megadetector 10.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- megadetector/__init__.py +0 -0
- megadetector/api/__init__.py +0 -0
- megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
- megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
- megadetector/classification/__init__.py +0 -0
- megadetector/classification/aggregate_classifier_probs.py +108 -0
- megadetector/classification/analyze_failed_images.py +227 -0
- megadetector/classification/cache_batchapi_outputs.py +198 -0
- megadetector/classification/create_classification_dataset.py +626 -0
- megadetector/classification/crop_detections.py +516 -0
- megadetector/classification/csv_to_json.py +226 -0
- megadetector/classification/detect_and_crop.py +853 -0
- megadetector/classification/efficientnet/__init__.py +9 -0
- megadetector/classification/efficientnet/model.py +415 -0
- megadetector/classification/efficientnet/utils.py +608 -0
- megadetector/classification/evaluate_model.py +520 -0
- megadetector/classification/identify_mislabeled_candidates.py +152 -0
- megadetector/classification/json_to_azcopy_list.py +63 -0
- megadetector/classification/json_validator.py +696 -0
- megadetector/classification/map_classification_categories.py +276 -0
- megadetector/classification/merge_classification_detection_output.py +509 -0
- megadetector/classification/prepare_classification_script.py +194 -0
- megadetector/classification/prepare_classification_script_mc.py +228 -0
- megadetector/classification/run_classifier.py +287 -0
- megadetector/classification/save_mislabeled.py +110 -0
- megadetector/classification/train_classifier.py +827 -0
- megadetector/classification/train_classifier_tf.py +725 -0
- megadetector/classification/train_utils.py +323 -0
- megadetector/data_management/__init__.py +0 -0
- megadetector/data_management/animl_to_md.py +161 -0
- megadetector/data_management/annotations/__init__.py +0 -0
- megadetector/data_management/annotations/annotation_constants.py +33 -0
- megadetector/data_management/camtrap_dp_to_coco.py +270 -0
- megadetector/data_management/cct_json_utils.py +566 -0
- megadetector/data_management/cct_to_md.py +184 -0
- megadetector/data_management/cct_to_wi.py +293 -0
- megadetector/data_management/coco_to_labelme.py +284 -0
- megadetector/data_management/coco_to_yolo.py +702 -0
- megadetector/data_management/databases/__init__.py +0 -0
- megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
- megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
- megadetector/data_management/databases/integrity_check_json_db.py +528 -0
- megadetector/data_management/databases/subset_json_db.py +195 -0
- megadetector/data_management/generate_crops_from_cct.py +200 -0
- megadetector/data_management/get_image_sizes.py +164 -0
- megadetector/data_management/labelme_to_coco.py +559 -0
- megadetector/data_management/labelme_to_yolo.py +349 -0
- megadetector/data_management/lila/__init__.py +0 -0
- megadetector/data_management/lila/create_lila_blank_set.py +556 -0
- megadetector/data_management/lila/create_lila_test_set.py +187 -0
- megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
- megadetector/data_management/lila/download_lila_subset.py +182 -0
- megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
- megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
- megadetector/data_management/lila/get_lila_image_counts.py +112 -0
- megadetector/data_management/lila/lila_common.py +319 -0
- megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
- megadetector/data_management/mewc_to_md.py +344 -0
- megadetector/data_management/ocr_tools.py +873 -0
- megadetector/data_management/read_exif.py +964 -0
- megadetector/data_management/remap_coco_categories.py +195 -0
- megadetector/data_management/remove_exif.py +156 -0
- megadetector/data_management/rename_images.py +194 -0
- megadetector/data_management/resize_coco_dataset.py +663 -0
- megadetector/data_management/speciesnet_to_md.py +41 -0
- megadetector/data_management/wi_download_csv_to_coco.py +247 -0
- megadetector/data_management/yolo_output_to_md_output.py +594 -0
- megadetector/data_management/yolo_to_coco.py +876 -0
- megadetector/data_management/zamba_to_md.py +188 -0
- megadetector/detection/__init__.py +0 -0
- megadetector/detection/change_detection.py +840 -0
- megadetector/detection/process_video.py +479 -0
- megadetector/detection/pytorch_detector.py +1451 -0
- megadetector/detection/run_detector.py +1267 -0
- megadetector/detection/run_detector_batch.py +2159 -0
- megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
- megadetector/detection/run_md_and_speciesnet.py +1494 -0
- megadetector/detection/run_tiled_inference.py +1038 -0
- megadetector/detection/tf_detector.py +209 -0
- megadetector/detection/video_utils.py +1379 -0
- megadetector/postprocessing/__init__.py +0 -0
- megadetector/postprocessing/add_max_conf.py +72 -0
- megadetector/postprocessing/categorize_detections_by_size.py +166 -0
- megadetector/postprocessing/classification_postprocessing.py +1752 -0
- megadetector/postprocessing/combine_batch_outputs.py +249 -0
- megadetector/postprocessing/compare_batch_results.py +2110 -0
- megadetector/postprocessing/convert_output_format.py +403 -0
- megadetector/postprocessing/create_crop_folder.py +629 -0
- megadetector/postprocessing/detector_calibration.py +570 -0
- megadetector/postprocessing/generate_csv_report.py +522 -0
- megadetector/postprocessing/load_api_results.py +223 -0
- megadetector/postprocessing/md_to_coco.py +428 -0
- megadetector/postprocessing/md_to_labelme.py +351 -0
- megadetector/postprocessing/md_to_wi.py +41 -0
- megadetector/postprocessing/merge_detections.py +392 -0
- megadetector/postprocessing/postprocess_batch_results.py +2077 -0
- megadetector/postprocessing/remap_detection_categories.py +226 -0
- megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
- megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
- megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
- megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
- megadetector/postprocessing/separate_detections_into_folders.py +795 -0
- megadetector/postprocessing/subset_json_detector_output.py +964 -0
- megadetector/postprocessing/top_folders_to_bottom.py +238 -0
- megadetector/postprocessing/validate_batch_results.py +332 -0
- megadetector/taxonomy_mapping/__init__.py +0 -0
- megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
- megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
- megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
- megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
- megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
- megadetector/taxonomy_mapping/simple_image_download.py +224 -0
- megadetector/taxonomy_mapping/species_lookup.py +1008 -0
- megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
- megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
- megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
- megadetector/tests/__init__.py +0 -0
- megadetector/tests/test_nms_synthetic.py +335 -0
- megadetector/utils/__init__.py +0 -0
- megadetector/utils/ct_utils.py +1857 -0
- megadetector/utils/directory_listing.py +199 -0
- megadetector/utils/extract_frames_from_video.py +307 -0
- megadetector/utils/gpu_test.py +125 -0
- megadetector/utils/md_tests.py +2072 -0
- megadetector/utils/path_utils.py +2832 -0
- megadetector/utils/process_utils.py +172 -0
- megadetector/utils/split_locations_into_train_val.py +237 -0
- megadetector/utils/string_utils.py +234 -0
- megadetector/utils/url_utils.py +825 -0
- megadetector/utils/wi_platform_utils.py +968 -0
- megadetector/utils/wi_taxonomy_utils.py +1759 -0
- megadetector/utils/write_html_image_list.py +239 -0
- megadetector/visualization/__init__.py +0 -0
- megadetector/visualization/plot_utils.py +309 -0
- megadetector/visualization/render_images_with_thumbnails.py +243 -0
- megadetector/visualization/visualization_utils.py +1940 -0
- megadetector/visualization/visualize_db.py +630 -0
- megadetector/visualization/visualize_detector_output.py +479 -0
- megadetector/visualization/visualize_video_output.py +705 -0
- megadetector-10.0.13.dist-info/METADATA +134 -0
- megadetector-10.0.13.dist-info/RECORD +147 -0
- megadetector-10.0.13.dist-info/WHEEL +5 -0
- megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
- megadetector-10.0.13.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,964 @@
|
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
read_exif.py
|
|
4
|
+
|
|
5
|
+
Given a folder of images, reads relevant metadata (EXIF/IPTC/XMP) fields from all images,
|
|
6
|
+
and writes them to a .json or .csv file.
