megadetector 10.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (147) hide show
  1. megadetector/__init__.py +0 -0
  2. megadetector/api/__init__.py +0 -0
  3. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
  7. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  8. megadetector/classification/__init__.py +0 -0
  9. megadetector/classification/aggregate_classifier_probs.py +108 -0
  10. megadetector/classification/analyze_failed_images.py +227 -0
  11. megadetector/classification/cache_batchapi_outputs.py +198 -0
  12. megadetector/classification/create_classification_dataset.py +626 -0
  13. megadetector/classification/crop_detections.py +516 -0
  14. megadetector/classification/csv_to_json.py +226 -0
  15. megadetector/classification/detect_and_crop.py +853 -0
  16. megadetector/classification/efficientnet/__init__.py +9 -0
  17. megadetector/classification/efficientnet/model.py +415 -0
  18. megadetector/classification/efficientnet/utils.py +608 -0
  19. megadetector/classification/evaluate_model.py +520 -0
  20. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  21. megadetector/classification/json_to_azcopy_list.py +63 -0
  22. megadetector/classification/json_validator.py +696 -0
  23. megadetector/classification/map_classification_categories.py +276 -0
  24. megadetector/classification/merge_classification_detection_output.py +509 -0
  25. megadetector/classification/prepare_classification_script.py +194 -0
  26. megadetector/classification/prepare_classification_script_mc.py +228 -0
  27. megadetector/classification/run_classifier.py +287 -0
  28. megadetector/classification/save_mislabeled.py +110 -0
  29. megadetector/classification/train_classifier.py +827 -0
  30. megadetector/classification/train_classifier_tf.py +725 -0
  31. megadetector/classification/train_utils.py +323 -0
  32. megadetector/data_management/__init__.py +0 -0
  33. megadetector/data_management/animl_to_md.py +161 -0
  34. megadetector/data_management/annotations/__init__.py +0 -0
  35. megadetector/data_management/annotations/annotation_constants.py +33 -0
  36. megadetector/data_management/camtrap_dp_to_coco.py +270 -0
  37. megadetector/data_management/cct_json_utils.py +566 -0
  38. megadetector/data_management/cct_to_md.py +184 -0
  39. megadetector/data_management/cct_to_wi.py +293 -0
  40. megadetector/data_management/coco_to_labelme.py +284 -0
  41. megadetector/data_management/coco_to_yolo.py +702 -0
  42. megadetector/data_management/databases/__init__.py +0 -0
  43. megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
  44. megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
  45. megadetector/data_management/databases/integrity_check_json_db.py +528 -0
  46. megadetector/data_management/databases/subset_json_db.py +195 -0
  47. megadetector/data_management/generate_crops_from_cct.py +200 -0
  48. megadetector/data_management/get_image_sizes.py +164 -0
  49. megadetector/data_management/labelme_to_coco.py +559 -0
  50. megadetector/data_management/labelme_to_yolo.py +349 -0
  51. megadetector/data_management/lila/__init__.py +0 -0
  52. megadetector/data_management/lila/create_lila_blank_set.py +556 -0
  53. megadetector/data_management/lila/create_lila_test_set.py +187 -0
  54. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  55. megadetector/data_management/lila/download_lila_subset.py +182 -0
  56. megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
  57. megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
  58. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  59. megadetector/data_management/lila/lila_common.py +319 -0
  60. megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
  61. megadetector/data_management/mewc_to_md.py +344 -0
  62. megadetector/data_management/ocr_tools.py +873 -0
  63. megadetector/data_management/read_exif.py +964 -0
  64. megadetector/data_management/remap_coco_categories.py +195 -0
  65. megadetector/data_management/remove_exif.py +156 -0
  66. megadetector/data_management/rename_images.py +194 -0
  67. megadetector/data_management/resize_coco_dataset.py +663 -0
  68. megadetector/data_management/speciesnet_to_md.py +41 -0
  69. megadetector/data_management/wi_download_csv_to_coco.py +247 -0
  70. megadetector/data_management/yolo_output_to_md_output.py +594 -0
  71. megadetector/data_management/yolo_to_coco.py +876 -0
  72. megadetector/data_management/zamba_to_md.py +188 -0
  73. megadetector/detection/__init__.py +0 -0
  74. megadetector/detection/change_detection.py +840 -0
  75. megadetector/detection/process_video.py +479 -0
  76. megadetector/detection/pytorch_detector.py +1451 -0
  77. megadetector/detection/run_detector.py +1267 -0
  78. megadetector/detection/run_detector_batch.py +2159 -0
  79. megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
  80. megadetector/detection/run_md_and_speciesnet.py +1494 -0
  81. megadetector/detection/run_tiled_inference.py +1038 -0
  82. megadetector/detection/tf_detector.py +209 -0
  83. megadetector/detection/video_utils.py +1379 -0
  84. megadetector/postprocessing/__init__.py +0 -0
  85. megadetector/postprocessing/add_max_conf.py +72 -0
  86. megadetector/postprocessing/categorize_detections_by_size.py +166 -0
  87. megadetector/postprocessing/classification_postprocessing.py +1752 -0
  88. megadetector/postprocessing/combine_batch_outputs.py +249 -0
  89. megadetector/postprocessing/compare_batch_results.py +2110 -0
  90. megadetector/postprocessing/convert_output_format.py +403 -0
  91. megadetector/postprocessing/create_crop_folder.py +629 -0
  92. megadetector/postprocessing/detector_calibration.py +570 -0
  93. megadetector/postprocessing/generate_csv_report.py +522 -0
  94. megadetector/postprocessing/load_api_results.py +223 -0
  95. megadetector/postprocessing/md_to_coco.py +428 -0
  96. megadetector/postprocessing/md_to_labelme.py +351 -0
  97. megadetector/postprocessing/md_to_wi.py +41 -0
  98. megadetector/postprocessing/merge_detections.py +392 -0
  99. megadetector/postprocessing/postprocess_batch_results.py +2077 -0
  100. megadetector/postprocessing/remap_detection_categories.py +226 -0
  101. megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
  102. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
  103. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
  104. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
  105. megadetector/postprocessing/separate_detections_into_folders.py +795 -0
  106. megadetector/postprocessing/subset_json_detector_output.py +964 -0
  107. megadetector/postprocessing/top_folders_to_bottom.py +238 -0
  108. megadetector/postprocessing/validate_batch_results.py +332 -0
  109. megadetector/taxonomy_mapping/__init__.py +0 -0
  110. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  111. megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
  112. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
  113. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
  114. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  115. megadetector/taxonomy_mapping/simple_image_download.py +224 -0
  116. megadetector/taxonomy_mapping/species_lookup.py +1008 -0
  117. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  118. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  119. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  120. megadetector/tests/__init__.py +0 -0
  121. megadetector/tests/test_nms_synthetic.py +335 -0
  122. megadetector/utils/__init__.py +0 -0
  123. megadetector/utils/ct_utils.py +1857 -0
  124. megadetector/utils/directory_listing.py +199 -0
  125. megadetector/utils/extract_frames_from_video.py +307 -0
  126. megadetector/utils/gpu_test.py +125 -0
  127. megadetector/utils/md_tests.py +2072 -0
  128. megadetector/utils/path_utils.py +2832 -0
  129. megadetector/utils/process_utils.py +172 -0
  130. megadetector/utils/split_locations_into_train_val.py +237 -0
  131. megadetector/utils/string_utils.py +234 -0
  132. megadetector/utils/url_utils.py +825 -0
  133. megadetector/utils/wi_platform_utils.py +968 -0
  134. megadetector/utils/wi_taxonomy_utils.py +1759 -0
  135. megadetector/utils/write_html_image_list.py +239 -0
  136. megadetector/visualization/__init__.py +0 -0
  137. megadetector/visualization/plot_utils.py +309 -0
  138. megadetector/visualization/render_images_with_thumbnails.py +243 -0
  139. megadetector/visualization/visualization_utils.py +1940 -0
  140. megadetector/visualization/visualize_db.py +630 -0
  141. megadetector/visualization/visualize_detector_output.py +479 -0
  142. megadetector/visualization/visualize_video_output.py +705 -0
  143. megadetector-10.0.13.dist-info/METADATA +134 -0
  144. megadetector-10.0.13.dist-info/RECORD +147 -0
  145. megadetector-10.0.13.dist-info/WHEEL +5 -0
  146. megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
  147. megadetector-10.0.13.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1940 @@
1
+ """
2
+
3
+ visualization_utils.py
4
+
5
+ Rendering functions shared across visualization scripts
6
+
7
+ """
8
+
9
+ #%% Constants and imports
10
+
11
+ import time
12
+ import numpy as np
13
+ import requests
14
+ import os
15
+ import cv2
16
+
17
+ from io import BytesIO
18
+ from PIL import Image, ImageFile, ImageFont, ImageDraw, ImageFilter
19
+ from multiprocessing.pool import ThreadPool
20
+ from multiprocessing.pool import Pool
21
+ from tqdm import tqdm
22
+ from functools import partial
23
+
24
+ from megadetector.utils.path_utils import find_images
25
+ from megadetector.data_management.annotations import annotation_constants
26
+ from megadetector.data_management.annotations.annotation_constants import \
27
+ detector_bbox_category_id_to_name
28
+ from megadetector.utils.ct_utils import sort_list_of_dicts_by_key
29
+
30
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
31
+
32
+ # Maps EXIF standard rotation identifiers to degrees. The value "1" indicates no
33
+ # rotation; this will be ignored. The values 2, 4, 5, and 7 are mirrored rotations,
34
+ # which are not supported (we'll assert() on this when we apply rotations).
35
+ EXIF_IMAGE_NO_ROTATION = 1
36
+ EXIF_IMAGE_ROTATIONS = {
37
+ 3: 180,
38
+ 6: 270,
39
+ 8: 90
40
+ }
41
+
42
+ TEXTALIGN_LEFT = 0
43
+ TEXTALIGN_RIGHT = 1
44
+ TEXTALIGN_CENTER = 2
45
+
46
+ VTEXTALIGN_TOP = 0
47
+ VTEXTALIGN_BOTTOM = 1
48
+
49
+ # Convert category ID from int to str
50
+ DEFAULT_DETECTOR_LABEL_MAP = {
51
+ str(k): v for k, v in detector_bbox_category_id_to_name.items()
52
+ }
53
+
54
+ # Constants controlling retry behavior when fetching images from URLs
55
+ n_retries = 10
56
+ retry_sleep_time = 0.01
57
+
58
+ # If we try to open an image from a URL, and we encounter any error in this list,
59
+ # we'll retry, otherwise it's just an error.
