megadetector 10.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- megadetector/__init__.py +0 -0
- megadetector/api/__init__.py +0 -0
- megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
- megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
- megadetector/classification/__init__.py +0 -0
- megadetector/classification/aggregate_classifier_probs.py +108 -0
- megadetector/classification/analyze_failed_images.py +227 -0
- megadetector/classification/cache_batchapi_outputs.py +198 -0
- megadetector/classification/create_classification_dataset.py +626 -0
- megadetector/classification/crop_detections.py +516 -0
- megadetector/classification/csv_to_json.py +226 -0
- megadetector/classification/detect_and_crop.py +853 -0
- megadetector/classification/efficientnet/__init__.py +9 -0
- megadetector/classification/efficientnet/model.py +415 -0
- megadetector/classification/efficientnet/utils.py +608 -0
- megadetector/classification/evaluate_model.py +520 -0
- megadetector/classification/identify_mislabeled_candidates.py +152 -0
- megadetector/classification/json_to_azcopy_list.py +63 -0
- megadetector/classification/json_validator.py +696 -0
- megadetector/classification/map_classification_categories.py +276 -0
- megadetector/classification/merge_classification_detection_output.py +509 -0
- megadetector/classification/prepare_classification_script.py +194 -0
- megadetector/classification/prepare_classification_script_mc.py +228 -0
- megadetector/classification/run_classifier.py +287 -0
- megadetector/classification/save_mislabeled.py +110 -0
- megadetector/classification/train_classifier.py +827 -0
- megadetector/classification/train_classifier_tf.py +725 -0
- megadetector/classification/train_utils.py +323 -0
- megadetector/data_management/__init__.py +0 -0
- megadetector/data_management/animl_to_md.py +161 -0
- megadetector/data_management/annotations/__init__.py +0 -0
- megadetector/data_management/annotations/annotation_constants.py +33 -0
- megadetector/data_management/camtrap_dp_to_coco.py +270 -0
- megadetector/data_management/cct_json_utils.py +566 -0
- megadetector/data_management/cct_to_md.py +184 -0
- megadetector/data_management/cct_to_wi.py +293 -0
- megadetector/data_management/coco_to_labelme.py +284 -0
- megadetector/data_management/coco_to_yolo.py +702 -0
- megadetector/data_management/databases/__init__.py +0 -0
- megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
- megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
- megadetector/data_management/databases/integrity_check_json_db.py +528 -0
- megadetector/data_management/databases/subset_json_db.py +195 -0
- megadetector/data_management/generate_crops_from_cct.py +200 -0
- megadetector/data_management/get_image_sizes.py +164 -0
- megadetector/data_management/labelme_to_coco.py +559 -0
- megadetector/data_management/labelme_to_yolo.py +349 -0
- megadetector/data_management/lila/__init__.py +0 -0
- megadetector/data_management/lila/create_lila_blank_set.py +556 -0
- megadetector/data_management/lila/create_lila_test_set.py +187 -0
- megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
- megadetector/data_management/lila/download_lila_subset.py +182 -0
- megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
- megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
- megadetector/data_management/lila/get_lila_image_counts.py +112 -0
- megadetector/data_management/lila/lila_common.py +319 -0
- megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
- megadetector/data_management/mewc_to_md.py +344 -0
- megadetector/data_management/ocr_tools.py +873 -0
- megadetector/data_management/read_exif.py +964 -0
- megadetector/data_management/remap_coco_categories.py +195 -0
- megadetector/data_management/remove_exif.py +156 -0
- megadetector/data_management/rename_images.py +194 -0
- megadetector/data_management/resize_coco_dataset.py +663 -0
- megadetector/data_management/speciesnet_to_md.py +41 -0
- megadetector/data_management/wi_download_csv_to_coco.py +247 -0
- megadetector/data_management/yolo_output_to_md_output.py +594 -0
- megadetector/data_management/yolo_to_coco.py +876 -0
- megadetector/data_management/zamba_to_md.py +188 -0
- megadetector/detection/__init__.py +0 -0
- megadetector/detection/change_detection.py +840 -0
- megadetector/detection/process_video.py +479 -0
- megadetector/detection/pytorch_detector.py +1451 -0
- megadetector/detection/run_detector.py +1267 -0
- megadetector/detection/run_detector_batch.py +2159 -0
- megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
- megadetector/detection/run_md_and_speciesnet.py +1494 -0
- megadetector/detection/run_tiled_inference.py +1038 -0
- megadetector/detection/tf_detector.py +209 -0
- megadetector/detection/video_utils.py +1379 -0
- megadetector/postprocessing/__init__.py +0 -0
- megadetector/postprocessing/add_max_conf.py +72 -0
- megadetector/postprocessing/categorize_detections_by_size.py +166 -0
- megadetector/postprocessing/classification_postprocessing.py +1752 -0
- megadetector/postprocessing/combine_batch_outputs.py +249 -0
- megadetector/postprocessing/compare_batch_results.py +2110 -0
- megadetector/postprocessing/convert_output_format.py +403 -0
- megadetector/postprocessing/create_crop_folder.py +629 -0
- megadetector/postprocessing/detector_calibration.py +570 -0
- megadetector/postprocessing/generate_csv_report.py +522 -0
- megadetector/postprocessing/load_api_results.py +223 -0
- megadetector/postprocessing/md_to_coco.py +428 -0
- megadetector/postprocessing/md_to_labelme.py +351 -0
- megadetector/postprocessing/md_to_wi.py +41 -0
- megadetector/postprocessing/merge_detections.py +392 -0
- megadetector/postprocessing/postprocess_batch_results.py +2077 -0
- megadetector/postprocessing/remap_detection_categories.py +226 -0
- megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
- megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
- megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
- megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
- megadetector/postprocessing/separate_detections_into_folders.py +795 -0
- megadetector/postprocessing/subset_json_detector_output.py +964 -0
- megadetector/postprocessing/top_folders_to_bottom.py +238 -0
- megadetector/postprocessing/validate_batch_results.py +332 -0
- megadetector/taxonomy_mapping/__init__.py +0 -0
- megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
- megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
- megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
- megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
- megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
- megadetector/taxonomy_mapping/simple_image_download.py +224 -0
- megadetector/taxonomy_mapping/species_lookup.py +1008 -0
- megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
- megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
- megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
- megadetector/tests/__init__.py +0 -0
- megadetector/tests/test_nms_synthetic.py +335 -0
- megadetector/utils/__init__.py +0 -0
- megadetector/utils/ct_utils.py +1857 -0
- megadetector/utils/directory_listing.py +199 -0
- megadetector/utils/extract_frames_from_video.py +307 -0
- megadetector/utils/gpu_test.py +125 -0
- megadetector/utils/md_tests.py +2072 -0
- megadetector/utils/path_utils.py +2832 -0
- megadetector/utils/process_utils.py +172 -0
- megadetector/utils/split_locations_into_train_val.py +237 -0
- megadetector/utils/string_utils.py +234 -0
- megadetector/utils/url_utils.py +825 -0
- megadetector/utils/wi_platform_utils.py +968 -0
- megadetector/utils/wi_taxonomy_utils.py +1759 -0
- megadetector/utils/write_html_image_list.py +239 -0
- megadetector/visualization/__init__.py +0 -0
- megadetector/visualization/plot_utils.py +309 -0
- megadetector/visualization/render_images_with_thumbnails.py +243 -0
- megadetector/visualization/visualization_utils.py +1940 -0
- megadetector/visualization/visualize_db.py +630 -0
- megadetector/visualization/visualize_detector_output.py +479 -0
- megadetector/visualization/visualize_video_output.py +705 -0
- megadetector-10.0.13.dist-info/METADATA +134 -0
- megadetector-10.0.13.dist-info/RECORD +147 -0
- megadetector-10.0.13.dist-info/WHEEL +5 -0
- megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
- megadetector-10.0.13.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1379 @@
|
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
video_utils.py
|
|
4
|
+
|
|
5
|
+
Utilities for splitting, rendering, and assembling videos.
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
#%% Constants, imports, environment
|
|
10
|
+
|
|
11
|
+
import os
|
|
12
|
+
import re
|
|
13
|
+
import cv2
|
|
14
|
+
import glob
|
|
15
|
+
import json
|
|
16
|
+
|
|
17
|
+
from collections import defaultdict
|
|
18
|
+
from multiprocessing.pool import ThreadPool
|
|
19
|
+
from multiprocessing.pool import Pool
|
|
20
|
+
from tqdm import tqdm
|
|
21
|
+
from functools import partial
|
|
22
|
+
from inspect import signature
|
|
23
|
+
|
|
24
|
+
from megadetector.utils import path_utils
|
|
25
|
+
from megadetector.utils.path_utils import clean_path
|
|
26
|
+
from megadetector.utils.ct_utils import sort_list_of_dicts_by_key
|
|
27
|
+
from megadetector.visualization import visualization_utils as vis_utils
|
|
28
|
+
|
|
29
|
+
default_fourcc = 'h264'
|
|
30
|
+
|
|
31
|
+
video_progress_bar_description = 'Processing video'
|
|
32
|
+
|
|
33
|
+
#%% Path utilities
|
|
34
|
+
|
|
35
|
+
VIDEO_EXTENSIONS = ('.mp4','.avi','.mpeg','.mpg','.mov','.mkv','.flv')
|
|
36
|
+
|
|
37
|
+
def is_video_file(s,video_extensions=VIDEO_EXTENSIONS):
|
|
38
|
+
"""
|
|
39
|
+
Checks a file's extension against a set of known video file
|
|
40
|
+
extensions to determine whether it's a video file. Performs a
|
|
41
|
+
case-insensitive comparison.
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
s (str): filename to check for probable video-ness
|
|
45
|
+
video_extensions (list, optional): list of video file extensions
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
bool: True if this looks like a video file, else False
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
ext = os.path.splitext(s)[1]
|
|
52
|
+
return ext.lower() in video_extensions
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def find_video_strings(strings):
|
|
56
|
+
"""
|
|
57
|
+
Given a list of strings that are potentially video file names, looks for
|
|
58
|
+
strings that actually look like video file names (based on extension).
