megadetector 10.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (147) hide show
  1. megadetector/__init__.py +0 -0
  2. megadetector/api/__init__.py +0 -0
  3. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
  7. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  8. megadetector/classification/__init__.py +0 -0
  9. megadetector/classification/aggregate_classifier_probs.py +108 -0
  10. megadetector/classification/analyze_failed_images.py +227 -0
  11. megadetector/classification/cache_batchapi_outputs.py +198 -0
  12. megadetector/classification/create_classification_dataset.py +626 -0
  13. megadetector/classification/crop_detections.py +516 -0
  14. megadetector/classification/csv_to_json.py +226 -0
  15. megadetector/classification/detect_and_crop.py +853 -0
  16. megadetector/classification/efficientnet/__init__.py +9 -0
  17. megadetector/classification/efficientnet/model.py +415 -0
  18. megadetector/classification/efficientnet/utils.py +608 -0
  19. megadetector/classification/evaluate_model.py +520 -0
  20. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  21. megadetector/classification/json_to_azcopy_list.py +63 -0
  22. megadetector/classification/json_validator.py +696 -0
  23. megadetector/classification/map_classification_categories.py +276 -0
  24. megadetector/classification/merge_classification_detection_output.py +509 -0
  25. megadetector/classification/prepare_classification_script.py +194 -0
  26. megadetector/classification/prepare_classification_script_mc.py +228 -0
  27. megadetector/classification/run_classifier.py +287 -0
  28. megadetector/classification/save_mislabeled.py +110 -0
  29. megadetector/classification/train_classifier.py +827 -0
  30. megadetector/classification/train_classifier_tf.py +725 -0
  31. megadetector/classification/train_utils.py +323 -0
  32. megadetector/data_management/__init__.py +0 -0
  33. megadetector/data_management/animl_to_md.py +161 -0
  34. megadetector/data_management/annotations/__init__.py +0 -0
  35. megadetector/data_management/annotations/annotation_constants.py +33 -0
  36. megadetector/data_management/camtrap_dp_to_coco.py +270 -0
  37. megadetector/data_management/cct_json_utils.py +566 -0
  38. megadetector/data_management/cct_to_md.py +184 -0
  39. megadetector/data_management/cct_to_wi.py +293 -0
  40. megadetector/data_management/coco_to_labelme.py +284 -0
  41. megadetector/data_management/coco_to_yolo.py +702 -0
  42. megadetector/data_management/databases/__init__.py +0 -0
  43. megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
  44. megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
  45. megadetector/data_management/databases/integrity_check_json_db.py +528 -0
  46. megadetector/data_management/databases/subset_json_db.py +195 -0
  47. megadetector/data_management/generate_crops_from_cct.py +200 -0
  48. megadetector/data_management/get_image_sizes.py +164 -0
  49. megadetector/data_management/labelme_to_coco.py +559 -0
  50. megadetector/data_management/labelme_to_yolo.py +349 -0
  51. megadetector/data_management/lila/__init__.py +0 -0
  52. megadetector/data_management/lila/create_lila_blank_set.py +556 -0
  53. megadetector/data_management/lila/create_lila_test_set.py +187 -0
  54. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  55. megadetector/data_management/lila/download_lila_subset.py +182 -0
  56. megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
  57. megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
  58. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  59. megadetector/data_management/lila/lila_common.py +319 -0
  60. megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
  61. megadetector/data_management/mewc_to_md.py +344 -0
  62. megadetector/data_management/ocr_tools.py +873 -0
  63. megadetector/data_management/read_exif.py +964 -0
  64. megadetector/data_management/remap_coco_categories.py +195 -0
  65. megadetector/data_management/remove_exif.py +156 -0
  66. megadetector/data_management/rename_images.py +194 -0
  67. megadetector/data_management/resize_coco_dataset.py +663 -0
  68. megadetector/data_management/speciesnet_to_md.py +41 -0
  69. megadetector/data_management/wi_download_csv_to_coco.py +247 -0
  70. megadetector/data_management/yolo_output_to_md_output.py +594 -0
  71. megadetector/data_management/yolo_to_coco.py +876 -0
  72. megadetector/data_management/zamba_to_md.py +188 -0
  73. megadetector/detection/__init__.py +0 -0
  74. megadetector/detection/change_detection.py +840 -0
