megadetector 10.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- megadetector/__init__.py +0 -0
- megadetector/api/__init__.py +0 -0
- megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
- megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
- megadetector/classification/__init__.py +0 -0
- megadetector/classification/aggregate_classifier_probs.py +108 -0
- megadetector/classification/analyze_failed_images.py +227 -0
- megadetector/classification/cache_batchapi_outputs.py +198 -0
- megadetector/classification/create_classification_dataset.py +626 -0
- megadetector/classification/crop_detections.py +516 -0
- megadetector/classification/csv_to_json.py +226 -0
- megadetector/classification/detect_and_crop.py +853 -0
- megadetector/classification/efficientnet/__init__.py +9 -0
- megadetector/classification/efficientnet/model.py +415 -0
- megadetector/classification/efficientnet/utils.py +608 -0
- megadetector/classification/evaluate_model.py +520 -0
- megadetector/classification/identify_mislabeled_candidates.py +152 -0
- megadetector/classification/json_to_azcopy_list.py +63 -0
- megadetector/classification/json_validator.py +696 -0
- megadetector/classification/map_classification_categories.py +276 -0
- megadetector/classification/merge_classification_detection_output.py +509 -0
- megadetector/classification/prepare_classification_script.py +194 -0
- megadetector/classification/prepare_classification_script_mc.py +228 -0
- megadetector/classification/run_classifier.py +287 -0
- megadetector/classification/save_mislabeled.py +110 -0
- megadetector/classification/train_classifier.py +827 -0
- megadetector/classification/train_classifier_tf.py +725 -0
- megadetector/classification/train_utils.py +323 -0
- megadetector/data_management/__init__.py +0 -0
- megadetector/data_management/animl_to_md.py +161 -0
- megadetector/data_management/annotations/__init__.py +0 -0
- megadetector/data_management/annotations/annotation_constants.py +33 -0
- megadetector/data_management/camtrap_dp_to_coco.py +270 -0
- megadetector/data_management/cct_json_utils.py +566 -0
- megadetector/data_management/cct_to_md.py +184 -0
- megadetector/data_management/cct_to_wi.py +293 -0
- megadetector/data_management/coco_to_labelme.py +284 -0
- megadetector/data_management/coco_to_yolo.py +702 -0
- megadetector/data_management/databases/__init__.py +0 -0
- megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
- megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
- megadetector/data_management/databases/integrity_check_json_db.py +528 -0
- megadetector/data_management/databases/subset_json_db.py +195 -0
- megadetector/data_management/generate_crops_from_cct.py +200 -0
- megadetector/data_management/get_image_sizes.py +164 -0
- megadetector/data_management/labelme_to_coco.py +559 -0
- megadetector/data_management/labelme_to_yolo.py +349 -0
- megadetector/data_management/lila/__init__.py +0 -0
- megadetector/data_management/lila/create_lila_blank_set.py +556 -0
- megadetector/data_management/lila/create_lila_test_set.py +187 -0
- megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
- megadetector/data_management/lila/download_lila_subset.py +182 -0
- megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
- megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
- megadetector/data_management/lila/get_lila_image_counts.py +112 -0
- megadetector/data_management/lila/lila_common.py +319 -0
- megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
- megadetector/data_management/mewc_to_md.py +344 -0
- megadetector/data_management/ocr_tools.py +873 -0
- megadetector/data_management/read_exif.py +964 -0
- megadetector/data_management/remap_coco_categories.py +195 -0
- megadetector/data_management/remove_exif.py +156 -0
- megadetector/data_management/rename_images.py +194 -0
- megadetector/data_management/resize_coco_dataset.py +663 -0
- megadetector/data_management/speciesnet_to_md.py +41 -0
- megadetector/data_management/wi_download_csv_to_coco.py +247 -0
- megadetector/data_management/yolo_output_to_md_output.py +594 -0
- megadetector/data_management/yolo_to_coco.py +876 -0
- megadetector/data_management/zamba_to_md.py +188 -0
- megadetector/detection/__init__.py +0 -0
- megadetector/detection/change_detection.py +840 -0
- megadetector/detection/process_video.py +479 -0
- megadetector/detection/pytorch_detector.py +1451 -0
- megadetector/detection/run_detector.py +1267 -0
- megadetector/detection/run_detector_batch.py +2159 -0
- megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
- megadetector/detection/run_md_and_speciesnet.py +1494 -0
- megadetector/detection/run_tiled_inference.py +1038 -0
- megadetector/detection/tf_detector.py +209 -0
- megadetector/detection/video_utils.py +1379 -0
- megadetector/postprocessing/__init__.py +0 -0
- megadetector/postprocessing/add_max_conf.py +72 -0
- megadetector/postprocessing/categorize_detections_by_size.py +166 -0
- megadetector/postprocessing/classification_postprocessing.py +1752 -0
- megadetector/postprocessing/combine_batch_outputs.py +249 -0