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
strings (list): list of strings to check for video-ness
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
list: a subset of [strings] that looks like they are video filenames
|
|
65
|
+
"""
|
|
66
|
+
|
|
67
|
+
return [s for s in strings if is_video_file(s.lower())]
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def find_videos(dirname,
|
|
71
|
+
recursive=False,
|
|
72
|
+
convert_slashes=True,
|
|
73
|
+
return_relative_paths=False):
|
|
74
|
+
"""
|
|
75
|
+
Finds all files in a directory that look like video file names.
|
|
76
|
+
|
|
77
|
+
Args:
|
|
78
|
+
dirname (str): folder to search for video files
|
|
79
|
+
recursive (bool, optional): whether to search [dirname] recursively
|
|
80
|
+
convert_slashes (bool, optional): forces forward slashes in the returned files,
|
|
81
|
+
otherwise uses the native path separator
|
|
82
|
+
return_relative_paths (bool, optional): forces the returned filenames to be
|
|
83
|
+
relative to [dirname], otherwise returns absolute paths
|
|
84
|
+
|
|
85
|
+
Returns:
|
|
86
|
+
A list of filenames within [dirname] that appear to be videos
|
|
87
|
+
"""
|
|
88
|
+
|
|
89
|
+
if recursive:
|
|
90
|
+
files = glob.glob(os.path.join(dirname, '**', '*.*'), recursive=True)
|
|
91
|
+
else:
|
|
92
|
+
files = glob.glob(os.path.join(dirname, '*.*'))
|
|
93
|
+
|
|
94
|
+
files = [fn for fn in files if os.path.isfile(fn)]
|
|
95
|
+
|
|
96
|
+
if return_relative_paths:
|
|
97
|
+
files = [os.path.relpath(fn,dirname) for fn in files]
|
|
98
|
+
|
|
99
|
+
if convert_slashes:
|
|
100
|
+
files = [fn.replace('\\', '/') for fn in files]
|
|
101
|
+
|
|
102
|
+
return find_video_strings(files)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
#%% Shared function for opening videos
|
|
106
|
+
|
|
107
|
+
DEFAULT_BACKEND = -1
|
|
108
|
+
|
|
109
|
+
# This is the order in which we'll try to open backends.
|
|
110
|
+
#
|
|
111
|
+
# In general, the defaults are as follows, though they vary depending
|
|
112
|
+
# on what's installed:
|
|
113
|
+
#
|
|
114
|
+
# Windows: CAP_DSHOW or CAP_MSMF
|
|
115
|
+
# Linux: CAP_FFMPEG
|
|
116
|
+
# macOS: CAP_AVFOUNDATION
|
|
117
|
+
#
|
|
118
|
+
# Technically if the default fails, we may try the same backend again, but this
|
|
119
|
+
# is rare, and it's not worth the complexity of figuring out what the system
|
|
120
|
+
# default is.
|
|
121
|
+
backend_id_to_name = {
|
|
122
|
+
DEFAULT_BACKEND:'default',
|
|
123
|
+
cv2.CAP_FFMPEG: 'CAP_FFMPEG',
|
|
124
|
+
cv2.CAP_DSHOW: 'CAP_DSHOW',
|
|
125
|
+
cv2.CAP_MSMF: 'CAP_MSMF',
|
|
126
|
+
cv2.CAP_AVFOUNDATION: 'CAP_AVFOUNDATION',
|
|
127
|
+
cv2.CAP_GSTREAMER: 'CAP_GSTREAMER'
|
|
128
|
+
}
|
|
129
|
+
|
|
130
|
+
def open_video(video_path,verbose=False):
|
|
131
|
+
"""
|
|
132
|
+
Open the video at [video_path], trying multiple OpenCV backends if necessary.
|
|
133
|
+
|
|
134
|
+
Args:
|
|
135
|
+
video_path (str): the file to open
|
|
136
|
+
verbose (bool, optional): enable additional debug output
|
|
137
|
+
|
|
138
|
+
Returns:
|
|
139
|
+
(cv2.VideoCapture,image): a tuple containing (a) the open video capture device
|
|
140
|
+
(or None if no backends succeeded) and (b) the first frame of the video (or None)
|
|
141
|
+
"""
|
|
142
|
+
|
|
143
|
+
if not os.path.isfile(video_path):
|
|
144
|
+
print('Video file {} not found'.format(video_path))
|
|
145
|
+
return None,None
|
|
146
|
+
|
|
147
|
+
backend_ids = backend_id_to_name.keys()
|
|
148
|
+
|
|
149
|
+
for backend_id in backend_ids:
|
|
150
|
+
|
|
151
|
+
backend_name = backend_id_to_name[backend_id]
|
|
152
|
+
if verbose:
|
|
153
|
+
print('Trying backend {}'.format(backend_name))
|
|
154
|
+
|
|
155
|
+
try:
|
|
156
|
+
if backend_id == DEFAULT_BACKEND:
|
|
157
|
+
vidcap = cv2.VideoCapture(video_path)
|
|
158
|
+
else:
|
|
159
|
+
vidcap = cv2.VideoCapture(video_path, backend_id)
|
|
160
|
+
except Exception as e:
|
|
161
|
+
if verbose:
|
|
162
|
+
print('Warning: error opening {} with backend {}: {}'.format(
|
|
163
|
+
video_path,backend_name,str(e)))
|
|
164
|
+
continue
|
|
165
|
+
|
|
166
|
+
if not vidcap.isOpened():
|
|
167
|
+
if verbose:
|
|
168
|
+
print('Warning: isOpened() is False for {} with backend {}'.format(
|
|
169
|
+
video_path,backend_name))
|
|
170
|
+
try:
|
|
171
|
+
vidcap.release()
|
|
172
|
+
except Exception:
|
|
173
|
+
pass
|
|
174
|
+
continue
|
|
175
|
+
|
|
176
|
+
success, image = vidcap.read()
|
|
177
|
+
if success and (image is not None):
|
|
178
|
+
if verbose:
|
|
179
|
+
print('Successfully opened {} with backend: {}'.format(
|
|
180
|
+
video_path,backend_name))
|
|
181
|
+
return vidcap,image
|
|
182
|
+
|
|
183
|
+
print('Warning: failed to open {} with backend {}'.format(
|
|
184
|
+
video_path,backend_name))
|
|
185
|
+
try:
|
|
186
|
+
vidcap.release()
|
|
187
|
+
except Exception:
|
|
188
|
+
pass
|
|
189
|
+
|
|
190
|
+
# ...for each backend
|
|
191
|
+
|
|
192
|
+
print('Error: failed to open {} with any backend'.format(video_path))
|
|
193
|
+
return None,None
|
|
194
|
+
|
|
195
|
+
# ...def open_video(...)
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
#%% Functions for rendering frames to video and vice-versa
|
|
199
|
+
|
|
200
|
+
# http://tsaith.github.io/combine-images-into-a-video-with-python-3-and-opencv-3.html
|
|
201
|
+
|
|
202
|
+
def frames_to_video(images, fs, output_file_name, codec_spec=default_fourcc):
|
|
203
|
+
"""
|
|
204
|
+
Given a list of image files and a sample rate, concatenates those images into
|
|
205
|
+
a video and writes to a new video file.
|
|
206
|
+
|
|
207
|
+
Args:
|
|
208
|
+
images (list): a list of frame file names to concatenate into a video
|
|
209
|
+
fs (float): the frame rate in fps
|
|
210
|
+
output_file_name (str): the output video file, no checking is performed to make
|
|
211
|
+
sure the extension is compatible with the codec
|
|
212
|
+
codec_spec (str, optional): codec to use for encoding; h264 is a sensible default
|
|
213
|
+
and generally works on Windows, but when this fails (which is around 50% of the time
|
|
214
|
+
on Linux), mp4v is a good second choice
|
|
215
|
+
"""
|
|
216
|
+
|
|
217
|
+
if codec_spec is None:
|
|
218
|
+
codec_spec = 'h264'
|
|
219
|
+
|
|
220
|
+
if len(images) == 0:
|
|
221
|
+
print('Warning: no frames to render')
|
|
222
|
+
return
|
|
223
|
+
|
|
224
|
+
output_dir = os.path.dirname(output_file_name)
|
|
225
|
+
if len(output_dir) > 0:
|
|
226
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
227
|
+
|
|
228
|
+
# Determine the width and height from the first image
|
|
229
|
+
frame = cv2.imread(images[0])
|
|
230
|
+
# cv2.imshow('video',frame)
|
|
231
|
+
height, width, channels = frame.shape
|
|
232
|
+
|
|
233
|
+
# Define the codec and create VideoWriter object
|
|
234
|
+
fourcc = cv2.VideoWriter_fourcc(*codec_spec)
|
|
235
|
+
out = cv2.VideoWriter(output_file_name, fourcc, fs, (width, height))
|
|
236
|
+
|
|
237
|
+
for image in images:
|
|
238
|
+
frame = cv2.imread(image)
|
|
239
|
+
out.write(frame)
|
|
240
|
+
|
|
241
|
+
out.release()
|
|
242
|
+
cv2.destroyAllWindows()
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
def get_video_fs(input_video_file,verbose=False):
|
|
246
|
+
"""
|
|
247
|
+
Retrieves the frame rate of [input_video_file].
|
|
248
|
+
|
|
249
|
+
Args:
|
|
250
|
+
input_video_file (str): video file for which we want the frame rate
|
|
251
|
+
verbose (bool, optional): enable additional debug output
|
|
252
|
+
|
|
253
|
+
Returns:
|
|
254
|
+
float: the frame rate of [input_video_file], or None if no frame
|
|
255
|
+
rate could be extracted
|
|
256
|
+
"""
|
|
257
|
+
|
|
258
|
+
assert os.path.isfile(input_video_file), \
|
|
259
|
+
'File {} not found'.format(input_video_file)
|
|
260
|
+
vidcap,_ = open_video(input_video_file,verbose=verbose)
|
|
261
|
+
if vidcap is None:
|
|
262
|
+
if verbose:
|
|
263
|
+
print('Failed to get frame rate for {}'.format(input_video_file))
|
|
264
|
+
return None
|
|
265
|
+
fs = vidcap.get(cv2.CAP_PROP_FPS)
|
|
266
|
+
try:
|
|
267
|
+
vidcap.release()
|
|
268
|
+
except Exception as e:
|
|
269
|
+
print('Warning: error closing video handle for {}: {}'.format(
|
|
270
|
+
input_video_file,str(e)))
|
|
271
|
+
return fs
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
def _frame_number_to_filename(frame_number):
|
|
275
|
+
"""
|
|
276
|
+
Ensures that frame images are given consistent filenames.