60
+ error_names_for_retry = ['ConnectionError']
61
+
62
+ DEFAULT_BOX_THICKNESS = 4
63
+ DEFAULT_LABEL_FONT_SIZE = 16
64
+
65
+ # Default color map for mapping integer category IDs to colors when rendering bounding
66
+ # boxes
67
+ DEFAULT_COLORS = [
68
+ 'AliceBlue', 'Red', 'RoyalBlue', 'Gold', 'Chartreuse', 'Aqua', 'Azure',
69
+ 'Beige', 'Bisque', 'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue',
70
+ 'AntiqueWhite', 'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson',
71
+ 'Cyan', 'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
72
+ 'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
73
+ 'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
74
+ 'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'GoldenRod',
75
+ 'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
76
+ 'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
77
+ 'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
78
+ 'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
79
+ 'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
80
+ 'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
81
+ 'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
82
+ 'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
83
+ 'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
84
+ 'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
85
+ 'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
86
+ 'RosyBrown', 'Aquamarine', 'SaddleBrown', 'Green', 'SandyBrown',
87
+ 'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
88
+ 'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
89
+ 'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
90
+ 'WhiteSmoke', 'Yellow', 'YellowGreen'
91
+ ]
92
+
93
+
94
+ #%% Functions
95
+
96
+ def open_image(input_file, ignore_exif_rotation=False):
97
+ """
98
+ Opens an image in binary format using PIL.Image and converts to RGB mode.
99
+
100
+ Supports local files or URLs.
101
+
102
+ This operation is lazy; image will not be actually loaded until the first
103
+ operation that needs to load it (for example, resizing), so file opening
104
+ errors can show up later. load_image() is the non-lazy version of this function.
105
+
106
+ Args:
107
+ input_file (str or BytesIO): can be a path to an image file (anything
108
+ that PIL can open), a URL, or an image as a stream of bytes
109
+ ignore_exif_rotation (bool, optional): don't rotate the loaded pixels,
110
+ even if we are loading a JPEG and that JPEG says it should be rotated
111
+
112
+ Returns:
113
+ PIL.Image.Image: A PIL Image object in RGB mode
114
+ """
115
+
116
+ if (isinstance(input_file, str)
117
+ and input_file.startswith(('http://', 'https://'))):
118
+ try:
119
+ response = requests.get(input_file)
120
+ except Exception as e:
121
+ print(f'Error retrieving image {input_file}: {e}')
122
+ success = False
123
+ if e.__class__.__name__ in error_names_for_retry:
124
+ for i_retry in range(0,n_retries):
125
+ try:
126
+ time.sleep(retry_sleep_time)
127
+ response = requests.get(input_file)
128
+ except Exception as e:
129
+ print(f'Error retrieving image {input_file} on retry {i_retry}: {e}')
130
+ continue
131
+ print('Succeeded on retry {}'.format(i_retry))
132
+ success = True
133
+ break
134
+ if not success:
135
+ raise
136
+ try:
137
+ image = Image.open(BytesIO(response.content))
138
+ except Exception as e:
139
+ print(f'Error opening image {input_file}: {e}')
140
+ raise
141
+
142
+ else:
143
+ image = Image.open(input_file)
144
+
145
+ # Convert to RGB if necessary
146
+ if image.mode not in ('RGBA', 'RGB', 'L', 'I;16'):
147
+ raise AttributeError(
148
+ f'Image {input_file} uses unsupported mode {image.mode}')
149
+ if image.mode == 'RGBA' or image.mode == 'L':
150
+ # PIL.Image.convert() returns a converted copy of this image
151
+ image = image.convert(mode='RGB')
152
+
153
+ if not ignore_exif_rotation:
154
+ # Alter orientation as needed according to EXIF tag 0x112 (274) for Orientation
155
+ #
156
+ # https://gist.github.com/dangtrinhnt/a577ece4cbe5364aad28
157
+ # https://www.media.mit.edu/pia/Research/deepview/exif.html
158
+ #
159
+ try:
160
+ exif = image._getexif()
161
+ orientation: int = exif.get(274, None)
162
+ if (orientation is not None) and (orientation != EXIF_IMAGE_NO_ROTATION):
163
+ assert orientation in EXIF_IMAGE_ROTATIONS, \
164
+ 'Mirrored rotations are not supported'
165
+ image = image.rotate(EXIF_IMAGE_ROTATIONS[orientation], expand=True)
166
+ except Exception:
167
+ pass
168
+
169
+ return image
170
+
171
+ # ...def open_image(...)
172
+
173
+
174
+ def exif_preserving_save(pil_image,output_file,quality='keep',default_quality=85,verbose=False):
175
+ """
176
+ Saves [pil_image] to [output_file], making a moderate attempt to preserve EXIF
177
+ data and JPEG quality. Neither is guaranteed.
178
+
179
+ Also see:
180
+
181
+ https://discuss.dizzycoding.com/determining-jpg-quality-in-python-pil/
182
+
183
+ ...for more ways to preserve jpeg quality if quality='keep' doesn't do the trick.
184
+
185
+ Args:
186
+ pil_image (Image): the PIL Image object to save
187
+ output_file (str): the destination file
188
+ quality (str or int, optional): can be "keep" (default), or an integer from 0 to 100.
189
+ This is only used if PIL thinks the the source image is a JPEG. If you load a JPEG
190
+ and resize it in memory, for example, it's no longer a JPEG.
191
+ default_quality (int, optional): determines output quality when quality == 'keep' and we are
192
+ saving a non-JPEG source to a JPEG file
193
+ verbose (bool, optional): enable additional debug console output
194
+ """
195
+
196
+ # Read EXIF metadata
197
+ exif = pil_image.info['exif'] if ('exif' in pil_image.info) else None
198
+
199
+ # Quality preservation is only supported for JPEG sources.
200
+ if pil_image.format != "JPEG":
201
+ if quality == 'keep':
202
+ if verbose:
203
+ print('Warning: quality "keep" passed when saving a non-JPEG source (during save to {})'.format(
204
+ output_file))
205
+ quality = default_quality
206
+
207
+ # Some output formats don't support the quality parameter, so we try once with,
208
+ # and once without. This is a horrible cascade of if's, but it's a consequence of
209
+ # the fact that "None" is not supported for either "exif" or "quality".
210
+
211
+ try:
212
+
213
+ if exif is not None:
214
+ pil_image.save(output_file, exif=exif, quality=quality)
215
+ else:
216
+ pil_image.save(output_file, quality=quality)
217
+
218
+ except Exception:
219
+
220
+ if verbose:
221
+ print('Warning: failed to write {}, trying again without quality parameter'.format(output_file))
222
+ if exif is not None:
223
+ pil_image.save(output_file, exif=exif)
224
+ else:
225
+ pil_image.save(output_file)
226
+
227
+ # ...def exif_preserving_save(...)
228
+
229
+
230
+ def load_image(input_file, ignore_exif_rotation=False):
231
+ """
232
+ Loads an image file. This is the non-lazy version of open_file(); i.e.,
233
+ it forces image decoding before returning.
234
+
235
+ Args:
236
+ input_file (str or BytesIO): can be a path to an image file (anything
237
+ that PIL can open), a URL, or an image as a stream of bytes
238
+ ignore_exif_rotation (bool, optional): don't rotate the loaded pixels,
239
+ even if we are loading a JPEG and that JPEG says it should be rotated
240
+
241
+ Returns:
242
+ PIL.Image.Image: a PIL Image object in RGB mode
243
+ """
244
+
245
+ image = open_image(input_file, ignore_exif_rotation=ignore_exif_rotation)
246
+ image.load()
247
+ return image
248
+
249
+
250
+ def resize_image(image,
251
+ target_width=-1,
252
+ target_height=-1,
253
+ output_file=None,
254
+ no_enlarge_width=False,
255
+ verbose=False,
256
+ quality='keep'):
257
+ """
258
+ Resizes a PIL Image object to the specified width and height; does not resize
259
+ in place. If either width or height are -1, resizes with aspect ratio preservation.
260
+
261
+ If target_width and target_height are both -1, does not modify the image, but
262
+ will write to output_file if supplied.
263
+
264
+ If no resizing is required, and an Image object is supplied, returns the original Image
265
+ object (i.e., does not copy).
266
+
267
+ Args:
268
+ image (Image or str): PIL Image object or a filename (local file or URL)
269
+ target_width (int, optional): width to which we should resize this image, or -1
270
+ to let target_height determine the size
271
+ target_height (int, optional): height to which we should resize this image, or -1
272
+ to let target_width determine the size
273
+ output_file (str, optional): file to which we should save this image; if None,
274
+ just returns the image without saving
275
+ no_enlarge_width (bool, optional): if [no_enlarge_width] is True, and
276
+ [target width] is larger than the original image width, does not modify the image,
277
+ but will write to output_file if supplied
278
+ verbose (bool, optional): enable additional debug output
279
+ quality (str or int, optional): passed to exif_preserving_save, see docs for more detail
280
+
281
+ Returns:
282
+ PIL.Image.Image: the resized image, which may be the original image if no resizing is
283
+ required
284
+ """
285
+
286
+ image_fn = 'in_memory'
287
+ if isinstance(image,str):
288
+ image_fn = image
289
+ image = load_image(image)
290
+
291
+ if target_width is None:
292
+ target_width = -1
293
+
294
+ if target_height is None:
295
+ target_height = -1
296
+
297
+ resize_required = True
298
+
299
+ # No resize was requested, this is always a no-op
300
+ if target_width == -1 and target_height == -1:
301
+
302
+ resize_required = False
303
+
304
+ # Does either dimension need to scale according to the other?
305
+ elif target_width == -1 or target_height == -1:
306
+
307
+ # Aspect ratio as width over height
308
+ # ar = w / h
309
+ aspect_ratio = image.size[0] / image.size[1]
310
+
311
+ if target_width != -1:
312
+ # h = w / ar
313
+ target_height = int(target_width / aspect_ratio)
314
+ else:
315
+ # w = ar * h
316
+ target_width = int(aspect_ratio * target_height)
317
+
318
+ # If we're not enlarging images and this would be an enlarge operation
319
+ if (no_enlarge_width) and (target_width > image.size[0]):
320
+
321
+ if verbose:
322
+ print('Bypassing image enlarge for {} --> {}'.format(
323
+ image_fn,str(output_file)))
324
+ resize_required = False
325
+
326
+ # If the target size is the same as the original size
327
+ if (target_width == image.size[0]) and (target_height == image.size[1]):
328
+
329
+ resize_required = False
330
+
331
+ if not resize_required:
332
+
333
+ if output_file is not None:
334
+ if verbose:
335
+ print('No resize required for resize {} --> {}'.format(
336
+ image_fn,str(output_file)))
337
+ exif_preserving_save(image,output_file,quality=quality,verbose=verbose)
338
+ return image
339
+
340
+ assert target_width > 0 and target_height > 0, \
341
+ 'Invalid image resize target {},{}'.format(target_width,target_height)
342
+
343
+ # The antialiasing parameter changed between Pillow versions 9 and 10, and for a bit,
344
+ # I'd like to support both.
