megadetector 10.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (147) hide show
  1. megadetector/__init__.py +0 -0
  2. megadetector/api/__init__.py +0 -0
  3. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
  7. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  8. megadetector/classification/__init__.py +0 -0
  9. megadetector/classification/aggregate_classifier_probs.py +108 -0
  10. megadetector/classification/analyze_failed_images.py +227 -0
  11. megadetector/classification/cache_batchapi_outputs.py +198 -0
  12. megadetector/classification/create_classification_dataset.py +626 -0
  13. megadetector/classification/crop_detections.py +516 -0
  14. megadetector/classification/csv_to_json.py +226 -0
  15. megadetector/classification/detect_and_crop.py +853 -0
  16. megadetector/classification/efficientnet/__init__.py +9 -0
  17. megadetector/classification/efficientnet/model.py +415 -0
  18. megadetector/classification/efficientnet/utils.py +608 -0
  19. megadetector/classification/evaluate_model.py +520 -0
  20. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  21. megadetector/classification/json_to_azcopy_list.py +63 -0
  22. megadetector/classification/json_validator.py +696 -0
  23. megadetector/classification/map_classification_categories.py +276 -0
  24. megadetector/classification/merge_classification_detection_output.py +509 -0
  25. megadetector/classification/prepare_classification_script.py +194 -0
  26. megadetector/classification/prepare_classification_script_mc.py +228 -0
  27. megadetector/classification/run_classifier.py +287 -0
  28. megadetector/classification/save_mislabeled.py +110 -0
  29. megadetector/classification/train_classifier.py +827 -0
  30. megadetector/classification/train_classifier_tf.py +725 -0
  31. megadetector/classification/train_utils.py +323 -0
  32. megadetector/data_management/__init__.py +0 -0
  33. megadetector/data_management/animl_to_md.py +161 -0
  34. megadetector/data_management/annotations/__init__.py +0 -0
  35. megadetector/data_management/annotations/annotation_constants.py +33 -0
  36. megadetector/data_management/camtrap_dp_to_coco.py +270 -0
  37. megadetector/data_management/cct_json_utils.py +566 -0
  38. megadetector/data_management/cct_to_md.py +184 -0
  39. megadetector/data_management/cct_to_wi.py +293 -0
  40. megadetector/data_management/coco_to_labelme.py +284 -0
  41. megadetector/data_management/coco_to_yolo.py +702 -0
  42. megadetector/data_management/databases/__init__.py +0 -0
  43. megadetector/data_management/databases/add_width_and_height_to_db.py +107 -0
  44. megadetector/data_management/databases/combine_coco_camera_traps_files.py +210 -0
  45. megadetector/data_management/databases/integrity_check_json_db.py +528 -0
  46. megadetector/data_management/databases/subset_json_db.py +195 -0
  47. megadetector/data_management/generate_crops_from_cct.py +200 -0
  48. megadetector/data_management/get_image_sizes.py +164 -0
  49. megadetector/data_management/labelme_to_coco.py +559 -0
  50. megadetector/data_management/labelme_to_yolo.py +349 -0
  51. megadetector/data_management/lila/__init__.py +0 -0
  52. megadetector/data_management/lila/create_lila_blank_set.py +556 -0
  53. megadetector/data_management/lila/create_lila_test_set.py +187 -0
  54. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  55. megadetector/data_management/lila/download_lila_subset.py +182 -0
  56. megadetector/data_management/lila/generate_lila_per_image_labels.py +777 -0
  57. megadetector/data_management/lila/get_lila_annotation_counts.py +174 -0
