megadetector 10.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (147) hide show
  1. megadetector/__init__.py +0 -0
  2. megadetector/api/__init__.py +0 -0
  3. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
  7. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  8. megadetector/classification/__init__.py +0 -0
  9. megadetector/classification/aggregate_classifier_probs.py +108 -0
  10. megadetector/classification/analyze_failed_images.py +227 -0
  11. megadetector/classification/cache_batchapi_outputs.py +198 -0
  12. megadetector/classification/create_classification_dataset.py +626 -0
  13. megadetector/classification/crop_detections.py +516 -0
  14. megadetector/classification/csv_to_json.py +226 -0
  15. megadetector/classification/detect_and_crop.py +853 -0
  16. megadetector/classification/efficientnet/__init__.py +9 -0
  17. megadetector/classification/efficientnet/model.py +415 -0
  18. megadetector/classification/efficientnet/utils.py +608 -0
  19. megadetector/classification/evaluate_model.py +520 -0
  20. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  21. megadetector/classification/json_to_azcopy_list.py +63 -0
  22. megadetector/classification/json_validator.py +696 -0
  23. megadetector/classification/map_classification_categories.py +276 -0
  24. megadetector/classification/merge_classification_detection_output.py +509 -0
  25. megadetector/classification/prepare_classification_script.py +194 -0
  26. megadetector/classification/prepare_classification_script_mc.py +228 -0
  27. megadetector/classification/run_classifier.py +287 -0
  28. megadetector/classification/save_mislabeled.py +110 -0
  29. megadetector/classification/train_classifier.py +827 -0
  30. megadetector/classification/train_classifier_tf.py +725 -0
  31. megadetector/classification/train_utils.py +323 -0
  32. megadetector/data_management/__init__.py +0 -0
  33. megadetector/data_management/animl_to_md.py +161 -0
  34. megadetector/data_management/annotations/__init__.py +0 -0
  35. megadetector/data_management/annotations/annotation_constants.py +33 -0
  36. megadetector/data_management/camtrap_dp_to_coco.py +270 -0
  37. megadetector/data_management/cct_json_utils.py +566 -0
  38. megadetector/data_management/cct_to_md.py +184 -0
  39. megadetector/data_management/cct_to_wi.py +293 -0
  40. megadetector/data_management/coco_to_labelme.py +284 -0
  41. megadetector/data_management/coco_to_yolo.py +702 -0
  42. megadetector/data_management/databases/__init__.py +0 -0
  43. megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
  44. megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
  45. megadetector/data_management/databases/integrity_check_json_db.py +528 -0
  46. megadetector/data_management/databases/subset_json_db.py +195 -0
  47. megadetector/data_management/generate_crops_from_cct.py +200 -0
  48. megadetector/data_management/get_image_sizes.py +164 -0
  49. megadetector/data_management/labelme_to_coco.py +559 -0
  50. megadetector/data_management/labelme_to_yolo.py +349 -0
  51. megadetector/data_management/lila/__init__.py +0 -0
  52. megadetector/data_management/lila/create_lila_blank_set.py +556 -0
  53. megadetector/data_management/lila/create_lila_test_set.py +187 -0
  54. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  55. megadetector/data_management/lila/download_lila_subset.py +182 -0
  56. megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
  57. megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
  58. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  59. megadetector/data_management/lila/lila_common.py +319 -0
  60. megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
  61. megadetector/data_management/mewc_to_md.py +344 -0
  62. megadetector/data_management/ocr_tools.py +873 -0
  63. megadetector/data_management/read_exif.py +964 -0
  64. megadetector/data_management/remap_coco_categories.py +195 -0
  65. megadetector/data_management/remove_exif.py +156 -0
  66. megadetector/data_management/rename_images.py +194 -0
  67. megadetector/data_management/resize_coco_dataset.py +663 -0
  68. megadetector/data_management/speciesnet_to_md.py +41 -0
  69. megadetector/data_management/wi_download_csv_to_coco.py +247 -0
  70. megadetector/data_management/yolo_output_to_md_output.py +594 -0
  71. megadetector/data_management/yolo_to_coco.py +876 -0
  72. megadetector/data_management/zamba_to_md.py +188 -0
  73. megadetector/detection/__init__.py +0 -0
  74. megadetector/detection/change_detection.py +840 -0
  75. megadetector/detection/process_video.py +479 -0
  76. megadetector/detection/pytorch_detector.py +1451 -0
  77. megadetector/detection/run_detector.py +1267 -0
  78. megadetector/detection/run_detector_batch.py +2159 -0
  79. megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
  80. megadetector/detection/run_md_and_speciesnet.py +1494 -0
  81. megadetector/detection/run_tiled_inference.py +1038 -0
  82. megadetector/detection/tf_detector.py +209 -0
  83. megadetector/detection/video_utils.py +1379 -0
  84. megadetector/postprocessing/__init__.py +0 -0
  85. megadetector/postprocessing/add_max_conf.py +72 -0
  86. megadetector/postprocessing/categorize_detections_by_size.py +166 -0