345
+ try:
346
+ resized_image = image.resize((target_width, target_height), Image.ANTIALIAS)
347
+ except Exception:
348
+ resized_image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
349
+
350
+ if output_file is not None:
351
+ exif_preserving_save(resized_image,output_file,quality=quality,verbose=verbose)
352
+
353
+ return resized_image
354
+
355
+ # ...def resize_image(...)
356
+
357
+
358
+ def crop_image(detections, image, confidence_threshold=0.15, expansion=0):
359
+ """
360
+ Crops detections above [confidence_threshold] from the PIL image [image],
361
+ returning a list of PIL Images, preserving the order of [detections].
362
+
363
+ Args:
364
+ detections (list): a list of dictionaries with keys 'conf' and 'bbox';
365
+ boxes are length-four arrays formatted as [x,y,w,h], normalized,
366
+ upper-left origin (this is the standard MD detection format)
367
+ image (Image or str): the PIL Image object from which we should crop detections,
368
+ or an image filename
369
+ confidence_threshold (float, optional): only crop detections above this threshold
370
+ expansion (int, optional): a number of pixels to include on each side of a cropped
371
+ detection
372
+
373
+ Returns:
374
+ list: a possibly-empty list of PIL Image objects
375
+ """
376
+
377
+ ret_images = []
378
+
379
+ if isinstance(image,str):
380
+ image = load_image(image)
381
+
382
+ for detection in detections:
383
+
384
+ score = float(detection['conf'])
385
+
386
+ if (confidence_threshold is None) or (score >= confidence_threshold):
387
+
388
+ x1, y1, w_box, h_box = detection['bbox']
389
+ ymin,xmin,ymax,xmax = y1, x1, y1 + h_box, x1 + w_box
390
+
391
+ # Convert to pixels so we can use the PIL crop() function
392
+ im_width, im_height = image.size
393
+ (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
394
+ ymin * im_height, ymax * im_height)
395
+
396
+ if expansion > 0:
397
+ left -= expansion
398
+ right += expansion
399
+ top -= expansion
400
+ bottom += expansion
401
+
402
+ # PIL's crop() does surprising things if you provide values outside of
403
+ # the image, clip inputs
404
+ left = max(left,0); right = max(right,0)
405
+ top = max(top,0); bottom = max(bottom,0)
406
+
407
+ left = min(left,im_width-1); right = min(right,im_width-1)
408
+ top = min(top,im_height-1); bottom = min(bottom,im_height-1)
409
+
410
+ ret_images.append(image.crop((left, top, right, bottom)))
411
+
412
+ # ...if this detection is above threshold
413
+
414
+ # ...for each detection
415
+
416
+ return ret_images
417
+
418
+ # ...def crop_image(...)
419
+
420
+
421
+ def blur_detections(image,detections,blur_radius=40):
422
+ """
423
+ Blur the regions in [image] corresponding to the MD-formatted list [detections].
424
+ [image] is modified in place.
425
+
426
+ Args:
427
+ image (PIL.Image.Image): image in which we should blur specific regions
428
+ detections (list): list of detections in the MD output format, see render
429
+ detection_bounding_boxes for more detail.
430
+ blur_radius (int, optional): radius of blur kernel in pixels
431
+ """
432
+
433
+ img_width, img_height = image.size
434
+
435
+ for d in detections:
436
+
437
+ bbox = d['bbox']
438
+ x_norm, y_norm, width_norm, height_norm = bbox
439
+
440
+ # Calculate absolute pixel coordinates
441
+ x = int(x_norm * img_width)
442
+ y = int(y_norm * img_height)
443
+ width = int(width_norm * img_width)
444
+ height = int(height_norm * img_height)
445
+
446
+ # Calculate box boundaries
447
+ left = max(0, x)
448
+ top = max(0, y)
449
+ right = min(img_width, x + width)
450
+ bottom = min(img_height, y + height)
451
+
452
+ # Crop the region, blur it, and paste it back
453
+ region = image.crop((left, top, right, bottom))
454
+ blurred_region = region.filter(ImageFilter.GaussianBlur(radius=blur_radius))
455
+ image.paste(blurred_region, (left, top))
456
+
457
+ # ...for each detection
458
+
459
+ # ...def blur_detections(...)
460
+
461
+
462
+ def render_detection_bounding_boxes(detections,
463
+ image,
464
+ label_map='show_categories',
465
+ classification_label_map=None,
466
+ confidence_threshold=0.0,
467
+ thickness=DEFAULT_BOX_THICKNESS,
468
+ expansion=0,
469
+ classification_confidence_threshold=0.3,
470
+ max_classifications=3,
471
+ colormap=None,
472
+ textalign=TEXTALIGN_LEFT,
473
+ vtextalign=VTEXTALIGN_TOP,
474
+ label_font_size=DEFAULT_LABEL_FONT_SIZE,
475
+ custom_strings=None,
476
+ box_sort_order='confidence',
477
+ verbose=False):
478
+ """
479
+ Renders bounding boxes (with labels and confidence values) on an image for all
480
+ detections above a threshold.
481
+
482
+ Renders classification labels if present.
483
+
484
+ [image] is modified in place.
485
+
486
+ Args:
487
+ detections (list): list of detections in the MD output format, for example:
488
+
489
+ .. code-block::none
490
+
491
+ [
492
+ {
493
+ "category": "2",
494
+ "conf": 0.996,
495
+ "bbox": [
496
+ 0.0,
497
+ 0.2762,
498
+ 0.1234,
499
+ 0.2458
500
+ ]
501
+ }
502
+ ]
503
+
504
+ ...where the bbox coordinates are [x, y, box_width, box_height].
505
+
506
+ (0, 0) is the upper-left. Coordinates are normalized.
507
+
508
+ Supports classification results, in the standard format:
509
+
510
+ .. code-block::none
511
+
512
+ [
513
+ {
514
+ "category": "2",
515
+ "conf": 0.996,
516
+ "bbox": [
517
+ 0.0,
518
+ 0.2762,
519
+ 0.1234,
520
+ 0.2458
521
+ ]
522
+ "classifications": [
523
+ ["3", 0.901],
524
+ ["1", 0.071],
525
+ ["4", 0.025]
526
+ ]
527
+ }
528
+ ]
529
+
530
+ image (PIL.Image.Image): image on which we should render detections
531
+ label_map (dict, optional): optional, mapping the numeric label to a string name. The type of the
532
+ numeric label (typically strings) needs to be consistent with the keys in label_map; no casting is
533
+ carried out. If [label_map] is None, no labels are shown (not even numbers and confidence values).
534
+ If you want category numbers and confidence values without class labels, use the default value,
535
+ the string 'show_categories'.
536
+ classification_label_map (dict, optional): optional, mapping of the string class labels to the actual
537
+ class names. The type of the numeric label (typically strings) needs to be consistent with the keys
538
+ in label_map; no casting is carried out. If [label_map] is None, no labels are shown (not even numbers
539
+ and confidence values).
540
+ confidence_threshold (float or dict, optional): threshold above which boxes are rendered. Can also be a
541
+ dictionary mapping category IDs to thresholds.
542
+ thickness (int, optional): line thickness in pixels
543
+ expansion (int, optional): number of pixels to expand bounding boxes on each side
544
+ classification_confidence_threshold (float, optional): confidence above which classification results
545
+ are displayed
546
+ max_classifications (int, optional): maximum number of classification results rendered for one image
547
+ colormap (list, optional): list of color names, used to choose colors for categories by
548
+ indexing with the values in [classes]; defaults to a reasonable set of colors
549
+ textalign (int, optional): TEXTALIGN_LEFT, TEXTALIGN_CENTER, or TEXTALIGN_RIGHT
550
+ vtextalign (int, optional): VTEXTALIGN_TOP or VTEXTALIGN_BOTTOM
551
+ label_font_size (float, optional): font size for labels
552
+ custom_strings (list of str, optional): optional set of strings to append to detection labels, should
553
+ have the same length as [detections]. Appended before any classification labels.
554
+ box_sort_order (str, optional): sorting scheme for detection boxes, can be None, "confidence", or
555
+ "reverse_confidence". "confidence" puts the highest-confidence boxes on top.
556
+ verbose (bool, optional): enable additional debug output
557
+ """
558
+
559
+ # Input validation
560
+ if (label_map is not None) and (isinstance(label_map,str)) and (label_map == 'show_categories'):
561
+ label_map = {}
562
+
563
+ if custom_strings is not None:
564
+ assert len(custom_strings) == len(detections), \
565
+ '{} custom strings provided for {} detections'.format(
566
+ len(custom_strings),len(detections))
567
+
568
+ display_boxes = []
569
+
570
+ # list of lists, one list of strings for each bounding box (to accommodate multiple labels)
571
+ display_strs = []
572
+
573
+ # for color selection
574
+ classes = []
575
+
576
+ if box_sort_order is not None:
577
+
578
+ if box_sort_order == 'confidence':
579
+ detections = sort_list_of_dicts_by_key(detections,k='conf',reverse=False)
580
+ elif box_sort_order == 'reverse_confidence':
581
+ detections = sort_list_of_dicts_by_key(detections,k='conf',reverse=True)
582
+ else:
583
+ raise ValueError('Unrecognized sorting scheme {}'.format(box_sort_order))
584
+
585
+ for i_detection,detection in enumerate(detections):
586
+
587
+ score = detection['conf']
588
+
589
+ if isinstance(confidence_threshold,dict):
590
+ rendering_threshold = confidence_threshold[detection['category']]
591
+ else:
592
+ rendering_threshold = confidence_threshold
593
+
594
+ # Always render objects with a confidence of "None", this is typically used
595
+ # for ground truth data.
596
+ if (score is None) or (rendering_threshold is None) or (score >= rendering_threshold):
597
+
598
+ x1, y1, w_box, h_box = detection['bbox']
599
+ display_boxes.append([y1, x1, y1 + h_box, x1 + w_box])
600
+
601
+ # The class index to use for coloring this box, which may be based on the detection
602
+ # category or on the most confident classification category.
603
+ clss = detection['category']
604
+
605
+ # This will be a list of strings that should be rendered above/below this box
606
+ displayed_label = []
607
+
608
+ if label_map is not None:
609
+ label = label_map[clss] if clss in label_map else clss
610
+ if score is not None:
611
+ displayed_label = ['{}: {}%'.format(label, round(100 * score))]
612
+ else:
613
+ displayed_label = ['{}'.format(label)]
614
+ else:
615
+ displayed_label = ['']
616
+
617
+ if custom_strings is not None:
618
+ custom_string = custom_strings[i_detection]
619
+ if custom_string is not None and len(custom_string) > 0:
620
+ assert len(displayed_label) == 1
621
+ displayed_label[0] += ' ' + custom_string
622
+
623
+ if ('classifications' in detection) and len(detection['classifications']) > 0:
624
+
625
+ classifications = detection['classifications']
626
+
627
+ if len(classifications) > max_classifications:
628
+ classifications = classifications[0:max_classifications]
629
+
630
+ max_classification_category = 0
631
+ max_classification_conf = -100
632
+
633
+ for classification in classifications:
634
+
635
+ classification_conf = classification[1]
636
+ if classification_conf is None or \
637
+ classification_conf < classification_confidence_threshold:
638
+ continue
639
+
640
+ class_key = classification[0]
641
+
642
+ # Is this the most confident classification for this detection?