|
|
277
|
+
"""
|
|
278
|
+
|
|
279
|
+
return 'frame{:06d}.jpg'.format(frame_number)
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
def _filename_to_frame_number(filename):
|
|
283
|
+
"""
|
|
284
|
+
Extract the frame number from a filename that was created using
|
|
285
|
+
_frame_number_to_filename.
|
|
286
|
+
|
|
287
|
+
Args:
|
|
288
|
+
filename (str): a filename created with _frame_number_to_filename.
|
|
289
|
+
|
|
290
|
+
Returns:
|
|
291
|
+
int: the frame number extracted from [filename]
|
|
292
|
+
"""
|
|
293
|
+
|
|
294
|
+
filename = os.path.basename(filename)
|
|
295
|
+
match = re.search(r'frame(\d+)\.jpg', filename)
|
|
296
|
+
if match is None:
|
|
297
|
+
raise ValueError('{} does not appear to be a frame file'.format(filename))
|
|
298
|
+
frame_number = match.group(1)
|
|
299
|
+
try:
|
|
300
|
+
frame_number = int(frame_number)
|
|
301
|
+
except Exception:
|
|
302
|
+
raise ValueError('Filename {} does not contain a valid frame number'.format(filename))
|
|
303
|
+
|
|
304
|
+
return frame_number
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
def _add_frame_numbers_to_results(results):
|
|
308
|
+
"""
|
|
309
|
+
Given the 'images' list from a set of MD results that was generated on video frames,
|
|
310
|
+
add a 'frame_number' field to each image, and return the list, sorted by frame number.
|
|
311
|
+
Also modifies "results" in place.
|
|
312
|
+
|
|
313
|
+
Args:
|
|
314
|
+
results (list): list of image dicts
|
|
315
|
+
"""
|
|
316
|
+
|
|
317
|
+
# This indicate that this was a failure for a single video
|
|
318
|
+
if isinstance(results,dict):
|
|
319
|
+
assert 'failure' in results
|
|
320
|
+
return results
|
|
321
|
+
|
|
322
|
+
# Add video-specific fields to the results
|
|
323
|
+
for im in results:
|
|
324
|
+
fn = im['file']
|
|
325
|
+
frame_number = _filename_to_frame_number(fn)
|
|
326
|
+
im['frame_number'] = frame_number
|
|
327
|
+
|
|
328
|
+
results = sort_list_of_dicts_by_key(results,'frame_number')
|
|
329
|
+
return results
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
def run_callback_on_frames(input_video_file,
|
|
333
|
+
frame_callback,
|
|
334
|
+
every_n_frames=None,
|
|
335
|
+
verbose=False,
|
|
336
|
+
frames_to_process=None,
|
|
337
|
+
allow_empty_videos=False):
|
|
338
|
+
"""
|
|
339
|
+
Calls the function frame_callback(np.array,image_id) on all (or selected) frames in
|
|
340
|
+
[input_video_file].
|
|
341
|
+
|
|
342
|
+
Args:
|
|
343
|
+
input_video_file (str): video file to process
|
|
344
|
+
frame_callback (function): callback to run on frames, should take an np.array and a string and
|
|
345
|
+
return a single value. callback should expect two arguments: (1) a numpy array with image
|
|
346
|
+
data, in the typical PIL image orientation/channel order, and (2) a string identifier
|
|
347
|
+
for the frame, typically something like "frame0006.jpg" (even though it's not a JPEG
|
|
348
|
+
image, this is just an identifier for the frame).
|
|
349
|
+
every_n_frames (int or float, optional): sample every Nth frame starting from the first frame;
|
|
350
|
+
if this is None or 1, every frame is processed. If this is a negative value, it's
|
|
351
|
+
interpreted as a sampling rate in seconds, which is rounded to the nearest frame sampling
|
|
352
|
+
rate. Mutually exclusive with frames_to_process.
|
|
353
|
+
verbose (bool, optional): enable additional debug console output
|
|
354
|
+
frames_to_process (list of int, optional): process this specific set of frames;
|
|
355
|
+
mutually exclusive with every_n_frames. If all values are beyond the length
|
|
356
|
+
of the video, no frames are extracted. Can also be a single int, specifying
|
|
357
|
+
a single frame number.
|
|
358
|
+
allow_empty_videos (bool, optional): Just print a warning if a video appears to have no
|
|
359
|
+
frames (by default, this raises an Exception).
|
|
360
|
+
|
|
361
|
+
Returns:
|
|
362
|
+
dict: dict with keys 'frame_filenames' (list), 'frame_rate' (float), 'results' (list).
|
|
363
|
+
'frame_filenames' are synthetic filenames (e.g. frame000000.jpg). Elements in
|
|
364
|
+
'results' are whatever is returned by the callback, typically dicts in the same format used in
|
|
365
|
+
the 'images' array in the MD results format. [frame_filenames] and [results] both have
|
|
366
|
+
one element per processed frame.
|
|
367
|
+
"""
|
|
368
|
+
|
|
369
|
+
assert os.path.isfile(input_video_file), 'File {} not found'.format(input_video_file)
|
|
370
|
+
|
|
371
|
+
if isinstance(frames_to_process,int):
|
|
372
|
+
frames_to_process = [frames_to_process]
|
|
373
|
+
|
|
374
|
+
if (frames_to_process is not None) and (every_n_frames is not None):
|
|
375
|
+
raise ValueError('frames_to_process and every_n_frames are mutually exclusive')
|
|
376
|
+
|
|
377
|
+
vidcap = None
|
|
378
|
+
|
|
379
|
+
try:
|
|
380
|
+
|
|
381
|
+
vidcap,image = open_video(input_video_file,verbose=verbose)
|
|
382
|
+
n_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
383
|
+
frame_rate = vidcap.get(cv2.CAP_PROP_FPS)
|
|
384
|
+
|
|
385
|
+
if verbose:
|
|
386
|
+
print('Video {} contains {} frames at {} Hz'.format(input_video_file,n_frames,frame_rate))
|
|
387
|
+
|
|
388
|
+
frame_filenames = []
|
|
389
|
+
results = []
|
|
390
|
+
|
|
391
|
+
if (every_n_frames is not None):
|
|
392
|
+
|
|
393
|
+
if (every_n_frames < 0):
|
|
394
|
+
every_n_seconds = abs(every_n_frames)
|
|
395
|
+
every_n_frames = int(every_n_seconds * frame_rate)
|
|
396
|
+
if verbose:
|
|
397
|
+
print('Interpreting a time sampling rate of {} hz as a frame interval of {}'.format(
|
|
398
|
+
every_n_seconds,every_n_frames))
|
|
399
|
+
# 0 and 1 both mean "process every frame"
|
|
400
|
+
elif every_n_frames == 0:
|
|
401
|
+
every_n_frames = 1
|
|
402
|
+
elif every_n_frames > 0:
|
|
403
|
+
every_n_frames = int(every_n_frames)
|
|
404
|
+
|
|
405
|
+
# ...if every_n_frames was supplied
|
|
406
|
+
|
|
407
|
+
# frame_number = 0
|
|
408
|
+
for frame_number in range(0,n_frames):
|
|
409
|
+
|
|
410
|
+
# We've already read the first frame, when we opened the video
|
|
411
|
+
if frame_number != 0:
|
|
412
|
+
success,image = vidcap.read()
|
|
413
|
+
else:
|
|
414
|
+
success = True
|
|
415
|
+
|
|
416
|
+
if not success:
|
|
417
|
+
assert image is None
|
|
418
|
+
if verbose:
|
|
419
|
+
print('Read terminating at frame {} of {}'.format(frame_number,n_frames))
|
|
420
|
+
break
|
|
421
|
+
|
|
422
|
+
if every_n_frames is not None:
|
|
423
|
+
if (frame_number % every_n_frames) != 0:
|
|
424
|
+
continue
|
|
425
|
+
|
|
426
|
+
if frames_to_process is not None:
|
|
427
|
+
if frame_number > max(frames_to_process):
|
|
428
|
+
break
|
|
429
|
+
if frame_number not in frames_to_process:
|
|
430
|
+
continue
|
|
431
|
+
|
|
432
|
+
frame_filename_relative = _frame_number_to_filename(frame_number)
|
|
433
|
+
frame_filenames.append(frame_filename_relative)
|
|
434
|
+
|
|
435
|
+
# Convert from OpenCV conventions to PIL conventions
|
|
436
|
+
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
437
|
+
|
|
438
|
+
# Run the callback
|
|
439
|
+
frame_results = frame_callback(image_np,frame_filename_relative)
|
|
440
|
+
|
|
441
|
+
results.append(frame_results)
|
|
442
|
+
|
|
443
|
+
# ...for each frame
|
|
444
|
+
|
|
445
|
+
if len(frame_filenames) == 0:
|
|
446
|
+
if allow_empty_videos:
|
|
447
|
+
print('Warning: found no frames in file {}'.format(input_video_file))
|
|
448
|
+
else:
|
|
449
|
+
raise Exception('Error: found no frames in file {}'.format(input_video_file))
|
|
450
|
+
|
|
451
|
+
if verbose:
|
|
452
|
+
print('\nProcessed {} of {} frames for {}'.format(
|
|
453
|
+
len(frame_filenames),n_frames,input_video_file))
|
|
454
|
+
|
|
455
|
+
finally:
|
|
456
|
+
|
|
457
|
+
if vidcap is not None:
|
|
458
|
+
try:
|
|
459
|
+
vidcap.release()
|
|
460
|
+
except Exception:
|
|
461
|
+
pass
|
|
462
|
+
|
|
463
|
+
to_return = {}
|
|
464
|
+
to_return['frame_filenames'] = frame_filenames
|
|
465
|
+
to_return['frame_rate'] = frame_rate
|
|
466
|
+
to_return['results'] = results
|
|
467
|
+
|
|
468
|
+
return to_return
|
|
469
|
+
|
|
470
|
+
# ...def run_callback_on_frames(...)
|
|
471
|
+
|
|
472
|
+
|
|
473
|
+
def run_callback_on_frames_for_folder(input_video_folder,
|
|
474
|
+
frame_callback,
|
|
475
|
+
every_n_frames=None,
|
|
476
|
+
verbose=False,
|
|
477
|
+
recursive=True,
|
|
478
|
+
files_to_process_relative=None,
|
|
479
|
+
error_on_empty_video=False):
|
|
480
|
+
"""
|
|
481
|
+
Calls the function frame_callback(np.array,image_id) on all (or selected) frames in
|
|
482
|
+
all videos in [input_video_folder].