  87. megadetector/postprocessing/classification_postprocessing.py +1752 -0
  88. megadetector/postprocessing/combine_batch_outputs.py +249 -0
  89. megadetector/postprocessing/compare_batch_results.py +2110 -0
  90. megadetector/postprocessing/convert_output_format.py +403 -0
  91. megadetector/postprocessing/create_crop_folder.py +629 -0
  92. megadetector/postprocessing/detector_calibration.py +570 -0
  93. megadetector/postprocessing/generate_csv_report.py +522 -0
  94. megadetector/postprocessing/load_api_results.py +223 -0
  95. megadetector/postprocessing/md_to_coco.py +428 -0
  96. megadetector/postprocessing/md_to_labelme.py +351 -0
  97. megadetector/postprocessing/md_to_wi.py +41 -0
  98. megadetector/postprocessing/merge_detections.py +392 -0
  99. megadetector/postprocessing/postprocess_batch_results.py +2077 -0
  100. megadetector/postprocessing/remap_detection_categories.py +226 -0
  101. megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
  102. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
  103. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
  104. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
  105. megadetector/postprocessing/separate_detections_into_folders.py +795 -0
  106. megadetector/postprocessing/subset_json_detector_output.py +964 -0
  107. megadetector/postprocessing/top_folders_to_bottom.py +238 -0
  108. megadetector/postprocessing/validate_batch_results.py +332 -0
  109. megadetector/taxonomy_mapping/__init__.py +0 -0
  110. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  111. megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
  112. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
  113. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
  114. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  115. megadetector/taxonomy_mapping/simple_image_download.py +224 -0
  116. megadetector/taxonomy_mapping/species_lookup.py +1008 -0
  117. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  118. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  119. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  120. megadetector/tests/__init__.py +0 -0
  121. megadetector/tests/test_nms_synthetic.py +335 -0
  122. megadetector/utils/__init__.py +0 -0
  123. megadetector/utils/ct_utils.py +1857 -0
  124. megadetector/utils/directory_listing.py +199 -0
  125. megadetector/utils/extract_frames_from_video.py +307 -0
  126. megadetector/utils/gpu_test.py +125 -0
  127. megadetector/utils/md_tests.py +2072 -0
  128. megadetector/utils/path_utils.py +2832 -0
  129. megadetector/utils/process_utils.py +172 -0
  130. megadetector/utils/split_locations_into_train_val.py +237 -0
  131. megadetector/utils/string_utils.py +234 -0
  132. megadetector/utils/url_utils.py +825 -0
  133. megadetector/utils/wi_platform_utils.py +968 -0
  134. megadetector/utils/wi_taxonomy_utils.py +1759 -0
  135. megadetector/utils/write_html_image_list.py +239 -0
  136. megadetector/visualization/__init__.py +0 -0
  137. megadetector/visualization/plot_utils.py +309 -0
  138. megadetector/visualization/render_images_with_thumbnails.py +243 -0
  139. megadetector/visualization/visualization_utils.py +1940 -0
  140. megadetector/visualization/visualize_db.py +630 -0
  141. megadetector/visualization/visualize_detector_output.py +479 -0
  142. megadetector/visualization/visualize_video_output.py +705 -0
  143. megadetector-10.0.13.dist-info/METADATA +134 -0
  144. megadetector-10.0.13.dist-info/RECORD +147 -0
  145. megadetector-10.0.13.dist-info/WHEEL +5 -0
  146. megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
  147. megadetector-10.0.13.dist-info/top_level.txt +1 -0
@@ -0,0 +1,795 @@
1
+ r"""
2
+
3
+ separate_detections_into_folders.py
4
+
5
+ **Overview**
6
+
7
+ Given a .json file with batch processing results, separate the files in that
8
+ set of results into folders that contain animals/people/vehicles/nothing,
9
+ according to per-class thresholds.
10
+
11
+ Image files are copied, not moved.
12
+
13
+ **Output structure**
14
+
15
+ Preserves relative paths within each of those folders; cannot be used with .json
16
+ files that have absolute paths in them.
17
+
18
+ For example, if your .json file has these images:
19
+
20
+ * a/b/c/1.jpg
21
+ * a/b/d/2.jpg
22
+ * a/b/e/3.jpg
23
+ * a/b/f/4.jpg
24
+ * a/x/y/5.jpg
25
+
26
+ And let's say:
27
+
28
+ * The results say that the first three images are empty/person/vehicle, respectively
29
+ * The fourth image is above threshold for "animal" and "person"
30
+ * The fifth image contains an animal
31
+
32
+ * You specify an output base folder of c:/out
33
+
34
+ You will get the following files:
35
+
36
+ * c:/out/empty/a/b/c/1.jpg
37
+ * c:/out/people/a/b/d/2.jpg
38
+ * c:/out/vehicles/a/b/e/3.jpg
39
+ * c:/out/animal_person/a/b/f/4.jpg
40
+ * c:/out/animals/a/x/y/5.jpg
41
+
42
+ **Rendering bounding boxes**
43
+
44
+ By default, images are just copied to the target output folder. If you specify --render_boxes,
45
+ bounding boxes will be rendered on the output images. Because this is no longer strictly
46
+ a copy operation, this may result in the loss of metadata. More accurately, this *may*
47
+ result in the loss of some EXIF metadata; this *will* result in the loss of IPTC/XMP metadata.