- megadetector/postprocessing/compare_batch_results.py +2110 -0
- megadetector/postprocessing/convert_output_format.py +403 -0
- megadetector/postprocessing/create_crop_folder.py +629 -0
- megadetector/postprocessing/detector_calibration.py +570 -0
- megadetector/postprocessing/generate_csv_report.py +522 -0
- megadetector/postprocessing/load_api_results.py +223 -0
- megadetector/postprocessing/md_to_coco.py +428 -0
- megadetector/postprocessing/md_to_labelme.py +351 -0
- megadetector/postprocessing/md_to_wi.py +41 -0
- megadetector/postprocessing/merge_detections.py +392 -0
- megadetector/postprocessing/postprocess_batch_results.py +2077 -0
- megadetector/postprocessing/remap_detection_categories.py +226 -0
- megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
- megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
- megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
- megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
- megadetector/postprocessing/separate_detections_into_folders.py +795 -0
- megadetector/postprocessing/subset_json_detector_output.py +964 -0
- megadetector/postprocessing/top_folders_to_bottom.py +238 -0
- megadetector/postprocessing/validate_batch_results.py +332 -0
- megadetector/taxonomy_mapping/__init__.py +0 -0
- megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
- megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
- megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
- megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
- megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
- megadetector/taxonomy_mapping/simple_image_download.py +224 -0
- megadetector/taxonomy_mapping/species_lookup.py +1008 -0
- megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
- megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
- megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
- megadetector/tests/__init__.py +0 -0
- megadetector/tests/test_nms_synthetic.py +335 -0
- megadetector/utils/__init__.py +0 -0
- megadetector/utils/ct_utils.py +1857 -0
- megadetector/utils/directory_listing.py +199 -0
- megadetector/utils/extract_frames_from_video.py +307 -0
- megadetector/utils/gpu_test.py +125 -0
- megadetector/utils/md_tests.py +2072 -0
- megadetector/utils/path_utils.py +2832 -0
- megadetector/utils/process_utils.py +172 -0
- megadetector/utils/split_locations_into_train_val.py +237 -0
- megadetector/utils/string_utils.py +234 -0
- megadetector/utils/url_utils.py +825 -0
- megadetector/utils/wi_platform_utils.py +968 -0
- megadetector/utils/wi_taxonomy_utils.py +1759 -0
- megadetector/utils/write_html_image_list.py +239 -0
- megadetector/visualization/__init__.py +0 -0
- megadetector/visualization/plot_utils.py +309 -0
- megadetector/visualization/render_images_with_thumbnails.py +243 -0
- megadetector/visualization/visualization_utils.py +1940 -0
- megadetector/visualization/visualize_db.py +630 -0
- megadetector/visualization/visualize_detector_output.py +479 -0
- megadetector/visualization/visualize_video_output.py +705 -0
- megadetector-10.0.13.dist-info/METADATA +134 -0
- megadetector-10.0.13.dist-info/RECORD +147 -0
- megadetector-10.0.13.dist-info/WHEEL +5 -0
- megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
- megadetector-10.0.13.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,559 @@
|
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
labelme_to_coco.py
|
|
4
|
+
|
|
5
|
+
Converts a folder of labelme-formatted .json files to COCO.
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
#%% Constants and imports
|
|
10
|
+
|
|
11
|
+
import os
|
|
12
|
+
import sys
|
|
13
|
+
import json
|
|
14
|
+
import uuid
|
|
15
|
+
import argparse
|
|
16
|
+
|
|
17
|
+
from multiprocessing.pool import Pool, ThreadPool
|
|
18
|
+
from functools import partial
|
|
19
|
+
from tqdm import tqdm
|
|
20
|
+
|
|
21
|
+
from megadetector.utils import path_utils
|
|
22
|
+
from megadetector.visualization.visualization_utils import open_image
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
#%% Support functions
|
|
26
|
+
|
|
27
|
+
def _add_category(category_name,category_name_to_id,candidate_category_id=0):
|
|
28
|
+
"""
|
|
29
|
+
Adds the category [category_name] to the dict [category_name_to_id], by default
|
|
30
|
+
using the next available integer index.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
if category_name in category_name_to_id:
|
|
34
|
+
return category_name_to_id[category_name]
|
|
35
|
+
while candidate_category_id in category_name_to_id.values():
|
|
36
|
+
candidate_category_id += 1
|
|
37
|
+
category_name_to_id[category_name] = candidate_category_id
|
|
38
|
+
return candidate_category_id
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _process_labelme_file(image_fn_relative,input_folder,use_folders_as_labels,
|
|
42
|
+
no_json_handling,validate_image_sizes,
|
|
43
|
+
category_name_to_id,allow_new_categories=True):
|
|
44
|
+
"""
|
|
45
|
+
Internal function for processing each image; this support function facilitates parallelization.