|
|
7
|
+
|
|
8
|
+
This module can use either PIL (which can only reliably read EXIF data) or exiftool (which
|
|
9
|
+
can read everything). The latter approach expects that exiftool is available on the system
|
|
10
|
+
path. No attempt is made to be consistent in format across the two approaches.
|
|
11
|
+
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
#%% Imports and constants
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
import subprocess
|
|
18
|
+
import json
|
|
19
|
+
import argparse
|
|
20
|
+
import sys
|
|
21
|
+
|
|
22
|
+
from datetime import datetime
|
|
23
|
+
|
|
24
|
+
from multiprocessing.pool import ThreadPool as ThreadPool
|
|
25
|
+
from multiprocessing.pool import Pool as Pool
|
|
26
|
+
|
|
27
|
+
from tqdm import tqdm
|
|
28
|
+
from PIL import Image, ExifTags
|
|
29
|
+
from functools import partial
|
|
30
|
+
|
|
31
|
+
from megadetector.utils.path_utils import find_images, is_executable
|
|
32
|
+
from megadetector.utils.ct_utils import args_to_object
|
|
33
|
+
from megadetector.utils.ct_utils import image_file_to_camera_folder
|
|
34
|
+
from megadetector.data_management.cct_json_utils import write_object_with_serialized_datetimes
|
|
35
|
+
|
|
36
|
+
debug_max_images = None
|
|
37
|
+
|
|
38
|
+
minimal_exif_tags = \
|
|
39
|
+
['DateTime','Model','Make','ExifImageWidth','ExifImageHeight',
|
|
40
|
+
'DateTimeOriginal','Orientation', 'GPSInfo']
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
#%% Options
|
|
44
|
+
|
|
45
|
+
class ReadExifOptions:
|
|
46
|
+
"""
|
|
47
|
+
Parameters controlling metadata extraction.
|
|
48
|
+
"""
|
|
49
|
+
|
|
50
|
+
def __init__(self):
|
|
51
|
+
|
|
52
|
+
#: Enable additional debug console output
|
|
53
|
+
self.verbose = False
|
|
54
|
+
|
|
55
|
+
#: If this is True and an output file is specified for read_exif_from_folder,
|
|
56
|
+
#: and we encounter a serialization issue, we'll return the results but won't
|
|
57
|
+
#: error.
|
|
58
|
+
self.allow_write_error = False
|
|
59
|
+
|
|
60
|
+
#: Number of concurrent workers, set to <= 1 to disable parallelization
|
|
61
|
+
self.n_workers = 1
|
|
62
|
+
|
|
63
|
+
#: Should we use threads (vs. processes) for parallelization?
|
|
64
|
+
#:
|
|
65
|
+
#: Not relevant if n_workers is <= 1.
|
|
66
|
+
self.use_threads = True
|
|
67
|
+
|
|
68
|
+
#: "File" and "ExifTool" are tag types used by ExifTool to report data that
|
|
69
|
+
#: doesn't come from EXIF, rather from the file (e.g. file size).
|
|
70
|
+
self.tag_types_to_ignore = set(['File','ExifTool'])
|
|
71
|
+
|
|
72
|
+
#: Include/exclude specific tags (tags_to_include and tags_to_exclude are mutually incompatible)
|
|
73
|
+
#:
|
|
74
|
+
#: A useful set of tags one might want to limit queries for:
|
|
75
|
+
#:
|
|
76
|
+
#: options.tags_to_include = minimal_exif_tags
|
|
77
|
+
self.tags_to_include = None
|
|
78
|
+
|
|
79
|
+
#: Include/exclude specific tags (tags_to_include and tags_to_exclude are mutually incompatible)
|
|
80
|
+
self.tags_to_exclude = None
|
|
81
|
+
|
|
82
|
+
#: The command line to invoke if using exiftool, can be an absolute path to exiftool.exe, or
|
|
83
|
+
#: can be just "exiftool", in which case it should be on your system path.
|
|
84
|
+
self.exiftool_command_name = 'exiftool'
|
|
85
|
+
|
|
86
|
+
#: How should we handle byte-formatted EXIF tags?
|
|
87
|
+
#:
|
|
88
|
+
#: 'convert_to_string': convert to a Python string
|
|
89
|
+
#: 'delete': don't include at all
|
|
90
|
+
#: 'raw': include as a byte string
|
|
91
|
+
self.byte_handling = 'convert_to_string' # 'convert_to_string','delete','raw'
|
|
92
|
+
|
|
93
|
+
#: Should we use exiftool or PIL?
|
|
94
|
+
self.processing_library = 'pil' # 'exiftool','pil'
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
class ExifResultsToCCTOptions:
|
|
98
|
+
"""
|
|
99
|
+
Options controlling the behavior of exif_results_to_cct() (which reformats the datetime
|
|
100
|
+
information) extracted by read_exif_from_folder().
|
|
101
|
+
"""
|
|
102
|
+
|
|
103
|
+
def __init__(self):
|
|
104
|
+
|
|
105
|
+
#: Timestamps older than this are assumed to be junk; lots of cameras use a
|
|
106
|
+
#: default time in 2000.
|
|
107
|
+
self.min_valid_timestamp_year = 2001
|
|
108
|
+
|
|
109
|
+
#: The EXIF tag from which to pull datetime information
|
|
110
|
+
self.exif_datetime_tag = 'DateTimeOriginal'
|
|
111
|
+
|
|
112
|
+
#: Function for extracting location information, should take a string
|
|
113
|
+
#: and return a string. Defaults to ct_utils.image_file_to_camera_folder. If
|
|
114
|
+
#: this is None, location is written as "unknown".