|
|
483
|
+
|
|
484
|
+
Args:
|
|
485
|
+
input_video_folder (str): video folder to process
|
|
486
|
+
frame_callback (function): callback to run on frames, should take an np.array and a string and
|
|
487
|
+
return a single value. callback should expect two arguments: (1) a numpy array with image
|
|
488
|
+
data, in the typical PIL image orientation/channel order, and (2) a string identifier
|
|
489
|
+
for the frame, typically something like "frame0006.jpg" (even though it's not a JPEG
|
|
490
|
+
image, this is just an identifier for the frame).
|
|
491
|
+
every_n_frames (int or float, optional): sample every Nth frame starting from the first frame;
|
|
492
|
+
if this is None or 1, every frame is processed. If this is a negative value, it's
|
|
493
|
+
interpreted as a sampling rate in seconds, which is rounded to the nearest frame
|
|
494
|
+
sampling rate.
|
|
495
|
+
verbose (bool, optional): enable additional debug console output
|
|
496
|
+
recursive (bool, optional): recurse into [input_video_folder]
|
|
497
|
+
files_to_process_relative (list, optional): only process specific relative paths
|
|
498
|
+
error_on_empty_video (bool, optional): by default, videos with errors or no valid frames
|
|
499
|
+
are silently stored as failures; this turns them into exceptions
|
|
500
|
+
|
|
501
|
+
Returns:
|
|
502
|
+
dict: dict with keys 'video_filenames' (list of str), 'frame_rates' (list of floats),
|
|
503
|
+
'results' (list of list of dicts). 'video_filenames' will contain *relative* filenames.
|
|
504
|
+
'results' is a list (one element per video) of lists (one element per frame) of whatever the
|
|
505
|
+
callback returns, typically (but not necessarily) dicts in the MD results format.
|
|
506
|
+
|
|
507
|
+
For failed videos, the frame rate will be represented by -1, and "results"
|
|
508
|
+
will be a dict with at least the key "failure".
|
|
509
|
+
"""
|
|
510
|
+
|
|
511
|
+
to_return = {'video_filenames':[],'frame_rates':[],'results':[]}
|
|
512
|
+
|
|
513
|
+
if files_to_process_relative is not None:
|
|
514
|
+
input_files_full_paths = \
|
|
515
|
+
[os.path.join(input_video_folder,fn) for fn in files_to_process_relative]
|
|
516
|
+
input_files_full_paths = [fn.replace('\\','/') for fn in input_files_full_paths]
|
|
517
|
+
else:
|
|
518
|
+
# Recursively enumerate video files
|
|
519
|
+
input_files_full_paths = find_videos(input_video_folder,
|
|
520
|
+
recursive=recursive,
|
|
521
|
+
convert_slashes=True,
|
|
522
|
+
return_relative_paths=False)
|
|
523
|
+
|
|
524
|
+
print('Processing {} videos from folder {}'.format(len(input_files_full_paths),input_video_folder))
|
|
525
|
+
|
|
526
|
+
if len(input_files_full_paths) == 0:
|
|
527
|
+
print('No videos to process')
|
|
528
|
+
return to_return
|
|
529
|
+
|
|
530
|
+
# Process each video
|
|
531
|
+
|
|
532
|
+
# video_fn_abs = input_files_full_paths[0]
|
|
533
|
+
for video_fn_abs in tqdm(input_files_full_paths,desc=video_progress_bar_description):
|
|
534
|
+
|
|
535
|
+
video_filename_relative = os.path.relpath(video_fn_abs,input_video_folder)
|
|
536
|
+
video_filename_relative = video_filename_relative.replace('\\','/')
|
|
537
|
+
to_return['video_filenames'].append(video_filename_relative)
|
|
538
|
+
|
|
539
|
+
try:
|
|
540
|
+
|
|
541
|
+
# video_results is a dict with fields:
|
|
542
|
+
#
|
|
543
|
+
# frame_rate
|
|
544
|
+
#
|
|
545
|
+
# results (list of objects returned by the callback, typically dicts in the MD
|
|
546
|
+
# per-image format)
|
|
547
|
+
#
|
|
548
|
+
# frame_filenames (list of frame IDs, i.e. synthetic filenames)
|
|
549
|
+
video_results = run_callback_on_frames(input_video_file=video_fn_abs,
|
|
550
|
+
frame_callback=frame_callback,
|
|
551
|
+
every_n_frames=every_n_frames,
|
|
552
|
+
verbose=verbose,
|
|
553
|
+
frames_to_process=None,
|
|
554
|
+
allow_empty_videos=False)
|
|
555
|
+
|
|
556
|
+
except Exception as e:
|
|
557
|
+
|
|
558
|
+
if (not error_on_empty_video):
|
|
559
|
+
print('Warning: error processing video {}: {}'.format(
|
|
560
|
+
video_fn_abs,str(e)
|
|
561
|
+
))
|
|
562
|
+
to_return['frame_rates'].append(-1.0)
|
|
563
|
+
failure_result = {}
|
|
564
|
+
failure_result['failure'] = 'Failure processing video: {}'.format(str(e))
|
|
565
|
+
to_return['results'].append(failure_result)
|
|
566
|
+
continue
|
|
567
|
+
else:
|
|
568
|
+
raise
|
|
569
|
+
|
|
570
|
+
# ...try/except
|
|
571
|
+
|
|
572
|
+
to_return['frame_rates'].append(video_results['frame_rate'])
|
|
573
|
+
for r in video_results['results']:
|
|
574
|
+
assert r['file'].startswith('frame')
|
|
575
|
+
r['file'] = video_filename_relative + '/' + r['file']
|
|
576
|
+
to_return['results'].append(video_results['results'])
|
|
577
|
+
|
|
578
|
+
# ...for each video
|
|
579
|
+
|
|
580
|
+
n_videos = len(input_files_full_paths)
|
|
581
|
+
assert len(to_return['video_filenames']) == n_videos
|
|
582
|
+
assert len(to_return['frame_rates']) == n_videos
|
|
583
|
+
assert len(to_return['results']) == n_videos
|
|
584
|
+
|
|
585
|
+
return to_return
|
|
586
|
+
|
|
587
|
+
# ...def run_callback_on_frames_for_folder(...)
|
|
588
|
+
|
|
589
|
+
|
|
590
|
+
def video_to_frames(input_video_file,
|
|
591
|
+
output_folder,
|
|
592
|
+
overwrite=True,
|
|
593
|
+
every_n_frames=None,
|
|
594
|
+
verbose=False,
|
|
595
|
+
quality=None,
|
|
596
|
+
max_width=None,
|
|
597
|
+
frames_to_extract=None,
|
|
598
|
+
allow_empty_videos=True):
|
|
599
|
+
"""
|
|
600
|
+
Renders frames from [input_video_file] to .jpg files in [output_folder].
|
|
601
|
+
|
|
602
|
+
With help from:
|
|
603
|
+
|
|
604
|
+
https://stackoverflow.com/questions/33311153/python-extracting-and-saving-video-frames
|
|
605
|
+
|
|
606
|
+
Args:
|
|
607
|
+
input_video_file (str): video file to split into frames
|
|
608
|
+
output_folder (str): folder to put frame images in
|
|
609
|
+
overwrite (bool, optional): whether to overwrite existing frame images
|
|
610
|
+
every_n_frames (int, optional): sample every Nth frame starting from the first frame;
|
|
611
|
+
if this is None or 1, every frame is extracted. If this is a negative value, it's
|
|
612
|
+
interpreted as a sampling rate in seconds, which is rounded to the nearest frame sampling
|
|
613
|
+
rate. Mutually exclusive with frames_to_extract.
|
|
614
|
+
verbose (bool, optional): enable additional debug console output
|
|
615
|
+
quality (int, optional): JPEG quality for frame output, from 0-100. Defaults
|
|
616
|
+
to the opencv default (typically 95).
|
|
617
|
+
max_width (int, optional): resize frames to be no wider than [max_width]
|
|
618
|
+
frames_to_extract (list of int, optional): extract this specific set of frames;
|
|
619
|
+
mutually exclusive with every_n_frames. If all values are beyond the length
|
|
620
|
+
of the video, no frames are extracted. Can also be a single int, specifying
|
|
621
|
+
a single frame number. In the special case where frames_to_extract
|
|
622
|
+
is [], this function still reads video frame rates and verifies that videos
|
|
623
|
+
are readable, but no frames are extracted.
|
|
624
|
+
allow_empty_videos (bool, optional): Just print a warning if a video appears to have
|
|
625
|
+
no frames (by default, this is an error).