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
result = {}
|
|
49
|
+
result['im'] = None
|
|
50
|
+
result['annotations_this_image'] = None
|
|
51
|
+
result['status'] = None
|
|
52
|
+
|
|
53
|
+
image_fn_abs = os.path.join(input_folder,image_fn_relative)
|
|
54
|
+
json_fn_abs = os.path.splitext(image_fn_abs)[0] + '.json'
|
|
55
|
+
|
|
56
|
+
im = {}
|
|
57
|
+
im['id'] = image_fn_relative
|
|
58
|
+
im['file_name'] = image_fn_relative
|
|
59
|
+
|
|
60
|
+
# If there's no .json file for this image...
|
|
61
|
+
if not os.path.isfile(json_fn_abs):
|
|
62
|
+
|
|
63
|
+
# Either skip it...
|
|
64
|
+
if no_json_handling == 'skip':
|
|
65
|
+
print('Skipping image {} (no .json file)'.format(image_fn_relative))
|
|
66
|
+
result['status'] = 'skipped (no .json file)'
|
|
67
|
+
return result
|
|
68
|
+
|
|
69
|
+
# ...or error
|
|
70
|
+
elif no_json_handling == 'error':
|
|
71
|
+
raise ValueError('Image file {} has no corresponding .json file'.format(
|
|
72
|
+
image_fn_relative))
|
|
73
|
+
|
|
74
|
+
# ...or treat it as empty.
|
|
75
|
+
elif no_json_handling == 'empty':
|
|
76
|
+
try:
|
|
77
|
+
pil_im = open_image(image_fn_abs)
|
|
78
|
+
except Exception:
|
|
79
|
+
print('Warning: error opening image {}, skipping'.format(image_fn_abs))
|
|
80
|
+
result['status'] = 'image load error'
|
|
81
|
+
return result
|
|
82
|
+
im['width'] = pil_im.width
|
|
83
|
+
im['height'] = pil_im.height
|
|
84
|
+
|
|
85
|
+
# Just in case we need to differentiate between "no .json file" and "a .json file with no annotations"
|
|
86
|
+
im['no_labelme_json'] = True
|
|
87
|
+
shapes = []
|
|
88
|
+
else:
|
|
89
|
+
raise ValueError('Unrecognized specifier {} for handling images with no .json files'.format(
|
|
90
|
+
no_json_handling))
|
|
91
|
+
|
|
92
|
+
# If we found a .json file for this image...
|
|
93
|
+
else:
|
|
94
|
+
|
|
95
|
+
# Read the .json file
|
|
96
|
+
with open(json_fn_abs,'r') as f:
|
|
97
|
+
labelme_data = json.load(f)
|
|
98
|
+
im['width'] = labelme_data['imageWidth']
|
|
99
|
+
im['height'] = labelme_data['imageHeight']
|
|
100
|
+
|
|
101
|
+
if validate_image_sizes:
|
|
102
|
+
try:
|
|
103
|
+
pil_im = open_image(image_fn_abs)
|
|
104
|
+
except Exception:
|
|
105
|
+
print('Warning: error opening image {} for size validation, skipping'.format(image_fn_abs))
|
|
106
|
+
result['status'] = 'skipped (size validation error)'
|
|
107
|
+
return result
|
|
108
|
+
if not (im['width'] == pil_im.width and im['height'] == pil_im.height):
|
|
109
|
+
print('Warning: image size validation error for file {}'.format(image_fn_relative))
|
|
110
|
+
im['width'] = pil_im.width
|
|
111
|
+
im['height'] = pil_im.height
|
|
112
|
+
im['labelme_width'] = labelme_data['imageWidth']
|
|
113
|
+
im['labelme_height'] = labelme_data['imageHeight']
|
|
114
|
+
|
|
115
|
+
shapes = labelme_data['shapes']
|
|
116
|
+
|
|
117
|
+
if ('flags' in labelme_data) and (len(labelme_data['flags']) > 0):
|
|
118
|
+
im['flags'] = labelme_data['flags']
|
|
119
|
+
|
|
120
|
+
annotations_this_image = []
|
|
121
|
+
|
|
122
|
+
if len(shapes) == 0:
|
|
123
|
+
|
|
124
|
+
if allow_new_categories:
|
|
125
|
+
category_id = _add_category('empty',category_name_to_id)
|
|
126
|
+
else:
|
|
127
|
+
assert 'empty' in category_name_to_id
|
|
128
