megadetector 10.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (147) hide show
  1. megadetector/__init__.py +0 -0
  2. megadetector/api/__init__.py +0 -0
  3. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
  7. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  8. megadetector/classification/__init__.py +0 -0
  9. megadetector/classification/aggregate_classifier_probs.py +108 -0
  10. megadetector/classification/analyze_failed_images.py +227 -0
  11. megadetector/classification/cache_batchapi_outputs.py +198 -0
  12. megadetector/classification/create_classification_dataset.py +626 -0
  13. megadetector/classification/crop_detections.py +516 -0
  14. megadetector/classification/csv_to_json.py +226 -0
  15. megadetector/classification/detect_and_crop.py +853 -0
  16. megadetector/classification/efficientnet/__init__.py +9 -0
  17. megadetector/classification/efficientnet/model.py +415 -0
  18. megadetector/classification/efficientnet/utils.py +608 -0
  19. megadetector/classification/evaluate_model.py +520 -0
  20. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  21. megadetector/classification/json_to_azcopy_list.py +63 -0
  22. megadetector/classification/json_validator.py +696 -0
  23. megadetector/classification/map_classification_categories.py +276 -0
  24. megadetector/classification/merge_classification_detection_output.py +509 -0
  25. megadetector/classification/prepare_classification_script.py +194 -0
  26. megadetector/classification/prepare_classification_script_mc.py +228 -0
  27. megadetector/classification/run_classifier.py +287 -0
  28. megadetector/classification/save_mislabeled.py +110 -0
  29. megadetector/classification/train_classifier.py +827 -0
  30. megadetector/classification/train_classifier_tf.py +725 -0
  31. megadetector/classification/train_utils.py +323 -0
  32. megadetector/data_management/__init__.py +0 -0
  33. megadetector/data_management/animl_to_md.py +161 -0
  34. megadetector/data_management/annotations/__init__.py +0 -0
  35. megadetector/data_management/annotations/annotation_constants.py +33 -0
  36. megadetector/data_management/camtrap_dp_to_coco.py +270 -0
  37. megadetector/data_management/cct_json_utils.py +566 -0
  38. megadetector/data_management/cct_to_md.py +184 -0
  39. megadetector/data_management/cct_to_wi.py +293 -0
  40. megadetector/data_management/coco_to_labelme.py +284 -0
  41. megadetector/data_management/coco_to_yolo.py +702 -0
  42. megadetector/data_management/databases/__init__.py +0 -0
  43. megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
  44. megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
  45. megadetector/data_management/databases/integrity_check_json_db.py +528 -0
  46. megadetector/data_management/databases/subset_json_db.py +195 -0
  47. megadetector/data_management/generate_crops_from_cct.py +200 -0
  48. megadetector/data_management/get_image_sizes.py +164 -0
  49. megadetector/data_management/labelme_to_coco.py +559 -0
  50. megadetector/data_management/labelme_to_yolo.py +349 -0
  51. megadetector/data_management/lila/__init__.py +0 -0
  52. megadetector/data_management/lila/create_lila_blank_set.py +556 -0
  53. megadetector/data_management/lila/create_lila_test_set.py +187 -0
  54. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  55. megadetector/data_management/lila/download_lila_subset.py +182 -0
  56. megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
  57. megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
  58. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  59. megadetector/data_management/lila/lila_common.py +319 -0
  60. megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
  61. megadetector/data_management/mewc_to_md.py +344 -0
  62. megadetector/data_management/ocr_tools.py +873 -0
  63. megadetector/data_management/read_exif.py +964 -0
  64. megadetector/data_management/remap_coco_categories.py +195 -0
  65. megadetector/data_management/remove_exif.py +156 -0
  66. megadetector/data_management/rename_images.py +194 -0
  67. megadetector/data_management/resize_coco_dataset.py +663 -0
  68. megadetector/data_management/speciesnet_to_md.py +41 -0
  69. megadetector/data_management/wi_download_csv_to_coco.py +247 -0
  70. megadetector/data_management/yolo_output_to_md_output.py +594 -0
  71. megadetector/data_management/yolo_to_coco.py +876 -0
  72. megadetector/data_management/zamba_to_md.py +188 -0
  73. megadetector/detection/__init__.py +0 -0
  74. megadetector/detection/change_detection.py +840 -0
  75. megadetector/detection/process_video.py +479 -0
  76. megadetector/detection/pytorch_detector.py +1451 -0
  77. megadetector/detection/run_detector.py +1267 -0
  78. megadetector/detection/run_detector_batch.py +2159 -0
  79. megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
  80. megadetector/detection/run_md_and_speciesnet.py +1494 -0
  81. megadetector/detection/run_tiled_inference.py +1038 -0
  82. megadetector/detection/tf_detector.py +209 -0
  83. megadetector/detection/video_utils.py +1379 -0
  84. megadetector/postprocessing/__init__.py +0 -0