|
|
115
|
+
self.filename_to_location_function = image_file_to_camera_folder
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
#%% Functions
|
|
119
|
+
|
|
120
|
+
def _get_exif_ifd(exif):
|
|
121
|
+
"""
|
|
122
|
+
Read EXIF data from by finding the EXIF offset and reading tags directly
|
|
123
|
+
|
|
124
|
+
https://github.com/python-pillow/Pillow/issues/5863
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
# Find the offset for all the EXIF information
|
|
128
|
+
for key, value in ExifTags.TAGS.items():
|
|
129
|
+
if value == "ExifOffset":
|
|
130
|
+
break
|
|
131
|
+
info = exif.get_ifd(key)
|
|
132
|
+
return {
|
|
133
|
+
ExifTags.TAGS.get(key, key): value
|
|
134
|
+
for key, value in info.items()
|
|
135
|
+
}
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def has_gps_info(im):
|
|
139
|
+
"""
|
|
140
|
+
Given a filename, PIL image, dict of EXIF tags, or dict containing an 'exif_tags' field,
|
|
141
|
+
determine whether GPS location information is present in this image. Does not retrieve
|
|
142
|
+
location info, currently only used to determine whether it's present.
|
|
143
|
+
|
|
144
|
+
Args:
|
|
145
|
+
im (str, PIL.Image.Image, dict): image for which we should determine GPS metadata
|
|
146
|
+
presence
|
|
147
|
+
|
|
148
|
+
Returns:
|
|
149
|
+
bool: whether GPS metadata is present, or None if we failed to read EXIF data from
|
|
150
|
+
a file.
|
|
151
|
+
"""
|
|
152
|
+
|
|
153
|
+
if isinstance(im,str) or isinstance(im,Image.Image):
|
|
154
|
+
exif_tags = read_pil_exif(im)
|
|
155
|
+
if exif_tags is None:
|
|
156
|
+
return None
|
|
157
|
+
assert isinstance(exif_tags,dict)
|
|
158
|
+
else:
|
|
159
|
+
assert isinstance(im,dict)
|
|
160
|
+
exif_tags = im
|
|
161
|
+
|
|
162
|
+
if 'exif_tags' in exif_tags:
|
|
163
|
+
exif_tags = exif_tags['exif_tags']
|
|
164
|
+
if exif_tags is None:
|
|
165
|
+
return None
|
|
166
|
+
|
|
167
|
+
if 'GPSInfo' in exif_tags and \
|
|
168
|
+
exif_tags['GPSInfo'] is not None and \
|
|
169
|
+
isinstance(exif_tags['GPSInfo'],dict):
|
|
170
|
+
|
|
171
|
+
# Don't indicate that GPS data is present if only GPS version info is present
|
|
172
|
+
if ('GPSLongitude' in exif_tags['GPSInfo']) or ('GPSLatitude' in exif_tags['GPSInfo']):
|
|
173
|
+
return True
|
|
174
|
+
return False
|
|
175
|
+
|
|
176
|
+
return False
|
|
177
|
+
|
|
178
|
+
# ...def has_gps_info(...)
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
def read_pil_exif(im,options=None):
|
|
182
|
+
"""
|
|
183
|
+
Read all the EXIF data we know how to read from an image, using PIL. This is primarily
|
|
184
|
+
an internal function; the main entry point for single-image EXIF information is
|
|
185
|
+
read_exif_tags_for_image().
|
|
186
|
+
|
|
187
|
+
Args:
|
|
188
|
+
im (str or PIL.Image.Image): image (as a filename or an Image object) from which
|
|
189
|
+
we should read EXIF data.
|
|
190
|
+
options (ReadExifOptions, optional): see ReadExifOptions
|
|
191
|
+
|
|
192
|
+
Returns:
|
|
193
|
+
dict: a dictionary mapping EXIF tag names to their values
|
|
194
|
+
"""
|
|
195
|
+
|
|
196
|
+
if options is None:
|
|
197
|
+
options = ReadExifOptions()
|
|
198
|
+
|
|
199
|
+
image_name = '[image]'
|
|
200
|
+
if isinstance(im,str):
|
|
201
|
+
image_name = im
|
|
202
|
+
im = Image.open(im)
|
|
203
|
+
|
|
204
|
+
exif_tags = {}
|
|
205
|
+
try:
|
|
206
|
+
exif_info = im.getexif()
|
|
207
|
+
except Exception:
|
|
208
|
+
exif_info = None
|
|
209
|
+
|
|
210
|
+
if exif_info is None:
|
|
211
|
+
return exif_tags
|
|
212
|
+
|
|
213
|
+
# Read all standard EXIF tags; if necessary, we'll filter later to a restricted
|
|
214
|
+
# list of tags.
|
|
215
|
+
for k, v in exif_info.items():
|
|
216
|
+
assert isinstance(k,str) or isinstance(k,int), \
|
|
217
|
+
'Invalid EXIF key {}'.format(str(k))
|
|
218
|
+
if k in ExifTags.TAGS:
|
|
219
|
+
exif_tags[ExifTags.TAGS[k]] = str(v)
|
|
220
|
+
else:
|
|
221
|
+
# print('Warning: unrecognized EXIF tag: {}'.format(k))
|
|
222
|
+
exif_tags[k] = str(v)
|
|
223
|
+
|
|
224
|
+
exif_ifd_tags = _get_exif_ifd(exif_info)
|
|
225
|
+
|
|
226
|
+
# Read tags that are only available via offset
|
|
227
|
+
for k in exif_ifd_tags.keys():
|
|
228
|
+
v = exif_ifd_tags[k]
|
|
229
|
+
if k in exif_tags:
|
|
230
|
+
if options.verbose:
|
|
231
|
+
print('Warning: redundant EXIF values for {} in {}:\n{}\n{}'.format(
|
|
232
|
+
k,image_name,exif_tags[k],v))
|
|
233
|
+
else:
|
|
234
|
+
exif_tags[k] = v
|
|
235
|
+
|
|
236
|
+
exif_tag_names = list(exif_tags.keys())
|
|
237
|
+
|
|
238
|
+
# Type conversion and cleanup
|
|
239
|
+
#
|
|
240
|
+
# Most quirky types will get serialized to string when we write to .json.
|
|
241
|
+
for k in exif_tag_names:
|
|
242
|
+
|
|
243
|
+
if isinstance(exif_tags[k],bytes):
|
|
244
|
+
|
|
245
|
+
if options.byte_handling == 'delete':
|
|
246
|
+
del exif_tags[k]
|
|
247
|
+
elif options.byte_handling == 'raw':
|
|
248
|
+
pass
|
|
249
|
+
else:
|
|
250
|
+
assert options.byte_handling == 'convert_to_string'
|
|
251
|
+
exif_tags[k] = str(exif_tags[k])
|
|
252
|
+
|
|
253
|
+
elif isinstance(exif_tags[k],str):
|
|
254
|
+
|
|
255
|
+
exif_tags[k] = exif_tags[k].strip()