|
|
626
|
+
|
|
627
|
+
Returns:
|
|
628
|
+
tuple: length-2 tuple containing (list of frame filenames,frame rate)
|
|
629
|
+
"""
|
|
630
|
+
|
|
631
|
+
assert os.path.isfile(input_video_file), 'File {} not found'.format(input_video_file)
|
|
632
|
+
|
|
633
|
+
if quality is not None and quality < 0:
|
|
634
|
+
quality = None
|
|
635
|
+
|
|
636
|
+
if isinstance(frames_to_extract,int):
|
|
637
|
+
frames_to_extract = [frames_to_extract]
|
|
638
|
+
|
|
639
|
+
if (frames_to_extract is not None) and (every_n_frames is not None):
|
|
640
|
+
raise ValueError('frames_to_extract and every_n_frames are mutually exclusive')
|
|
641
|
+
|
|
642
|
+
bypass_extraction = ((frames_to_extract is not None) and (len(frames_to_extract) == 0))
|
|
643
|
+
|
|
644
|
+
if not bypass_extraction:
|
|
645
|
+
os.makedirs(output_folder,exist_ok=True)
|
|
646
|
+
|
|
647
|
+
vidcap = cv2.VideoCapture(input_video_file)
|
|
648
|
+
n_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
649
|
+
fs = vidcap.get(cv2.CAP_PROP_FPS)
|
|
650
|
+
|
|
651
|
+
if (every_n_frames is not None) and (every_n_frames < 0):
|
|
652
|
+
every_n_seconds = abs(every_n_frames)
|
|
653
|
+
every_n_frames = int(every_n_seconds * fs)
|
|
654
|
+
if verbose:
|
|
655
|
+
print('Interpreting a time sampling rate of {} hz as a frame interval of {}'.format(
|
|
656
|
+
every_n_seconds,every_n_frames))
|
|
657
|
+
|
|
658
|
+
# If we're not over-writing, check whether all frame images already exist
|
|
659
|
+
if (not overwrite) and (not bypass_extraction):
|
|
660
|
+
|
|
661
|
+
missing_frame_number = None
|
|
662
|
+
missing_frame_filename = None
|
|
663
|
+
frame_filenames = []
|
|
664
|
+
found_existing_frame = False
|
|
665
|
+
|
|
666
|
+
for frame_number in range(0,n_frames):
|
|
667
|
+
|
|
668
|
+
if every_n_frames is not None:
|
|
669
|
+
assert frames_to_extract is None, \
|
|
670
|
+
'Internal error: frames_to_extract and every_n_frames are exclusive'
|
|
671
|
+
if (frame_number % every_n_frames) != 0:
|
|
672
|
+
continue
|
|
673
|
+
|
|
674
|
+
if frames_to_extract is not None:
|
|
675
|
+
assert every_n_frames is None, \
|
|
676
|
+
'Internal error: frames_to_extract and every_n_frames are exclusive'
|
|
677
|
+
if frame_number not in frames_to_extract:
|
|
678
|
+
continue
|
|
679
|
+
|
|
680
|
+
frame_filename = _frame_number_to_filename(frame_number)
|
|
681
|
+
frame_filename = os.path.join(output_folder,frame_filename)
|
|
682
|
+
frame_filenames.append(frame_filename)
|
|
683
|
+
if os.path.isfile(frame_filename):
|
|
684
|
+
found_existing_frame = True
|
|
685
|
+
continue
|
|
686
|
+
else:
|
|
687
|
+
missing_frame_number = frame_number
|
|
688
|
+
missing_frame_filename = frame_filename
|
|
689
|
+
break
|
|
690
|
+
|
|
691
|
+
if verbose and missing_frame_number is not None:
|
|
692
|
+
print('Missing frame {} ({}) for video {}'.format(
|
|
693
|
+
missing_frame_number,
|
|
694
|
+
missing_frame_filename,
|
|
695
|
+
input_video_file))
|
|
696
|
+
|
|
697
|
+
# OpenCV seems to over-report the number of frames by 1 in some cases, or fails
|
|
698
|
+
# to read the last frame; either way, I'm allowing one missing frame.
|
|
699
|
+
allow_last_frame_missing = True
|
|
700
|
+
|
|
701
|
+
# This doesn't have to mean literally the last frame number, it just means that if
|
|
702
|
+
# we find this frame or later, we consider the video done
|
|
703
|
+
last_expected_frame_number = n_frames-1
|
|
704
|
+
if every_n_frames is not None:
|
|
705
|
+
last_expected_frame_number -= (every_n_frames*2)
|
|
706
|
+
|
|
707
|
+
# When specific frames are requested, if anything is missing, reprocess the video
|
|
708
|
+
if (frames_to_extract is not None) and (missing_frame_number is not None):
|
|
709
|
+
pass
|
|
710
|
+
|
|
711
|
+
# If no frames are missing, or only frames very close to the end of the video are "missing",
|
|
712
|
+
# skip this video
|
|
713
|
+
elif (missing_frame_number is None) or \
|
|
714
|
+
(allow_last_frame_missing and (missing_frame_number >= last_expected_frame_number)):
|
|
715
|
+
|
|
716
|
+
if verbose:
|
|
717
|
+
print('Skipping video {}, all output frames exist'.format(input_video_file))
|
|
718
|
+
return frame_filenames,fs
|
|
719
|
+
|
|
720
|
+
else:
|
|
721
|
+
|
|
722
|
+
# If we found some frames, but not all, print a message
|
|
723
|
+
if verbose and found_existing_frame:
|
|
724
|
+
print("Rendering video {}, couldn't find frame {} ({}) of {}".format(
|
|
725
|
+
input_video_file,
|
|
726
|
+
missing_frame_number,
|
|
727
|
+
missing_frame_filename,
|
|
728
|
+
last_expected_frame_number))
|
|
729
|
+
|
|
730
|
+
# ...if we need to check whether to skip this video entirely
|
|
731
|
+
|
|
732
|
+
if verbose:
|
|
733
|
+
print('Video {} contains {} frames at {} Hz'.format(input_video_file,n_frames,fs))
|
|
734
|
+
|
|
735
|
+
frame_filenames = []
|
|
736
|
+
|
|
737
|
+
# YOLOv5 does some totally bananas monkey-patching of opencv, which causes
|
|
738
|
+
# problems if we try to supply a third parameter to imwrite (to specify JPEG
|
|
739
|
+
# quality). Detect this case, and ignore the quality parameter if it looks
|
|
740
|
+
# like imwrite has been messed with.
|
|
741
|
+
#
|
|
742
|
+
# See:
|
|
743
|
+
#
|
|
744
|
+
# https://github.com/ultralytics/yolov5/issues/7285
|
|
745
|
+
imwrite_patched = False
|
|
746
|
+
n_imwrite_parameters = None
|
|
747
|
+
|
|
748
|
+
try:
|
|
749
|
+
# calling signature() on the native cv2.imwrite function will
|
|
750
|
+
# fail, so an exception here is a good thing. In fact I don't think
|
|
751
|
+
# there's a case where this *succeeds* and the number of parameters
|
|
752
|
+
# is wrong.
|
|
753
|
+
sig = signature(cv2.imwrite)
|
|
754
|
+
n_imwrite_parameters = len(sig.parameters)
|
|
755
|
+
except Exception:
|
|
756
|
+
pass
|
|
757
|
+
|
|
758
|
+
if (n_imwrite_parameters is not None) and (n_imwrite_parameters < 3):
|
|
759
|
+
imwrite_patched = True
|
|
760
|
+
if verbose and (quality is not None):
|
|
761
|
+
print('Warning: quality value supplied, but YOLOv5 has mucked with cv2.imwrite, ignoring quality')
|
|
762
|
+
|
|
763
|
+
# for frame_number in tqdm(range(0,n_frames)):
|
|
764
|
+
for frame_number in range(0,n_frames):
|
|
765
|
+
|
|
766
|
+
# Special handling for the case where we're just doing dummy reads
|
|
767
|
+
if bypass_extraction:
|
|
768
|
+
break
|
|
769
|
+
|
|
770
|
+
success,image = vidcap.read()
|
|
771
|
+
if not success:
|
|
772
|
+
assert image is None
|
|
773
|
+
if verbose:
|
|
774
|
+
print('Read terminating at frame {} of {}'.format(frame_number,n_frames))
|
|
775
|
+
break
|
|
776
|
+
|
|
777
|
+
if every_n_frames is not None:
|
|
778
|
+
if (frame_number % every_n_frames) != 0:
|
|
779
|
+
continue
|
|
780
|
+
|
|
781
|
+
if frames_to_extract is not None:
|
|
782
|
+
if frame_number > max(frames_to_extract):
|
|
783
|
+
break
|
|
784
|
+
if frame_number not in frames_to_extract:
|
|
785
|
+
continue
|
|
786
|
+
|
|
787
|
+
# Has resizing been requested?
|
|
788
|
+
if max_width is not None:
|
|
789
|
+
|
|
790
|
+
# image.shape is h/w/dims
|
|
791
|
+
input_shape = image.shape
|
|
792
|
+
assert input_shape[2] == 3
|
|
793
|
+
input_width = input_shape[1]
|
|
794
|
+
|
|
795
|
+
# Is resizing necessary?
|
|
796
|
+
if input_width > max_width:
|
|
797
|
+
|
|
798
|
+
scale = max_width / input_width
|
|
799
|
+
assert scale <= 1.0
|
|
800
|
+
|
|
801
|
+
# INTER_AREA is recommended for size reduction
|
|
802
|
+
image = cv2.resize(image, (0,0), fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
|
|
803
|
+
|
|
804
|
+
# ...if we need to deal with resizing
|
|
805
|
+
|
|
806
|
+
frame_filename_relative = _frame_number_to_filename(frame_number)
|
|
807
|
+
frame_filename = os.path.join(output_folder,frame_filename_relative)
|
|
808
|
+
frame_filenames.append(frame_filename)
|
|
809
|
+
|
|
810
|
+
if (not overwrite) and (os.path.isfile(frame_filename)):
|
|
811
|
+
# print('Skipping frame {}'.format(frame_filename))
|
|
812
|
+
pass
|
|
813
|
+
else:
|
|
814
|
+
try:
|
|
815
|
+
if frame_filename.isascii():
|
|
816
|
+
|
|
817
|
+
if quality is None or imwrite_patched:
|
|
818
|
+
cv2.imwrite(os.path.normpath(frame_filename),image)
|
|
819
|
+
else:
|
|
820
|
+
cv2.imwrite(os.path.normpath(frame_filename),image,
|
|
821
|
+
[int(cv2.IMWRITE_JPEG_QUALITY), quality])
|
|
822
|
+
else:
|
|
823
|
+
if quality is None:
|
|
824
|
+
is_success, im_buf_arr = cv2.imencode('.jpg', image)
|
|
825
|
+
else:
|
|
826
|
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
|
827
|
+
is_success, im_buf_arr = cv2.imencode('.jpg', image, encode_param)
|
|
828
|
+
im_buf_arr.tofile(frame_filename)
|
|
829
|
+
assert os.path.isfile(frame_filename), \
|
|
830
|
+
'Output frame {} unavailable'.format(frame_filename)
|
|
831
|
+
except KeyboardInterrupt:
|
|
832
|
+
vidcap.release()
|
|
833
|
+
raise
|
|
834
|
+
except Exception as e:
|
|
835
|
+
print('Error on frame {} of {}: {}'.format(frame_number,n_frames,str(e)))
|
|
836
|
+
|
|
837
|
+
# ...for each frame
|
|
838
|
+
|
|
839
|
+
if len(frame_filenames) == 0:
|
|
840
|
+
if allow_empty_videos:
|
|
841
|
+
print('Warning: no frames extracted from file {}'.format(input_video_file))
|
|
842
|
+
else:
|
|
843
|
+
raise Exception('Error: no frames extracted from file {}'.format(input_video_file))
|
|
844
|
+
|
|
845
|
+
if verbose:
|
|
846
|
+
print('\nExtracted {} of {} frames for {}'.format(
|
|
847
|
+
len(frame_filenames),n_frames,input_video_file))
|
|
848
|
+
|
|
849
|
+
vidcap.release()
|
|
850
|
+
return frame_filenames,fs
|
|
851
|
+
|
|
852
|
+
# ...def video_to_frames(...)
|
|
853
|
+
|
|
854
|
+
|
|
855
|
+
def _video_to_frames_with_per_video_frames(args):
|
|
856
|
+
"""
|
|
857
|
+
Wrapper function to handle extracting a different list of frames for
|
|
858
|
+
each video in a multiprocessing context.