643
+ if classification_conf > max_classification_conf:
644
+ max_classification_conf = classification_conf
645
+ max_classification_category = int(class_key)
646
+
647
+ if (classification_label_map is not None) and (class_key in classification_label_map):
648
+ class_name = classification_label_map[class_key]
649
+ else:
650
+ class_name = class_key
651
+ if classification_conf is not None:
652
+ displayed_label += ['{}: {:5.1%}'.format(class_name.lower(), classification_conf)]
653
+ else:
654
+ displayed_label += ['{}'.format(class_name.lower())]
655
+
656
+ # ...for each classification
657
+
658
+ # To avoid duplicate colors with detection-only visualization, offset
659
+ # the classification class index by the number of detection classes
660
+ clss = annotation_constants.NUM_DETECTOR_CATEGORIES + max_classification_category
661
+
662
+ # ...if we have classification results
663
+
664
+ # display_strs is a list of labels for each box
665
+ display_strs.append(displayed_label)
666
+ classes.append(clss)
667
+
668
+ # ...if the confidence of this detection is above threshold
669
+
670
+ # ...for each detection
671
+
672
+ display_boxes = np.array(display_boxes)
673
+
674
+ if verbose:
675
+ print('Rendering {} of {} detections'.format(len(display_boxes),len(detections)))
676
+
677
+ draw_bounding_boxes_on_image(image,
678
+ display_boxes,
679
+ classes,
680
+ display_strs=display_strs,
681
+ thickness=thickness,
682
+ expansion=expansion,
683
+ colormap=colormap,
684
+ textalign=textalign,
685
+ vtextalign=vtextalign,
686
+ label_font_size=label_font_size)
687
+
688
+ # ...render_detection_bounding_boxes(...)
689
+
690
+
691
+ def draw_bounding_boxes_on_image(image,
692
+ boxes,
693
+ classes,
694
+ thickness=DEFAULT_BOX_THICKNESS,
695
+ expansion=0,
696
+ display_strs=None,
697
+ colormap=None,
698
+ textalign=TEXTALIGN_LEFT,
699
+ vtextalign=VTEXTALIGN_TOP,
700
+ text_rotation=None,
701
+ label_font_size=DEFAULT_LABEL_FONT_SIZE):
702
+ """
703
+ Draws bounding boxes on an image. Modifies the image in place.
704
+
705
+ Args:
706
+ image (PIL.Image): the image on which we should draw boxes
707
+ boxes (np.array): a two-dimensional numpy array of size [N, 4], where N is the
708
+ number of boxes, and each row is (ymin, xmin, ymax, xmax). Coordinates should be
709
+ normalized to image height/width.
710
+ classes (list): a list of ints or string-formatted ints corresponding to the
711
+ class labels of the boxes. This is only used for color selection. Should have the same
712
+ length as [boxes].
713
+ thickness (int, optional): line thickness in pixels
714
+ expansion (int, optional): number of pixels to expand bounding boxes on each side
715
+ display_strs (list, optional): list of list of strings (the outer list should have the
716
+ same length as [boxes]). Typically this is used to show (possibly multiple) detection
717
+ or classification categories and/or confidence values.
718
+ colormap (list, optional): list of color names, used to choose colors for categories by
719
+ indexing with the values in [classes]; defaults to a reasonable set of colors
720
+ textalign (int, optional): TEXTALIGN_LEFT, TEXTALIGN_CENTER, or TEXTALIGN_RIGHT
721
+ vtextalign (int, optional): VTEXTALIGN_TOP or VTEXTALIGN_BOTTOM
722
+ text_rotation (float, optional): rotation to apply to text
723
+ label_font_size (float, optional): font size for labels
724
+ """
725
+
726
+ boxes_shape = boxes.shape
727
+ if not boxes_shape:
728
+ return
729
+ if len(boxes_shape) != 2 or boxes_shape[1] != 4:
730
+ return
731
+ for i in range(boxes_shape[0]):
732
+ display_str_list = None
733
+ if display_strs:
734
+ display_str_list = display_strs[i]
735
+ draw_bounding_box_on_image(image,
736
+ boxes[i, 0], boxes[i, 1], boxes[i, 2], boxes[i, 3],
737
+ classes[i],
738
+ thickness=thickness, expansion=expansion,
739
+ display_str_list=display_str_list,
740
+ colormap=colormap,
741
+ textalign=textalign,
742
+ vtextalign=vtextalign,
743
+ text_rotation=text_rotation,
744
+ label_font_size=label_font_size)
745
+
746
+ # ...draw_bounding_boxes_on_image(...)
747
+
748
+
749
+ def get_text_size(font,s):
750
+ """
751
+ Get the expected width and height when rendering the string [s] in the font
752
+ [font].
753
+
754
+ Args:
755
+ font (PIL.ImageFont): the font whose size we should query
756
+ s (str): the string whose size we should query
757
+
758
+ Returns:
759
+ tuple: (w,h), both floats in pixel coordinates
760
+ """
761
+
762
+ # This is what we did w/Pillow 9
763
+ # w,h = font.getsize(s)
764
+
765
+ # I would *think* this would be the equivalent for Pillow 10
766
+ # l,t,r,b = font.getbbox(s); w = r-l; h=b-t
767
+
768
+ # ...but this actually produces the most similar results to Pillow 9
769
+ # l,t,r,b = font.getbbox(s); w = r; h=b
770
+
771
+ try:
772
+ l,t,r,b = font.getbbox(s); w = r; h=b # noqa
773
+ except Exception:
774
+ w,h = font.getsize(s)
775
+
776
+ return w,h
777
+
778
+
779
+ def draw_bounding_box_on_image(image,
780
+ ymin,
781
+ xmin,
782
+ ymax,
783
+ xmax,
784
+ clss=None,
785
+ thickness=DEFAULT_BOX_THICKNESS,
786
+ expansion=0,
787
+ display_str_list=None,
788
+ use_normalized_coordinates=True,
789
+ label_font_size=DEFAULT_LABEL_FONT_SIZE,
790
+ colormap=None,
791
+ textalign=TEXTALIGN_LEFT,
792
+ vtextalign=VTEXTALIGN_TOP,
793
+ text_rotation=None):
794
+ """
795
+ Adds a bounding box to an image. Modifies the image in place.
796
+
797
+ Bounding box coordinates can be specified in either absolute (pixel) or
798
+ normalized coordinates by setting the use_normalized_coordinates argument.
799
+
800
+ Each string in display_str_list is displayed on a separate line above the
801
+ bounding box in black text on a rectangle filled with the input 'color'.
802
+ If the top of the bounding box extends to the edge of the image, the strings
803
+ are displayed below the bounding box.
804
+
805
+ Adapted from:
806
+
807
+ https://github.com/tensorflow/models/blob/master/research/object_detection/utils/visualization_utils.py
808
+
809
+ Args:
810
+ image (PIL.Image.Image): the image on which we should draw a box
811
+ ymin (float): ymin of bounding box
812
+ xmin (float): xmin of bounding box
813
+ ymax (float): ymax of bounding box
814
+ xmax (float): xmax of bounding box
815
+ clss (int, optional): the class index of the object in this bounding box, used for choosing
816
+ a color; should be either an integer or a string-formatted integer
817
+ thickness (int, optional): line thickness in pixels
818
+ expansion (int, optional): number of pixels to expand bounding boxes on each side
819
+ display_str_list (list, optional): list of strings to display above the box (each to be shown on its
820
+ own line)
821
+ use_normalized_coordinates (bool, optional): if True (default), treat coordinates
822
+ ymin, xmin, ymax, xmax as relative to the image, otherwise coordinates as absolute pixel values
823
+ label_font_size (float, optional): font size
824
+ colormap (list, optional): list of color names, used to choose colors for categories by
825
+ indexing with the values in [classes]; defaults to a reasonable set of colors
826
+ textalign (int, optional): TEXTALIGN_LEFT, TEXTALIGN_CENTER, or TEXTALIGN_RIGHT
827
+ vtextalign (int, optional): VTEXTALIGN_TOP or VTEXTALIGN_BOTTOM
828
+ text_rotation (float, optional): rotation to apply to text
829
+ """
830
+
831
+ if colormap is None:
832
+ colormap = DEFAULT_COLORS
833
+
834
+ if display_str_list is None:
835
+ display_str_list = []
836
+
837
+ if clss is None:
838
+ # Default to the MegaDetector animal class ID (1)
839
+ color = colormap[1]
840
+ else:
841
+ color = colormap[int(clss) % len(colormap)]
842
+
843
+ draw = ImageDraw.Draw(image)
844
+ im_width, im_height = image.size
845
+ if use_normalized_coordinates:
846
+ (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
847
+ ymin * im_height, ymax * im_height)
848
+ else:
849
+ (left, right, top, bottom) = (xmin, xmax, ymin, ymax)
850
+
851
+ if expansion > 0:
852
+
853
+ left -= expansion
854
+ right += expansion
855
+ top -= expansion
856
+ bottom += expansion
857
+
858
+ # Deliberately trimming to the width of the image only in the case where
859
+ # box expansion is turned on. There's not an obvious correct behavior here,
860
+ # but the thinking is that if the caller provided an out-of-range bounding
861
+ # box, they meant to do that, but at least in the eyes of the person writing
862
+ # this comment, if you expand a box for visualization reasons, you don't want
863
+ # to end up with part of a box.
864
+ #
865
+ # A slightly more sophisticated might check whether it was in fact the expansion
866
+ # that made this box larger than the image, but this is the case 99.999% of the time
867
+ # here, so that doesn't seem necessary.
868
+ left = max(left,0); right = max(right,0)
869
+ top = max(top,0); bottom = max(bottom,0)
870
+
871
+ left = min(left,im_width-1); right = min(right,im_width-1)
872
+ top = min(top,im_height-1); bottom = min(bottom,im_height-1)
873
+
874
+ # ...if we need to expand boxes
875
+
876
+ draw.line([(left, top), (left, bottom), (right, bottom),
877
+ (right, top), (left, top)], width=thickness, fill=color)
878
+
879
+ if display_str_list is not None:
880
+
881
+ try:
882
+ font = ImageFont.truetype('arial.ttf', label_font_size)
883
+ except OSError:
884
+ font = ImageFont.load_default()
885
+
886
+ display_str_heights = [get_text_size(font,ds)[1] for ds in display_str_list]
887
+
888
+ # Each display_str has a top and bottom margin of 0.05x.