|
|
256
|
+
|
|
257
|
+
# Special case for GPS info... I could decode other encoded tags, but GPS info is
|
|
258
|
+
# particularly important, so I'm only doing that for now.
|
|
259
|
+
if 'GPSInfo' in exif_tags:
|
|
260
|
+
|
|
261
|
+
try:
|
|
262
|
+
|
|
263
|
+
# Find the tag number for GPS info, in practice should alays be 34853
|
|
264
|
+
gpsinfo_tag = next(tag for tag, name in ExifTags.TAGS.items() if name == "GPSInfo")
|
|
265
|
+
assert gpsinfo_tag == 34853
|
|
266
|
+
|
|
267
|
+
# These are integer keys, e.g. {7: (14.0, 27.0, 7.24)}
|
|
268
|
+
gps_info_raw = exif_info.get_ifd(gpsinfo_tag)
|
|
269
|
+
|
|
270
|
+
# Convert to strings, e.g. 'GPSTimeStamp'
|
|
271
|
+
gps_info = {}
|
|
272
|
+
for int_tag,v in gps_info_raw.items():
|
|
273
|
+
assert isinstance(int_tag,int)
|
|
274
|
+
if int_tag in ExifTags.GPSTAGS:
|
|
275
|
+
gps_info[ExifTags.GPSTAGS[int_tag]] = v
|
|
276
|
+
else:
|
|
277
|
+
gps_info[int_tag] = v
|
|
278
|
+
|
|
279
|
+
exif_tags['GPSInfo'] = gps_info
|
|
280
|
+
|
|
281
|
+
except Exception as e:
|
|
282
|
+
|
|
283
|
+
if options.verbose:
|
|
284
|
+
print('Warning: error reading GPS info: {}'.format(str(e)))
|
|
285
|
+
|
|
286
|
+
# ...if we think there might be GPS tags in this image
|
|
287
|
+
|
|
288
|
+
# Filter tags if necessary
|
|
289
|
+
exif_tags = _filter_tags(exif_tags,options)
|
|
290
|
+
|
|
291
|
+
return exif_tags
|
|
292
|
+
|
|
293
|
+
# ...read_pil_exif()
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def format_datetime_as_exif_datetime_string(dt):
|
|
297
|
+
"""
|
|
298
|
+
Returns a Python datetime object rendered using the standard EXIF datetime
|
|
299
|
+
string format ('%Y:%m:%d %H:%M:%S')
|
|
300
|
+
|
|
301
|
+
Args:
|
|
302
|
+
dt (datetime): datetime object to format
|
|
303
|
+
|
|
304
|
+
Returns:
|
|
305
|
+
str: [dt] as a string in standard EXIF format
|
|
306
|
+
"""
|
|
307
|
+
|
|
308
|
+
return datetime.strftime(dt, '%Y:%m:%d %H:%M:%S')
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
def parse_exif_datetime_string(s,verbose=False):
|
|
312
|
+
""""
|
|
313
|
+
Exif datetimes are strings, but in a standard format:
|
|
314
|
+
|
|
315
|
+
%Y:%m:%d %H:%M:%S
|
|
316
|
+
|
|
317
|
+
Parses one of those strings into a Python datetime object.
|
|
318
|
+
|
|
319
|
+
Args:
|
|
320
|
+
s (str): datetime string to parse, should be in standard EXIF datetime format
|
|
321
|
+
verbose (bool, optional): enable additional debug output
|
|
322
|
+
|
|
323
|
+
Returns:
|
|
324
|
+
datetime: the datetime object created from [s]
|
|
325
|
+
"""
|
|
326
|
+
|
|
327
|
+
dt = None
|
|
328
|
+
try:
|
|
329
|
+
dt = datetime.strptime(s, '%Y:%m:%d %H:%M:%S')
|
|
330
|
+
except Exception:
|
|
331
|
+
if verbose:
|
|
332
|
+
print('Warning: could not parse datetime {}'.format(str(s)))
|
|
333
|
+
return dt
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
def _filter_tags(tags,options):
|
|
337
|
+
"""
|
|
338
|
+
Internal function used to include/exclude specific tags from the exif_tags
|
|
339
|
+
dict.
|
|
340
|
+
"""
|
|
341
|
+
|
|
342
|
+
## No-op cases
|
|
343
|
+
|
|
344
|
+
if options is None:
|
|
345
|
+
return tags
|
|
346
|
+
|
|
347
|
+
if (options.tags_to_include is None) and (options.tags_to_exclude is None):
|
|
348
|
+
return tags
|
|
349
|
+
|
|
350
|
+
## If we're including specific tags
|
|
351
|
+
|
|
352
|
+
if options.tags_to_include is not None:
|
|
353
|
+
|
|
354
|
+
assert options.tags_to_exclude is None, \
|
|
355
|
+
"tags_to_include and tags_to_exclude are incompatible"
|
|
356
|
+
|
|
357
|
+
tags_to_include = options.tags_to_include
|
|
358
|
+
|
|
359
|
+
if isinstance(tags_to_include,str):
|
|
360
|
+
|
|
361
|
+
# Special case:return all tags
|
|
362
|
+
if tags_to_include == 'all':
|
|
363
|
+
return tags
|
|
364
|
+
|
|
365
|
+
# Otherwise convert string to list
|
|
366
|
+
tags_to_include = tags_to_include.split(',')
|
|
367
|
+
|
|
368
|
+
# Case-insensitive matching
|
|
369
|
+
tags_to_include = [s.lower().strip() for s in tags_to_include]
|
|
370
|
+
|
|
371
|
+
tags_to_return = {}
|
|
372
|
+
|
|
373
|
+
for tag_name in tags.keys():
|
|
374
|
+
if str(tag_name).strip().lower() in tags_to_include:
|
|
375
|
+
tags_to_return[tag_name] = tags[tag_name]
|
|
376
|
+
|
|
377
|
+
return tags_to_return
|
|
378
|
+
|
|
379
|
+
## If we're excluding specific tags
|
|
380
|
+
|
|
381
|
+
if options.tags_to_exclude is not None:
|
|
382
|
+
|
|
383
|
+
assert options.tags_to_include is None, \
|
|
384
|
+
"tags_to_include and tags_to_exclude are incompatible"
|
|
385
|
+
|
|
386
|
+
tags_to_exclude = options.tags_to_exclude
|
|
387
|
+
|
|
388
|
+
# Convert string to list
|
|
389
|
+
if isinstance(tags_to_exclude,str):
|
|
390
|
+
tags_to_exclude = tags_to_exclude.split(',')
|
|
391
|
+
|
|
392
|
+
# Case-insensitive matching
|
|
393
|
+
tags_to_exclude = [s.lower().strip() for s in tags_to_exclude]
|
|
394
|
+
|
|
395
|
+
tags_to_return = {}
|
|
396
|
+
for tag_name in tags.keys():
|
|
397
|
+
if str(tag_name).strip().lower() not in tags_to_exclude:
|
|
398
|
+
tags_to_return[tag_name] = tags[tag_name]