|
|
859
|
+
|
|
860
|
+
Takes a tuple of (relative_fn, frames_for_this_video, other_args),
|
|
861
|
+
where (other_args) contains the arguments that are the same for each
|
|
862
|
+
iteration.
|
|
863
|
+
"""
|
|
864
|
+
|
|
865
|
+
relative_fn, frames_for_this_video, other_args = args
|
|
866
|
+
(input_folder, output_folder_base, every_n_frames, overwrite, verbose,
|
|
867
|
+
quality, max_width, allow_empty_videos) = other_args
|
|
868
|
+
|
|
869
|
+
return _video_to_frames_for_folder(relative_fn, input_folder, output_folder_base,
|
|
870
|
+
every_n_frames, overwrite, verbose, quality, max_width,
|
|
871
|
+
frames_for_this_video, allow_empty_videos)
|
|
872
|
+
|
|
873
|
+
|
|
874
|
+
def _video_to_frames_for_folder(relative_fn,input_folder,output_folder_base,
|
|
875
|
+
every_n_frames,overwrite,verbose,quality,max_width,
|
|
876
|
+
frames_to_extract,allow_empty_videos):
|
|
877
|
+
"""
|
|
878
|
+
Internal function to call video_to_frames for a single video in the context of
|
|
879
|
+
video_folder_to_frames; makes sure the right output folder exists, then calls
|
|
880
|
+
video_to_frames.
|
|
881
|
+
"""
|
|
882
|
+
|
|
883
|
+
input_fn_absolute = os.path.join(input_folder,relative_fn)
|
|
884
|
+
assert os.path.isfile(input_fn_absolute),\
|
|
885
|
+
'Could not find file {}'.format(input_fn_absolute)
|
|
886
|
+
|
|
887
|
+
# Create the target output folder
|
|
888
|
+
output_folder_video = os.path.join(output_folder_base,relative_fn)
|
|
889
|
+
try:
|
|
890
|
+
os.makedirs(output_folder_video,exist_ok=True)
|
|
891
|
+
except Exception:
|
|
892
|
+
output_folder_clean = clean_path(output_folder_video)
|
|
893
|
+
print('Warning: failed to create folder {}, trying {}'.format(
|
|
894
|
+
output_folder_video,output_folder_clean))
|
|
895
|
+
output_folder_video = output_folder_clean
|
|
896
|
+
os.makedirs(output_folder_video,exist_ok=True)
|
|
897
|
+
|
|
898
|
+
# Render frames
|
|
899
|
+
# input_video_file = input_fn_absolute; output_folder = output_folder_video
|
|
900
|
+
frame_filenames,fs = video_to_frames(input_fn_absolute,
|
|
901
|
+
output_folder_video,
|
|
902
|
+
overwrite=overwrite,
|
|
903
|
+
every_n_frames=every_n_frames,
|
|
904
|
+
verbose=verbose,
|
|
905
|
+
quality=quality,
|
|
906
|
+
max_width=max_width,
|
|
907
|
+
frames_to_extract=frames_to_extract,
|
|
908
|
+
allow_empty_videos=allow_empty_videos)
|
|
909
|
+
|
|
910
|
+
return frame_filenames,fs
|
|
911
|
+
|
|
912
|
+
|
|
913
|
+
def video_folder_to_frames(input_folder,
|
|
914
|
+
output_folder_base,
|
|
915
|
+
recursive=True,
|
|
916
|
+
overwrite=True,
|
|
917
|
+
n_threads=1,
|
|
918
|
+
every_n_frames=None,
|
|
919
|
+
verbose=False,
|
|
920
|
+
parallelization_uses_threads=True,
|
|
921
|
+
quality=None,
|
|
922
|
+
max_width=None,
|
|
923
|
+
frames_to_extract=None,
|
|
924
|
+
allow_empty_videos=False,
|
|
925
|
+
relative_paths_to_process=None):
|
|
926
|
+
"""
|
|
927
|
+
For every video file in input_folder, creates a folder within output_folder_base, and
|
|
928
|
+
renders frame of that video to images in that folder.
|
|
929
|
+
|
|
930
|
+
Args:
|
|
931
|
+
input_folder (str): folder to process
|
|
932
|
+
output_folder_base (str): root folder for output images; subfolders will be
|
|
933
|
+
created for each input video
|
|
934
|
+
recursive (bool, optional): whether to recursively process videos in [input_folder]
|
|
935
|
+
overwrite (bool, optional): whether to overwrite existing frame images
|
|
936
|
+
n_threads (int, optional): number of concurrent workers to use; set to <= 1 to disable
|
|
937
|
+
parallelism
|
|
938
|
+
every_n_frames (int or float, optional): sample every Nth frame starting from the first
|
|
939
|
+
frame; if this is None or 1, every frame is extracted. If this is a negative value,
|
|
940
|
+
it's interpreted as a sampling rate in seconds, which is rounded to the nearest frame
|
|
941
|
+
sampling rate. Mutually exclusive with frames_to_extract.
|
|
942
|
+
verbose (bool, optional): enable additional debug console output
|
|
943
|
+
parallelization_uses_threads (bool, optional): whether to use threads (True) or
|
|
944
|
+
processes (False) for parallelization; ignored if n_threads <= 1
|
|
945
|
+
quality (int, optional): JPEG quality for frame output, from 0-100. Defaults
|
|
946
|
+
to the opencv default (typically 95).
|
|
947
|
+
max_width (int, optional): resize frames to be no wider than [max_width]
|
|
948
|
+
frames_to_extract (int, list of int, or dict, optional): extract this specific set of frames
|
|
949
|
+
from each video; mutually exclusive with every_n_frames. If all values are beyond the
|
|
950
|
+
length of a video, no frames are extracted. Can also be a single int, specifying a single
|
|
951
|
+
frame number. In the special case where frames_to_extract is [], this function still
|
|
952
|
+
reads video frame rates and verifies that videos are readable, but no frames are
|
|
953
|
+
extracted. Can be a dict mapping relative paths to lists of frame numbers to extract different
|
|
954
|
+
frames from each video.
|
|
955
|
+
allow_empty_videos (bool, optional): just print a warning if a video appears to have no
|
|
956
|
+
frames (by default, this is an error).
|
|
957
|
+
relative_paths_to_process (list, optional): only process the relative paths on this
|
|
958
|
+
list
|
|
959
|
+
|
|
960
|
+
Returns:
|
|
961
|
+
tuple: a length-3 tuple containing:
|
|
962
|
+
- list of lists of frame filenames; the Nth list of frame filenames corresponds to
|
|
963
|
+
the Nth video
|
|
964
|
+
- list of video frame rates; the Nth value corresponds to the Nth video
|
|
965
|
+
- list of video filenames
|
|
966
|
+
"""
|
|
967
|
+
|
|
968
|
+
# Enumerate video files if necessary
|
|
969
|
+
if relative_paths_to_process is None:
|
|
970
|
+
if verbose:
|
|
971
|
+
print('Enumerating videos in {}'.format(input_folder))
|
|
972
|
+
input_files_full_paths = find_videos(input_folder,recursive=recursive)
|
|
973
|
+
if verbose:
|
|
974
|
+
print('Found {} videos in folder {}'.format(len(input_files_full_paths),input_folder))
|
|
975
|
+
if len(input_files_full_paths) == 0:
|
|
976
|
+
return [],[],[]
|
|
977
|
+
|
|
978
|
+
input_files_relative_paths = [os.path.relpath(s,input_folder) for s in input_files_full_paths]
|
|
979
|
+
else:
|
|
980
|
+
input_files_relative_paths = relative_paths_to_process
|
|
981
|
+
input_files_full_paths = [os.path.join(input_folder,fn) for fn in input_files_relative_paths]
|
|
982
|
+
|
|
983
|
+
input_files_relative_paths = [s.replace('\\','/') for s in input_files_relative_paths]
|
|
984
|
+
|
|
985
|
+
os.makedirs(output_folder_base,exist_ok=True)
|
|
986
|
+
|
|
987
|
+
frame_filenames_by_video = []
|
|
988
|
+
fs_by_video = []
|
|
989
|
+
|
|
990
|
+
if n_threads == 1:
|
|
991
|
+
|
|
992
|
+
# For each video
|
|
993
|
+
#
|
|
994
|
+
# input_fn_relative = input_files_relative_paths[0]
|
|
995
|
+
for input_fn_relative in tqdm(input_files_relative_paths,desc='Video to frames'):
|
|
996
|
+
|
|
997
|
+
# If frames_to_extract is a dict, get the specific frames for this video
|
|
998
|
+
if isinstance(frames_to_extract, dict):
|
|
999
|
+
frames_for_this_video = frames_to_extract.get(input_fn_relative, [])
|
|
1000
|
+
else:
|
|
1001
|
+
frames_for_this_video = frames_to_extract
|
|
1002
|
+
|
|
1003
|
+
frame_filenames,fs = \
|
|
1004
|
+
_video_to_frames_for_folder(input_fn_relative,
|
|
1005
|
+
input_folder,
|
|
1006
|
+
output_folder_base,
|
|
1007
|
+
every_n_frames,
|
|
1008
|
+
overwrite,
|
|
1009
|
+
verbose,
|
|
1010
|
+
quality,
|
|
1011
|
+
max_width,
|
|
1012
|
+
frames_for_this_video,
|
|
1013
|
+
allow_empty_videos)
|
|
1014
|
+
frame_filenames_by_video.append(frame_filenames)
|
|
1015
|
+
fs_by_video.append(fs)
|
|
1016
|
+
|
|
1017
|
+
else:
|
|
1018
|
+
|
|
1019
|
+
pool = None
|
|
1020
|
+
results = None
|
|
1021
|
+
try:
|
|
1022
|
+
|
|
1023
|
+
if parallelization_uses_threads:
|
|
1024
|
+
print('Starting a worker pool with {} threads'.format(n_threads))
|
|
1025
|
+
pool = ThreadPool(n_threads)
|
|
1026
|
+
else:
|
|
1027
|
+
print('Starting a worker pool with {} processes'.format(n_threads))
|
|
1028
|
+
pool = Pool(n_threads)
|
|
1029
|
+
|
|
1030
|
+
if isinstance(frames_to_extract, dict):