|
+
category_id = category_name_to_id['empty']
|
|
129
|
+
|
|
130
|
+
ann = {}
|
|
131
|
+
ann['id'] = str(uuid.uuid1())
|
|
132
|
+
ann['image_id'] = im['id']
|
|
133
|
+
ann['category_id'] = category_id
|
|
134
|
+
ann['sequence_level_annotation'] = False
|
|
135
|
+
annotations_this_image.append(ann)
|
|
136
|
+
|
|
137
|
+
else:
|
|
138
|
+
|
|
139
|
+
for shape in shapes:
|
|
140
|
+
|
|
141
|
+
if shape['shape_type'] != 'rectangle':
|
|
142
|
+
print('Only rectangles are supported, skipping an annotation of type {} in {}'.format(
|
|
143
|
+
shape['shape_type'],image_fn_relative))
|
|
144
|
+
continue
|
|
145
|
+
|
|
146
|
+
if use_folders_as_labels:
|
|
147
|
+
category_name = os.path.basename(os.path.dirname(image_fn_abs))
|
|
148
|
+
else:
|
|
149
|
+
category_name = shape['label']
|
|
150
|
+
|
|
151
|
+
if allow_new_categories:
|
|
152
|
+
category_id = _add_category(category_name,category_name_to_id)
|
|
153
|
+
else:
|
|
154
|
+
assert category_name in category_name_to_id
|
|
155
|
+
category_id = category_name_to_id[category_name]
|
|
156
|
+
|
|
157
|
+
points = shape['points']
|
|
158
|
+
if len(points) != 2:
|
|
159
|
+
print('Warning: illegal rectangle with {} points for {}'.format(
|
|
160
|
+
len(points),image_fn_relative))
|
|
161
|
+
continue
|
|
162
|
+
|
|
163
|
+
p0 = points[0]
|
|
164
|
+
p1 = points[1]
|
|
165
|
+
x0 = min(p0[0],p1[0])
|
|
166
|
+
x1 = max(p0[0],p1[0])
|
|
167
|
+
y0 = min(p0[1],p1[1])
|
|
168
|
+
y1 = max(p0[1],p1[1])
|
|
169
|
+
|
|
170
|
+
bbox = [x0,y0,abs(x1-x0),abs(y1-y0)]
|
|
171
|
+
ann = {}
|
|
172
|
+
ann['id'] = str(uuid.uuid1())
|
|
173
|
+
ann['image_id'] = im['id']
|
|
174
|
+
ann['category_id'] = category_id
|
|
175
|
+
ann['sequence_level_annotation'] = False
|
|
176
|
+
ann['bbox'] = bbox
|
|
177
|
+
annotations_this_image.append(ann)
|
|
178
|
+
|
|
179
|
+
# ...for each shape
|
|
180
|
+
|
|
181
|
+
result['im'] = im
|
|
182
|
+
result['annotations_this_image'] = annotations_this_image
|
|
183
|
+
|
|
184
|
+
return result
|
|
185
|
+
|
|
186
|
+
# ...def _process_labelme_file(...)
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
#%% Main function
|
|
190
|
+
|
|
191
|
+
def labelme_to_coco(input_folder,
|
|
192
|
+
output_file=None,
|
|
193
|
+
category_id_to_category_name=None,
|
|
194
|
+
empty_category_name='empty',
|
|
195
|
+
empty_category_id=None,
|
|
196
|
+
info_struct=None,
|
|
197
|
+
relative_paths_to_include=None,
|
|
198
|
+
relative_paths_to_exclude=None,
|
|
199
|
+
use_folders_as_labels=False,
|
|
200
|
+
recursive=True,
|
|
201
|
+
no_json_handling='skip',
|
|
202
|
+
validate_image_sizes=True,
|
|
203
|
+
max_workers=1,
|
|
204
|
+
use_threads=True):
|
|
205
|
+
"""
|
|
206
|
+
Finds all images in [input_folder] that have corresponding .json files, and converts
|
|
207
|
+
to a COCO .json file.
|
|
208
|
+
|
|
209
|
+
Currently only supports bounding box annotations and image-level flags (i.e., does not
|
|
210
|
+
support point or general polygon annotations).
|
|
211
|
+
|
|
212
|
+
Labelme's image-level flags don't quite fit the COCO annotations format, so they are attached
|
|
213
|
+
to image objects, rather than annotation objects.
|
|
214
|
+
|
|
215
|
+
If output_file is None, just returns the resulting dict, does not write to file.