|
|
399
|
+
|
|
400
|
+
return tags_to_return
|
|
401
|
+
|
|
402
|
+
# ...def _filter_tags(...)
|
|
403
|
+
|
|
404
|
+
|
|
405
|
+
def read_exif_tags_for_image(file_path,options=None):
|
|
406
|
+
"""
|
|
407
|
+
Get relevant fields from EXIF data for an image
|
|
408
|
+
|
|
409
|
+
Args:
|
|
410
|
+
file_path (str): image from which we should read EXIF data
|
|
411
|
+
options (ReadExifOptions, optional): see ReadExifOptions
|
|
412
|
+
|
|
413
|
+
Returns:
|
|
414
|
+
dict: a dict with fields 'status' (str) and 'tags'. The exact format of 'tags' depends on
|
|
415
|
+
options (ReadExifOptions, optional): parameters controlling metadata extraction
|
|
416
|
+
options.processing_library:
|
|
417
|
+
|
|
418
|
+
- For exiftool, 'tags' is a list of lists, where each element is (type/tag/value)
|
|
419
|
+
- For PIL, 'tags' is a dict (str:str)
|
|
420
|
+
"""
|
|
421
|
+
|
|
422
|
+
if options is None:
|
|
423
|
+
options = ReadExifOptions()
|
|
424
|
+
|
|
425
|
+
result = {'status':'unknown','tags':[]}
|
|
426
|
+
|
|
427
|
+
if options.processing_library == 'pil':
|
|
428
|
+
|
|
429
|
+
try:
|
|
430
|
+
exif_tags = read_pil_exif(file_path,options)
|
|
431
|
+
|
|
432
|
+
except Exception as e:
|
|
433
|
+
if options.verbose:
|
|
434
|
+
print('PIL EXIF read failure for image {}: {}'.format(
|
|
435
|
+
file_path,str(e)))
|
|
436
|
+
import traceback
|
|
437
|
+
traceback.print_exc()
|
|
438
|
+
result['status'] = 'read_failure'
|
|
439
|
+
result['error'] = str(e)
|
|
440
|
+
|
|
441
|
+
if result['status'] == 'unknown':
|
|
442
|
+
if exif_tags is None:
|
|
443
|
+
result['status'] = 'empty_read'
|
|
444
|
+
else:
|
|
445
|
+
result['status'] = 'success'
|
|
446
|
+
result['tags'] = _filter_tags(exif_tags,options)
|
|
447
|
+
|
|
448
|
+
return result
|
|
449
|
+
|
|
450
|
+
elif options.processing_library == 'exiftool':
|
|
451
|
+
|
|
452
|
+
# -G means "Print group name for each tag", e.g. print:
|
|
453
|
+
#
|
|
454
|
+
# [File] Bits Per Sample : 8
|
|
455
|
+
#
|
|
456
|
+
# ...instead of:
|
|
457
|
+
#
|
|
458
|
+
# Bits Per Sample : 8
|
|
459
|
+
proc = subprocess.Popen([options.exiftool_command_name, '-G', file_path],
|
|
460
|
+
stdout=subprocess.PIPE, encoding='utf8')
|
|
461
|
+
|
|
462
|
+
exif_lines = proc.stdout.readlines()
|
|
463
|
+
exif_lines = [s.strip() for s in exif_lines]
|
|
464
|
+
if ( (exif_lines is None) or (len(exif_lines) == 0) or not \
|
|
465
|
+
any([s.lower().startswith('[exif]') for s in exif_lines])):
|
|
466
|
+
result['status'] = 'failure'
|
|
467
|
+
return result
|
|
468
|
+
|
|
469
|
+
# A list of three-element lists (type/tag/value)
|
|
470
|
+
exif_tags = []
|
|
471
|
+
|
|
472
|
+
# line_raw = exif_lines[0]
|
|
473
|
+
for line_raw in exif_lines:
|
|
474
|
+
|
|
475
|
+
# A typical line:
|
|
476
|
+
#
|
|
477
|
+
# [ExifTool] ExifTool Version Number : 12.13
|
|
478
|
+
|
|
479
|
+
line = line_raw.strip()
|
|
480
|
+
|
|
481
|
+
# Split on the first occurrence of ":"
|
|
482
|
+
tokens = line.split(':',1)
|
|
483
|
+
assert(len(tokens) == 2), 'EXIF tokenization failure ({} tokens, expected 2)'.format(
|
|
484
|
+
len(tokens))
|
|
485
|
+
|
|
486
|
+
field_value = tokens[1].strip()
|
|
487
|
+
|
|
488
|
+
field_name_type = tokens[0].strip()
|
|
489
|
+
field_name_type_tokens = field_name_type.split(None,1)
|
|
490
|
+
assert len(field_name_type_tokens) == 2, 'EXIF tokenization failure'
|
|
491
|
+
|
|
492
|
+
field_type = field_name_type_tokens[0].strip()
|
|
493
|
+
assert field_type.startswith('[') and field_type.endswith(']'), \
|
|
494
|
+
'Invalid EXIF field {}'.format(field_type)
|
|
495
|
+
field_type = field_type[1:-1]
|
|
496
|
+
|
|
497
|
+
if field_type in options.tag_types_to_ignore:
|
|
498
|
+
if options.verbose:
|
|
499
|
+
print('Ignoring tag with type {}'.format(field_type))
|
|
500
|
+
continue
|
|
501
|
+
|
|
502
|
+
field_name = field_name_type_tokens[1].strip()
|
|
503
|
+
if options.tags_to_exclude is not None and field_name in options.tags_to_exclude:
|
|
504
|
+
continue
|
|
505
|
+
if options.tags_to_include is not None and field_name not in options.tags_to_include:
|
|
506
|
+
continue
|
|
507
|
+
tag = [field_type,field_name,field_value]
|
|
508
|
+
|
|
509
|
+
exif_tags.append(tag)
|
|
510
|
+
|
|
511
|
+
# ...for each output line
|
|
512
|
+
|
|
513
|
+
result['status'] = 'success'
|
|
514
|
+
result['tags'] = exif_tags
|
|
515
|
+
return result
|
|
516
|
+
|
|
517
|
+
else:
|
|
518
|
+
|
|
519
|
+
raise ValueError('Unknown processing library {}'.format(
|
|
520
|
+
options.processing_library))
|
|
521
|
+
|
|
522
|
+
# ...which processing library are we using?
|
|
523
|
+
|
|
524
|
+
# ...read_exif_tags_for_image()
|
|
525
|
+
|
|
526
|
+
|
|
527
|
+
def _populate_exif_data(im, image_base, options=None):
|
|
528
|
+
"""
|
|
529
|
+
Populate EXIF data into the 'exif_tags' field in the image object [im].
|
|
530
|
+
|
|
531
|
+
im['file_name'] should be prepopulated, relative to image_base.
|
|
532
|
+
|
|
533
|
+
Returns a modified version of [im], also modifies [im] in place.