48
+
49
+ Rendering boxes also makes this script a lot slower.
50
+
51
+ **Classification-based separation**
52
+
53
+ If you have a results file with classification data, you can also specify classes to put
54
+ in their own folders, within the "animals" folder, like this:
55
+
56
+ ``--classification_thresholds "deer=0.75,cow=0.75"``
57
+
58
+ So, e.g., you might get:
59
+
60
+ c:/out/animals/deer/a/x/y/5.jpg
61
+
62
+ In this scenario, the folders within "animals" will be:
63
+
64
+ deer, cow, multiple, unclassified
65
+
66
+ "multiple" in this case only means "deer and cow"; if an image is classified as containing a
67
+ bird and a bear, that would end up in "unclassified", since the folder separation is based only
68
+ on the categories you provide at the command line.
69
+
70
+ No classification-based separation is done within the animal_person, animal_vehicle, or
71
+ animal_person_vehicle folders.
72
+
73
+ """
74
+
75
+ #%% Constants and imports
76
+
77
+ import argparse
78
+ import json
79
+ import os
80
+ import shutil
81
+ import sys
82
+ import itertools
83
+
84
+ from multiprocessing.pool import ThreadPool
85
+ from functools import partial
86
+ from tqdm import tqdm
87
+
88
+ from megadetector.utils.ct_utils import args_to_object, is_float
89
+ from megadetector.utils.path_utils import remove_empty_folders
90
+ from megadetector.detection.run_detector import get_typical_confidence_threshold_from_results
91
+ from megadetector.visualization import visualization_utils as vis_utils
92
+ from megadetector.visualization.visualization_utils import blur_detections
93
+
94
+ friendly_folder_names = {'animal':'animals','person':'people','vehicle':'vehicles'}
95
+
96
+ # Occasionally we have near-zero confidence detections associated with COCO classes that
97
+ # didn't quite get squeezed out of the model in training. As long as they're near zero
98
+ # confidence, we just ignore them.
99
+ invalid_category_epsilon = 0.00001
100
+
101
+ default_line_thickness = 8
102
+ default_box_expansion = 3
103
+
104
+
105
+ #%% Options class
106
+
107
+ class SeparateDetectionsIntoFoldersOptions:
108
+ """
109
+ Options used to parameterize separate_detections_into_folders()
110
+ """
111
+
112
+ def __init__(self,threshold=None):
113
+
114
+ #: Default threshold for categories not specified in category_name_to_threshold
115
+ self.threshold = None
116
+
117
+ #: Dict mapping category names to thresholds; for example, an image with only a detection of class
118
+ #: "animal" whose confidence is greater than or equal to category_name_to_threshold['animal']
119
+ #: will be put in the "animal" folder.
120
+ self.category_name_to_threshold = {
121
+ 'animal': self.threshold,
122
+ 'person': self.threshold,
123
+ 'vehicle': self.threshold
124
+ }
125
+
126
+ #: Number of workers to use, set to <= 1 to disable parallelization
127
+ self.n_threads = 1
128
+
129
+ #: By default, this function errors if you try to output to an existing folder
130
+ self.allow_existing_directory = False
131
+
132
+ #: By default, this function errors if any of the images specified in the results file don't
133
+ #: exist in the source folder.
134
+ self.allow_missing_files = False
135
+
136
+ #: Whether to overwrite images that already exist in the target folder; only relevant if
137
+ #: [allow_existing_directory] is True
138
+ self.overwrite = True
139
+
140
+ #: Whether to skip empty images; if this is False, empty images (i.e., images with no detections
141
+ #: above the corresponding threshold) will be copied to an "empty" folder.
142
+ self.skip_empty_images = False
143
+
144
+ #: The MD results .json file to process
145
+ self.results_file = None
146
+
147
+ #: The folder containing source images; filenames in [results_file] should be relative to this
148
+ #: folder.
149
+ self.base_input_folder = None
150
+
151
+ #: The folder to which we should write output images; see the module header comment for information
152
+ #: about how that folder will be structured.
153
+ self.base_output_folder = None
154
+
155
+ #: Should we move rather than copy?
156
+ self.move_images = False
157
+
158
+ #: Should we render boxes on the output images? Makes everything a lot slower.
159
+ self.render_boxes = False
160
+
161
+ #: Line thickness in pixels; only relevant if [render_boxes] is True
162
+ self.line_thickness = default_line_thickness
163
+
164
+ #: Box expansion in pixels; only relevant if [render_boxes] is True
165
+ self.box_expansion = default_box_expansion
166
+
167
+ #: Originally specified as a string that looks like this:
168
+ #:
169
+ #: deer=0.75,cow=0.75
170
+ #:
171
+ #: String, converted internally to a dict mapping name:threshold
172
+ self.classification_thresholds = None
173
+
174
+ ## Debug or internal attributes
175
+
176
+ #: Do not set explicitly; populated from data when using classification results
177
+ self.classification_category_id_to_name = None
178
+
179
+ #: Do not set explicitly; populated from data when using classification results
180
+ self.classification_categories = None
181
+
182
+ #: Used to test this script; sets a limit on the number of images to process.