|
|
1031
|
+
|
|
1032
|
+
# For the dict case, we need to extract different frames from each video.
|
|
1033
|
+
|
|
1034
|
+
# These arguments are the same for every iteration
|
|
1035
|
+
other_args = (input_folder, output_folder_base, every_n_frames, overwrite,
|
|
1036
|
+
verbose, quality, max_width, allow_empty_videos)
|
|
1037
|
+
|
|
1038
|
+
# The filename and list of frames to extract vary with each iteration
|
|
1039
|
+
args_for_pool = [(relative_fn, frames_to_extract.get(relative_fn, []), other_args)
|
|
1040
|
+
for relative_fn in input_files_relative_paths]
|
|
1041
|
+
|
|
1042
|
+
results = list(tqdm(pool.imap(_video_to_frames_with_per_video_frames, args_for_pool),
|
|
1043
|
+
total=len(args_for_pool),desc='Video to frames'))
|
|
1044
|
+
|
|
1045
|
+
else:
|
|
1046
|
+
|
|
1047
|
+
process_video_with_options = partial(_video_to_frames_for_folder,
|
|
1048
|
+
input_folder=input_folder,
|
|
1049
|
+
output_folder_base=output_folder_base,
|
|
1050
|
+
every_n_frames=every_n_frames,
|
|
1051
|
+
overwrite=overwrite,
|
|
1052
|
+
verbose=verbose,
|
|
1053
|
+
quality=quality,
|
|
1054
|
+
max_width=max_width,
|
|
1055
|
+
frames_to_extract=frames_to_extract,
|
|
1056
|
+
allow_empty_videos=allow_empty_videos)
|
|
1057
|
+
results = list(tqdm(pool.imap(process_video_with_options, input_files_relative_paths),
|
|
1058
|
+
total=len(input_files_relative_paths),desc='Video to frames'))
|
|
1059
|
+
|
|
1060
|
+
# ...if we need to pass different frames for each video
|
|
1061
|
+
|
|
1062
|
+
finally:
|
|
1063
|
+
|
|
1064
|
+
if pool is not None:
|
|
1065
|
+
pool.close()
|
|
1066
|
+
pool.join()
|
|
1067
|
+
print('Pool closed and joined for video processing')
|
|
1068
|
+
|
|
1069
|
+
# ...try/finally
|
|
1070
|
+
|
|
1071
|
+
frame_filenames_by_video = [x[0] for x in results]
|
|
1072
|
+
fs_by_video = [x[1] for x in results]
|
|
1073
|
+
|
|
1074
|
+
# ...if we're working on a single thread vs. multiple workers
|
|
1075
|
+
|
|
1076
|
+
return frame_filenames_by_video,fs_by_video,input_files_full_paths
|
|
1077
|
+
|
|
1078
|
+
# ...def video_folder_to_frames(...)
|
|
1079
|
+
|
|
1080
|
+
|
|
1081
|
+
class FrameToVideoOptions:
|
|
1082
|
+
"""
|
|
1083
|
+
Options controlling the conversion of frame-level results to video-level results via
|
|
1084
|
+
frame_results_to_video_results()
|
|
1085
|
+
"""
|
|
1086
|
+
|
|
1087
|
+
def __init__(self):
|
|
1088
|
+
|
|
1089
|
+
#: One-indexed indicator of which frame-level confidence value to use to determine detection confidence
|
|
1090
|
+
#: for the whole video, i.e. "1" means "use the confidence value from the highest-confidence frame"
|
|
1091
|
+
self.nth_highest_confidence = 1
|
|
1092
|
+
|
|
1093
|
+
#: Should we include just a single representative frame result for each video (default), or
|
|
1094
|
+
#: every frame that was processed?
|
|
1095
|
+
self.include_all_processed_frames = False
|
|
1096
|
+
|
|
1097
|
+
#: What to do if a file referred to in a .json results file appears not to be a
|
|
1098
|
+
#: video; can be 'error' or 'skip_with_warning'
|
|
1099
|
+
self.non_video_behavior = 'error'
|
|
1100
|
+
|
|
1101
|
+
#: Are frame rates required?
|
|
1102
|
+
self.frame_rates_are_required = False
|
|
1103
|
+
|
|
1104
|
+
#: Enable additional debug output
|
|
1105
|
+
self.verbose = False
|
|
1106
|
+
|
|
1107
|
+
|
|
1108
|
+
def frame_results_to_video_results(input_file,
|
|
1109
|
+
output_file,
|
|
1110
|
+
options=None,
|
|
1111
|
+
video_filename_to_frame_rate=None):
|
|
1112
|
+
"""
|
|
1113
|
+
Given an MD results file produced at the *frame* level, corresponding to a directory
|
|
1114
|
+
created with video_folder_to_frames, maps those frame-level results back to the
|
|
1115
|
+
video level for use in Timelapse.
|
|
1116
|
+
|
|
1117
|
+
Preserves everything in the input .json file other than the images.
|
|
1118
|
+
|
|
1119
|
+
Args:
|
|
1120
|
+
input_file (str): the frame-level MD results file to convert to video-level results
|
|
1121
|
+
output_file (str): the .json file to which we should write video-level results
|
|
1122
|
+
options (FrameToVideoOptions, optional): parameters for converting frame-level results
|
|
1123
|
+
to video-level results, see FrameToVideoOptions for details
|
|
1124
|
+
video_filename_to_frame_rate (dict, optional): maps (relative) video path names to frame
|
|
1125
|
+
rates, used only to populate the output file
|
|
1126
|
+
"""
|
|
1127
|
+
|
|
1128
|
+
if options is None:
|
|
1129
|
+
options = FrameToVideoOptions()
|
|
1130
|
+
|
|
1131
|
+
if options.frame_rates_are_required:
|
|
1132
|
+
assert video_filename_to_frame_rate is not None, \
|
|
1133
|
+
'You specified that frame rates are required, but you did not ' + \
|
|
1134
|
+
'supply video_filename_to_frame_rate'
|
|
1135
|
+
|
|
1136
|
+
# Load results
|
|
1137
|
+
with open(input_file,'r') as f:
|
|
1138
|
+
input_data = json.load(f)
|
|
1139
|
+
|
|
1140
|
+
images = input_data['images']
|
|
1141
|
+
detection_categories = input_data['detection_categories']
|
|
1142
|
+
|
|
1143
|
+
|
|
1144
|
+
## Break into videos
|
|
1145
|
+
|
|
1146
|
+
video_to_frame_info = defaultdict(list)
|
|
1147
|
+
|
|
1148
|
+
# im = images[0]
|
|
1149
|
+
for im in tqdm(images):
|
|
1150
|
+
|
|
1151
|
+
fn = im['file']
|
|
1152
|
+
video_name = os.path.dirname(fn)
|
|
1153
|
+
|
|
1154
|
+
if not is_video_file(video_name):
|
|
1155
|
+
|
|
1156
|
+
if options.non_video_behavior == 'error':
|
|
1157
|
+
raise ValueError('{} is not a video file'.format(video_name))
|
|
1158
|
+
elif options.non_video_behavior == 'skip_with_warning':
|
|
1159
|
+
print('Warning: {} is not a video file'.format(video_name))
|
|
1160
|
+
continue
|
|
1161
|
+
else:
|
|
1162
|
+
raise ValueError('Unrecognized non-video handling behavior: {}'.format(
|
|
1163
|
+
options.non_video_behavior))
|
|
1164
|
+
|
|
1165
|
+
# Attach video-specific fields to the output, specifically attach the frame
|
|
1166
|
+
# number to both the video and each detection.
|
|
1167
|
+
frame_number = _filename_to_frame_number(fn)
|
|
1168
|
+
im['frame_number'] = frame_number
|
|
1169
|
+
for detection in im['detections']:
|
|
1170
|
+
detection['frame_number'] = frame_number
|
|
1171
|
+
|
|
1172
|
+
video_to_frame_info[video_name].append(im)
|
|
1173
|
+
|
|
1174
|
+
# ...for each frame referred to in the results file
|
|
1175
|
+
|
|
1176
|
+
print('Found {} unique videos in {} frame-level results'.format(
|
|
1177
|
+
len(video_to_frame_info),len(images)))
|
|
1178
|
+
|
|
1179
|
+
output_images = []