|
|
534
|
+
"""
|
|
535
|
+
|
|
536
|
+
if options is None:
|
|
537
|
+
options = ReadExifOptions()
|
|
538
|
+
|
|
539
|
+
fn = im['file_name']
|
|
540
|
+
if options.verbose:
|
|
541
|
+
print('Processing {}'.format(fn))
|
|
542
|
+
|
|
543
|
+
try:
|
|
544
|
+
|
|
545
|
+
file_path = os.path.join(image_base,fn)
|
|
546
|
+
assert os.path.isfile(file_path), 'Could not find file {}'.format(file_path)
|
|
547
|
+
result = read_exif_tags_for_image(file_path,options)
|
|
548
|
+
if result['status'] == 'success':
|
|
549
|
+
exif_tags = result['tags']
|
|
550
|
+
im['exif_tags'] = exif_tags
|
|
551
|
+
else:
|
|
552
|
+
im['exif_tags'] = None
|
|
553
|
+
im['status'] = result['status']
|
|
554
|
+
if 'error' in result:
|
|
555
|
+
im['error'] = result['error']
|
|
556
|
+
if options.verbose:
|
|
557
|
+
print('Error reading EXIF data for {}'.format(file_path))
|
|
558
|
+
|
|
559
|
+
except Exception as e:
|
|
560
|
+
|
|
561
|
+
s = 'Error on {}: {}'.format(fn,str(e))
|
|
562
|
+
print(s)
|
|
563
|
+
im['error'] = s
|
|
564
|
+
im['status'] = 'read failure'
|
|
565
|
+
im['exif_tags'] = None
|
|
566
|
+
|
|
567
|
+
return im
|
|
568
|
+
|
|
569
|
+
# ..._populate_exif_data()
|
|
570
|
+
|
|
571
|
+
|
|
572
|
+
def _create_image_objects(image_files,recursive=True):
|
|
573
|
+
"""
|
|
574
|
+
Create empty image objects for every image in [image_files], which can be a
|
|
575
|
+
list of relative paths (which will get stored without processing, so the base
|
|
576
|
+
path doesn't matter here), or a folder name.
|
|
577
|
+
|
|
578
|
+
Returns a list of dicts with field 'file_name' (a relative path).
|
|
579
|
+
|
|
580
|
+
"recursive" is ignored if "image_files" is a list.
|
|
581
|
+
"""
|
|
582
|
+
|
|
583
|
+
# Enumerate *relative* paths
|
|
584
|
+
if isinstance(image_files,str):
|
|
585
|
+
print('Enumerating image files in {}'.format(image_files))
|
|
586
|
+
assert os.path.isdir(image_files), 'Invalid image folder {}'.format(image_files)
|
|
587
|
+
image_files = find_images(image_files,
|
|
588
|
+
recursive=recursive,
|
|
589
|
+
return_relative_paths=True,
|
|
590
|
+
convert_slashes=True)
|
|
591
|
+
|
|
592
|
+
images = []
|
|
593
|
+
for fn in image_files:
|
|
594
|
+
im = {}
|
|
595
|
+
im['file_name'] = fn
|
|
596
|
+
images.append(im)
|
|
597
|
+
|
|
598
|
+
if debug_max_images is not None:
|
|
599
|
+
print('Trimming input list to {} images'.format(debug_max_images))
|
|
600
|
+
images = images[0:debug_max_images]
|
|
601
|
+
|
|
602
|
+
return images
|
|
603
|
+
|
|
604
|
+
|
|
605
|
+
def _populate_exif_for_images(image_base,images,options=None):
|
|
606
|
+
"""
|
|
607
|
+
Main worker loop: read EXIF data for each image object in [images] and
|
|
608
|
+
populate the image objects in place.
|
|
609
|
+
|
|
610
|
+
'images' should be a list of dicts with the field 'file_name' containing
|
|
611
|
+
a relative path (relative to 'image_base').
|
|
612
|
+
"""
|
|
613
|
+
|
|
614
|
+
if options is None:
|
|
615
|
+
options = ReadExifOptions()
|
|
616
|
+
|
|
617
|
+
if options.n_workers == 1:
|
|
618
|
+
|
|
619
|
+
results = []
|
|
620
|
+
for im in tqdm(images):
|
|
621
|
+
results.append(_populate_exif_data(im,image_base,options))
|
|
622
|
+
|
|
623
|
+
else:
|
|
624
|
+
|
|
625
|
+
pool = None
|
|
626
|
+
try:
|
|
627
|
+
if options.use_threads:
|
|
628
|
+
print('Starting parallel thread pool with {} workers'.format(options.n_workers))
|
|
629
|
+
pool = ThreadPool(options.n_workers)
|
|
630
|
+
else:
|
|
631
|
+
print('Starting parallel process pool with {} workers'.format(options.n_workers))
|
|
632
|
+
pool = Pool(options.n_workers)
|
|
633
|
+
|
|
634
|
+
results = list(tqdm(pool.imap(partial(_populate_exif_data,image_base=image_base,
|
|
635
|
+
options=options),images),total=len(images)))
|
|
636
|
+
finally:
|
|
637
|
+
if pool is not None:
|
|
638
|
+
pool.close()
|
|
639
|
+
pool.join()
|
|
640
|
+
print('Pool closed and joined for EXIF extraction')
|
|
641
|
+
|
|
642
|
+
return results
|
|
643
|
+
|
|
644
|
+
|
|
645
|
+
def _write_exif_results(results,output_file):
|
|
646
|
+
"""
|
|
647
|
+
Write EXIF information to [output_file].
|
|
648
|
+
|
|
649
|
+
'results' is a list of dicts with fields 'exif_tags' and 'file_name'.
|
|
650
|
+
|
|
651
|
+
Writes to .csv or .json depending on the extension of 'output_file'.
|
|
652
|
+
"""
|
|
653
|
+
|
|
654
|
+
if output_file.endswith('.json'):
|
|
655
|
+
|
|
656
|
+
with open(output_file,'w') as f:
|
|
657
|
+
json.dump(results,f,indent=1,default=str)
|
|
658
|
+
|
|
659
|
+
elif output_file.endswith('.csv'):
|
|
660
|
+
|
|
661
|
+
# Find all EXIF tags that exist in any image
|
|
662
|
+
all_keys = set()
|
|
663
|
+
for im in results:
|
|
664
|
+
|
|
665
|
+
keys_this_image = set()
|
|
666
|
+
exif_tags = im['exif_tags']
|
|
667
|
+
file_name = im['file_name']
|
|
668
|
+
for tag in exif_tags:
|
|
669
|
+
tag_name = tag[1]
|
|
670
|
+
assert tag_name not in keys_this_image, \
|
|
671
|
+
'Error: tag {} appears twice in image {}'.format(
|
|
672
|
+
tag_name,file_name)
|
|
673
|
+
all_keys.add(tag_name)
|
|
674
|
+
|
|
675
|
+
# ...for each tag in this image
|
|
676
|
+
|
|
677
|
+
# ...for each image
|
|
678
|
+
|
|
679
|
+
all_keys = sorted(list(all_keys))
|
|
680
|
+
|
|
681
|
+
header = ['File Name']
|
|
682
|
+
header.extend(all_keys)
|
|
683
|
+
|
|
684
|
+
import csv
|
|
685
|
+
with open(output_file,'w') as csvfile:
|
|
686
|
+
|
|
687
|
+
writer = csv.writer(csvfile)
|
|
688
|
+
|
|
689
|
+
# Write header
|
|
690
|
+
writer.writerow(header)
|
|
691
|
+
|
|
692
|
+
for im in results:
|
|
693
|
+
|
|
694
|
+
row = [im['file_name']]
|
|
695
|
+
kvp_this_image = {tag[1]:tag[2] for tag in im['exif_tags']}
|
|
696
|
+
|
|
697
|
+
for i_key,key in enumerate(all_keys):
|
|
698
|
+
value = ''
|
|
699
|
+
if key in kvp_this_image:
|
|
700
|
+
value = kvp_this_image[key]
|
|
701
|
+
row.append(value)
|
|
702
|
+
# ...for each key that *might* be present in this image
|
|
703
|
+
|
|
704
|
+
assert len(row) == len(header)
|
|
705
|
+
|
|
706
|
+
writer.writerow(row)
|
|
707
|
+
|
|
708
|
+
# ...for each image
|
|
709
|
+
|
|
710
|
+
# ...with open()
|
|
711
|
+
|
|
712
|
+
else:
|
|
713
|
+
|
|
714
|
+
raise ValueError('Could not determine output type from file {}'.format(
|
|
715
|
+
output_file))
|
|
716
|
+
|
|
717
|
+
# ...if we're writing to .json/.csv
|
|
718
|
+
|
|
719
|
+
print('Wrote results to {}'.format(output_file))