183
+ self.debug_max_images = None
184
+
185
+ #: Do not set explicitly; this gets created based on [results_file]
186
+ #:
187
+ #:Dictionary mapping categories (plus combinations of categories, and 'empty') to output folders
188
+ self.category_name_to_folder = None
189
+
190
+ #: Do not set explicitly; this gets loaded from [results_file]
191
+ self.category_id_to_category_name = None
192
+
193
+ #: List of category names for which we should blur detections, most commonly ['person']
194
+ #:
195
+ #: Can also be a comma-separated list.
196
+ self.category_names_to_blur = None
197
+
198
+ #: Remove all empty folders from the target folder at the end of the process,
199
+ #: whether or not they were created by this script
200
+ self.remove_empty_folders = False
201
+
202
+ # ...__init__()
203
+
204
+ # ...class SeparateDetectionsIntoFoldersOptions
205
+
206
+
207
+ #%% Support functions
208
+
209
+ def _path_is_abs(p): return (len(p) > 1) and (p[0] == '/' or p[1] == ':')
210
+
211
+ printed_missing_file_warning = False
212
+
213
+ def _process_detections(im,options):
214
+ """
215
+ Process all detections for a single image
216
+
217
+ May modify *im*.
218
+ """
219
+
220
+ global printed_missing_file_warning
221
+
222
+ relative_filename = im['file']
223
+
224
+ detections = None
225
+ if 'detections' in im:
226
+ detections = im['detections']
227
+
228
+ categories_above_threshold = None
229
+
230
+ if detections is None:
231
+
232
+ assert im['failure'] is not None and len(im['failure']) > 0
233
+ target_folder = options.category_name_to_folder['failure']
234
+
235
+ else:
236
+
237
+ category_name_to_max_confidence = {}
238
+ category_names = options.category_id_to_category_name.values()
239
+ for category_name in category_names:
240
+ category_name_to_max_confidence[category_name] = 0.0
241
+
242
+ # Find the maximum confidence for each category
243
+ #
244
+ # det = detections[0]
245
+ for det in detections:
246
+
247
+ category_id = det['category']
248
+
249
+ # For zero-confidence detections, we occasionally have leftover goop
250
+ # from COCO classes
251
+ if category_id not in options.category_id_to_category_name:
252
+ print('Warning: unrecognized category {} in file {}'.format(
253
+ category_id,relative_filename))
254
+ # assert det['conf'] < invalid_category_epsilon
255
+ continue
256
+
257
+ category_name = options.category_id_to_category_name[category_id]
258
+ if det['conf'] > category_name_to_max_confidence[category_name]:
259
+ category_name_to_max_confidence[category_name] = det['conf']
260
+
261
+ # ...for each detection on this image
262
+
263
+ # Count the number of thresholds exceeded
264
+ categories_above_threshold = []
265
+ for category_name in category_names:
266
+
267
+ threshold = options.category_name_to_threshold[category_name]
268
+ assert threshold is not None
269
+
270
+ max_confidence_this_category = category_name_to_max_confidence[category_name]
271
+ if max_confidence_this_category >= threshold:
272
+ categories_above_threshold.append(category_name)
273
+
274
+ # ...for each category
275
+
276
+ categories_above_threshold.sort()
277
+
278
+ using_classification_folders = (options.classification_thresholds is not None and \
279
+ len(options.classification_thresholds) > 0)
280
+
281
+ # If this is above multiple thresholds
282
+ if len(categories_above_threshold) > 1:
283
+
284
+ # Currently "animal_person" images get put into the "animal_person" folder, even if we're
285
+ # doing species-based separation. Ideally, we would optionally put these in either the "deer"
286
+ # folder or a "deer_person" folder, but this is pretty esoteric, so not worrying about this
287
+ # for now.
288
+ target_folder = options.category_name_to_folder['_'.join(categories_above_threshold)]
289
+
290
+ elif len(categories_above_threshold) == 0:
291
+
292
+ target_folder = options.category_name_to_folder['empty']
293
+
294
+ else:
295
+
296
+ assert len(categories_above_threshold) == 1
297
+
298
+ target_folder = options.category_name_to_folder[categories_above_threshold[0]]
299
+
300
+ # Are we making species classification folders, and is this an animal?
301
+ if ('animal' in categories_above_threshold) and (using_classification_folders):
302
+
303
+ # Do we need to put this into a specific species folder?
304
+
305
+ # Find the animal-class detections that are above threshold
306
+ category_name_to_id = {v: k for k, v in options.category_id_to_category_name.items()}
307
+ animal_category_id = category_name_to_id['animal']
308
+ valid_animal_detections = [d for d in detections if \
309
+ (d['category'] == animal_category_id and \
310
+ d['conf'] >= options.category_name_to_threshold['animal'])]
311
+
312
+ # Count the number of classification categories that are above threshold for at
313
+ # least one detection
314
+ classification_categories_above_threshold = set()
315
+
316
+ # d = valid_animal_detections[0]
317
+ for d in valid_animal_detections:
318
+
319
+ if 'classifications' not in d or d['classifications'] is None:
320
+ continue
321
+
322
+ # classification = d['classifications'][0]
323
+ for classification in d['classifications']:
324
+
325
+ classification_category_id = classification[0]
326
+ classification_confidence = classification[1]
327
+
328
+ # Do we have a threshold for this category, and if so, is
329
+ # this classification above threshold?