  75. megadetector/detection/process_video.py +479 -0
  76. megadetector/detection/pytorch_detector.py +1451 -0
  77. megadetector/detection/run_detector.py +1267 -0
  78. megadetector/detection/run_detector_batch.py +2159 -0
  79. megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
  80. megadetector/detection/run_md_and_speciesnet.py +1494 -0
  81. megadetector/detection/run_tiled_inference.py +1038 -0
  82. megadetector/detection/tf_detector.py +209 -0
  83. megadetector/detection/video_utils.py +1379 -0
  84. megadetector/postprocessing/__init__.py +0 -0
  85. megadetector/postprocessing/add_max_conf.py +72 -0
  86. megadetector/postprocessing/categorize_detections_by_size.py +166 -0
  87. megadetector/postprocessing/classification_postprocessing.py +1752 -0
  88. megadetector/postprocessing/combine_batch_outputs.py +249 -0
  89. megadetector/postprocessing/compare_batch_results.py +2110 -0
  90. megadetector/postprocessing/convert_output_format.py +403 -0
  91. megadetector/postprocessing/create_crop_folder.py +629 -0
  92. megadetector/postprocessing/detector_calibration.py +570 -0
  93. megadetector/postprocessing/generate_csv_report.py +522 -0
  94. megadetector/postprocessing/load_api_results.py +223 -0
  95. megadetector/postprocessing/md_to_coco.py +428 -0
  96. megadetector/postprocessing/md_to_labelme.py +351 -0
  97. megadetector/postprocessing/md_to_wi.py +41 -0
  98. megadetector/postprocessing/merge_detections.py +392 -0
  99. megadetector/postprocessing/postprocess_batch_results.py +2077 -0
  100. megadetector/postprocessing/remap_detection_categories.py +226 -0
  101. megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
  102. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
  103. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
  104. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
  105. megadetector/postprocessing/separate_detections_into_folders.py +795 -0
  106. megadetector/postprocessing/subset_json_detector_output.py +964 -0
  107. megadetector/postprocessing/top_folders_to_bottom.py +238 -0
  108. megadetector/postprocessing/validate_batch_results.py +332 -0
  109. megadetector/taxonomy_mapping/__init__.py +0 -0
  110. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  111. megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
  112. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
  113. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
  114. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  115. megadetector/taxonomy_mapping/simple_image_download.py +224 -0
  116. megadetector/taxonomy_mapping/species_lookup.py +1008 -0
  117. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  118. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  119. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  120. megadetector/tests/__init__.py +0 -0
  121. megadetector/tests/test_nms_synthetic.py +335 -0
  122. megadetector/utils/__init__.py +0 -0
  123. megadetector/utils/ct_utils.py +1857 -0
  124. megadetector/utils/directory_listing.py +199 -0
  125. megadetector/utils/extract_frames_from_video.py +307 -0
  126. megadetector/utils/gpu_test.py +125 -0
  127. megadetector/utils/md_tests.py +2072 -0
  128. megadetector/utils/path_utils.py +2832 -0
  129. megadetector/utils/process_utils.py +172 -0
  130. megadetector/utils/split_locations_into_train_val.py +237 -0
  131. megadetector/utils/string_utils.py +234 -0
  132. megadetector/utils/url_utils.py +825 -0
  133. megadetector/utils/wi_platform_utils.py +968 -0
  134. megadetector/utils/wi_taxonomy_utils.py +1759 -0
  135. megadetector/utils/write_html_image_list.py +239 -0
  136. megadetector/visualization/__init__.py +0 -0
  137. megadetector/visualization/plot_utils.py +309 -0
  138. megadetector/visualization/render_images_with_thumbnails.py +243 -0
  139. megadetector/visualization/visualization_utils.py +1940 -0
  140. megadetector/visualization/visualize_db.py +630 -0
  141. megadetector/visualization/visualize_detector_output.py +479 -0
  142. megadetector/visualization/visualize_video_output.py +705 -0
  143. megadetector-10.0.13.dist-info/METADATA +134 -0
  144. megadetector-10.0.13.dist-info/RECORD +147 -0
  145. megadetector-10.0.13.dist-info/WHEEL +5 -0
  146. megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
  147. megadetector-10.0.13.dist-info/top_level.txt +1 -0
@@ -0,0 +1,594 @@
1
+ """
2
+
3
+ yolo_output_to_md_output.py
4
+
5
+ Converts the output of YOLOv5's detect.py or val.py to the MD output format.