|
|
720
|
+
|
|
721
|
+
# ..._write_exif_results(...)
|
|
722
|
+
|
|
723
|
+
|
|
724
|
+
def read_exif_from_folder(input_folder,
|
|
725
|
+
output_file=None,
|
|
726
|
+
options=None,
|
|
727
|
+
filenames=None,
|
|
728
|
+
recursive=True):
|
|
729
|
+
"""
|
|
730
|
+
Read EXIF data for a folder of images.
|
|
731
|
+
|
|
732
|
+
Args:
|
|
733
|
+
input_folder (str): folder to process; if this is None, [filenames] should be a list of absolute
|
|
734
|
+
paths
|
|
735
|
+
output_file (str, optional): .json file to which we should write results; if this is None, results
|
|
736
|
+
are returned but not written to disk
|
|
737
|
+
options (ReadExifOptions, optional): parameters controlling metadata extraction
|
|
738
|
+
filenames (list, optional): allowlist of relative filenames (if [input_folder] is not None) or
|
|
739
|
+
a list of absolute filenames (if [input_folder] is None)
|
|
740
|
+
recursive (bool, optional): whether to recurse into [input_folder], not relevant if [input_folder]
|
|
741
|
+
is None.
|
|
742
|
+
|
|
743
|
+
Returns:
|
|
744
|
+
list: list of dicts, each of which contains EXIF information for one images. Fields include at least:
|
|
745
|
+
* 'file_name': the relative path to the image
|
|
746
|
+
* 'exif_tags': a dict of EXIF tags whose exact format depends on [options.processing_library].
|
|
747
|
+
* 'status' and 'error': only populated when reading EXIF information for an image fails
|
|
748
|
+
"""
|
|
749
|
+
|
|
750
|
+
if options is None:
|
|
751
|
+
options = ReadExifOptions()
|
|
752
|
+
|
|
753
|
+
# Validate options
|
|
754
|
+
if options.tags_to_include is not None:
|
|
755
|
+
assert options.tags_to_exclude is None, \
|
|
756
|
+
"tags_to_include and tags_to_exclude are incompatible"
|
|
757
|
+
if options.tags_to_exclude is not None:
|
|
758
|
+
assert options.tags_to_include is None, \
|
|
759
|
+
"tags_to_include and tags_to_exclude are incompatible"
|
|
760
|
+
|
|
761
|
+
if input_folder is None:
|
|
762
|
+
input_folder = ''
|
|
763
|
+
if len(input_folder) > 0:
|
|
764
|
+
assert os.path.isdir(input_folder), \
|
|
765
|
+
'{} is not a valid folder'.format(input_folder)
|
|
766
|
+
|
|
767
|
+
assert (len(input_folder) > 0) or (filenames is not None), \
|
|
768
|
+
'Must specify either a folder or a list of files'
|
|
769
|
+
|
|
770
|
+
if output_file is not None:
|
|
771
|
+
|
|
772
|
+
assert output_file.lower().endswith('.json') or output_file.lower().endswith('.csv'), \
|
|
773
|
+
'I only know how to write results to .json or .csv'
|
|
774
|
+
|
|
775
|
+
try:
|
|
776
|
+
with open(output_file, 'a') as f:
|
|
777
|
+
if not f.writable():
|
|
778
|
+
raise OSError('File not writable')
|
|
779
|
+
except Exception:
|
|
780
|
+
print('Could not write to file {}'.format(output_file))
|
|
781
|
+
raise
|
|
782
|
+
|
|
783
|
+
if options.processing_library == 'exiftool':
|
|
784
|
+
assert is_executable(options.exiftool_command_name), 'exiftool not available'
|
|
785
|
+
|
|
786
|
+
if filenames is None:
|
|
787
|
+
images = _create_image_objects(input_folder,recursive=recursive)
|
|
788
|
+
else:
|
|
789
|
+
assert isinstance(filenames,list)
|
|
790
|
+
images = _create_image_objects(filenames)
|
|
791
|
+
|
|
792
|
+
results = _populate_exif_for_images(input_folder,images,options)
|
|
793
|
+
|
|
794
|
+
if output_file is not None:
|
|
795
|
+
try:
|
|
796
|
+
_write_exif_results(results,output_file)
|
|
797
|
+
except Exception as e:
|
|
798
|
+
if not options.allow_write_error:
|
|
799
|
+
raise
|
|
800
|
+
else:
|
|
801
|
+
print('Warning: error serializing EXIF data: {}'.format(str(e)))
|
|
802
|
+
|
|
803
|
+
return results
|
|
804
|
+
|
|
805
|
+
# ...read_exif_from_folder(...)
|
|
806
|
+
|
|
807
|
+
|
|
808
|
+
def exif_results_to_cct(exif_results,cct_output_file=None,options=None):
|
|
809
|
+
"""
|
|
810
|
+
Given the EXIF results for a folder of images read via read_exif_from_folder,
|
|
811
|
+
create a COCO Camera Traps .json file that has no annotations, but
|
|
812
|
+
attaches image filenames to locations and datetimes.
|
|
813
|
+
|
|
814
|
+
Args:
|
|
815
|
+
exif_results (str or list): the filename (or loaded list) containing the results
|
|
816
|
+
from read_exif_from_folder
|
|
817
|
+
cct_output_file (str, optional): the filename to which we should write
|
|
818
|
+
COCO-Camera-Traps-formatted data
|
|
819
|
+
options (ExifResultsToCCTOptions, optional): options guiding the generation
|
|
820
|
+
of the CCT file, particularly location mapping
|
|
821
|
+
|
|
822
|
+
Returns:
|
|
823
|
+
dict: a COCO Camera Traps dict (with no annotations).