  58. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  59. megadetector/data_management/lila/lila_common.py +319 -0
  60. megadetector/data_management/lila/test_lila_metadata_urls.py +164 -0
  61. megadetector/data_management/mewc_to_md.py +344 -0
  62. megadetector/data_management/ocr_tools.py +873 -0
  63. megadetector/data_management/read_exif.py +964 -0
  64. megadetector/data_management/remap_coco_categories.py +195 -0
  65. megadetector/data_management/remove_exif.py +156 -0
  66. megadetector/data_management/rename_images.py +194 -0
  67. megadetector/data_management/resize_coco_dataset.py +663 -0
  68. megadetector/data_management/speciesnet_to_md.py +41 -0
  69. megadetector/data_management/wi_download_csv_to_coco.py +247 -0
  70. megadetector/data_management/yolo_output_to_md_output.py +594 -0
  71. megadetector/data_management/yolo_to_coco.py +876 -0
  72. megadetector/data_management/zamba_to_md.py +188 -0
  73. megadetector/detection/__init__.py +0 -0
  74. megadetector/detection/change_detection.py +840 -0
  75. megadetector/detection/process_video.py +479 -0
  76. megadetector/detection/pytorch_detector.py +1451 -0
  77. megadetector/detection/run_detector.py +1267 -0
  78. megadetector/detection/run_detector_batch.py +2159 -0
  79. megadetector/detection/run_inference_with_yolov5_val.py +1314 -0
  80. megadetector/detection/run_md_and_speciesnet.py +1494 -0
  81. megadetector/detection/run_tiled_inference.py +1038 -0
  82. megadetector/detection/tf_detector.py +209 -0
  83. megadetector/detection/video_utils.py +1379 -0
  84. megadetector/postprocessing/__init__.py +0 -0
  85. megadetector/postprocessing/add_max_conf.py +72 -0
  86. megadetector/postprocessing/categorize_detections_by_size.py +166 -0
  87. megadetector/postprocessing/classification_postprocessing.py +1752 -0
  88. megadetector/postprocessing/combine_batch_outputs.py +249 -0
  89. megadetector/postprocessing/compare_batch_results.py +2110 -0
  90. megadetector/postprocessing/convert_output_format.py +403 -0
  91. megadetector/postprocessing/create_crop_folder.py +629 -0
  92. megadetector/postprocessing/detector_calibration.py +570 -0
  93. megadetector/postprocessing/generate_csv_report.py +522 -0
  94. megadetector/postprocessing/load_api_results.py +223 -0
  95. megadetector/postprocessing/md_to_coco.py +428 -0
  96. megadetector/postprocessing/md_to_labelme.py +351 -0
  97. megadetector/postprocessing/md_to_wi.py +41 -0
  98. megadetector/postprocessing/merge_detections.py +392 -0
  99. megadetector/postprocessing/postprocess_batch_results.py +2077 -0
  100. megadetector/postprocessing/remap_detection_categories.py +226 -0
  101. megadetector/postprocessing/render_detection_confusion_matrix.py +677 -0
  102. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +206 -0
  103. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +82 -0
  104. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1665 -0
  105. megadetector/postprocessing/separate_detections_into_folders.py +795 -0
  106. megadetector/postprocessing/subset_json_detector_output.py +964 -0
  107. megadetector/postprocessing/top_folders_to_bottom.py +238 -0
  108. megadetector/postprocessing/validate_batch_results.py +332 -0
  109. megadetector/taxonomy_mapping/__init__.py +0 -0
  110. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  111. megadetector/taxonomy_mapping/map_new_lila_datasets.py +213 -0
  112. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +165 -0
  113. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +543 -0
  114. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  115. megadetector/taxonomy_mapping/simple_image_download.py +224 -0