6
+
7
+ **Converting .txt files**
8
+
9
+ detect.py writes a .txt file per image, in YOLO training format. Converting from this
10
+ format does not currently support recursive results, since detect.py doesn't save filenames
11
+ in a way that allows easy inference of folder names. Requires access to the input
12
+ images, because the YOLO format uses the *absence* of a results file to indicate that
13
+ no detections are present.
14
+
15
+ YOLOv5 output has one text file per image, like so:
16
+
17
+ 0 0.0141693 0.469758 0.0283385 0.131552 0.761428
18
+
19
+ That's [class, x_center, y_center, width_of_box, height_of_box, confidence]
20
+
21
+ val.py can write in this format as well, using the --save-txt argument.
22
+
23
+ In both cases, a confidence value is only written to each line if you include the --save-conf
24
+ argument. Confidence values are required by this conversion script.
25
+
26
+
27
+ **Converting .json files**
28
+
29
+ val.py can also write a .json file in COCO-ish format. It's "COCO-ish" because it's
30
+ just the "images" portion of a COCO .json file.
31
+
32
+ Converting from this format also requires access to the original images, since the format
33
+ written by YOLOv5 uses absolute coordinates, but MD results are in relative coordinates.
34
+
35
+ """
36
+
37
+ #%% Imports and constants
38
+
39
+ import json
40
+ import csv
41
+ import os
42
+ import re
43
+ import sys
44
+ import argparse
45
+
46
+ from collections import defaultdict
47
+ from tqdm import tqdm
48
+
49
+ from megadetector.utils import path_utils
50
+ from megadetector.utils import ct_utils
51
+ from megadetector.visualization import visualization_utils as vis_utils
52
+ from megadetector.detection.run_detector import CONF_DIGITS, COORD_DIGITS
53
+
54
+
55
+ #%% Support functions
56
+
57
+ def read_classes_from_yolo_dataset_file(fn):
58
+ """
59
+ Reads a dictionary mapping integer class IDs to class names from a YOLOv5/YOLOv8
60
+ dataset.yaml file or a .json file. A .json file should contain a dictionary mapping
61
+ integer category IDs to string category names.
62
+
63
+ Args:
64
+ fn (str): YOLOv5/YOLOv8 dataset file with a .yml or .yaml extension, a .json file
65
+ mapping integer category IDs to category names, or a .txt file with a flat
66
+ list of classes.
67
+
68
+ Returns:
69
+ dict: a mapping from integer category IDs to category names
70
+ """
71
+
72
+ category_id_to_name = {}
73
+
74
+ if fn.endswith('.yml') or fn.endswith('.yaml'):
75
+
76
+ with open(fn,'r') as f:
77
+ lines = f.readlines()
78
+
79
+ pat = r'\d+:.+'
80
+ for s in lines:
81
+ if re.search(pat,s) is not None:
82
+ tokens = s.split(':')
83
+ assert len(tokens) == 2, 'Invalid token in category file {}'.format(fn)
84
+ category_id_to_name[int(tokens[0].strip())] = tokens[1].strip()
85
+
86
+ elif fn.endswith('.json'):
87
+
88
+ with open(fn,'r') as f:
89
+ d_in = json.load(f)
90
+ for k in d_in.keys():
91
+ category_id_to_name[int(k)] = d_in[k]
92
+
93
+ elif fn.endswith('.txt'):
94
+
95
+ with open(fn,'r') as f:
96
+ lines = f.readlines()
97
+ next_category_id = 0
98
+ for line in lines:
99
+ s = line.strip()
100
+ if len(s) == 0:
101
+ continue
102
+ category_id_to_name[next_category_id] = s
103
+ next_category_id += 1
104
+
105
+ else:
106
+
107
+ raise ValueError('Unrecognized category file type: {}'.format(fn))
108
+
109
+ assert len(category_id_to_name) > 0, 'Failed to read class mappings from {}'.format(fn)
110
+
111
+ return category_id_to_name
112
+
113
+ # ...def def read_classes_from_yolo_dataset_file(...)