  85. megadetector/postprocessing/add_max_conf.py +72 -0
  86. megadetector/postprocessing/categorize_detections_by_size.py +166 -0
  87. megadetector/postprocessing/classification_postprocessing.py +1752 -0
  88. megadetector/postprocessing/combine_batch_outputs.py +249 -0
  89. megadetector/postprocessing/compare_batch_results.py +2110 -0
  90. megadetector/postprocessing/convert_output_format.py +403 -0
  91. megadetector/postprocessing/create_crop_folder.py +629 -0
  92. megadetector/postprocessing/detector_calibration.py +570 -0
  93. megadetector/postprocessing/generate_csv_report.py +522 -0
  94. megadetector/postprocessing/load_api_results.py +223 -0
  95. megadetector/postprocessing/md_to_coco.py +428 -0
  96. megadetector/postprocessing/md_to_labelme.py +351 -0
  97. megadetector/postprocessing/md_to_wi.py +41 -0
  98. megadetector/postprocessing/merge_detections.py +392 -0
  99. megadetector/postprocessing/postprocess_batch_results.py +2077 -0
  100. megadetector/postprocessing/remap_detection_categories.py +226 -0
  101. megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
  102. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
  103. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
  104. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
  105. megadetector/postprocessing/separate_detections_into_folders.py +795 -0
  106. megadetector/postprocessing/subset_json_detector_output.py +964 -0
  107. megadetector/postprocessing/top_folders_to_bottom.py +238 -0
  108. megadetector/postprocessing/validate_batch_results.py +332 -0
  109. megadetector/taxonomy_mapping/__init__.py +0 -0
  110. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  111. megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
  112. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
  113. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
  114. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  115. megadetector/taxonomy_mapping/simple_image_download.py +224 -0
  116. megadetector/taxonomy_mapping/species_lookup.py +1008 -0
  117. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  118. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  119. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  120. megadetector/tests/__init__.py +0 -0
  121. megadetector/tests/test_nms_synthetic.py +335 -0
  122. megadetector/utils/__init__.py +0 -0
  123. megadetector/utils/ct_utils.py +1857 -0
  124. megadetector/utils/directory_listing.py +199 -0
  125. megadetector/utils/extract_frames_from_video.py +307 -0
  126. megadetector/utils/gpu_test.py +125 -0
  127. megadetector/utils/md_tests.py +2072 -0
  128. megadetector/utils/path_utils.py +2832 -0
  129. megadetector/utils/process_utils.py +172 -0
  130. megadetector/utils/split_locations_into_train_val.py +237 -0
  131. megadetector/utils/string_utils.py +234 -0
  132. megadetector/utils/url_utils.py +825 -0
  133. megadetector/utils/wi_platform_utils.py +968 -0
  134. megadetector/utils/wi_taxonomy_utils.py +1759 -0
  135. megadetector/utils/write_html_image_list.py +239 -0
  136. megadetector/visualization/__init__.py +0 -0
  137. megadetector/visualization/plot_utils.py +309 -0
  138. megadetector/visualization/render_images_with_thumbnails.py +243 -0
  139. megadetector/visualization/visualization_utils.py +1940 -0
  140. megadetector/visualization/visualize_db.py +630 -0
  141. megadetector/visualization/visualize_detector_output.py +479 -0
  142. megadetector/visualization/visualize_video_output.py +705 -0
  143. megadetector-10.0.13.dist-info/METADATA +134 -0
  144. megadetector-10.0.13.dist-info/RECORD +147 -0
  145. megadetector-10.0.13.dist-info/WHEEL +5 -0
  146. megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
  147. megadetector-10.0.13.dist-info/top_level.txt +1 -0
@@ -0,0 +1,188 @@
1
+ """
2
+
3
+ zamba_to_md.py
4
+
5
+ Convert a labels.csv file produced by Zamba Cloud to a MD results file suitable
6
+ for import into Timelapse.
7
+
8
+ Columns are expected to be:
9
+
10
+ video_uuid (not used)
11
+ original_filename (assumed to be a relative path name)
12
+ top_k_label,top_k_probability, for k = 1..N
13
+ [category name 1],[category name 2],...
14
+ corrected_label
15
+
16
+ Because the MD results file fundamentally stores detections, what we'll
17
+ actually do is create bogus detections that fill the entire image.
18
+
19
+ There is no special handling of empty/blank categories; because these results are
20
+ based on a classifier, rather than a detector (where "blank" would be the absence of
21
+ all other categories), "blank" can be queried in Timelapse just like any other class.
22
+
23
+ """
24
+
25
+ #%% Imports and constants
26
+
27
+ import sys
28
+ import argparse
29
+
30
+ import pandas as pd
31
+
32
+ from megadetector.utils.ct_utils import write_json
33
+
34
+
35
+ #%% Main function
36
+
37
+ def zamba_results_to_md_results(input_file,output_file=None):
38
+ """
39
+ Converts the .csv file [input_file] to the MD-formatted .json file [output_file].
40
+
41
+ If [output_file] is None, '.json' will be appended to the input file.
