
|
+
maxy_abs = max(p0[1],p1[1])
|
|
83
|
+
|
|
84
|
+
if (minx_abs >= (im_width-1)) or (maxx_abs <= 0) or \
|
|
85
|
+
(miny_abs >= (im_height-1)) or (maxy_abs <= 0):
|
|
86
|
+
print('Skipping invalid shape in {}'.format(labelme_file))
|
|
87
|
+
continue
|
|
88
|
+
|
|
89
|
+
# Clip to [0,1]
|
|
90
|
+
maxx_abs = min(maxx_abs,im_width-1)
|
|
91
|
+
maxy_abs = min(maxy_abs,im_height-1)
|
|
92
|
+
minx_abs = max(minx_abs,0.0)
|
|
93
|
+
miny_abs = max(miny_abs,0.0)
|
|
94
|
+
|
|
95
|
+
minx_rel = minx_abs / (im_width-1)
|
|
96
|
+
maxx_rel = maxx_abs / (im_width-1)
|
|
97
|
+
miny_rel = miny_abs / (im_height-1)
|
|
98
|
+
maxy_rel = maxy_abs / (im_height-1)
|
|
99
|
+
|
|
100
|
+
if (right_edge_quantization_threshold is not None):
|
|
101
|
+
right_edge_distance = 1.0 - maxx_rel
|
|
102
|
+
if right_edge_distance < right_edge_quantization_threshold:
|
|
103
|
+
maxx_rel = 1.0
|
|
104
|
+
|
|
105
|
+
assert maxx_rel >= minx_rel
|
|
106
|
+
assert maxy_rel >= miny_rel
|
|
107
|
+
|
|
108
|
+
xcenter_rel = (maxx_rel + minx_rel) / 2.0
|
|
109
|
+
ycenter_rel = (maxy_rel + miny_rel) / 2.0
|
|
110
|
+
w_rel = maxx_rel - minx_rel
|
|
111
|
+
h_rel = maxy_rel - miny_rel
|
|
112
|
+
|
|
113
|
+
yolo_line = '{} {:.3f} {:.3f} {:.3f} {:.3f}'.format(category_id,
|
|
114
|
+
xcenter_rel, ycenter_rel, w_rel, h_rel)
|
|
115
|
+
yolo_lines.append(yolo_line)
|
|
116
|
+
|
|
117
|
+
# ...for each shape
|
|
118
|
+
|
|
119
|
+
with open(yolo_file,'w') as f:
|
|
120
|
+
for s in yolo_lines:
|
|
121
|
+
f.write(s + '\n')
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def labelme_folder_to_yolo(labelme_folder,
|
|
125
|
+
category_name_to_category_id=None,
|
|
126
|
+
required_token=None,
|
|
127
|
+
right_edge_quantization_threshold=None,
|
|
128
|
+
overwrite_behavior='overwrite'):
|
|
129
|
+
"""
|
|
130
|
+
Given a folder with images and labelme .json files, convert the .json files
|
|
131
|
+
to YOLO .txt format. If category_name_to_category_id is None, first reads
|
|
132
|
+
all the labels in the folder to build a zero-indexed name --> ID mapping.
|
|
133
|
+
|
|
134
|
+
If required_token is not None and a labelme_file does not contain the key [required_token],
|
|
135
|
+
it won't be converted.
|
|
136
|
+
|
|
137
|
+
right_edge_quantization_threshold is an off-by-default hack to handle cases where
|
|
138
|
+
boxes that really should be running off the right side of the image only extend like 99%
|
|
139
|
+
of the way there, due to what appears to be a slight bias inherent to MD. If a box extends
|
|
140
|
+
within [right_edge_quantization_threshold] (a small number, from 0 to 1, but probably around
|
|
141
|
+
0.02) of the right edge of the image, it will be extended to the far right edge.
|
|
142
|
+
|
|
143
|
+
returns category_name_to_category_id, whether it was passed in or constructed.