114
+
115
+
116
+ def yolo_json_output_to_md_output(yolo_json_file,
117
+ image_folder,
118
+ output_file,
119
+ yolo_category_id_to_name,
120
+ detector_name='unknown',
121
+ image_id_to_relative_path=None,
122
+ offset_yolo_class_ids=True,
123
+ truncate_to_standard_md_precision=True,
124
+ image_id_to_error=None,
125
+ convert_slashes=True):
126
+ """
127
+ Converts a YOLOv5/YOLOv8 .json file to MD .json format.
128
+
129
+ Args:
130
+ yolo_json_file (str): the YOLO-formatted .json file to convert to MD output format
131
+ image_folder (str): the .json file contains relative path names, this is the path base
132
+ output_file (str): the MD-formatted .json file to write
133
+ yolo_category_id_to_name (str or dict): the .json results file contains only numeric
134
+ identifiers for categories, but we want names and numbers for the output format;
135
+ yolo_category_id_to_name provides that mapping either as a dict or as a YOLOv5
136
+ dataset.yaml file.
137
+ detector_name (str, optional): a string that gets put in the output file, not otherwise
138
+ used within this function
139
+ image_id_to_relative_path (dict, optional): YOLOv5 .json uses only basenames (e.g.
140
+ abc1234.JPG); by default these will be appended to the input path to create pathnames.
141
+ If you have a flat folder, this is fine. If you want to map base names to relative paths in
142
+ a more complicated way, use this parameter.
143
+ offset_yolo_class_ids (bool, optional): YOLOv5 class IDs always start at zero; if you want to
144
+ make the output classes start at 1, set offset_yolo_class_ids to True.
145
+ truncate_to_standard_md_precision (bool, optional): YOLOv5 .json includes lots of
146
+ (not-super-meaningful) precision, set this to truncate to COORD_DIGITS and CONF_DIGITS.
147
+ image_id_to_error (dict, optional): if you want to include image IDs in the output file for which
148
+ you couldn't prepare the input file in the first place due to errors, include them here.
149
+ convert_slashes (bool, optional): force all slashes to be forward slashes in the output file
150
+ """
151
+
152
+ assert os.path.isfile(yolo_json_file), \
153
+ 'Could not find YOLO .json file {}'.format(yolo_json_file)
154
+ assert os.path.isdir(image_folder), \
155
+ 'Could not find image folder {}'.format(image_folder)
156
+
157
+ if image_id_to_error is None:
158
+ image_id_to_error = {}
159
+
160
+ print('Converting {} to MD format and writing results to {}'.format(
161
+ yolo_json_file,output_file))
162
+
163
+ if isinstance(yolo_category_id_to_name,str):
164
+ assert os.path.isfile(yolo_category_id_to_name), \
165
+ 'YOLO category mapping specified as a string, but file does not exist: {}'.format(
166
+ yolo_category_id_to_name)
167
+ yolo_category_id_to_name = read_classes_from_yolo_dataset_file(yolo_category_id_to_name)
168
+
169
+ if image_id_to_relative_path is None:
170
+
171
+ image_files = path_utils.find_images(image_folder,recursive=True)
172
+ image_files = [os.path.relpath(fn,image_folder) for fn in image_files]
173
+
174
+ # YOLOv5 identifies images in .json output by ID, which is the filename without
175
+ # extension. If a mapping is not provided, these need to be unique.