|
|
824
|
+
"""
|
|
825
|
+
|
|
826
|
+
if options is None:
|
|
827
|
+
options = ExifResultsToCCTOptions()
|
|
828
|
+
|
|
829
|
+
if isinstance(exif_results,str):
|
|
830
|
+
print('Reading EXIF results from {}'.format(exif_results))
|
|
831
|
+
with open(exif_results,'r') as f:
|
|
832
|
+
exif_results = json.load(f)
|
|
833
|
+
else:
|
|
834
|
+
assert isinstance(exif_results,list)
|
|
835
|
+
|
|
836
|
+
now = datetime.now()
|
|
837
|
+
|
|
838
|
+
image_info = []
|
|
839
|
+
|
|
840
|
+
images_without_datetime = []
|
|
841
|
+
images_with_invalid_datetime = []
|
|
842
|
+
|
|
843
|
+
# exif_result = exif_results[0]
|
|
844
|
+
for exif_result in tqdm(exif_results):
|
|
845
|
+
|
|
846
|
+
im = {}
|
|
847
|
+
|
|
848
|
+
# By default we assume that each leaf-node folder is a location
|
|
849
|
+
if options.filename_to_location_function is None:
|
|
850
|
+
im['location'] = 'unknown'
|
|
851
|
+
else:
|
|
852
|
+
im['location'] = options.filename_to_location_function(exif_result['file_name'])
|
|
853
|
+
|
|
854
|
+
im['file_name'] = exif_result['file_name']
|
|
855
|
+
im['id'] = im['file_name']
|
|
856
|
+
|
|
857
|
+
if ('exif_tags' not in exif_result) or (exif_result['exif_tags'] is None) or \
|
|
858
|
+
(options.exif_datetime_tag not in exif_result['exif_tags']):
|
|
859
|
+
exif_dt = None
|
|
860
|
+
else:
|
|
861
|
+
exif_dt = exif_result['exif_tags'][options.exif_datetime_tag]
|
|
862
|
+
exif_dt = parse_exif_datetime_string(exif_dt)
|
|
863
|
+
if exif_dt is None:
|
|
864
|
+
im['datetime'] = None
|
|
865
|
+
images_without_datetime.append(im['file_name'])
|
|
866
|
+
else:
|
|
867
|
+
dt = exif_dt
|
|
868
|
+
|
|
869
|
+
# An image from the future (or within the last 24 hours) is invalid
|
|
870
|
+
if (now - dt).total_seconds() <= 1*24*60*60:
|
|
871
|
+
print('Warning: datetime for {} is {}'.format(
|
|
872
|
+
im['file_name'],dt))
|
|
873
|
+
im['datetime'] = None
|
|
874
|
+
images_with_invalid_datetime.append(im['file_name'])
|
|
875
|
+
|
|
876
|
+
# An image from before the dawn of time is also invalid
|
|
877
|
+
elif dt.year < options.min_valid_timestamp_year:
|
|
878
|
+
print('Warning: datetime for {} is {}'.format(
|
|
879
|
+
im['file_name'],dt))
|
|
880
|
+
im['datetime'] = None
|
|
881
|
+
images_with_invalid_datetime.append(im['file_name'])
|
|
882
|
+
|
|
883
|
+
else:
|
|
884
|
+
im['datetime'] = dt
|
|
885
|
+
|
|
886
|
+
image_info.append(im)
|
|
887
|
+
|
|
888
|
+
# ...for each exif image result
|
|
889
|
+
|
|
890
|
+
print('Parsed EXIF datetime information, unable to parse EXIF date from {} of {} images'.format(
|
|
891
|
+
len(images_without_datetime),len(exif_results)))
|
|
892
|
+
|
|
893
|
+
d = {}
|
|
894
|
+
d['info'] = {}
|
|
895
|
+
d['images'] = image_info
|
|
896
|
+
d['annotations'] = []
|
|
897
|
+
d['categories'] = []
|
|
898
|
+
|
|
899
|
+
if cct_output_file is not None:
|
|
900
|
+
write_object_with_serialized_datetimes(d,cct_output_file)
|
|
901
|
+
|
|
902
|
+
return d
|
|
903
|
+
|
|
904
|
+
# ...exif_results_to_cct(...)
|
|
905
|
+
|
|
906
|
+
|
|
907
|
+
#%% Interactive driver
|
|
908
|
+
|
|
909
|
+
if False:
|
|
910
|
+
|
|
911
|
+
#%%
|
|
912
|
+
|
|
913
|
+
input_folder = r'C:\temp\md-name-testing'
|
|
914
|
+
output_file = None # r'C:\temp\md-name-testing\exif.json'
|
|
915
|
+
options = ReadExifOptions()
|
|
916
|
+
options.verbose = False
|
|
917
|
+
options.n_workers = 10
|
|
918
|
+
options.use_threads = False
|
|
919
|
+
options.processing_library = 'pil'
|
|
920
|
+
# options.processing_library = 'exiftool'
|
|
921
|
+
options.tags_to_include = ['DateTime','Model','Make','ExifImageWidth',
|
|
922
|
+
'ExifImageHeight','DateTime','DateTimeOriginal','Orientation']
|
|
923
|
+
# options.tags_to_exclude = ['MakerNote']
|
|
924
|
+
|
|
925
|
+
results = read_exif_from_folder(input_folder,output_file,options)
|
|
926
|
+
|
|
927
|
+
#%%
|
|
928
|
+
|
|
929
|
+
with open(output_file,'r') as f:
|
|
930
|
+
d = json.load(f)
|
|
931
|
+
|
|
932
|
+
|
|
933
|
+
#%% Command-line driver
|
|
934
|
+
|
|
935
|
+
def main(): # noqa
|
|
936
|
+
|
|
937
|
+
options = ReadExifOptions()
|
|
938
|
+
|
|
939
|
+
parser = argparse.ArgumentParser(description=('Read EXIF information from all images in' + \
|
|
940
|
+
' a folder, and write the results to .csv or .json'))
|
|
941
|
+
|
|
942
|
+
parser.add_argument('input_folder', type=str,
|
|
943
|
+
help='Folder of images from which we should read EXIF information')
|
|
944
|
+
parser.add_argument('output_file', type=str,
|
|
945
|
+
help='Output file (.json) to which we should write EXIF information')
|
|
946
|
+
parser.add_argument('--n_workers', type=int, default=1,
|
|
947
|
+
help='Number of concurrent workers to use (defaults to 1)')
|
|
948
|
+
parser.add_argument('--use_threads', action='store_true',
|
|
949
|
+
help='Use threads (instead of processes) for multitasking')
|
|
950
|
+
parser.add_argument('--processing_library', type=str, default=options.processing_library,
|
|
951
|
+
help='Processing library (exif or pil)')
|
|
952
|
+
|
|
953
|
+
if len(sys.argv[1:]) == 0:
|
|
954
|
+
parser.print_help()
|
|
955
|
+
parser.exit()
|
|
956
|
+
|
|
957
|
+
args = parser.parse_args()
|
|
958
|
+
args_to_object(args, options)
|
|
959
|
+
options.processing_library = options.processing_library.lower()
|
|
960
|
+
|
|
961
|
+
read_exif_from_folder(args.input_folder,args.output_file,options)
|
|
962
|
+
|
|
963
|
+
if __name__ == '__main__':
|
|
964
|
+
main()
|