|
|
216
|
+
|
|
217
|
+
if use_folders_as_labels is False (default), the output labels come from the labelme
|
|
218
|
+
.json files. If use_folders_as_labels is True, the lowest-level folder name containing
|
|
219
|
+
each .json file will determine the output label. E.g., if use_folders_as_labels is True,
|
|
220
|
+
and the folder contains:
|
|
221
|
+
|
|
222
|
+
images/train/lion/image0001.json
|
|
223
|
+
|
|
224
|
+
...all boxes in image0001.json will be given the label "lion", regardless of the labels in the
|
|
225
|
+
file. Empty images in the "lion" folder will still be given the label "empty" (or
|
|
226
|
+
[empty_category_name]).
|
|
227
|
+
|
|
228
|
+
Args:
|
|
229
|
+
input_folder (str): input folder to search for images and Labelme .json files
|
|
230
|
+
output_file (str, optional): output file to which we should write COCO-formatted data; if None
|
|
231
|
+
this function just returns the COCO-formatted dict
|
|
232
|
+
category_id_to_category_name (dict, optional): dict mapping category IDs to category names;
|
|
233
|
+
really used to map Labelme category names to COCO category IDs. IDs will be auto-generated
|
|
234
|
+
if this is None.
|
|
235
|
+
empty_category_name (str, optional): if images are present without boxes, the category name
|
|
236
|
+
we should use for whole-image (and not-very-COCO-like) empty categories.
|
|
237
|
+
empty_category_id (int, optional): category ID to use for the not-very-COCO-like "empty" category;
|
|
238
|
+
also see the no_json_handling parameter.
|
|
239
|
+
info_struct (dict, optional): dict to stash in the "info" field of the resulting COCO dict
|
|
240
|
+
relative_paths_to_include (list, optional): allowlist of relative paths to include in the COCO
|
|
241
|
+
dict; there's no reason to specify this along with relative_paths_to_exclude.
|
|
242
|
+
relative_paths_to_exclude (list, optional): blocklist of relative paths to exclude from the COCO
|
|
243
|
+
dict; there's no reason to specify this along with relative_paths_to_include.
|
|
244
|
+
use_folders_as_labels (bool, optional): if this is True, class names will be pulled from folder names,
|
|
245
|
+
useful if you have images like a/b/cat/image001.jpg, a/b/dog/image002.jpg, etc.
|
|
246
|
+
recursive (bool, optional): whether to recurse into [input_folder]
|
|
247
|
+
no_json_handling (str, optional): how to deal with image files that have no corresponding .json files,
|
|
248
|
+
can be:
|
|
249
|
+
|
|
250
|
+
- 'skip': ignore image files with no corresponding .json files
|
|
251
|
+
- 'empty': treat image files with no corresponding .json files as empty
|
|
252
|
+
- 'error': throw an error when an image file has no corresponding .json file
|
|
253
|
+
validate_image_sizes (bool, optional): whether to load images to verify that the sizes specified
|
|
254
|
+
in the labelme files are correct
|
|
255
|
+
max_workers (int, optional): number of workers to use for parallelization, set to <=1 to disable
|
|
256
|
+
parallelization
|
|
257
|
+
use_threads (bool, optional): whether to use threads (True) or processes (False) for parallelization,
|
|
258
|
+
not relevant if max_workers <= 1
|
|
259
|
+
|
|
260
|
+
Returns:
|
|
261
|
+
dict: a COCO-formatted dictionary, identical to what's written to [output_file] if [output_file] is not None.
|
|
262
|
+
"""
|
|
263
|
+
|
|
264
|
+
if max_workers > 1:
|
|
265
|
+
assert category_id_to_category_name is not None, \
|
|
266
|
+
'When parallelizing labelme --> COCO conversion, you must supply a category mapping'
|
|
267
|
+
|
|
268
|
+
if category_id_to_category_name is None:
|
|
269
|
+
category_name_to_id = {}
|
|
270
|
+
else:
|
|
271
|
+
category_name_to_id = {v: k for k, v in category_id_to_category_name.items()}
|
|
272
|
+
for category_name in category_name_to_id:
|
|
273
|
+
try:
|
|
274
|
+
category_name_to_id[category_name] = int(category_name_to_id[category_name])
|
|
275
|
+
except ValueError:
|
|
276
|
+
raise ValueError('Category IDs must be ints or string-formatted ints')