  116. megadetector/taxonomy_mapping/species_lookup.py +1008 -0
  117. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  118. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  119. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  120. megadetector/tests/__init__.py +0 -0
  121. megadetector/tests/test_nms_synthetic.py +335 -0
  122. megadetector/utils/__init__.py +0 -0
  123. megadetector/utils/ct_utils.py +1857 -0
  124. megadetector/utils/directory_listing.py +199 -0
  125. megadetector/utils/extract_frames_from_video.py +307 -0
  126. megadetector/utils/gpu_test.py +125 -0
  127. megadetector/utils/md_tests.py +2072 -0
  128. megadetector/utils/path_utils.py +2832 -0
  129. megadetector/utils/process_utils.py +172 -0
  130. megadetector/utils/split_locations_into_train_val.py +237 -0
  131. megadetector/utils/string_utils.py +234 -0
  132. megadetector/utils/url_utils.py +825 -0
  133. megadetector/utils/wi_platform_utils.py +968 -0
  134. megadetector/utils/wi_taxonomy_utils.py +1759 -0
  135. megadetector/utils/write_html_image_list.py +239 -0
  136. megadetector/visualization/__init__.py +0 -0
  137. megadetector/visualization/plot_utils.py +309 -0
  138. megadetector/visualization/render_images_with_thumbnails.py +243 -0
  139. megadetector/visualization/visualization_utils.py +1940 -0
  140. megadetector/visualization/visualize_db.py +630 -0
  141. megadetector/visualization/visualize_detector_output.py +479 -0
  142. megadetector/visualization/visualize_video_output.py +705 -0
  143. megadetector-10.0.13.dist-info/METADATA +134 -0
  144. megadetector-10.0.13.dist-info/RECORD +147 -0
  145. megadetector-10.0.13.dist-info/WHEEL +5 -0
  146. megadetector-10.0.13.dist-info/licenses/LICENSE +19 -0
  147. megadetector-10.0.13.dist-info/top_level.txt +1 -0
@@ -0,0 +1,349 @@
1
+ """
2
+
3
+ labelme_to_yolo.py
4
+
5
+ Create YOLO .txt files in a folder containing labelme .json files.
6
+
7
+ """
8
+
9
+ #%% Imports
10
+
11
+ import os
12
+ import json
13
+ import argparse
14
+
15
+ from multiprocessing.pool import Pool, ThreadPool
16
+ from functools import partial
17
+ from tqdm import tqdm
18
+
19
+ from megadetector.utils.path_utils import recursive_file_list
20
+ from megadetector.utils.ct_utils import write_json
21
+
22
+
23
+ #%% Main function
24
+
25
+ def labelme_file_to_yolo_file(labelme_file,
26
+ category_name_to_category_id,
27
+ yolo_file=None,
28
+ required_token=None,
29
+ overwrite_behavior='overwrite'):
30
+ """
31
+ Convert the single .json file labelme_file to yolo format, writing the results to the text
32
+ file yolo_file (defaults to s/json/txt).
33
+
34
+ If required_token is not None and the dict in labelme_file does not contain the key [required_token],
35
+ this function no-ops (i.e., does not generate a YOLO file).
36
+
37
+ overwrite_behavior should be 'skip' or 'overwrite' (default).
38
+
39
+ Args:
40
+ labelme_file (str): .json file to convert
41
+ category_name_to_category_id (dict): category name --> ID mapping
42
+ yolo_file (str, optional): output .txt file defaults to s/json/txt
43
+ required_token (str, optional): only process filenames containing this token
44
+ overwrite_behavior (str, optional): "skip" or "overwrite"
45
+ """
46
+
47
+ result = {}
48
+ result['labelme_file'] = labelme_file
49
+ result['status'] = 'unknown'
50
+
51
+ assert os.path.isfile(labelme_file), 'Could not find labelme .json file {}'.format(labelme_file)
52
+ assert labelme_file.endswith('.json'), 'Illegal labelme .json file {}'.format(labelme_file)