330
+ assert options.classification_category_id_to_name is not None
331
+ classification_category_name = \
332
+ options.classification_category_id_to_name[classification_category_id]
333
+ if (classification_category_name in options.classification_thresholds) and \
334
+ (classification_confidence > \
335
+ options.classification_thresholds[classification_category_name]):
336
+ classification_categories_above_threshold.add(classification_category_name)
337
+
338
+ # ...for each classification
339
+
340
+ # ...for each detection
341
+
342
+ if len(classification_categories_above_threshold) == 0:
343
+ classification_folder_name = 'unclassified'
344
+
345
+ elif len(classification_categories_above_threshold) > 1:
346
+ classification_folder_name = 'multiple'
347
+
348
+ else:
349
+ assert len(classification_categories_above_threshold) == 1
350
+ classification_folder_name = list(classification_categories_above_threshold)[0]
351
+
352
+ target_folder = os.path.join(target_folder,classification_folder_name)
353
+
354
+ # ...if we have to deal with classification subfolders
355
+
356
+ # ...if we have 0/1/more categories above threshold
357
+
358
+ # ...if this is/isn't a failure case
359
+
360
+ source_path = os.path.join(options.base_input_folder,relative_filename)
361
+ if not os.path.isfile(source_path):
362
+ if not options.allow_missing_files:
363
+ raise ValueError('Cannot find file {}'.format(source_path))
364
+ else:
365
+ if not printed_missing_file_warning:
366
+ print('Warning: cannot find at least one file ({})'.format(source_path))
367
+ printed_missing_file_warning = True
368
+ return
369
+
370
+ target_path = os.path.join(target_folder,relative_filename)
371
+ if (not options.overwrite) and (os.path.isfile(target_path)):
372
+ return
373
+
374
+ target_dir = os.path.dirname(target_path)
375
+ os.makedirs(target_dir,exist_ok=True)
376
+
377
+ # Skip this image if it's empty and we're not processing empty images
378
+ if ((categories_above_threshold is None) or (len(categories_above_threshold) == 0)) and \
379
+ options.skip_empty_images:
380
+ return
381
+
382
+ # At this point, this image is getting copied; we may or may not also need to
383
+ # draw bounding boxes or blur pixels.
384
+
385
+ # Do a simple copy operation if we don't need to manipulate the images (render boxes, blur pixels)
386
+ if (not options.render_boxes and (options.category_names_to_blur is None)) or \
387
+ (categories_above_threshold is None) or \
388
+ (len(categories_above_threshold) == 0):
389
+
390
+ if options.move_images:
391
+ shutil.move(source_path,target_path)
392
+ else:
393
+ shutil.copyfile(source_path,target_path)
394
+
395
+ else:
396
+
397
+ # Open the source image
398
+ pil_image = vis_utils.load_image(source_path)
399
+
400
+ # Blur regions in the image if necessary
401
+ category_names_to_blur = options.category_names_to_blur
402
+
403
+ if category_names_to_blur is not None:
404
+
405
+ if isinstance(category_names_to_blur,str):
406
+ category_names_to_blur = category_names_to_blur.split(',')
407
+ category_names_to_blur = [s.strip() for s in category_names_to_blur]
408
+
409
+ detections_to_blur = []
410
+ for d in detections:
411
+ category_name = options.category_id_to_category_name[d['category']]
412
+ category_threshold = options.category_name_to_threshold[category_name]
413
+ if (d['conf'] >= category_threshold) and (category_name in category_names_to_blur):
414
+ detections_to_blur.append(d)
415
+ if len(detections_to_blur) > 0:
416
+ blur_detections(pil_image,detections_to_blur)
417
+
418
+ # Render bounding boxes for each category separately, because
419
+ # we allow different thresholds for each category.
420
+
421
+ category_name_to_id = {v: k for k, v in options.category_id_to_category_name.items()}
422
+ assert len(category_name_to_id) == len(options.category_id_to_category_name)
423
+
424
+ classification_label_map = None
425
+ if using_classification_folders:
426
+ classification_label_map = options.classification_categories
427
+
428
+ for category_name in categories_above_threshold:
429
+
430
+ category_id = category_name_to_id[category_name]
431
+ category_threshold = options.category_name_to_threshold[category_name]
432
+ assert category_threshold is not None
433
+ category_detections = [d for d in detections if d['category'] == category_id]
434
+
435
+ # When we're not using classification folders, remove classification
436
+ # information to maintain standard detection colors.