|
|
144
|
+
"""
|
|
145
|
+
|
|
146
|
+
labelme_files_relative = recursive_file_list(labelme_folder,return_relative_paths=True)
|
|
147
|
+
labelme_files_relative = [fn for fn in labelme_files_relative if fn.endswith('.json')]
|
|
148
|
+
|
|
149
|
+
if required_token is None:
|
|
150
|
+
valid_labelme_files_relative = labelme_files_relative
|
|
151
|
+
else:
|
|
152
|
+
valid_labelme_files_relative = []
|
|
153
|
+
|
|
154
|
+
# fn_relative = labelme_files_relative[-1]
|
|
155
|
+
for fn_relative in labelme_files_relative:
|
|
156
|
+
|
|
157
|
+
fn_abs = os.path.join(labelme_folder,fn_relative)
|
|
158
|
+
|
|
159
|
+
with open(fn_abs,'r') as f:
|
|
160
|
+
labelme_data = json.load(f)
|
|
161
|
+
if required_token not in labelme_data:
|
|
162
|
+
continue
|
|
163
|
+
|
|
164
|
+
valid_labelme_files_relative.append(fn_relative)
|
|
165
|
+
|
|
166
|
+
print('{} of {} files are valid'.format(len(valid_labelme_files_relative),
|
|
167
|
+
len(labelme_files_relative)))
|
|
168
|
+
|
|
169
|
+
del labelme_files_relative
|
|
170
|
+
|
|
171
|
+
if category_name_to_category_id is None:
|
|
172
|
+
|
|
173
|
+
category_name_to_category_id = {}
|
|
174
|
+
|
|
175
|
+
for fn_relative in valid_labelme_files_relative:
|
|
176
|
+
|
|
177
|
+
fn_abs = os.path.join(labelme_folder,fn_relative)
|
|
178
|
+
with open(fn_abs,'r') as f:
|
|
179
|
+
labelme_data = json.load(f)
|
|
180
|
+
for shape in labelme_data['shapes']:
|
|
181
|
+
label = shape['label']
|
|
182
|
+
if label not in category_name_to_category_id:
|
|
183
|
+
category_name_to_category_id[label] = len(category_name_to_category_id)
|
|
184
|
+
# ...for each file
|
|
185
|
+
|
|
186
|
+
# ...if we need to build a category mapping
|
|
187
|
+
|
|
188
|
+
for fn_relative in tqdm(valid_labelme_files_relative):
|
|
189
|
+
|
|
190
|
+
fn_abs = os.path.join(labelme_folder,fn_relative)
|
|
191
|
+
labelme_file_to_yolo_file(fn_abs,
|
|
192
|
+
category_name_to_category_id,
|
|
193
|
+
yolo_file=None,
|
|
194
|
+
required_token=required_token,
|
|
195
|
+
right_edge_quantization_threshold=\
|
|
196
|
+
right_edge_quantization_threshold,
|
|
197
|
+
overwrite_behavior=overwrite_behavior)
|
|
198
|
+
|
|
199
|
+
# ...for each file
|
|
200
|
+
|
|
201
|
+
print('Converted {} labelme .json files to YOLO'.format(
|
|
202
|
+
len(valid_labelme_files_relative)))
|
|
203
|
+
|
|
204
|
+
return category_name_to_category_id
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
#%% Interactive driver
|
|
208
|
+
|
|
209
|
+
if False:
|
|
210
|
+
|
|
211
|
+
pass
|
|
212
|
+
|
|
213
|
+
#%%
|
|
214
|
+
|
|
215
|
+
import os
|
|
216
|
+
labelme_file = os.path.expanduser('~/tmp/labels/x.json')
|
|
217
|
+
yolo_file = None
|
|
218
|
+
required_token = 'saved_by_labelme'
|
|
219
|
+
right_edge_quantization_threshold = 0.015
|
|
220
|
+
category_name_to_category_id = {'animal':0}
|
|
221
|
+
|
|
222
|
+
#%%
|
|
223
|
+
|
|
224
|
+
labelme_folder = os.path.expanduser('~/tmp/labels')
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
#%% Command-line driver
|
|
228
|
+
|
|
229
|
+
# TODO
|
|
@@ -80,7 +80,7 @@ viz_options.add_search_links = False
|
|
|
80
80
|
viz_options.sort_by_filename = False
|
|
81
81
|
viz_options.parallelize_rendering = True
|
|
82
82
|
viz_options.classes_to_exclude = ['test']
|
|
83
|
-
html_output_file, image_db = visualize_db.