889
+ total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
890
+
891
+ # Reverse list and print from bottom to top
892
+ for i_str,display_str in enumerate(display_str_list[::-1]):
893
+
894
+ # Skip empty strings
895
+ if len(display_str) == 0:
896
+ continue
897
+
898
+ text_width, text_height = get_text_size(font,display_str)
899
+ margin = int(np.ceil(0.05 * text_height))
900
+
901
+ if text_rotation is not None and text_rotation != 0:
902
+
903
+ assert text_rotation == -90, \
904
+ 'Only -90-degree text rotation is supported'
905
+
906
+ image_tmp = Image.new('RGB',(text_width+2*margin,text_height+2*margin))
907
+ image_tmp_draw = ImageDraw.Draw(image_tmp)
908
+ image_tmp_draw.rectangle([0,0,text_width+2*margin,text_height+2*margin],fill=color)
909
+ image_tmp_draw.text( (margin,margin), display_str, font=font, fill='black')
910
+ rotated_text = image_tmp.rotate(text_rotation,expand=1)
911
+
912
+ if textalign == TEXTALIGN_RIGHT:
913
+ text_left = right
914
+ else:
915
+ text_left = left
916
+ text_left = int(text_left + (text_height) * i_str)
917
+
918
+ if vtextalign == VTEXTALIGN_BOTTOM:
919
+ text_top = bottom - text_width
920
+ else:
921
+ text_top = top
922
+ text_left = int(text_left)
923
+ text_top = int(text_top)
924
+
925
+ image.paste(rotated_text,[text_left,text_top])
926
+
927
+ else:
928
+
929
+ # If the total height of the display strings added to the top of the bounding
930
+ # box exceeds the top of the image, stack the strings below the bounding box
931
+ # instead of above, and vice-versa if we're bottom-aligning.
932
+ #
933
+ # If the text just doesn't fit outside the box, we don't try anything fancy,
934
+ # it will just appear outside the image.
935
+ if vtextalign == VTEXTALIGN_TOP:
936
+ text_bottom = top
937
+ if (text_bottom - total_display_str_height) < 0:
938
+ text_bottom = bottom + total_display_str_height
939
+ else:
940
+ assert vtextalign == VTEXTALIGN_BOTTOM, \
941
+ 'Unrecognized vertical text alignment {}'.format(vtextalign)
942
+ text_bottom = bottom + total_display_str_height
943
+ if (text_bottom + total_display_str_height) > im_height:
944
+ text_bottom = top
945
+
946
+ text_bottom = int(text_bottom) - i_str * (int(text_height + (2 * margin)))
947
+
948
+ text_left = left
949
+
950
+ if textalign == TEXTALIGN_RIGHT:
951
+ text_left = right - text_width
952
+ elif textalign == TEXTALIGN_CENTER:
953
+ text_left = ((right + left) / 2.0) - (text_width / 2.0)
954
+ text_left = int(text_left)
955
+
956
+ draw.rectangle(
957
+ [(text_left, (text_bottom - text_height) - (2 * margin)),
958
+ (text_left + text_width, text_bottom)],
959
+ fill=color)
960
+
961
+ draw.text(
962
+ (text_left + margin, text_bottom - text_height - margin),
963
+ display_str,
964
+ fill='black',
965
+ font=font)
966
+
967
+ # ...if we're rotating text
968
+
969
+ # ...if we're rendering text
970
+
971
+ # ...def draw_bounding_box_on_image(...)
972
+
973
+
974
+ def render_megadb_bounding_boxes(boxes_info, image):
975
+ """
976
+ Render bounding boxes to an image, where those boxes are in the mostly-deprecated
977
+ MegaDB format, which looks like:
978
+
979
+ .. code-block::none
980
+
981
+ {
982
+ "category": "animal",
983
+ "bbox": [
984
+ 0.739,
985
+ 0.448,
986
+ 0.187,
987
+ 0.198
988
+ ]
989
+ }
990
+
991
+ Args:
992
+ boxes_info (list): list of dicts, each dict represents a single detection
993
+ where bbox coordinates are normalized [x_min, y_min, width, height]
994
+ image (PIL.Image.Image): image to modify
995
+
996
+ :meta private:
997
+ """
998
+
999
+ display_boxes = []
1000
+ display_strs = []
1001
+ classes = [] # ints, for selecting colors
1002
+
1003
+ for b in boxes_info:
1004
+ x_min, y_min, w_rel, h_rel = b['bbox']
1005
+ y_max = y_min + h_rel
1006
+ x_max = x_min + w_rel
1007
+ display_boxes.append([y_min, x_min, y_max, x_max])
1008
+ display_strs.append([b['category']])
1009
+ classes.append(annotation_constants.detector_bbox_category_name_to_id[b['category']])
1010
+
1011
+ display_boxes = np.array(display_boxes)
1012
+ draw_bounding_boxes_on_image(image, display_boxes, classes, display_strs=display_strs)
1013
+
1014
+ # ...def render_iMerit_boxes(...)
1015
+
1016
+
1017
+ def render_db_bounding_boxes(boxes,
1018
+ classes,
1019
+ image,
1020
+ original_size=None,
1021
+ label_map=None,
1022
+ thickness=DEFAULT_BOX_THICKNESS,
1023
+ expansion=0,
1024
+ colormap=None,
1025
+ textalign=TEXTALIGN_LEFT,
1026
+ vtextalign=VTEXTALIGN_TOP,
1027
+ text_rotation=None,
1028
+ label_font_size=DEFAULT_LABEL_FONT_SIZE,
1029
+ tags=None,
1030
+ boxes_are_normalized=False):
1031
+ """
1032
+ Render bounding boxes (with class labels) on an image. This is a wrapper for
1033
+ draw_bounding_boxes_on_image, allowing the caller to operate on a resized image
1034
+ by providing the original size of the image; boxes will be scaled accordingly.
1035
+
1036
+ This function assumes that bounding boxes are in absolute coordinates, typically
1037
+ because they come from COCO camera traps .json files, unless boxes_are_normalized
1038
+ is True.
1039
+
1040
+ Args:
1041
+ boxes (list): list of length-4 tuples, foramtted as (x,y,w,h) (in pixels)
1042
+ classes (list): list of ints (or string-formatted ints), used to choose labels (either
1043
+ by literally rendering the class labels, or by indexing into [label_map])
1044
+ image (PIL.Image.Image): image object to modify
1045
+ original_size (tuple, optional): if this is not None, and the size is different than
1046
+ the size of [image], we assume that [boxes] refer to the original size, and we scale
1047
+ them accordingly before rendering
1048
+ label_map (dict, optional): int --> str dictionary, typically mapping category IDs to
1049
+ species labels; if None, category labels are rendered verbatim (typically as numbers)
1050
+ thickness (int, optional): line width
1051
+ expansion (int, optional): a number of pixels to include on each side of a cropped
1052
+ detection
1053
+ colormap (list, optional): list of color names, used to choose colors for categories by
1054
+ indexing with the values in [classes]; defaults to a reasonable set of colors
1055
+ textalign (int, optional): TEXTALIGN_LEFT, TEXTALIGN_CENTER, or TEXTALIGN_RIGHT
1056
+ vtextalign (int, optional): VTEXTALIGN_TOP or VTEXTALIGN_BOTTOM
1057
+ text_rotation (float, optional): rotation to apply to text
1058
+ label_font_size (float, optional): font size for labels
1059
+ tags (list, optional): list of strings of length len(boxes) that should be appended
1060
+ after each class name (e.g. to show scores)
1061
+ boxes_are_normalized (bool, optional): whether boxes have already been normalized
1062
+ """
1063
+
1064
+ display_boxes = []
1065
+ display_strs = []
1066
+
1067
+ if original_size is not None:
1068
+ image_size = original_size
1069
+ else:
1070
+ image_size = image.size
1071
+
1072
+ img_width, img_height = image_size
1073
+
1074
+ for i_box in range(0,len(boxes)):
1075
+
1076
+ box = boxes[i_box]
1077
+ clss = classes[i_box]
1078
+
1079
+ x_min_abs, y_min_abs, width_abs, height_abs = box[0:4]
1080
+
1081
+ # Normalize boxes if necessary
1082
+ if boxes_are_normalized:
1083
+
1084
+ xmin = x_min_abs
1085
+ xmax = x_min_abs + width_abs
1086
+ ymin = y_min_abs
1087
+ ymax = y_min_abs + height_abs
1088
+
1089
+ else:
1090
+
1091
+ ymin = y_min_abs / img_height
1092
+ ymax = ymin + height_abs / img_height
1093
+
1094
+ xmin = x_min_abs / img_width
1095
+ xmax = xmin + width_abs / img_width
1096
+
1097
+ display_boxes.append([ymin, xmin, ymax, xmax])
1098
+
1099
+ if label_map:
1100
+ clss = label_map[int(clss)]
1101
+
1102
+ display_str = str(clss)
1103
+
1104
+ # Do we have a tag to append to the class string?
1105
+ if tags is not None and tags[i_box] is not None and len(tags[i_box]) > 0:
1106
+ display_str += ' ' + tags[i_box]
1107
+
1108
+ # need to be a string here because PIL needs to iterate through chars
1109
+ display_strs.append([display_str])
1110
+
1111
+ # ...for each box
1112
+
1113
+ display_boxes = np.array(display_boxes)
1114
+
1115
+ draw_bounding_boxes_on_image(image,
1116
+ display_boxes,
1117
+ classes,
1118
+ display_strs=display_strs,
1119
+ thickness=thickness,
1120
+ expansion=expansion,
1121
+ colormap=colormap,
1122
+ textalign=textalign,
1123
+ vtextalign=vtextalign,
1124
+ text_rotation=text_rotation,
1125
+ label_font_size=label_font_size)
1126
+
1127
+ # ...def render_db_bounding_boxes(...)
1128
+
1129
+
1130
+ def draw_bounding_boxes_on_file(input_file,
1131
+ output_file,
1132
+ detections,
1133
+ confidence_threshold=0.0,
1134
+ detector_label_map=DEFAULT_DETECTOR_LABEL_MAP,
1135
+ thickness=DEFAULT_BOX_THICKNESS,
1136
+ expansion=0,
1137
+ colormap=None,
1138
+ label_font_size=DEFAULT_LABEL_FONT_SIZE,
1139
+ custom_strings=None,
1140
+ target_size=None,
1141
+ ignore_exif_rotation=False):
1142
+ """
1143
+ Renders detection bounding boxes on an image loaded from file, optionally writing the results to
1144
+ a new image file.