437
+ if not using_classification_folders:
438
+ for d in category_detections:
439
+ if 'classifications' in d:
440
+ del d['classifications']
441
+
442
+ vis_utils.render_detection_bounding_boxes(
443
+ category_detections,
444
+ pil_image,
445
+ label_map=options.detection_categories,
446
+ classification_label_map=classification_label_map,
447
+ confidence_threshold=category_threshold,
448
+ thickness=options.line_thickness,
449
+ expansion=options.box_expansion)
450
+
451
+ # ...for each category
452
+
453
+ # Try to preserve EXIF data and image quality when saving
454
+ vis_utils.exif_preserving_save(pil_image,target_path)
455
+
456
+ # ...if we don't/do need to render boxes
457
+
458
+ # ...def _process_detections()
459
+
460
+
461
+ #%% Main function
462
+
463
+ def separate_detections_into_folders(options):
464
+ """
465
+ Given a .json file with batch processing results, separate the files in that
466
+ set of results into folders that contain animals/people/vehicles/nothing,
467
+ according to per-class thresholds. See the header comment of this module for
468
+ more details about the output folder structure.
469
+
470
+ Args:
471
+ options (SeparateDetectionsIntoFoldersOptions): parameters guiding image
472
+ separation, see the SeparateDetectionsIntoFoldersOptions documentation for specific
473
+ options.
474
+ """
475
+
476
+ # Input validation
477
+
478
+ # Currently we don't support moving (instead of copying) when we're also rendering
479
+ # bounding boxes or blurring humans.
480
+ assert not (options.render_boxes and options.move_images), \
481
+ 'Cannot specify both render_boxes and move_images'
482
+ assert not ((options.category_names_to_blur is not None) and options.move_images), \
483
+ 'Cannot specify both category_names_to_blur and move_images'
484
+
485
+ # Create output folder if necessary
486
+ if (os.path.isdir(options.base_output_folder)) and \
487
+ (len(os.listdir(options.base_output_folder) ) > 0):
488
+ if options.allow_existing_directory:
489
+ print('Warning: target folder exists and is not empty... did ' + \
490
+ 'you mean to delete an old version?')
491
+ else:
492
+ raise ValueError('Target folder exists and is not empty')
493
+ os.makedirs(options.base_output_folder,exist_ok=True)
494
+
495
+ # Load detection results
496
+ print('Loading detection results')
497
+ with open(options.results_file,'r') as f:
498
+ results = json.load(f)
499
+ images = results['images']
500
+
501
+ for im in images:
502
+ fn = im['file']
503
+ assert not _path_is_abs(fn), 'Cannot process results with absolute image paths'
504
+
505
+ print('Processing detections for {} images'.format(len(images)))
506
+
507
+ default_threshold = options.threshold
508
+
509
+ if default_threshold is None:
510
+ default_threshold = get_typical_confidence_threshold_from_results(results)
511
+
512
+ detection_categories = results['detection_categories']
513
+ options.detection_categories = detection_categories
514
+ options.category_id_to_category_name = detection_categories
515
+
516
+ # Map class names to output folders
517
+ options.category_name_to_folder = {}
518
+ options.category_name_to_folder['empty'] = os.path.join(options.base_output_folder,'empty')
519
+ options.category_name_to_folder['failure'] =\
520
+ os.path.join(options.base_output_folder,'processing_failure')
521
+
522
+ # Create all combinations of categories
523
+ category_names = list(detection_categories.values())
524
+ category_names.sort()
525
+
526
+ # category_name = category_names[0]
527
+ for category_name in category_names:
528
+
529
+ # Do we have a custom threshold for this category?
530
+ if category_name not in options.category_name_to_threshold:
531
+ print('Warning: category {} in detection file, but not in threshold mapping'.format(
532
+ category_name))
533
+ options.category_name_to_threshold[category_name] = None
534
+
535
+ if options.category_name_to_threshold[category_name] is None:
536
+ options.category_name_to_threshold[category_name] = default_threshold
537
+
538
+ category_threshold = options.category_name_to_threshold[category_name]
539
+ print('Processing category {} at threshold {}'.format(category_name,category_threshold))
540
+
541
+ target_category_names = []
542
+ for c in category_names:
543
+
544
+ target_category_names.append(c)
545
+
546
+ for combination_length in range(2,len(category_names)+1):
547
+
548
+ combined_category_names = list(itertools.combinations(category_names,combination_length))
549
+
550
+ for combination in combined_category_names:
551
+ combined_name = '_'.join(combination)
552
+ target_category_names.append(combined_name)
553
+
554
+ # Create folder mappings for each category
555
+ for category_name in target_category_names:
556
+
557
+ folder_name = category_name
558
+
559
+ if category_name in friendly_folder_names:
560
+ folder_name = friendly_folder_names[category_name]
561
+
562
+ options.category_name_to_folder[category_name] = \
563
+ os.path.join(options.base_output_folder,folder_name)
564
+
565
+ # Create the actual folders
566