|
|
83
|
+
html_output_file, image_db = visualize_db.visualize_db(db_path=output_fn,
|
|
84
84
|
output_dir=preview_folder,
|
|
85
85
|
image_base_dir=image_directory,
|
|
86
86
|
options=viz_options)
|
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
########
|
|
2
|
+
#
|
|
3
|
+
# add_locations_to_nacti.py
|
|
4
|
+
#
|
|
5
|
+
# As of 10.2023, NACTI metadata only has very coarse location information (e.g. "Florida"),
|
|
6
|
+
# but camera IDs are embedded in filenames. This script pulls that information from filenames
|
|
7
|
+
# and adds it to metadata.
|
|
8
|
+
#
|
|
9
|
+
########
|
|
10
|
+
|
|
11
|
+
#%% Imports and constants
|
|
12
|
+
|
|
13
|
+
import os
|
|
14
|
+
import json
|
|
15
|
+
import shutil
|
|
16
|
+
|
|
17
|
+
from tqdm import tqdm
|
|
18
|
+
from collections import defaultdict
|
|
19
|
+
|
|
20
|
+
input_file = r'd:\lila\nacti\nacti_metadata.json.1.13\nacti_metadata.json'
|
|
21
|
+
output_file = r'g:\temp\nacti_metadata.1.14.json'
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
#%% Read metadata
|
|
25
|
+
|
|
26
|
+
with open(input_file,'r') as f:
|
|
27
|
+
d = json.load(f)
|
|
28
|
+
|
|
29
|
+
assert d['info']['version'] == 1.13
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
#%% Map images to locations (according to the metadata)
|
|
33
|
+
|
|
34
|
+
file_name_to_original_location = {}
|
|
35
|
+
|
|
36
|
+
# im = dataset_labels['images'][0]
|
|
37
|
+
for im in tqdm(d['images']):
|
|
38
|
+
file_name_to_original_location[im['file_name']] = im['location']
|
|
39
|
+
|
|
40
|
+
original_locations = set(file_name_to_original_location.values())
|
|
41
|
+
|
|
42
|
+
print('Found {} locations in the original metadata:'.format(len(original_locations)))
|
|
43
|
+
for loc in original_locations:
|
|
44
|
+
print('[{}]'.format(loc))
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
#%% Map images to new locations
|
|
48
|
+
|
|
49
|
+
def path_to_location(relative_path):
|
|
50
|
+
|
|
51
|
+
relative_path = relative_path.replace('\\','/')
|
|
52
|
+
if relative_path in file_name_to_original_location:
|
|
53
|
+
location_name = file_name_to_original_location[relative_path]
|
|
54
|
+
if location_name == 'San Juan Mntns, Colorado':
|
|
55
|
+
# "part0/sub000/2010_Unit150_Ivan097_img0003.jpg"
|
|
56
|
+
tokens = relative_path.split('/')[-1].split('_')
|
|
57
|
+
assert tokens[1].startswith('Unit')
|
|
58
|
+
location_name = 'sanjuan_{}_{}_{}'.format(tokens[0],tokens[1],tokens[2])
|
|
59
|
+
elif location_name == 'Lebec, California':
|
|
60
|
+
# "part0/sub035/CA-03_08_13_2015_CA-03_0009738.jpg"
|
|
61
|
+
tokens = relative_path.split('/')[-1].split('_')
|
|
62
|
+
assert tokens[0].startswith('CA-') or tokens[0].startswith('TAG-')
|
|
63
|
+
location_name = 'lebec_{}'.format(tokens[0])
|
|
64
|
+
elif location_name == 'Archbold, FL':
|
|
65
|
+
# "part1/sub110/FL-01_01_25_2016_FL-01_0040421.jpg"
|
|
66
|
+
tokens = relative_path.split('/')[-1].split('_')
|
|
67
|
+
assert tokens[0].startswith('FL-')
|
|
68
|
+
location_name = 'archbold_{}'.format(tokens[0])
|
|
69
|
+
else:
|
|
70
|
+
assert location_name == ''
|
|
71
|
+