176
+ image_id_to_relative_path = {}
177
+
178
+ for fn in image_files:
179
+ image_id = os.path.splitext(os.path.basename(fn))[0]
180
+ if image_id in image_id_to_relative_path:
181
+ print('Error: image ID {} refers to:\n{}\n{}'.format(
182
+ image_id,image_id_to_relative_path[image_id],fn))
183
+ raise ValueError('Duplicate image ID {}'.format(image_id))
184
+ image_id_to_relative_path[image_id] = fn
185
+
186
+ image_files_relative = sorted(list(image_id_to_relative_path.values()))
187
+
188
+ image_file_relative_to_image_id = {}
189
+ for image_id in image_id_to_relative_path:
190
+ relative_path = image_id_to_relative_path[image_id]
191
+ assert relative_path not in image_file_relative_to_image_id, \
192
+ 'Duplicate image IDs in YOLO output conversion for image {}'.format(relative_path)
193
+ image_file_relative_to_image_id[relative_path] = image_id
194
+
195
+ with open(yolo_json_file,'r') as f:
196
+ detections = json.load(f)
197
+ assert isinstance(detections,list)
198
+
199
+ image_id_to_detections = defaultdict(list)
200
+
201
+ int_formatted_image_ids = False
202
+
203
+ # det = detections[0]
204
+ for det in detections:
205
+
206
+ # This could be a string, but if the YOLOv5 inference script sees that the strings
207
+ # are really ints, it converts to ints.
208
+ image_id = det['image_id']
209
+ image_id_to_detections[image_id].append(det)
210
+ if isinstance(image_id,int):
211
+ int_formatted_image_ids = True
212
+
213
+ # If there are any ints present, everything should be ints
214
+ if int_formatted_image_ids:
215
+ for det in detections:
216
+ assert isinstance(det['image_id'],int), \
217
+ 'Found mixed int and string image IDs'
218
+
219
+ # Convert the keys in image_id_to_error to ints
220
+ #
221
+ # This should error if we're given non-int-friendly IDs
222
+ int_formatted_image_id_to_error = {}
223
+ for image_id in image_id_to_error:
224
+ int_formatted_image_id_to_error[int(image_id)] = \
225
+ image_id_to_error[image_id]
226
+ image_id_to_error = int_formatted_image_id_to_error
227
+
228
+ # ...if image IDs are formatted as integers in YOLO output
229
+
230
+ # In a modified version of val.py, we use negative category IDs to indicate an error
231
+ # that happened during inference (typically truncated images with valid headers,
232
+ # so corruption was not detected during val.py's initial corruption check pass.
233
+ for det in detections:
234
+ if det['category_id'] < 0:
235
+ assert 'error' in det, 'Negative category ID present with no error string'
236
+ error_string = det['error']
237
+ print('Caught inference-time failure {} for image {}'.format(error_string,det['image_id']))
238
+ image_id_to_error[det['image_id']] = error_string
239
+
240
+ output_images = []
241
+
242
+ # image_file_relative = image_files_relative[10]
243
+ for image_file_relative in tqdm(image_files_relative):
244
+
245
+ im = {}
246
+ im['file'] = image_file_relative
247
+ if convert_slashes:
248
+ im['file'] = im['file'].replace('\\','/')
249
+
250
+ image_id = image_file_relative_to_image_id[image_file_relative]
251
+ if int_formatted_image_ids:
252
+ image_id = int(image_id)
253
+ if image_id in image_id_to_error:
254
+ im['failure'] = str(image_id_to_error[image_id])
255
+ output_images.append(im)
256
+ continue
257
+ elif image_id not in image_id_to_detections:
258
+ detections = []
259
+ else:
260
+ detections = image_id_to_detections[image_id]
261
+
262