|
|
277
|
+
|
|
278
|
+
# If the user supplied an explicit empty category ID, and the empty category
|
|
279
|
+
# name is already in category_name_to_id, make sure they match.
|
|
280
|
+
if empty_category_id is not None:
|
|
281
|
+
if empty_category_name in category_name_to_id:
|
|
282
|
+
assert category_name_to_id[empty_category_name] == empty_category_id, \
|
|
283
|
+
'Ambiguous empty category specification'
|
|
284
|
+
if empty_category_id in category_id_to_category_name:
|
|
285
|
+
assert category_id_to_category_name[empty_category_id] == empty_category_name, \
|
|
286
|
+
'Ambiguous empty category specification'
|
|
287
|
+
else:
|
|
288
|
+
if empty_category_name in category_name_to_id:
|
|
289
|
+
empty_category_id = category_name_to_id[empty_category_name]
|
|
290
|
+
|
|
291
|
+
del category_id_to_category_name
|
|
292
|
+
|
|
293
|
+
# Enumerate images
|
|
294
|
+
print('Enumerating images in {}'.format(input_folder))
|
|
295
|
+
image_filenames_relative = path_utils.find_images(input_folder,
|
|
296
|
+
recursive=recursive,
|
|
297
|
+
return_relative_paths=True,
|
|
298
|
+
convert_slashes=True)
|
|
299
|
+
|
|
300
|
+
# Remove any images we're supposed to skip
|
|
301
|
+
if (relative_paths_to_include is not None) or (relative_paths_to_exclude is not None):
|
|
302
|
+
image_filenames_relative_to_process = []
|
|
303
|
+
for image_fn_relative in image_filenames_relative:
|
|
304
|
+
if relative_paths_to_include is not None and image_fn_relative not in relative_paths_to_include:
|
|
305
|
+
continue
|
|
306
|
+
if relative_paths_to_exclude is not None and image_fn_relative in relative_paths_to_exclude:
|
|
307
|
+
continue
|
|
308
|
+
image_filenames_relative_to_process.append(image_fn_relative)
|
|
309
|
+
print('Processing {} of {} images'.format(
|
|
310
|
+
len(image_filenames_relative_to_process),
|
|
311
|
+
len(image_filenames_relative)))
|
|
312
|
+
image_filenames_relative = image_filenames_relative_to_process
|
|
313
|
+
|
|
314
|
+
# If the user supplied a category ID to use for empty images...
|
|
315
|
+
if empty_category_id is not None:
|
|
316
|
+
try:
|
|
317
|
+
empty_category_id = int(empty_category_id)
|
|
318
|
+
except ValueError:
|
|
319
|
+
raise ValueError('Category IDs must be ints or string-formatted ints')
|
|
320
|
+
|
|
321
|
+
if empty_category_id is None:
|
|
322
|
+
empty_category_id = _add_category(empty_category_name,category_name_to_id)
|
|
323
|
+
|
|
324
|
+
if max_workers <= 1:
|
|
325
|
+
|
|
326
|
+
image_results = []
|
|
327
|
+
for image_fn_relative in tqdm(image_filenames_relative):
|
|
328
|
+
|
|
329
|
+
result = _process_labelme_file(image_fn_relative,input_folder,use_folders_as_labels,
|
|
330
|
+
no_json_handling,validate_image_sizes,
|
|
331
|
+
category_name_to_id,allow_new_categories=True)
|
|
332
|
+
image_results.append(result)
|
|
333
|
+
|
|
334
|
+
else:
|
|
335
|
+
|
|
336
|
+
n_workers = min(max_workers,len(image_filenames_relative))
|
|
337
|
+
assert category_name_to_id is not None
|
|
338
|
+
|
|
339
|
+
pool = None
|
|
340
|
+
try:
|
|
341
|
+
if use_threads:
|
|
342
|
+
pool = ThreadPool(n_workers)
|
|
343
|
+
else:
|
|
344
|
+
pool = Pool(n_workers)
|
|
345
|
+
|
|
346
|
+
image_results = list(tqdm(pool.imap(
|
|
347
|
+
partial(_process_labelme_file,
|
|
348
|
+
input_folder=input_folder,
|
|
349
|
+
use_folders_as_labels=use_folders_as_labels,
|
|
350
|
+
no_json_handling=no_json_handling,
|
|
351
|
+
validate_image_sizes=validate_image_sizes,
|
|
352
|
+
category_name_to_id=category_name_to_id,
|
|
353
|
+
allow_new_categories=False
|
|
354
|
+
),image_filenames_relative), total=len(image_filenames_relative)))
|
|
355
|
+
finally:
|
|
356
|
+
if pool is not None:
|
|
357
|
+
pool.close()
|
|
358
|
+
pool.join()
|
|
359
|
+
print('Pool closed and joined for labelme file processing')
|
|
360
|
+
|
|
361
|