53
+
54
+ if yolo_file is None:
55
+ yolo_file = os.path.splitext(labelme_file)[0] + '.txt'
56
+
57
+ if os.path.isfile(yolo_file):
58
+ if overwrite_behavior == 'skip':
59
+ result['status'] = 'skip-exists'
60
+ return result
61
+ else:
62
+ assert overwrite_behavior == 'overwrite', \
63
+ 'Unrecognized overwrite behavior {}'.format(overwrite_behavior)
64
+
65
+ with open(labelme_file,'r') as f:
66
+ labelme_data = json.load(f)
67
+
68
+ if required_token is not None and required_token not in labelme_data:
69
+ result['status'] = 'skip-no-required-token'
70
+ return result
71
+
72
+ im_height = labelme_data['imageHeight']
73
+ im_width = labelme_data['imageWidth']
74
+
75
+ yolo_lines = []
76
+
77
+ for shape in labelme_data['shapes']:
78
+
79
+ assert shape['shape_type'] == 'rectangle', \
80
+ 'I only know how to convert rectangles to YOLO format'
81
+ assert shape['label'] in category_name_to_category_id, \
82
+ 'Category {} not in category mapping'.format(shape['label'])
83
+ assert len(shape['points']) == 2, 'Illegal rectangle'
84
+ category_id = category_name_to_category_id[shape['label']]
85
+
86
+ p0 = shape['points'][0]
87
+ p1 = shape['points'][1]
88
+
89
+ # Labelme: [[x0,y0],[x1,y1]] (arbitrarily sorted) (absolute coordinates)
90
+ #
91
+ # YOLO: [class, x_center, y_center, width, height] (normalized coordinates)
92
+ minx_abs = min(p0[0],p1[0])
93
+ maxx_abs = max(p0[0],p1[0])
94
+ miny_abs = min(p0[1],p1[1])
95
+ maxy_abs = max(p0[1],p1[1])
96
+
97
+ if (minx_abs >= (im_width-1)) or (maxx_abs <= 0) or \
98
+ (miny_abs >= (im_height-1)) or (maxy_abs <= 0):
99
+ print('Skipping invalid shape in {}'.format(labelme_file))
100
+ continue
101
+
102
+ # Clip to [0,1]... it's not obvious that the YOLO format doesn't allow bounding
103
+ # boxes to extend outside the image, but YOLOv5 and YOLOv8 get sad about boxes
104
+ # that extend outside the image.
105
+ maxx_abs = min(maxx_abs,im_width-1)
106
+ maxy_abs = min(maxy_abs,im_height-1)
107
+ minx_abs = max(minx_abs,0.0)
108
+ miny_abs = max(miny_abs,0.0)
109
+
110
+ # Handle degenerate cases where image is one pixel wide
111
+ if im_width == 1:
112
+ minx_rel = 0.0
113
+ maxx_rel = 0.0
114
+ else:
115
+ minx_rel = minx_abs / (im_width-1)
116
+ maxx_rel = maxx_abs / (im_width-1)
117
+
118
+ # Handle degenerate cases where image is one pixel tall
119
+ if im_height == 1:
120
+ miny_rel = 0.0
121
+ maxy_rel = 0.0
122
+ else:
123
+ miny_rel = miny_abs / (im_height-1)
124
+ maxy_rel = maxy_abs / (im_height-1)
125
+
126
+ assert maxx_rel >= minx_rel
127
+ assert maxy_rel >= miny_rel
128
+
129
+ xcenter_rel = (maxx_rel + minx_rel) / 2.0
130
+ ycenter_rel = (maxy_rel + miny_rel) / 2.0
131
+ w_rel = maxx_rel - minx_rel
132
+ h_rel = maxy_rel - miny_rel
133
+
134
+ yolo_line = '{} {:.3f} {:.3f} {:.3f} {:.3f}'.format(category_id,
135
+ xcenter_rel, ycenter_rel, w_rel, h_rel)
136
+ yolo_lines.append(yolo_line)
137
+
138
+ # ...for each shape
139
+
140
+ with open(yolo_file,'w') as f:
141
+ for s in yolo_lines:
142
+ f.write(s + '\n')
143
+
144
+ result['status'] = 'converted'
145
+ return result
146
+
147
+
148
+ def labelme_folder_to_yolo(labelme_folder,
149
+ category_name_to_category_id=None,
150
+ required_token=None,
151
+ overwrite_behavior='overwrite',
152
+ relative_filenames_to_convert=None,
153
+ n_workers=1,
154
+ use_threads=True):
155
+ """
156
+ Given a folder with images and labelme .json files, convert the .json files
157
+ to YOLO .txt format. If category_name_to_category_id is None, first reads
158
+ all the labels in the folder to build a zero-indexed name --> ID mapping.