1145
+
1146
+ Args:
1147
+ input_file (str): filename or URL to load
1148
+ output_file (str): filename to which we should write the rendered image
1149
+ detections (list): a list of dictionaries with keys 'conf', 'bbox', and 'category';
1150
+ boxes are length-four arrays formatted as [x,y,w,h], normalized,
1151
+ upper-left origin (this is the standard MD detection format). 'category' is a string-int.
1152
+ confidence_threshold (float, optional): only render detections with confidence above this
1153
+ threshold
1154
+ detector_label_map (dict, optional): a dict mapping category IDs to strings. If this
1155
+ is None, no confidence values or identifiers are shown. If this is {}, just category
1156
+ indices and confidence values are shown.
1157
+ thickness (int, optional): line width in pixels for box rendering
1158
+ expansion (int, optional): box expansion in pixels
1159
+ colormap (list, optional): list of color names, used to choose colors for categories by
1160
+ indexing with the values in [classes]; defaults to a reasonable set of colors
1161
+ label_font_size (float, optional): label font size
1162
+ custom_strings (list, optional): set of strings to append to detection labels, should have the
1163
+ same length as [detections]. Appended before any classification labels.
1164
+ target_size (tuple, optional): tuple of (target_width,target_height). Either or both can be -1,
1165
+ see resize_image() for documentation. If None or (-1,-1), uses the original image size.
1166
+ ignore_exif_rotation (bool, optional): don't rotate the loaded pixels,
1167
+ even if we are loading a JPEG and that JPEG says it should be rotated.
1168
+
1169
+ Returns:
1170
+ PIL.Image.Image: loaded and modified image
1171
+ """
1172
+
1173
+ image = open_image(input_file, ignore_exif_rotation=ignore_exif_rotation)
1174
+
1175
+ if target_size is not None:
1176
+ image = resize_image(image,target_size[0],target_size[1])
1177
+
1178
+ render_detection_bounding_boxes(
1179
+ detections,
1180
+ image,
1181
+ label_map=detector_label_map,
1182
+ confidence_threshold=confidence_threshold,
1183
+ thickness=thickness,
1184
+ expansion=expansion,
1185
+ colormap=colormap,
1186
+ custom_strings=custom_strings,
1187
+ label_font_size=label_font_size)
1188
+
1189
+ if output_file is not None:
1190
+ image.save(output_file)
1191
+
1192
+ return image
1193
+
1194
+
1195
+ def draw_db_boxes_on_file(input_file,
1196
+ output_file,
1197
+ boxes,
1198
+ classes=None,
1199
+ label_map=None,
1200
+ thickness=DEFAULT_BOX_THICKNESS,
1201
+ expansion=0,
1202
+ ignore_exif_rotation=False):
1203
+ """
1204
+ Render COCO-formatted bounding boxes (in absolute coordinates) on an image loaded from file,
1205
+ writing the results to a new image file.
1206
+
1207
+ Args:
1208
+ input_file (str): image file to read
1209
+ output_file (str): image file to write
1210
+ boxes (list): list of length-4 tuples, foramtted as (x,y,w,h) (in pixels)
1211
+ classes (list, optional): list of ints (or string-formatted ints), used to choose
1212
+ labels (either by literally rendering the class labels, or by indexing into [label_map])
1213
+ label_map (dict, optional): int --> str dictionary, typically mapping category IDs to
1214
+ species labels; if None, category labels are rendered verbatim (typically as numbers)
1215
+ thickness (int, optional): line width
1216
+ expansion (int, optional): a number of pixels to include on each side of a cropped
1217
+ detection
1218
+ ignore_exif_rotation (bool, optional): don't rotate the loaded pixels,
1219
+ even if we are loading a JPEG and that JPEG says it should be rotated
1220
+
1221
+ Returns:
1222
+ PIL.Image.Image: the loaded and modified image
1223
+ """
1224
+
1225
+ image = open_image(input_file, ignore_exif_rotation=ignore_exif_rotation)
1226
+
1227
+ if classes is None:
1228
+ classes = [0] * len(boxes)
1229
+
1230
+ render_db_bounding_boxes(boxes,
1231
+ classes,
1232
+ image,
1233
+ original_size=None,
1234
+ label_map=label_map,
1235
+ thickness=thickness,
1236
+ expansion=expansion)
1237
+
1238
+ image.save(output_file)
1239
+
1240
+ return image
1241
+
1242
+ # ...def draw_bounding_boxes_on_file(...)
1243
+
1244
+
1245
+ def gray_scale_fraction(image,crop_size=(0.1,0.1)):
1246
+ """
1247
+ Computes the fraction of the pixels in [image] that appear to be grayscale (R==G==B),
1248
+ useful for approximating whether this is a night-time image when flash information is not
1249
+ available in EXIF data (or for video frames, where this information is often not available
1250
+ in structured metadata at all).
1251
+
1252
+ Args:
1253
+ image (str or PIL.Image.Image): Image, filename, or URL to analyze
1254
+ crop_size (tuple of floats, optional): a 2-element list/tuple, representing the fraction of
1255
+ the image to crop at the top and bottom, respectively, before analyzing (to minimize
1256
+ the possibility of including color elements in the image overlay)
1257
+
1258
+ Returns:
1259
+ float: the fraction of pixels in [image] that appear to be grayscale (R==G==B)
1260
+ """
1261
+
1262
+ if isinstance(image,str):
1263
+ image = Image.open(image)
1264
+
1265
+ if image.mode == 'L':
1266
+ return 1.0
1267
+
1268
+ if len(image.getbands()) == 1:
1269
+ return 1.0
1270
+
1271
+ # Crop if necessary
1272
+ if crop_size[0] > 0 or crop_size[1] > 0:
1273
+
1274
+ assert (crop_size[0] + crop_size[1]) < 1.0, \
1275
+ 'Illegal crop size: {}'.format(str(crop_size))
1276
+
1277
+ top_crop_pixels = int(image.height * crop_size[0])
1278
+ bottom_crop_pixels = int(image.height * crop_size[1])
1279
+
1280
+ left = 0
1281
+ right = image.width
1282
+
1283
+ # Remove pixels from the top
1284
+ first_crop_top = top_crop_pixels
1285
+ first_crop_bottom = image.height
1286
+ first_crop = image.crop((left, first_crop_top, right, first_crop_bottom))
1287
+
1288
+ # Remove pixels from the bottom
1289
+ second_crop_top = 0
1290
+ second_crop_bottom = first_crop.height - bottom_crop_pixels
1291
+ second_crop = first_crop.crop((left, second_crop_top, right, second_crop_bottom))
1292
+
1293
+ image = second_crop
1294
+
1295
+ # It doesn't matter if these are actually R/G/B, they're just names
1296
+ r = np.array(image.getchannel(0))
1297
+ g = np.array(image.getchannel(1))
1298
+ b = np.array(image.getchannel(2))
1299
+
1300
+ gray_pixels = np.logical_and(r == g, r == b)
1301
+ n_pixels = gray_pixels.size
1302
+ n_gray_pixels = gray_pixels.sum()
1303
+
1304
+ return n_gray_pixels / n_pixels
1305
+
1306
+ # Non-numpy way to do the same thing, briefly keeping this here for posterity
1307
+ if False:
1308
+
1309
+ w, h = image.size
1310
+ n_pixels = w*h
1311
+ n_gray_pixels = 0
1312
+ for i in range(w):
1313
+ for j in range(h):
1314
+ r, g, b = image.getpixel((i,j))
1315
+ if r == g and r == b and g == b:
1316
+ n_gray_pixels += 1
1317
+
1318
+ # ...def gray_scale_fraction(...)
1319
+
1320
+
1321
+ def _resize_relative_image(fn_relative,
1322
+ input_folder,
1323
+ output_folder,
1324
+ target_width,
1325
+ target_height,
1326
+ no_enlarge_width,
1327
+ verbose,
1328
+ quality,
1329
+ overwrite=True):
1330
+ """
1331
+ Internal function for resizing an image from one folder to another,
1332
+ maintaining relative path.
1333
+ """
1334
+
1335
+ input_fn_abs = os.path.join(input_folder,fn_relative)
1336
+ output_fn_abs = os.path.join(output_folder,fn_relative)
1337
+
1338
+ if (not overwrite) and (os.path.isfile(output_fn_abs)):
1339
+ status = 'skipped'
1340
+ error = None
1341
+ return {'fn_relative':fn_relative,'status':status,'error':error}
1342
+
1343
+ os.makedirs(os.path.dirname(output_fn_abs),exist_ok=True)
1344
+ try:
1345
+ _ = resize_image(input_fn_abs,
1346
+ output_file=output_fn_abs,
1347
+ target_width=target_width,
1348
+ target_height=target_height,
1349
+ no_enlarge_width=no_enlarge_width,
1350
+ verbose=verbose,
1351
+ quality=quality)
1352
+ status = 'success'
1353
+ error = None
1354
+ except Exception as e:
1355
+ if verbose:
1356
+ print('Error resizing {}: {}'.format(fn_relative,str(e)))
1357
+ status = 'error'
1358
+ error = str(e)
1359
+
1360
+ return {'fn_relative':fn_relative,'status':status,'error':error}
1361
+
1362
+ # ...def _resize_relative_image(...)
1363
+
1364
+
1365
+ def _resize_absolute_image(input_output_files,
1366
+ target_width,
1367
+ target_height,
1368
+ no_enlarge_width,
1369
+ verbose,
1370
+ quality):
1371
+ """
1372
+ Internal wrapper for resize_image used in the context of a batch resize operation.
1373
+ """
1374
+
1375
+ input_fn_abs = input_output_files[0]
1376
+ output_fn_abs = input_output_files[1]
1377
+ os.makedirs(os.path.dirname(output_fn_abs),exist_ok=True)
1378
+ try:
1379
+ _ = resize_image(input_fn_abs,
1380
+ output_file=output_fn_abs,
1381
+ target_width=target_width,
1382
+ target_height=target_height,
1383
+ no_enlarge_width=no_enlarge_width,
1384
+ verbose=verbose,
1385
+ quality=quality)
1386
+ status = 'success'
1387
+ error = None
1388
+ except Exception as e:
1389
+ if verbose:
1390
+ print('Error resizing {}: {}'.format(input_fn_abs,str(e)))
1391
+ status = 'error'
1392
+ error = str(e)
1393
+
1394
+ return {'input_fn':input_fn_abs,
1395
+ 'output_fn':output_fn_abs,
1396
+ 'status':status,
1397
+ 'error':error}
1398
+
1399
+ # ..._resize_absolute_image(...)
1400
+
1401
+
1402
+ def resize_images(input_file_to_output_file,
1403
+ target_width=-1,
1404
+ target_height=-1,
1405
+ no_enlarge_width=False,
1406
+ verbose=False,
1407
+ quality='keep',
1408
+ pool_type='process',
1409
+ n_workers=10):
1410
+ """
1411
+ Resizes all images the dictionary [input_file_to_output_file].