+ for folder in options.category_name_to_folder.values():
567
+ os.makedirs(folder,exist_ok=True)
568
+
569
+ # Handle species classification thresholds, if specified
570
+ if options.classification_thresholds is not None:
571
+
572
+ assert 'classification_categories' in results and \
573
+ results['classification_categories'] is not None, \
574
+ 'Classification thresholds specified, but no classification results available'
575
+
576
+ classification_categories = results['classification_categories']
577
+ classification_category_name_to_id = {v: k for k, v in classification_categories.items()}
578
+ classification_category_id_to_name = {k: v for k, v in classification_categories.items()}
579
+ options.classification_category_id_to_name = classification_category_id_to_name
580
+ options.classification_categories = classification_categories
581
+
582
+ if isinstance(options.classification_thresholds,str):
583
+
584
+ # E.g. deer=0.75,cow=0.75
585
+ tokens = options.classification_thresholds.split(',')
586
+ classification_thresholds = {}
587
+
588
+ # token = tokens[0]
589
+ for token in tokens:
590
+ subtokens = token.split('=')
591
+ assert (len(subtokens) == 2) and (is_float(subtokens[1])), \
592
+ 'Illegal classification threshold {}'.format(token)
593
+ classification_thresholds[subtokens[0]] = float(subtokens[1])
594
+
595
+ # ...for each token
596
+
597
+ options.classification_thresholds = classification_thresholds
598
+
599
+ # ...if classification thresholds are still in string format
600
+
601
+ # Validate the classes in the threshold list
602
+ for class_name in options.classification_thresholds.keys():
603
+ assert class_name in classification_category_name_to_id, \
604
+ 'Category {} specified at the command line, but is not available in the results file'.format(
605
+ class_name)
606
+
607
+ # ...if we need to deal with classification categories
608
+
609
+ if options.n_threads <= 1 or options.debug_max_images is not None:
610
+
611
+ # i_image = 14; im = images[i_image]; im
612
+ for i_image,im in enumerate(tqdm(images)):
613
+ if options.debug_max_images is not None and i_image > options.debug_max_images:
614
+ break
615
+ _process_detections(im,options)
616
+ # ...for each image
617
+
618
+ else:
619
+
620
+ print('Starting a pool with {} threads'.format(options.n_threads))
621
+ pool = ThreadPool(options.n_threads)
622
+ try:
623
+ process_detections_with_options = partial(_process_detections, options=options)
624
+ _ = list(tqdm(pool.imap(process_detections_with_options, images), total=len(images)))
625
+ finally:
626
+ pool.close()
627
+ pool.join()
628
+ print('Pool closed and joined for folder separation')
629
+
630
+ if options.remove_empty_folders:
631
+ print('Removing empty folders from {}'.format(options.base_output_folder))
632
+ remove_empty_folders(options.base_output_folder)
633
+
634
+ # ...def separate_detections_into_folders
635
+
636
+
637
+ #%% Interactive driver
638
+
639
+ if False:
640
+
641
+ pass
642
+
643
+ #%%
644
+
645
+ options = SeparateDetectionsIntoFoldersOptions()
646
+
647
+ options.results_file = os.path.expanduser(
648
+ '~/data/snapshot-safari-2022-08-16-KRU-v5a.0.0_detections.json')
649
+ options.base_input_folder = os.path.expanduser('~/data/KRU/KRU_public')
650
+ options.base_output_folder = os.path.expanduser('~/data/KRU-separated')
651
+ options.n_threads = 100
652
+ options.render_boxes = True
653
+ options.allow_existing_directory = True
654
+
655
+ #%%
656
+
657
+ options = SeparateDetectionsIntoFoldersOptions()
658
+
659
+ options.results_file = os.path.expanduser('~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json')
660
+ options.base_input_folder = os.path.expanduser('~/data/ENA24/images')
661
+ options.base_output_folder = os.path.expanduser('~/data/ENA24-separated')
662
+ options.n_threads = 100
663
+ options.classification_thresholds = 'deer=0.75,cow=0.75,bird=0.75'
664
+ options.render_boxes = True
665
+ options.allow_existing_directory = True
666
+
667
+ #%%
668
+
669
+ separate_detections_into_folders(options)
670
+
671
+ #%% Testing various command-line invocations
672
+
673
+ """
674
+ # With boxes, no classification
675
+ python separate_detections_into_folders.py \
676
+ ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json \
677
+ ~/data/ENA24/images ~/data/ENA24-separated \
678
+ --threshold 0.17 --animal_threshold 0.2 --n_threads 10 \
679
+ --allow_existing_directory --render_boxes --line_thickness 10 --box_expansion 10
680
+
681
+ # No boxes, no classification (default)
682
+ python separate_detections_into_folders.py \
683
+ ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json \
684
+ ~/data/ENA24/images ~/data/ENA24-separated \
685
+ --threshold 0.17 --animal_threshold 0.2 --n_threads 10 --allow_existing_directory
686
+
687
+ # With boxes, with classification
688
+ python separate_detections_into_folders.py \
689
+ ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json ~/data/ENA24/images ~/data/ENA24-separated \
690
+ --threshold 0.17 --animal_threshold 0.2 --n_threads 10 --allow_existing_directory \
691