|
|
1180
|
+
|
|
1181
|
+
|
|
1182
|
+
## For each video...
|
|
1183
|
+
|
|
1184
|
+
# video_name = list(video_to_frame_info.keys())[0]
|
|
1185
|
+
for video_name in tqdm(video_to_frame_info):
|
|
1186
|
+
|
|
1187
|
+
# Prepare the output representation for this video
|
|
1188
|
+
im_out = {}
|
|
1189
|
+
im_out['file'] = video_name
|
|
1190
|
+
|
|
1191
|
+
if (video_filename_to_frame_rate is not None):
|
|
1192
|
+
|
|
1193
|
+
if video_name not in video_filename_to_frame_rate:
|
|
1194
|
+
|
|
1195
|
+
s = 'Could not determine frame rate for {}'.format(video_name)
|
|
1196
|
+
if options.frame_rates_are_required:
|
|
1197
|
+
raise ValueError(s)
|
|
1198
|
+
elif options.verbose:
|
|
1199
|
+
print('Warning: {}'.format(s))
|
|
1200
|
+
|
|
1201
|
+
if video_name in video_filename_to_frame_rate:
|
|
1202
|
+
im_out['frame_rate'] = video_filename_to_frame_rate[video_name]
|
|
1203
|
+
|
|
1204
|
+
# Find all detections for this video
|
|
1205
|
+
all_detections_this_video = []
|
|
1206
|
+
|
|
1207
|
+
frames = video_to_frame_info[video_name]
|
|
1208
|
+
|
|
1209
|
+
# frame = frames[0]
|
|
1210
|
+
for frame in frames:
|
|
1211
|
+
if ('detections' in frame) and (frame['detections'] is not None):
|
|
1212
|
+
all_detections_this_video.extend(frame['detections'])
|
|
1213
|
+
|
|
1214
|
+
# Should we keep detections for all frames?
|
|
1215
|
+
if (options.include_all_processed_frames):
|
|
1216
|
+
|
|
1217
|
+
im_out['detections'] = all_detections_this_video
|
|
1218
|
+
|
|
1219
|
+
# ...or should we keep just a canonical detection for each category?
|
|
1220
|
+
else:
|
|
1221
|
+
|
|
1222
|
+
canonical_detections = []
|
|
1223
|
+
|
|
1224
|
+
# category_id = list(detection_categories.keys())[0]
|
|
1225
|
+
for category_id in detection_categories:
|
|
1226
|
+
|
|
1227
|
+
category_detections = [det for det in all_detections_this_video if \
|
|
1228
|
+
det['category'] == category_id]
|
|
1229
|
+
|
|
1230
|
+
# Find the nth-highest-confidence video to choose a confidence value
|
|
1231
|
+
if len(category_detections) >= options.nth_highest_confidence:
|
|
1232
|
+
|
|
1233
|
+
category_detections_by_confidence = sorted(category_detections,
|
|
1234
|
+
key = lambda i: i['conf'],reverse=True)
|
|
1235
|
+
canonical_detection = category_detections_by_confidence[options.nth_highest_confidence-1]
|
|
1236
|
+
canonical_detections.append(canonical_detection)
|
|
1237
|
+
|
|
1238
|
+
im_out['detections'] = canonical_detections
|
|
1239
|
+
|
|
1240
|
+
# 'max_detection_conf' is no longer included in output files by default
|
|
1241
|
+
if False:
|
|
1242
|
+
im_out['max_detection_conf'] = 0
|
|
1243
|
+
if len(canonical_detections) > 0:
|
|
1244
|
+
confidences = [d['conf'] for d in canonical_detections]
|
|
1245
|
+
im_out['max_detection_conf'] = max(confidences)
|
|
1246
|
+
|
|
1247
|
+
# ...if we're keeping output for all frames / canonical frames
|
|
1248
|
+
|
|
1249
|
+
output_images.append(im_out)
|
|
1250
|
+
|
|
1251
|
+
# ...for each video
|
|
1252
|
+
|
|
1253
|
+
output_data = input_data
|
|
1254
|
+
output_data['images'] = output_images
|
|
1255
|
+
s = json.dumps(output_data,indent=1)
|
|
1256
|
+
|
|
1257
|
+
# Write the output file
|
|
1258
|
+
with open(output_file,'w') as f:
|
|
1259
|
+
f.write(s)
|
|
1260
|
+
|
|
1261
|
+
# ...def frame_results_to_video_results(...)
|
|
1262
|
+
|
|
1263
|
+
|
|
1264
|
+
#%% Test drivers
|
|
1265
|
+
|
|
1266
|
+
if False:
|
|
1267
|
+
|
|
1268
|
+
pass
|
|
1269
|
+
|
|
1270
|
+
#%% Constants
|
|
1271
|
+
|
|
1272
|
+
input_folder = r'G:\temp\usu-long\data'
|
|
1273
|
+
frame_folder_base = r'g:\temp\usu-long-single-frames'
|
|
1274
|
+
assert os.path.isdir(input_folder)
|
|
1275
|
+
|
|
1276
|
+
|
|
1277
|
+
#%% Split videos into frames
|
|
1278
|
+
|
|
1279
|
+
frame_filenames_by_video,fs_by_video,video_filenames = \
|
|
1280
|
+
video_folder_to_frames(input_folder,
|
|
1281
|
+
frame_folder_base,
|
|
1282
|
+
recursive=True,
|
|
1283
|
+
overwrite=True,
|
|
1284
|
+
n_threads=10,
|
|
1285
|
+
every_n_frames=None,
|
|
1286
|
+
verbose=True,
|
|
1287
|
+
parallelization_uses_threads=True,
|
|
1288
|
+
quality=None,
|
|
1289
|
+
max_width=None,
|
|
1290
|
+
frames_to_extract=150)
|
|
1291
|
+
|
|
1292
|
+
|
|
1293
|
+
#%% Constants for detection tests
|
|
1294
|
+
|
|
1295
|
+
detected_frame_folder_base = r'e:\video_test\detected_frames'
|
|
1296
|
+
rendered_videos_folder_base = r'e:\video_test\rendered_videos'
|
|
1297
|
+
os.makedirs(detected_frame_folder_base,exist_ok=True)
|
|
1298
|
+
os.makedirs(rendered_videos_folder_base,exist_ok=True)
|
|
1299
|
+
results_file = r'results.json'
|
|
1300
|
+
confidence_threshold = 0.75
|
|
1301
|
+
|
|
1302
|
+
|
|
1303
|
+
#%% Load detector output
|
|
1304
|
+
|
|
1305
|
+
with open(results_file,'r') as f:
|
|
1306
|
+
detection_results = json.load(f)
|
|
1307
|
+
detections = detection_results['images']
|
|
1308
|
+
detector_label_map = detection_results['detection_categories']
|
|
1309
|
+
for d in detections:
|
|
1310
|
+
d['file'] = d['file'].replace('\\','/').replace('video_frames/','')
|
|
1311
|
+
|
|
1312
|
+
|
|
1313
|
+
#%% List image files, break into folders
|
|
1314
|
+
|
|
1315
|
+
frame_files = path_utils.find_images(frame_folder_base,True)
|
|
1316
|
+
frame_files = [s.replace('\\','/') for s in frame_files]
|
|
1317
|
+
print('Enumerated {} total frames'.format(len(frame_files)))
|
|
1318
|
+
|
|
1319
|
+
# Find unique folders
|
|
1320
|
+
folders = set()
|
|
1321
|
+
# fn = frame_files[0]
|
|
1322
|
+
for fn in frame_files:
|
|
1323
|
+
folders.add(os.path.dirname(fn))
|
|
1324
|
+
folders = [s.replace('\\','/') for s in folders]
|
|
1325
|
+
print('Found {} folders for {} files'.format(len(folders),len(frame_files)))
|
|
1326
|
+
|
|
1327
|
+
|
|
1328
|
+
#%% Render detector frames
|
|
1329
|
+
|
|
1330
|
+
# folder = list(folders)[0]
|
|
1331
|
+
for folder in folders:
|
|
1332
|
+
|
|
1333
|
+
frame_files_this_folder = [fn for fn in frame_files if folder in fn]
|
|
1334
|
+
folder_relative = folder.replace((frame_folder_base + '/').replace('\\','/'),'')
|
|
1335
|
+
detection_results_this_folder = [d for d in detections if folder_relative in d['file']]
|
|
1336
|
+
print('Found {} detections in folder {}'.format(len(detection_results_this_folder),folder))
|
|
1337
|
+
assert len(frame_files_this_folder) == len(detection_results_this_folder)
|
|
1338
|
+
|
|
1339
|
+
rendered_frame_output_folder = os.path.join(detected_frame_folder_base,folder_relative)
|
|
1340
|
+
os.makedirs(rendered_frame_output_folder,exist_ok=True)
|
|
1341
|
+
|
|
1342
|
+
# d = detection_results_this_folder[0]
|
|
1343
|
+
for d in tqdm(detection_results_this_folder):
|
|
1344
|
+
|
|
1345
|
+
input_file = os.path.join(frame_folder_base,d['file'])
|
|
1346
|
+
output_file = os.path.join(detected_frame_folder_base,d['file'])
|
|
1347
|
+
os.makedirs(os.path.dirname(output_file),exist_ok=True)
|
|
1348
|
+
vis_utils.draw_bounding_boxes_on_file(input_file,output_file,d['detections'],
|
|
1349
|
+
confidence_threshold)
|
|
1350
|
+
|
|
1351
|
+
# ...for each file in this folder
|
|
1352
|
+
|
|
1353
|
+
# ...for each folder
|
|
1354
|
+
|
|
1355
|
+
|
|
1356
|
+
#%% Render output videos
|
|
1357
|
+
|
|
1358
|
+
# folder = list(folders)[0]
|
|
1359
|
+
for folder in tqdm(folders):
|
|
1360
|
+
|
|
1361
|
+
folder_relative = folder.replace((frame_folder_base + '/').replace('\\','/'),'')
|
|
1362
|
+
rendered_detector_output_folder = os.path.join(detected_frame_folder_base,folder_relative)
|
|
1363
|
+
assert os.path.isdir(rendered_detector_output_folder)
|
|
1364
|
+
|
|
1365
|
+
frame_files_relative = os.listdir(rendered_detector_output_folder)
|
|
1366
|
+
frame_files_absolute = [os.path.join(rendered_detector_output_folder,s) \
|
|
1367
|
+
for s in frame_files_relative]
|
|
1368
|
+
|
|
1369
|
+
output_video_filename = os.path.join(rendered_videos_folder_base,folder_relative)
|
|
1370
|
+
os.makedirs(os.path.dirname(output_video_filename),exist_ok=True)
|
|
1371
|
+
|
|
1372
|
+
original_video_filename = output_video_filename.replace(
|
|
1373
|
+
rendered_videos_folder_base,input_folder)
|
|
1374
|
+
assert os.path.isfile(original_video_filename)
|
|
1375
|
+
fs = get_video_fs(original_video_filename)
|
|
1376
|
+
|
|
1377
|
+
frames_to_video(frame_files_absolute, fs, output_video_filename)
|
|
1378
|
+
|
|
1379
|
+
# ...for each video
|