1412
+
1413
+ TODO: This is a little more redundant with resize_image_folder than I would like;
1414
+ refactor resize_image_folder to call resize_images. Not doing that yet because
1415
+ at the time I'm writing this comment, a lot of code depends on resize_image_folder
1416
+ and I don't want to rock the boat yet.
1417
+
1418
+ Args:
1419
+ input_file_to_output_file (dict): dict mapping images that exist to the locations
1420
+ where the resized versions should be written
1421
+ target_width (int, optional): width to which we should resize this image, or -1
1422
+ to let target_height determine the size
1423
+ target_height (int, optional): height to which we should resize this image, or -1
1424
+ to let target_width determine the size
1425
+ no_enlarge_width (bool, optional): if [no_enlarge_width] is True, and
1426
+ [target width] is larger than the original image width, does not modify the image,
1427
+ but will write to output_file if supplied
1428
+ verbose (bool, optional): enable additional debug output
1429
+ quality (str or int, optional): passed to exif_preserving_save, see docs for more detail
1430
+ pool_type (str, optional): whether use use processes ('process') or threads ('thread') for
1431
+ parallelization; ignored if n_workers <= 1
1432
+ n_workers (int, optional): number of workers to use for parallel resizing; set to <=1
1433
+ to disable parallelization
1434
+
1435
+ Returns:
1436
+ list: a list of dicts with keys 'input_fn', 'output_fn', 'status', and 'error'.
1437
+ 'status' will be 'success' or 'error'; 'error' will be None for successful cases,
1438
+ otherwise will contain the image-specific error.
1439
+ """
1440
+
1441
+ assert pool_type in ('process','thread'), 'Illegal pool type {}'.format(pool_type)
1442
+
1443
+ input_output_file_pairs = []
1444
+
1445
+ # Reformat input files as (input,output) tuples
1446
+ for input_fn in input_file_to_output_file:
1447
+ input_output_file_pairs.append((input_fn,input_file_to_output_file[input_fn]))
1448
+
1449
+ if n_workers == 1:
1450
+
1451
+ results = []
1452
+ for i_o_file_pair in tqdm(input_output_file_pairs):
1453
+ results.append(_resize_absolute_image(i_o_file_pair,
1454
+ target_width=target_width,
1455
+ target_height=target_height,
1456
+ no_enlarge_width=no_enlarge_width,
1457
+ verbose=verbose,
1458
+ quality=quality))
1459
+
1460
+ else:
1461
+
1462
+ pool = None
1463
+
1464
+ try:
1465
+
1466
+ if pool_type == 'thread':
1467
+ pool = ThreadPool(n_workers); poolstring = 'threads'
1468
+ else:
1469
+ assert pool_type == 'process'
1470
+ pool = Pool(n_workers); poolstring = 'processes'
1471
+
1472
+ if verbose:
1473
+ print('Starting resizing pool with {} {}'.format(n_workers,poolstring))
1474
+
1475
+ p = partial(_resize_absolute_image,
1476
+ target_width=target_width,
1477
+ target_height=target_height,
1478
+ no_enlarge_width=no_enlarge_width,
1479
+ verbose=verbose,
1480
+ quality=quality)
1481
+
1482
+ results = list(tqdm(pool.imap(p, input_output_file_pairs),total=len(input_output_file_pairs)))
1483
+
1484
+ finally:
1485
+
1486
+ if pool is not None:
1487
+ pool.close()
1488
+ pool.join()
1489
+ print('Pool closed and joined for image resizing')
1490
+
1491
+ return results
1492
+
1493
+ # ...def resize_images(...)
1494
+
1495
+
1496
+ def resize_image_folder(input_folder,
1497
+ output_folder=None,
1498
+ target_width=-1,
1499
+ target_height=-1,
1500
+ no_enlarge_width=False,
1501
+ verbose=False,
1502
+ quality='keep',
1503
+ pool_type='process',
1504
+ n_workers=10,
1505
+ recursive=True,
1506
+ image_files_relative=None,
1507
+ overwrite=True):
1508
+ """
1509
+ Resize all images in a folder (defaults to recursive).
1510
+
1511
+ Defaults to in-place resizing (output_folder is optional).
1512
+
1513
+ Args:
1514
+ input_folder (str): folder in which we should find images to resize
1515
+ output_folder (str, optional): folder in which we should write resized images. If
1516
+ None, resizes images in place. Otherwise, maintains relative paths in the target
1517
+ folder.
1518
+ target_width (int, optional): width to which we should resize this image, or -1
1519
+ to let target_height determine the size
1520
+ target_height (int, optional): height to which we should resize this image, or -1
1521
+ to let target_width determine the size
1522
+ no_enlarge_width (bool, optional): if [no_enlarge_width] is True, and
1523
+ [target width] is larger than the original image width, does not modify the image,
1524
+ but will write to output_file if supplied
1525
+ verbose (bool, optional): enable additional debug output
1526
+ quality (str or int, optional): passed to exif_preserving_save, see docs for more detail
1527
+ pool_type (str, optional): whether use use processes ('process') or threads ('thread') for
1528
+ parallelization; ignored if n_workers <= 1
1529
+ n_workers (int, optional): number of workers to use for parallel resizing; set to <=1
1530
+ to disable parallelization
1531
+ recursive (bool, optional): whether to search [input_folder] recursively for images.
1532
+ image_files_relative (list, optional): if not None, skips any relative paths not
1533
+ in this list
1534
+ overwrite (bool, optional): whether to overwrite existing target images
1535
+
1536
+ Returns:
1537
+ list: a list of dicts with keys 'input_fn', 'output_fn', 'status', and 'error'.
1538
+ 'status' will be 'success', 'skipped', or 'error'; 'error' will be None for successful
1539
+ cases, otherwise will contain the image-specific error.
1540
+ """
1541
+
1542
+ assert os.path.isdir(input_folder), '{} is not a folder'.format(input_folder)
1543
+
1544
+ if output_folder is None:
1545
+ output_folder = input_folder
1546
+ else:
1547
+ os.makedirs(output_folder,exist_ok=True)
1548
+
1549
+ assert pool_type in ('process','thread'), 'Illegal pool type {}'.format(pool_type)
1550
+
1551
+ if image_files_relative is None:
1552
+
1553
+ if verbose:
1554
+ print('Enumerating images')
1555
+
1556
+ image_files_relative = find_images(input_folder,recursive=recursive,
1557
+ return_relative_paths=True,convert_slashes=True)
1558
+ if verbose:
1559
+ print('Found {} images'.format(len(image_files_relative)))
1560
+
1561
+ if n_workers == 1:
1562
+
1563
+ if verbose:
1564
+ print('Resizing images')
1565
+
1566
+ results = []
1567
+ for fn_relative in tqdm(image_files_relative):
1568
+ results.append(_resize_relative_image(fn_relative,
1569
+ input_folder=input_folder,
1570
+ output_folder=output_folder,
1571
+ target_width=target_width,
1572
+ target_height=target_height,
1573
+ no_enlarge_width=no_enlarge_width,
1574
+ verbose=verbose,
1575
+ quality=quality,
1576
+ overwrite=overwrite))
1577
+
1578
+ else:
1579
+
1580
+ if pool_type == 'thread':
1581
+ pool = ThreadPool(n_workers); poolstring = 'threads'
1582
+ else:
1583
+ assert pool_type == 'process'
1584
+ pool = Pool(n_workers); poolstring = 'processes'
1585
+
1586
+ if verbose:
1587
+ print('Starting resizing pool with {} {}'.format(n_workers,poolstring))
1588
+
1589
+ p = partial(_resize_relative_image,
1590
+ input_folder=input_folder,
1591
+ output_folder=output_folder,
1592
+ target_width=target_width,
1593
+ target_height=target_height,
1594
+ no_enlarge_width=no_enlarge_width,
1595
+ verbose=verbose,
1596
+ quality=quality,
1597
+ overwrite=overwrite)
1598
+
1599
+ results = list(tqdm(pool.imap(p, image_files_relative),
1600
+ total=len(image_files_relative)))
1601
+
1602
+ return results
1603
+
1604
+ # ...def resize_image_folder(...)
1605
+
1606
+
1607
+ def get_image_size(im,verbose=False):
1608
+ """
1609
+ Retrieve the size of an image. Returns None if the image fails to load.
1610
+
1611
+ Args:
1612
+ im (str or PIL.Image): filename or PIL image
1613
+ verbose (bool, optional): enable additional debug output
1614
+
1615
+ Returns:
1616
+ tuple (w,h), or None if the image fails to load.
1617
+ """
1618
+
1619
+ image_name = '[in memory]'
1620
+
1621
+ try:
1622
+ if isinstance(im,str):
1623
+ image_name = im
1624
+ im = load_image(im)
1625
+ w = im.width
1626
+ h = im.height
1627
+ if w <= 0 or h <= 0:
1628
+ if verbose:
1629
+ print('Error reading width from image {}: {},{}'.format(
1630
+ image_name,w,h))
1631
+ return None
1632
+ return (w,h)
1633
+ except Exception as e:
1634
+ if verbose:
1635
+ print('Error reading width from image {}: {}'.format(
1636
+ image_name,str(e)))
1637
+ return None
1638
+
1639
+ # ...def get_image_size(...)
1640
+
1641
+
1642
+ def parallel_get_image_sizes(filenames,
1643
+ max_workers=16,
1644
+ use_threads=True,
1645
+ recursive=True,
1646
+ verbose=False):
1647
+ """
1648
+ Retrieve image sizes for a list or folder of images
1649
+
1650
+ Args:
1651
+ filenames (list or str): a list of image filenames or a folder. Non-image files and
1652
+ unreadable images will be returned with a file size of None.
1653
+ max_workers (int, optional): the number of parallel workers to use; set to <=1 to disable
1654
+ parallelization
1655
+ use_threads (bool, optional): whether to use threads (True) or processes (False) for
1656
+ parallelization
1657
+ recursive (bool, optional): if [filenames] is a folder, whether to search recursively
1658
+ for images. Ignored if [filenames] is a list.
1659
+ verbose (bool, optional): enable additional debug output
1660
+
1661
+ Returns:
1662
+ dict: a dict mapping filenames to (w,h) tuples; the value will be None for images that fail
1663
+ to load. Filenames will always be absolute.