+ image_full_path = os.path.join(image_folder,image_file_relative)
263
+ try:
264
+ pil_im = vis_utils.open_image(image_full_path)
265
+ except Exception as e:
266
+ s = str(e).replace('\n',' ')
267
+ print('Warning: error opening image {}: {}, outputting as a failure'.format(image_full_path,s))
268
+ im['failure'] = 'Conversion error: {}'.format(s)
269
+ output_images.append(im)
270
+ continue
271
+
272
+ im['detections'] = []
273
+
274
+ image_w = pil_im.size[0]
275
+ image_h = pil_im.size[1]
276
+
277
+ # det = detections[0]
278
+ for det in detections:
279
+
280
+ output_det = {}
281
+
282
+ yolo_cat_id = int(det['category_id'])
283
+ if offset_yolo_class_ids:
284
+ yolo_cat_id += 1
285
+ output_det['category'] = str(int(yolo_cat_id))
286
+ conf = det['score']
287
+ if truncate_to_standard_md_precision:
288
+ conf = ct_utils.round_float(conf,CONF_DIGITS)
289
+ output_det['conf'] = conf
290
+ input_bbox = det['bbox']
291
+
292
+ # YOLO's COCO .json is not *that* COCO-like, but it is COCO-like in
293
+ # that the boxes are already [xmin/ymin/w/h]
294
+ box_xmin_absolute = input_bbox[0]
295
+ box_ymin_absolute = input_bbox[1]
296
+ box_width_absolute = input_bbox[2]
297
+ box_height_absolute = input_bbox[3]
298
+
299
+ box_xmin_relative = box_xmin_absolute / image_w
300
+ box_ymin_relative = box_ymin_absolute / image_h
301
+ box_width_relative = box_width_absolute / image_w
302
+ box_height_relative = box_height_absolute / image_h
303
+
304
+ output_bbox = [box_xmin_relative,box_ymin_relative,
305
+ box_width_relative,box_height_relative]
306
+
307
+ if truncate_to_standard_md_precision:
308
+ output_bbox = ct_utils.round_float_array(output_bbox,COORD_DIGITS)
309
+
310
+ output_det['bbox'] = output_bbox
311
+ im['detections'].append(output_det)
312
+
313
+ # ...for each detection
314
+
315
+ output_images.append(im)
316
+
317
+ # ...for each image file
318
+
319
+ d = {}
320
+ d['images'] = output_images
321
+ d['info'] = {'format_version':'1.4','detector':detector_name}
322
+ d['detection_categories'] = {}
323
+
324
+ for cat_id in yolo_category_id_to_name:
325
+ yolo_cat_id = int(cat_id)
326
+ if offset_yolo_class_ids:
327
+ yolo_cat_id += 1
328
+ d['detection_categories'][str(yolo_cat_id)] = yolo_category_id_to_name[cat_id]
329
+
330
+ ct_utils.write_json(output_file, d)
331
+
332
+ # ...def yolo_json_output_to_md_output(...)
333
+
334
+
335
+ def yolo_txt_output_to_md_output(input_results_folder,
336
+ image_folder,
337
+ output_file,
338
+ detector_tag=None,
339
+ truncate_to_standard_md_precision=True):
340
+ """
341
+ Converts a folder of YOLO-output .txt files to MD .json format.
342
+
343
+ Less finished than the .json conversion function; this .txt conversion assumes
344
+ a hard-coded mapping representing the standard MD categories (in MD indexing,
345
+ 1/2/3=animal/person/vehicle; in YOLO indexing, 0/1/2=animal/person/vehicle).
346
+
347
+ Args:
348
+ input_results_folder (str): the folder containing YOLO-output .txt files
349
+ image_folder (str): the folder where images live, may be the same as
350
+ [input_results_folder]
351
+ output_file (str): the MD-formatted .json file to which we should write
352
+ results
353
+ detector_tag (str, optional): string to put in the 'detector' field in the
354
+ output file
355
+ truncate_to_standard_md_precision (bool, optional): set this to truncate to
356
+ COORD_DIGITS and CONF_DIGITS, like the standard MD pipeline does.