+ --render_boxes --line_thickness 10 --box_expansion 10 \
692
+ --classification_thresholds "deer=0.75,cow=0.75,bird=0.75"
693
+
694
+ # No boxes, with classification
695
+ python separate_detections_into_folders.py \
696
+ ~/data/ena24-2022-06-15-v5a.0.0_megaclassifier.json ~/data/ENA24/images ~/data/ENA24-separated \
697
+ --threshold 0.17 --animal_threshold 0.2 --n_threads 10 --allow_existing_directory \
698
+ --classification_thresholds "deer=0.75,cow=0.75,bird=0.75"
699
+ """
700
+
701
+ #%% Command-line driver
702
+
703
+ def main(): # noqa
704
+
705
+ parser = argparse.ArgumentParser()
706
+ parser.add_argument('results_file', type=str, help='Input .json filename')
707
+ parser.add_argument('base_input_folder', type=str, help='Input image folder')
708
+ parser.add_argument('base_output_folder', type=str, help='Output image folder')
709
+
710
+ parser.add_argument('--threshold', type=float, default=None,
711
+ help='Default confidence threshold for all categories (defaults to ' + \
712
+ 'selection based on model version, other options may override this ' + \
713
+ 'for specific categories)')
714
+ parser.add_argument('--animal_threshold', type=float, default=None,
715
+ help='Confidence threshold for the animal category')
716
+ parser.add_argument('--human_threshold', type=float, default=None,
717
+ help='Confidence threshold for the human category')
718
+ parser.add_argument('--vehicle_threshold', type=float, default=None,
719
+ help='Confidence threshold for vehicle category')
720
+ parser.add_argument('--classification_thresholds', type=str, default=None,
721
+ help='List of classification thresholds to use for species-based folder ' + \
722
+ 'separation, formatted as, e.g., "deer=0.75,cow=0.75"')
723
+
724
+ parser.add_argument('--n_threads', type=int, default=1,
725
+ help='Number of threads to use for parallel operation (default=1)')
726
+
727
+ parser.add_argument('--allow_existing_directory', action='store_true',
728
+ help='Proceed even if the target directory exists and is not empty')
729
+ parser.add_argument('--no_overwrite', action='store_true',
730
+ help='Skip images that already exist in the target folder, must also ' + \
731
+ 'specify --allow_existing_directory')
732
+ parser.add_argument('--skip_empty_images', action='store_true',
733
+ help='Do not copy empty images to the output folder')
734
+ parser.add_argument('--move_images', action='store_true',
735
+ help='Move images (rather than copying) (not recommended this if you have not ' + \
736
+ 'backed up your data!)')
737
+
738
+ parser.add_argument('--render_boxes', action='store_true',
739
+ help='Render bounding boxes on output images; may result in some ' + \
740
+ 'metadata not being transferred')
741
+ parser.add_argument('--line_thickness', type=int, default=default_line_thickness,
742
+ help='Line thickness (in pixels) for rendering, only meaningful if ' + \
743
+ 'using render_boxes (defaults to {})'.format(
744
+ default_line_thickness))
745
+ parser.add_argument('--box_expansion', type=int, default=default_box_expansion,
746
+ help='Box expansion (in pixels) for rendering, only meaningful if ' + \
747
+ 'using render_boxes (defaults to {})'.format(
748
+ default_box_expansion))
749
+ parser.add_argument('--category_names_to_blur', type=str, default=None,
750
+ help='Comma-separated list of category names to blur ' + \
751
+ '(or a single category name, e.g. "person")')
752
+ parser.add_argument('--remove_empty_folders', action='store_true',
753
+ help='Remove all empty folders from the target folder at the end of the process, ' + \
754
+ 'whether or not they were created by this script')
755
+
756
+ if len(sys.argv[1:])==0:
757
+ parser.print_help()
758
+ parser.exit()
759
+
760
+ args = parser.parse_args()
761
+
762
+ # Convert to an options object
763
+ options = SeparateDetectionsIntoFoldersOptions()
764
+
765
+ args_to_object(args, options)
766
+
767
+ def validate_threshold(v,name):
768
+ # print('{} {}'.format(v,name))
769
+ if v is not None:
770
+ assert v >= 0.0 and v <= 1.0, \
771
+ 'Illegal {} threshold {}'.format(name,v)
772
+
773
+ validate_threshold(args.threshold,'default')
774
+ validate_threshold(args.animal_threshold,'animal')
775
+ validate_threshold(args.vehicle_threshold,'vehicle')
776
+ validate_threshold(args.human_threshold,'human')
777
+
778
+ if args.threshold is not None:
779
+ if args.animal_threshold is not None \
780
+ and args.human_threshold is not None \
781
+ and args.vehicle_threshold is not None:
782
+ raise ValueError('Default threshold specified, but all category thresholds ' + \
783
+ 'also specified... not exactly wrong, but it\'s likely that you ' + \
784
+ 'meant something else.')
785
+
786
+ options.category_name_to_threshold['animal'] = args.animal_threshold
787
+ options.category_name_to_threshold['person'] = args.human_threshold
788
+ options.category_name_to_threshold['vehicle'] = args.vehicle_threshold
789
+
790
+ options.overwrite = (not args.no_overwrite)
791
+
792
+ separate_detections_into_folders(options)
793
+
794
+ if __name__ == '__main__':
795
+ main()