tokens = relative_path.split('/')[-1].split('_')
|
|
72
|
+
if tokens[0].startswith('CA-') or tokens[0].startswith('TAG-') or tokens[0].startswith('FL-'):
|
|
73
|
+
location_name = '{}'.format(tokens[0])
|
|
74
|
+
|
|
75
|
+
else:
|
|
76
|
+
|
|
77
|
+
location_name = 'unknown'
|
|
78
|
+
|
|
79
|
+
# print('Returning location {} for file {}'.format(location_name,relative_path))
|
|
80
|
+
|
|
81
|
+
return location_name
|
|
82
|
+
|
|
83
|
+
file_name_to_updated_location = {}
|
|
84
|
+
updated_location_to_count = defaultdict(int)
|
|
85
|
+
for im in tqdm(d['images']):
|
|
86
|
+
|
|
87
|
+
updated_location = path_to_location(im['file_name'])
|
|
88
|
+
file_name_to_updated_location[im['file_name']] = updated_location
|
|
89
|
+
updated_location_to_count[updated_location] += 1
|
|
90
|
+
|
|
91
|
+
updated_location_to_count = {k: v for k, v in sorted(updated_location_to_count.items(),
|
|
92
|
+
key=lambda item: item[1],
|
|
93
|
+
reverse=True)}
|
|
94
|
+
|
|
95
|
+
updated_locations = set(file_name_to_updated_location.values())
|
|
96
|
+
|
|
97
|
+
print('Found {} updated locations in the original metadata:'.format(len(updated_locations)))
|
|
98
|
+
for loc in updated_location_to_count:
|
|
99
|
+
print('{}: {}'.format(loc,updated_location_to_count[loc]))
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
#%% Re-write metadata
|
|
103
|
+
|
|
104
|
+
for im in d['images']:
|
|
105
|
+
im['location'] = file_name_to_updated_location[im['file_name']]
|
|
106
|
+
d['info']['version'] = 1.14
|
|
107
|
+
|
|
108
|
+
with open(output_file,'w') as f:
|
|
109
|
+
json.dump(d,f,indent=1)
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
#%% For each location, sample some random images to make sure they look consistent
|
|
113
|
+
|
|
114
|
+
input_base = r'd:\lila\nacti-unzipped'
|
|
115
|
+
assert os.path.isdir(input_base)
|
|
116
|
+
|
|
117
|
+
location_to_images = defaultdict(list)
|
|
118
|
+
|
|
119
|
+
for im in d['images']:
|
|
120
|
+
location_to_images[im['location']].append(im)
|
|
121
|
+
|
|
122
|
+
n_to_sample = 10
|
|
123
|
+
import random
|
|
124
|
+
random.seed(0)
|
|
125
|
+
sampling_folder_base = r'g:\temp\nacti_samples'
|
|
126
|
+
|
|
127
|
+
for location in tqdm(location_to_images):
|
|
128
|
+
|
|
129
|
+
images_this_location = location_to_images[location]
|
|
130
|
+
if len(images_this_location) > n_to_sample:
|
|
131
|
+
images_this_location = random.sample(images_this_location,n_to_sample)
|
|
132
|
+
|
|
133
|
+
for i_image,im in enumerate(images_this_location):
|
|
134
|
+
|
|
135
|
+
fn_relative = im['file_name']
|
|
136
|
+
source_fn_abs = os.path.join(input_base,fn_relative)
|
|
137
|
+
assert os.path.isfile(source_fn_abs)
|
|
138
|
+
ext = os.path.splitext(fn_relative)[1]
|
|
139
|
+
target_fn_abs = os.path.join(sampling_folder_base,'{}/{}'.format(
|
|
140
|
+
location,'image_{}{}'.format(str(i_image).zfill(2),ext)))
|
|
141
|
+
os.makedirs(os.path.dirname(target_fn_abs),exist_ok=True)
|
|
142
|
+
shutil.copyfile(source_fn_abs,target_fn_abs)
|
|
143
|
+
|
|
144
|
+
# ...for each image
|
|
145
|
+
|
|
146
|
+
# ...for each location
|
|
147
|
+
|