+
images = []
|
|
362
|
+
annotations = []
|
|
363
|
+
|
|
364
|
+
# Flatten the lists of images and annotations
|
|
365
|
+
for result in image_results:
|
|
366
|
+
im = result['im']
|
|
367
|
+
annotations_this_image = result['annotations_this_image']
|
|
368
|
+
|
|
369
|
+
if im is None:
|
|
370
|
+
assert annotations_this_image is None
|
|
371
|
+
else:
|
|
372
|
+
images.append(im)
|
|
373
|
+
annotations.extend(annotations_this_image)
|
|
374
|
+
|
|
375
|
+
output_dict = {}
|
|
376
|
+
output_dict['images'] = images
|
|
377
|
+
output_dict['annotations'] = annotations
|
|
378
|
+
|
|
379
|
+
if info_struct is None:
|
|
380
|
+
info_struct = {}
|
|
381
|
+
if 'description' not in info_struct:
|
|
382
|
+
info_struct['description'] = \
|
|
383
|
+
'Converted to COCO from labelme annotations in folder {}'.format(input_folder)
|
|
384
|
+
if 'version' not in info_struct:
|
|
385
|
+
info_struct['version'] = 1.0
|
|
386
|
+
|
|
387
|
+
output_dict['info'] = info_struct
|
|
388
|
+
categories = []
|
|
389
|
+
for category_name in category_name_to_id:
|
|
390
|
+
categories.append({'name':category_name,'id':category_name_to_id[category_name]})
|
|
391
|
+
output_dict['categories'] = categories
|
|
392
|
+
|
|
393
|
+
if output_file is not None:
|
|
394
|
+
with open(output_file,'w') as f:
|
|
395
|
+
json.dump(output_dict,f,indent=1)
|
|
396
|
+
|
|
397
|
+
return output_dict
|
|
398
|
+
|
|
399
|
+
# ...def labelme_to_coco()
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
def find_empty_labelme_files(input_folder,recursive=True):
|
|
403
|
+
"""
|
|
404
|
+
Returns a list of all image files in in [input_folder] associated with .json files that have
|
|
405
|
+
no boxes in them. Also returns a list of images with no associated .json files. Specifically,
|
|
406
|
+
returns a dict:
|
|
407
|
+
|
|
408
|
+
.. code-block: none
|
|
409
|
+
|
|
410
|
+
{
|
|
411
|
+
'images_with_empty_json_files':[list],
|
|
412
|
+
'images_with_no_json_files':[list],
|
|
413
|
+
'images_with_non_empty_json_files':[list]
|
|
414
|
+
}
|
|
415
|
+
|
|
416
|
+
Args:
|
|
417
|
+
input_folder (str): the folder to search for empty (i.e., box-less) Labelme .json files
|
|
418
|
+
recursive (bool, optional): whether to recurse into [input_folder]
|
|
419
|
+
|
|
420
|
+
Returns:
|
|
421
|
+
dict: a dict with fields:
|
|
422
|
+
- images_with_empty_json_files: a list of all image files in [input_folder] associated with
|
|
423
|
+
.json files that have no boxes in them
|
|
424
|
+
- images_with_no_json_files: a list of images in [input_folder] with no associated .json files
|
|
425
|
+
- images_with_non_empty_json_files: a list of images in [input_folder] associated with .json
|
|
426
|
+
files that have at least one box
|
|
427
|
+
"""
|
|
428
|
+
|
|
429
|
+
image_filenames_relative = path_utils.find_images(input_folder,
|
|
430
|
+
recursive=recursive,
|
|
431
|
+
return_relative_paths=True)
|
|
432
|
+
|
|
433
|
+
images_with_empty_json_files = []
|
|
434
|
+
images_with_no_json_files = []
|
|
435
|
+
images_with_non_empty_json_files = []
|
|
436
|
+
|
|
437
|
+
# fn_relative = image_filenames_relative[0]
|
|
438
|
+
for fn_relative in image_filenames_relative:
|
|
439
|
+
|
|
440
|
+
image_fn_abs = os.path.join(input_folder,fn_relative)
|
|
441
|
+
json_fn_abs = os.path.splitext(image_fn_abs)[0] + '.json'
|
|
442
|
+
|
|
443
|
+
if not os.path.isfile(json_fn_abs):
|
|
444
|
+
images_with_no_json_files.append(fn_relative)
|
|
445
|
+
continue
|
|
446
|
+
|
|
447
|
+
else:
|
|
448
|
+
# Read the .json file
|
|
449
|
+
with open(json_fn_abs,'r') as f:
|
|
450
|
+
labelme_data = json.load(f)
|
|
451
|
+
shapes = labelme_data['shapes']
|
|
452
|
+
if len(shapes) == 0:
|
|
453
|
+
images_with_empty_json_files.append(fn_relative)
|
|
454
|
+
else:
|
|
455
|
+
images_with_non_empty_json_files.append(fn_relative)