42
+
43
+ Args:
44
+ input_file (str): the .csv file to convert
45
+ output_file (str, optional): the output .json file (defaults to
46
+ [input_file].json)
47
+ """
48
+
49
+ if output_file is None:
50
+ output_file = input_file + '.json'
51
+
52
+ df = pd.read_csv(input_file)
53
+
54
+ expected_columns = ('video_uuid','corrected_label','original_filename')
55
+ for s in expected_columns:
56
+ assert s in df.columns,\
57
+ 'Expected column {} not found, are you sure this is a Zamba results .csv file?'.format(
58
+ s)
59
+
60
+ # How many results are included per file?
61
+ assert 'top_1_probability' in df.columns and 'top_1_label' in df.columns
62
+ top_k = 2
63
+ while(True):
64
+ p_string = 'top_' + str(top_k) + '_probability'
65
+ label_string = 'top_' + str(top_k) + '_label'
66
+
67
+ if p_string in df.columns:
68
+ assert label_string in df.columns,\
69
+ 'Oops, {} is a column but {} is not'.format(
70
+ p_string,label_string)
71
+ top_k += 1
72
+ continue
73
+ else:
74
+ assert label_string not in df.columns,\
75
+ 'Oops, {} is a column but {} is not'.format(
76
+ label_string,p_string)
77
+ top_k -= 1
78
+ break
79
+
80
+ print('Found {} probability column pairs'.format(top_k))
81
+
82
+ # Category names start after the fixed columns and the probability columns
83
+ category_names = []
84
+ column_names = list(df.columns)
85
+ first_category_name_index = 0
86
+ while('top_' in column_names[first_category_name_index] or \
87
+ column_names[first_category_name_index] in expected_columns):
88
+ first_category_name_index += 1
89
+
90
+ i_column = first_category_name_index
91
+ while( (i_column < len(column_names)) and (column_names[i_column] != 'corrected_label') ):
92
+ category_names.append(column_names[i_column])
93
+ i_column += 1
94
+
95
+ print('Found {} categories:\n'.format(len(category_names)))
96
+
97
+ for s in category_names:
98
+ print(s)
99
+
100
+ info = {}
101
+ info['format_version'] = '1.3'
102
+ info['detector'] = 'Zamba Cloud'
103
+ info['classifier'] = 'Zamba Cloud'
104
+
105
+ detection_category_id_to_name = {}
106
+ for category_id,category_name in enumerate(category_names):
107
+ detection_category_id_to_name[str(category_id)] = category_name
108
+ detection_category_name_to_id = {v: k for k, v in detection_category_id_to_name.items()}
109
+
110
+ images = []
111
+
112
+ # i_row = 0; row = df.iloc[i_row]
113
+ for i_row,row in df.iterrows():
114
+
115
+ im = {}
116
+ images.append(im)
117
+ im['file'] = row['original_filename']
118
+
119
+ detections = []
120
+
121
+ # k = 1
122
+ for k in range(1,top_k+1):
123
+ label = row['top_{}_label'.format(k)]
124
+ confidence = row['top_{}_probability'.format(k)]
125
+ det = {}
126
+ det['category'] = detection_category_name_to_id[label]
127
+ det['conf'] = confidence
128
+ det['bbox'] = [0,0,1.0,1.0]
129
+ detections.append(det)
130
+
131
+ im['detections'] = detections
132
+
133
+ # ...for each row
134
+
135
+ results = {}
136
+ results['info'] = info
137
+ results['detection_categories'] = detection_category_id_to_name
138
+ results['images'] = images
139
+
140
+ write_json(output_file,results)
141
+
142
+ # ...zamba_results_to_md_results(...)
143
+
144
+
145
+ #%% Interactive driver
146
+
147
+ if False:
148
+
149
+ pass
150
+
151
+ #%%
152
+
153
+ input_file = r"G:\temp\labels-job-b95a4b76-e332-4e17-ab40-03469392d36a-2023-11-04_16-28-50.060130.csv"
154
+ output_file = None
155
+ zamba_results_to_md_results(input_file,output_file)
156
+
157
+
158
+ #%% Command-line driver
159
+
160
+ def main():
161
+ """
162
+ Command-line driver for zamba_to_md
163
+ """
164
+
165
+ parser = argparse.ArgumentParser(
166
+ description='Convert a Zamba-formatted .csv results file to a MD-formatted .json results file')
167
+
168
+ parser.add_argument(
169
+ 'input_file',
170
+ type=str,
171
+ help='input .csv file')
172
+
173
+ parser.add_argument(
174
+ '--output_file',
175
+ type=str,
176
+ default=None,
177
+ help='output .json file (defaults to input file appended with ".json")')
178
+
179
+ if len(sys.argv[1:]) == 0:
180
+ parser.print_help()
181
+ parser.exit()
182
+
183
+ args = parser.parse_args()
184
+
185
+ zamba_results_to_md_results(args.input_file,args.output_file)
186
+
187
+ if __name__ == '__main__':
188
+ main()
File without changes