357
+ """
358
+
359
+ assert os.path.isdir(input_results_folder)
360
+ assert os.path.isdir(image_folder)
361
+
362
+ ## Enumerate results files and image files
363
+
364
+ yolo_results_files = os.listdir(input_results_folder)
365
+ yolo_results_files = [f for f in yolo_results_files if f.lower().endswith('.txt')]
366
+ # print('Found {} results files'.format(len(yolo_results_files)))
367
+
368
+ image_files = path_utils.find_images(image_folder,recursive=False)
369
+ image_files_relative = [os.path.basename(f) for f in image_files]
370
+ # print('Found {} images'.format(len(image_files)))
371
+
372
+ image_files_relative_no_extension = [os.path.splitext(f)[0] for f in image_files_relative]
373
+
374
+ ## Make sure that every results file corresponds to an image
375
+
376
+ for f in yolo_results_files:
377
+ result_no_extension = os.path.splitext(f)[0]
378
+ assert result_no_extension in image_files_relative_no_extension
379
+
380
+ ## Build MD output data
381
+
382
+ # Map 0-indexed YOLO categories to 1-indexed MD categories
383
+ yolo_cat_map = { 0: 1, 1: 2, 2: 3 }
384
+
385
+ images_entries = []
386
+
387
+ # image_fn = image_files_relative[0]
388
+ for image_fn in image_files_relative:
389
+
390
+ image_name, ext = os.path.splitext(image_fn)
391
+ label_fn = image_name + '.txt'
392
+ label_path = os.path.join(input_results_folder, label_fn)
393
+
394
+ detections = []
395
+
396
+ if not os.path.exists(label_path):
397
+ # This is assumed to be an image with no detections
398
+ pass
399
+ else:
400
+ with open(label_path, newline='') as f:
401
+ reader = csv.reader(f, delimiter=' ')
402
+ for row in reader:
403
+ category = yolo_cat_map[int(row[0])]
404
+ api_box = ct_utils.convert_yolo_to_xywh([float(row[1]), float(row[2]),
405
+ float(row[3]), float(row[4])])
406
+
407
+ conf = float(row[5])
408
+
409
+ if truncate_to_standard_md_precision:
410
+ conf = ct_utils.round_float(conf, precision=CONF_DIGITS)
411
+ api_box = ct_utils.round_float_array(api_box, precision=COORD_DIGITS)
412
+
413
+ detections.append({
414
+ 'category': str(category),
415
+ 'conf': conf,
416
+ 'bbox': api_box
417
+ })
418
+
419
+ images_entries.append({
420
+ 'file': image_fn,
421
+ 'detections': detections
422
+ })
423
+
424
+ # ...for each image
425
+
426
+ ## Save output file
427
+
428
+ detector_string = 'converted_from_yolo_format'
429
+
430
+ if detector_tag is not None:
431
+ detector_string = detector_tag
432
+
433
+ output_content = {
434
+ 'info': {
435
+ 'detector': detector_string,
436
+ 'detector_metadata': {},
437
+ 'format_version': '1.4'
438
+ },
439
+ 'detection_categories': {
440
+ '1': 'animal',
441
+ '2': 'person',
442
+ '3': 'vehicle'
443
+ },
444
+ 'images': images_entries
445
+ }
446
+
447
+ ct_utils.write_json(output_file, output_content)
448
+
449
+ # ...def yolo_txt_output_to_md_output(...)
450
+
451
+
452
+ #%% Interactive driver
453
+
454
+ if False:
455
+
456
+ pass
457
+
458
+ #%%
459
+
460
+ input_results_folder = os.path.expanduser('~/tmp/model-version-experiments/pt-test-kru/exp/labels')
461
+ image_folder = os.path.expanduser('~/data/KRU-test')
462
+ output_file = os.path.expanduser('~/data/mdv5a-yolo-pt-kru.json')
463
+ yolo_txt_output_to_md_output(input_results_folder,image_folder,output_file)
464
+
465
+
466
+ #%% Command-line driver
467
+
468
+ def main():
469
+ """
470
+ Command-line interface to convert YOLOv5/YOLOv8 output (.json or .txt)
471
+ to MegaDetector output format.
472
+ """
473
+
474
+ parser = argparse.ArgumentParser(
475
+ description='Converts YOLOv5 output (.json or .txt) to MD output format.'
476
+ )
477
+
478
+ # The first argument determines which series of additional arguments are supported, for
479
+ # json/txt input
480
+ subparsers = parser.add_subparsers(dest='mode', required=True,
481
+ help="Mode of operation: 'json' for YOLO JSON output, 'txt' for YOLO TXT output.")
482
+
483
+
484
+ ## 'json' mode subparser
485
+
486
+ parser_json = subparsers.add_parser('json', help='Convert YOLO-formatted .json results.')