|
|
456
|
+
|
|
457
|
+
# ...for every image
|
|
458
|
+
|
|
459
|
+
return {'images_with_empty_json_files':images_with_empty_json_files,
|
|
460
|
+
'images_with_no_json_files':images_with_no_json_files,
|
|
461
|
+
'images_with_non_empty_json_files':images_with_non_empty_json_files}
|
|
462
|
+
|
|
463
|
+
# ...def find_empty_labelme_files(...)
|
|
464
|
+
|
|
465
|
+
|
|
466
|
+
#%% Interactive driver
|
|
467
|
+
|
|
468
|
+
if False:
|
|
469
|
+
|
|
470
|
+
pass
|
|
471
|
+
|
|
472
|
+
#%% Options
|
|
473
|
+
|
|
474
|
+
empty_category_name = 'empty'
|
|
475
|
+
empty_category_id = None
|
|
476
|
+
category_id_to_category_name = None
|
|
477
|
+
info_struct = None
|
|
478
|
+
|
|
479
|
+
input_folder = os.path.expanduser('~/data/md-test')
|
|
480
|
+
output_file = os.path.expanduser('~/data/md-test-labelme-to-coco.json')
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
#%% Programmatic execution
|
|
484
|
+
|
|
485
|
+
output_dict = labelme_to_coco(input_folder,output_file,
|
|
486
|
+
category_id_to_category_name=category_id_to_category_name,
|
|
487
|
+
empty_category_name=empty_category_name,
|
|
488
|
+
empty_category_id=empty_category_id,
|
|
489
|
+
info_struct=None,
|
|
490
|
+
use_folders_as_labels=False,
|
|
491
|
+
validate_image_sizes=False,
|
|
492
|
+
no_json_handling='empty')
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
#%% Validate
|
|
496
|
+
|
|
497
|
+
from megadetector.data_management.databases import integrity_check_json_db
|
|
498
|
+
|
|
499
|
+
options = integrity_check_json_db.IntegrityCheckOptions()
|
|
500
|
+
|
|
501
|
+
options.baseDir = input_folder
|
|
502
|
+
options.bCheckImageSizes = True
|
|
503
|
+
options.bCheckImageExistence = True
|
|
504
|
+
options.bFindUnusedImages = True
|
|
505
|
+
options.bRequireLocation = False
|
|
506
|
+
|
|
507
|
+
sorted_categories, _, error_info = integrity_check_json_db.integrity_check_json_db(output_file,options)
|
|
508
|
+
|
|
509
|
+
|
|
510
|
+
#%% Preview
|
|
511
|
+
|
|
512
|
+
from megadetector.visualization import visualize_db
|
|
513
|
+
options = visualize_db.DbVizOptions()
|
|
514
|
+
options.parallelize_rendering = True
|
|
515
|
+
options.viz_size = (900, -1)
|
|
516
|
+
options.num_to_visualize = 5000
|
|
517
|
+
|
|
518
|
+
html_file,_ = visualize_db.visualize_db(output_file,os.path.expanduser('~/tmp/labelme_to_coco_preview'),
|
|
519
|
+
input_folder,options)
|
|
520
|
+
|
|
521
|
+
|
|
522
|
+
from megadetector.utils import path_utils # noqa
|
|
523
|
+
path_utils.open_file(html_file)
|
|
524
|
+
|
|
525
|
+
|
|
526
|
+
#%% Prepare command line
|
|
527
|
+
|
|
528
|
+
s = 'python labelme_to_coco.py {} {}'.format(input_folder,output_file)
|
|
529
|
+
print(s)
|
|
530
|
+
import clipboard; clipboard.copy(s)
|
|
531
|
+
|
|
532
|
+
|
|
533
|
+
#%% Command-line driver
|
|
534
|
+
|
|
535
|
+
def main(): # noqa
|
|
536
|
+
|
|
537
|
+
parser = argparse.ArgumentParser(
|
|
538
|
+
description='Convert labelme-formatted data to COCO')
|
|
539
|
+
|
|
540
|
+
parser.add_argument(
|
|
541
|
+
'input_folder',
|
|
542
|
+
type=str,
|
|
543
|
+
help='Path to images and .json annotation files')
|
|
544
|
+
|
|
545
|
+
parser.add_argument(
|
|
546
|
+
'output_file',
|
|
547
|
+
type=str,
|
|
548
|
+
help='Output filename (.json)')
|
|
549
|
+
|
|
550
|
+
if len(sys.argv[1:]) == 0:
|
|
551
|
+
parser.print_help()
|
|
552
|
+
parser.exit()
|
|
553
|
+
|
|
554
|
+
args = parser.parse_args()
|
|
555
|
+
|
|
556
|
+
labelme_to_coco(args.input_folder,args.output_file)
|
|
557
|
+
|
|
558
|
+
if __name__ == '__main__':
|
|
559
|
+
main()
|