1664
+ """
1665
+
1666
+ if isinstance(filenames,str) and os.path.isdir(filenames):
1667
+ if verbose:
1668
+ print('Enumerating images in {}'.format(filenames))
1669
+ filenames = find_images(filenames,recursive=recursive,return_relative_paths=False)
1670
+
1671
+ n_workers = min(max_workers,len(filenames))
1672
+
1673
+ if verbose:
1674
+ print('Getting image sizes for {} images'.format(len(filenames)))
1675
+
1676
+ if n_workers <= 1:
1677
+
1678
+ results = []
1679
+ for filename in filenames:
1680
+ results.append(get_image_size(filename,verbose=verbose))
1681
+
1682
+ else:
1683
+
1684
+ if use_threads:
1685
+ pool = ThreadPool(n_workers)
1686
+ else:
1687
+ pool = Pool(n_workers)
1688
+
1689
+ try:
1690
+ results = list(tqdm(pool.imap(
1691
+ partial(get_image_size,verbose=verbose),filenames), total=len(filenames)))
1692
+ finally:
1693
+ pool.close()
1694
+ pool.join()
1695
+ print('Pool closed and joined for image size retrieval')
1696
+
1697
+ assert len(filenames) == len(results), 'Internal error in parallel_get_image_sizes'
1698
+
1699
+ to_return = {}
1700
+ for i_file,filename in enumerate(filenames):
1701
+ to_return[filename] = results[i_file]
1702
+
1703
+ return to_return
1704
+
1705
+
1706
+ #%% Image integrity checking functions
1707
+
1708
+ def check_image_integrity(filename,modes=None):
1709
+ """
1710
+ Check whether we can successfully load an image via OpenCV and/or PIL.
1711
+
1712
+ Args:
1713
+ filename (str): the filename to evaluate
1714
+ modes (list, optional): a list containing one or more of:
1715
+
1716
+ - 'cv'
1717
+ - 'pil'
1718
+ - 'skimage'
1719
+ - 'jpeg_trailer'
1720
+
1721
+ 'jpeg_trailer' checks that the binary data ends with ffd9. It does not check whether
1722
+ the image is actually a jpeg, and even if it is, there are lots of reasons the image might not
1723
+ end with ffd9. It's also true the JPEGs that cause "premature end of jpeg segment" issues
1724
+ don't end with ffd9, so this may be a useful diagnostic. High precision, very low recall
1725
+ for corrupt jpegs.
1726
+
1727
+ Set to None to use all modes.
1728
+
1729
+ Returns:
1730
+ dict: a dict with a key called 'file' (the value of [filename]), one key for each string in
1731
+ [modes] (a success indicator for that mode, specifically a string starting with either
1732
+ 'success' or 'error').
1733
+ """
1734
+
1735
+ if modes is None:
1736
+ modes = ('cv','pil','skimage','jpeg_trailer')
1737
+ else:
1738
+ if isinstance(modes,str):
1739
+ modes = [modes]
1740
+ for mode in modes:
1741
+ assert mode in ('cv','pil','skimage'), 'Unrecognized mode {}'.format(mode)
1742
+
1743
+ assert os.path.isfile(filename), 'Could not find file {}'.format(filename)
1744
+
1745
+ result = {}
1746
+ result['file'] = filename
1747
+
1748
+ for mode in modes:
1749
+
1750
+ result[mode] = 'unknown'
1751
+ if mode == 'pil':
1752
+ try:
1753
+ pil_im = load_image(filename) # noqa
1754
+ assert pil_im is not None
1755
+ result[mode] = 'success'
1756
+ except Exception as e:
1757
+ result[mode] = 'error: {}'.format(str(e))
1758
+ elif mode == 'cv':
1759
+ try:
1760
+ cv_im = cv2.imread(filename)
1761
+ assert cv_im is not None, 'Unknown opencv read failure'
1762
+ numpy_im = np.asarray(cv_im) # noqa
1763
+ result[mode] = 'success'
1764
+ except Exception as e:
1765
+ result[mode] = 'error: {}'.format(str(e))
1766
+ elif mode == 'skimage':
1767
+ try:
1768
+ # This is not a standard dependency
1769
+ from skimage import io as skimage_io # type: ignore # noqa
1770
+ except Exception:
1771
+ result[mode] = 'could not import skimage, run pip install scikit-image'
1772
+ return result
1773
+ try:
1774
+ skimage_im = skimage_io.imread(filename) # noqa
1775
+ assert skimage_im is not None
1776
+ result[mode] = 'success'
1777
+ except Exception as e:
1778
+ result[mode] = 'error: {}'.format(str(e))
1779
+ elif mode == 'jpeg_trailer':
1780
+ # https://stackoverflow.com/a/48282863/16644970
1781
+ try:
1782
+ with open(filename, 'rb') as f:
1783
+ check_chars = f.read()[-2:]
1784
+ if check_chars != b'\xff\xd9':
1785
+ result[mode] = 'invalid jpeg trailer: {}'.format(str(check_chars))
1786
+ else:
1787
+ result[mode] = 'success'
1788
+ except Exception as e:
1789
+ result[mode] = 'error: {}'.format(str(e))
1790
+
1791
+ # ...for each mode
1792
+
1793
+ return result
1794
+
1795
+ # ...def check_image_integrity(...)
1796
+
1797
+
1798
+ def parallel_check_image_integrity(filenames,
1799
+ modes=None,
1800
+ max_workers=16,
1801
+ use_threads=True,
1802
+ recursive=True,
1803
+ verbose=False):
1804
+ """
1805
+ Check whether we can successfully load a list of images via OpenCV and/or PIL.
1806
+
1807
+ Args:
1808
+ filenames (list or str): a list of image filenames or a folder
1809
+ modes (list, optional): see check_image_integrity() for documentation on the [modes] parameter
1810
+ max_workers (int, optional): the number of parallel workers to use; set to <=1 to disable
1811
+ parallelization
1812
+ use_threads (bool, optional): whether to use threads (True) or processes (False) for
1813
+ parallelization
1814
+ recursive (bool, optional): if [filenames] is a folder, whether to search recursively for images.
1815
+ Ignored if [filenames] is a list.
1816
+ verbose (bool, optional): enable additional debug output
1817
+
1818
+ Returns:
1819
+ list: a list of dicts, each with a key called 'file' (the value of [filename]), one key for
1820
+ each string in [modes] (a success indicator for that mode, specifically a string starting
1821
+ with either 'success' or 'error').
1822
+ """
1823
+
1824
+ if isinstance(filenames,str) and os.path.isdir(filenames):
1825
+ if verbose:
1826
+ print('Enumerating images in {}'.format(filenames))
1827
+ filenames = find_images(filenames,recursive=recursive,return_relative_paths=False)
1828
+
1829
+ n_workers = min(max_workers,len(filenames))
1830
+
1831
+ if verbose:
1832
+ print('Checking image integrity for {} filenames'.format(len(filenames)))
1833
+
1834
+ if n_workers <= 1:
1835
+
1836
+ results = []
1837
+ for filename in filenames:
1838
+ results.append(check_image_integrity(filename,modes=modes))
1839
+
1840
+ else:
1841
+
1842
+ if use_threads:
1843
+ pool = ThreadPool(n_workers)
1844
+ else:
1845
+ pool = Pool(n_workers)
1846
+
1847
+ results = list(tqdm(pool.imap(
1848
+ partial(check_image_integrity,modes=modes),filenames), total=len(filenames)))
1849
+
1850
+ return results
1851
+
1852
+
1853
+ #%% Test drivers
1854
+
1855
+ if False:
1856
+
1857
+ #%% Text rendering tests
1858
+
1859
+ import os # noqa
1860
+ import numpy as np # noqa
1861
+ from megadetector.visualization.visualization_utils import \
1862
+ draw_bounding_boxes_on_image, exif_preserving_save, load_image, \
1863
+ TEXTALIGN_LEFT,TEXTALIGN_RIGHT,VTEXTALIGN_BOTTOM,VTEXTALIGN_TOP, \
1864
+ DEFAULT_LABEL_FONT_SIZE
1865
+
1866
+ fn = os.path.expanduser('~/AppData/Local/Temp/md-tests/md-test-images/ena24_7904.jpg')
1867
+ output_fn = r'g:\temp\test.jpg'
1868
+
1869
+ image = load_image(fn)
1870
+
1871
+ w = 0.2; h = 0.2
1872
+ all_boxes = [[0.05, 0.05, 0.25, 0.25],
1873
+ [0.05, 0.35, 0.25, 0.6],
1874
+ [0.35, 0.05, 0.6, 0.25],
1875
+ [0.35, 0.35, 0.6, 0.6]]
1876
+
1877
+ alignments = [
1878
+ [TEXTALIGN_LEFT,VTEXTALIGN_TOP],
1879
+ [TEXTALIGN_LEFT,VTEXTALIGN_BOTTOM],
1880
+ [TEXTALIGN_RIGHT,VTEXTALIGN_TOP],
1881
+ [TEXTALIGN_RIGHT,VTEXTALIGN_BOTTOM]
1882
+ ]
1883
+
1884
+ labels = ['left_top','left_bottom','right_top','right_bottom']
1885
+
1886
+ text_rotation = -90
1887
+ n_label_copies = 2
1888
+
1889
+ for i_box,box in enumerate(all_boxes):
1890
+
1891
+ boxes = [box]
1892
+ boxes = np.array(boxes)
1893
+ classes = [i_box]
1894
+ display_strs = [[labels[i_box]]*n_label_copies]
1895
+ textalign = alignments[i_box][0]
1896
+ vtextalign = alignments[i_box][1]
1897
+ draw_bounding_boxes_on_image(image,
1898
+ boxes,
1899
+ classes,
1900
+ thickness=2,
1901
+ expansion=0,
1902
+ display_strs=display_strs,
1903
+ colormap=None,
1904
+ textalign=textalign,
1905
+ vtextalign=vtextalign,
1906
+ label_font_size=DEFAULT_LABEL_FONT_SIZE,
1907
+ text_rotation=text_rotation)
1908
+
1909
+ exif_preserving_save(image,output_fn)
1910
+ from megadetector.utils.path_utils import open_file
1911
+ open_file(output_fn)
1912
+
1913
+
1914
+ #%% Recursive resize test
1915
+
1916
+ from megadetector.visualization.visualization_utils import resize_image_folder # noqa
1917
+
1918
+ input_folder = r"C:\temp\resize-test\in"
1919
+ output_folder = r"C:\temp\resize-test\out"
1920
+
1921
+ resize_results = resize_image_folder(input_folder,output_folder,
1922
+ target_width=1280,verbose=True,quality=85,no_enlarge_width=True,
1923
+ pool_type='process',n_workers=10)
1924
+
1925
+
1926
+ #%% Integrity checking test
1927
+
1928
+ from megadetector.utils import md_tests
1929
+ options = md_tests.download_test_data()
1930
+ folder = options.scratch_dir
1931
+
1932
+ results = parallel_check_image_integrity(folder,max_workers=8)
1933
+
1934
+ modes = ['cv','pil','skimage','jpeg_trailer']
1935
+
1936
+ for r in results:
1937
+ for mode in modes:
1938
+ if r[mode] != 'success':
1939
+ s = r[mode]
1940
+ print('Mode {} failed for {}:\n{}\n'.format(mode,r['file'],s))