487
+
488
+ parser_json.add_argument(
489
+ 'yolo_json_file', type=str,
490
+ help='Path to the input YOLO-formatted .json results file'
491
+ )
492
+ parser_json.add_argument(
493
+ 'image_folder', type=str,
494
+ help='Path to the image folder'
495
+ )
496
+ parser_json.add_argument(
497
+ 'output_file', type=str,
498
+ help='Path to the MD-formatted .json output file'
499
+ )
500
+ parser_json.add_argument(
501
+ 'yolo_category_id_to_name_file', type=str,
502
+ help='Path to the .yml, .yaml, .json, or .txt file mapping YOLO category IDs to names'
503
+ )
504
+ parser_json.add_argument(
505
+ '--detector_name', type=str, default='unknown',
506
+ help="Detector name to store in the output file (default: 'unknown')"
507
+ )
508
+ parser_json.add_argument(
509
+ '--image_id_to_relative_path_file', type=str, default=None,
510
+ help='Path to a .json file mapping image IDs to relative paths'
511
+ )
512
+ parser_json.add_argument(
513
+ '--offset_yolo_class_ids', type=str, default='true', choices=['true', 'false'],
514
+ help="Offset YOLO class IDs in the output (default: 'true')"
515
+ )
516
+ parser_json.add_argument(
517
+ '--truncate_to_standard_md_precision', type=str, default='true', choices=['true', 'false'],
518
+ help="Truncate coordinates and confidences to standard MD precision (default: 'true')"
519
+ )
520
+ parser_json.add_argument(
521
+ '--convert_slashes', type=str, default='true', choices=['true', 'false'],
522
+ help="Convert backslashes to forward slashes in output file paths (default: 'true')"
523
+ )
524
+
525
+
526
+ ## 'txt' mode subparser
527
+
528
+ parser_txt = subparsers.add_parser('txt', help='Convert YOLO-formatted .txt results from a folder')
529
+ parser_txt.add_argument(
530
+ 'input_results_folder', type=str,
531
+ help='Path to the folder containing YOLO .txt output files'
532
+ )
533
+ parser_txt.add_argument(
534
+ 'image_folder', type=str,
535
+ help='Path to the image folder'
536
+ )
537
+ parser_txt.add_argument(
538
+ 'output_file', type=str,
539
+ help='Path to the MD-formatted .json file output'
540
+ )
541
+ parser_txt.add_argument(
542
+ '--detector_tag', type=str, default=None,
543
+ help='Detector tag to store in the output file'
544
+ )
545
+ parser_txt.add_argument(
546
+ '--truncate_to_standard_md_precision', type=str, default='true', choices=['true', 'false'],
547
+ help="Truncate coordinates and confidences to standard MD precision (default: 'true')."
548
+ )
549
+
550
+ args = parser.parse_args()
551
+
552
+ if args.mode == 'json':
553
+
554
+ image_id_to_relative_path = None
555
+ if args.image_id_to_relative_path_file:
556
+ try:
557
+ with open(args.image_id_to_relative_path_file, 'r') as f:
558
+ image_id_to_relative_path = json.load(f)
559
+ except Exception as e:
560
+ print(f"Error loading image_id_to_relative_path_file: {e}")
561
+ sys.exit(1)
562
+
563
+ offset_yolo_class_ids = args.offset_yolo_class_ids.lower() == 'true'
564
+ truncate_json = args.truncate_to_standard_md_precision.lower() == 'true'
565
+ convert_slashes = args.convert_slashes.lower() == 'true'
566
+
567
+ yolo_json_output_to_md_output(
568
+ yolo_json_file=args.yolo_json_file,
569
+ image_folder=args.image_folder,
570
+ output_file=args.output_file,
571
+ yolo_category_id_to_name=args.yolo_category_id_to_name_file, # Function handles reading this file
572
+ detector_name=args.detector_name,
573
+ image_id_to_relative_path=image_id_to_relative_path,
574
+ offset_yolo_class_ids=offset_yolo_class_ids,
575
+ truncate_to_standard_md_precision=truncate_json,
576
+ convert_slashes=convert_slashes
577
+ )
578
+ print('Converted {} to {}'.format(args.yolo_json_file,args.output_file))
579
+
580
+ elif args.mode == 'txt':
581
+
582
+ truncate_txt = args.truncate_to_standard_md_precision.lower() == 'true'
583
+
584
+ yolo_txt_output_to_md_output(
585
+ input_results_folder=args.input_results_folder,
586
+ image_folder=args.image_folder,
587
+ output_file=args.output_file,
588
+ detector_tag=args.detector_tag,
589
+ truncate_to_standard_md_precision=truncate_txt
590
+ )
591
+ print('Converted results from {} to {}'.format(args.input_results_folder,args.output_file))
592
+
593
+ if __name__ == '__main__':
594
+ main()