159
+
160
+ If required_token is not None and a labelme_file does not contain the key [required_token],
161
+ it won't be converted. Typically used to specify a field that indicates which files have
162
+ been reviewed.
163
+
164
+ If relative_filenames_to_convert is not None, this should be a list of .json (not image)
165
+ files that should get converted, relative to the base folder.
166
+
167
+ overwrite_behavior should be 'skip' or 'overwrite' (default).
168
+
169
+ returns a dict with:
170
+ 'category_name_to_category_id', whether it was passed in or constructed
171
+ 'image_results': a list of results for each image (converted, skipped, error)
172
+
173
+ Args:
174
+ labelme_folder (str): folder of .json files to convert
175
+ category_name_to_category_id (dict): category name --> ID mapping
176
+ required_token (str, optional): only process filenames containing this token
177
+ overwrite_behavior (str, optional): "skip" or "overwrite"
178
+ relative_filenames_to_convert (list of str, optional): only process filenames on this list
179
+ n_workers (int, optional): parallelism level
180
+ use_threads (bool, optional): whether to use threads (True) or processes (False) for
181
+ parallelism
182
+ """
183
+
184
+ if relative_filenames_to_convert is not None:
185
+ labelme_files_relative = relative_filenames_to_convert
186
+ assert all([fn.endswith('.json') for fn in labelme_files_relative]), \
187
+ 'relative_filenames_to_convert contains non-json files'
188
+ else:
189
+ labelme_files_relative = recursive_file_list(labelme_folder,return_relative_paths=True)
190
+ labelme_files_relative = [fn for fn in labelme_files_relative if fn.endswith('.json')]
191
+
192
+ if required_token is None:
193
+ valid_labelme_files_relative = labelme_files_relative
194
+ else:
195
+ valid_labelme_files_relative = []
196
+
197
+ # fn_relative = labelme_files_relative[-1]
198
+ for fn_relative in labelme_files_relative:
199
+
200
+ fn_abs = os.path.join(labelme_folder,fn_relative)
201
+
202
+ with open(fn_abs,'r') as f:
203
+ labelme_data = json.load(f)
204
+ if required_token not in labelme_data:
205
+ continue
206
+
207
+ valid_labelme_files_relative.append(fn_relative)
208
+
209
+ print('{} of {} files are valid'.format(len(valid_labelme_files_relative),
210
+ len(labelme_files_relative)))
211
+
212
+ del labelme_files_relative
213
+
214
+ if category_name_to_category_id is None:
215
+
216
+ category_name_to_category_id = {}
217
+
218
+ for fn_relative in valid_labelme_files_relative:
219
+
220
+ fn_abs = os.path.join(labelme_folder,fn_relative)
221
+ with open(fn_abs,'r') as f:
222
+ labelme_data = json.load(f)
223
+ for shape in labelme_data['shapes']:
224
+ label = shape['label']
225
+ if label not in category_name_to_category_id:
226
+ category_name_to_category_id[label] = len(category_name_to_category_id)
227
+ # ...for each file
228
+
229
+ # ...if we need to build a category mapping
230
+
231
+ image_results = []
232
+
233
+ n_workers = min(n_workers,len(valid_labelme_files_relative))
234
+
235
+ if n_workers <= 1:
236
+ for fn_relative in tqdm(valid_labelme_files_relative):
237
+
238
+ fn_abs = os.path.join(labelme_folder,fn_relative)
239
+ image_result = labelme_file_to_yolo_file(fn_abs,
240
+ category_name_to_category_id,
241
+ yolo_file=None,
242
+ required_token=required_token,
243
+ overwrite_behavior=overwrite_behavior)
244
+ image_results.append(image_result)
245
+ # ...for each file
246
+ else:
247
+ pool = None
248
+ try:
249
+ if use_threads:
250
+ pool = ThreadPool(n_workers)
251
+ else:
252
+ pool = Pool(n_workers)
253
+
254
+ valid_labelme_files_abs = [os.path.join(labelme_folder,fn_relative) for \
255
+ fn_relative in valid_labelme_files_relative]
256
+
257
+ image_results = list(tqdm(pool.imap(
258
+ partial(labelme_file_to_yolo_file,
259
+ category_name_to_category_id=category_name_to_category_id,
260
+ yolo_file=None,
261
+ required_token=required_token,
262
+ overwrite_behavior=overwrite_behavior),
263
+ valid_labelme_files_abs),
264
+ total=len(valid_labelme_files_abs)))
265
+ finally:
266
+ if pool is not None:
267
+ pool.close()
268
+ pool.join()
269
+ print('Pool closed and joined for labelme conversion to YOLO')
270
+
271
+ assert len(valid_labelme_files_relative) == len(image_results)
272
+
273
+ print('Converted {} labelme .json files to YOLO'.format(
274
+ len(valid_labelme_files_relative)))
275
+
276
+ labelme_to_yolo_results = {}
277
+ labelme_to_yolo_results['category_name_to_category_id'] = category_name_to_category_id
278
+ labelme_to_yolo_results['image_results'] = image_results
279
+
280
+ return labelme_to_yolo_results
281
+
282
+ # ...def labelme_folder_to_yolo(...)
283
+
284
+
285
+ #%% Command-line driver
286
+
287
+ def main():
288
+ """
289
+ Command-line interface to convert Labelme JSON files to YOLO format
290
+ """
291
+
292
+ parser = argparse.ArgumentParser(
293
+ description='Convert a folder of Labelme .json files to YOLO .txt format'
294
+ )
295
+ parser.add_argument(
296
+ 'labelme_folder',
297
+ type=str,
298
+ help='Folder of Labelme .json files to convert'
299
+ )
300
+ parser.add_argument(
301
+ '--output_category_file',
302
+ type=str,
303
+ default=None,
304
+ help='Path to save the generated category mapping (.json)'
305
+ )
306
+ parser.add_argument(
307
+ '--required_token',
308
+ type=str,
309
+ default=None,
310
+ help='Only process files containing this token as a key in the Labelme JSON dict'
311
+ )
312
+ parser.add_argument(
313
+ '--overwrite_behavior',
314
+ type=str,
315
+ default='overwrite',
316
+ choices=['skip', 'overwrite'],
317
+ help="Behavior if YOLO .txt files exist (default: 'overwrite')"
318
+ )
319
+ parser.add_argument(
320
+ '--n_workers',
321
+ type=int,
322
+ default=1,
323
+ help='Number of workers for parallel processing (default: 1)'
324
+ )
325
+ parser.add_argument(
326
+ '--use_processes',
327
+ action='store_true',
328
+ help='Use processes instead of threads for parallelization (defaults to threads)'
329
+ )
330
+
331
+ args = parser.parse_args()
332
+
333
+ results = labelme_folder_to_yolo(
334
+ labelme_folder=args.labelme_folder,
335
+ category_name_to_category_id=None,
336
+ required_token=args.required_token,
337
+ overwrite_behavior=args.overwrite_behavior,
338
+ relative_filenames_to_convert=None,
339
+ n_workers=args.n_workers,
340
+ use_threads=(not args.use_processes)
341
+ )
342
+
343
+ if args.output_category_file:
344
+ category_map = results['category_name_to_category_id']
345
+ write_json(args.output_category_file,category_map)
346
+ print(f'Saved category mapping to {args.output_category_file}')
347
+
348
+ if __name__ == '__main__':
349
+ main()
File without changes