inference-models 0.18.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- inference_models/__init__.py +36 -0
- inference_models/configuration.py +72 -0
- inference_models/constants.py +2 -0
- inference_models/entities.py +5 -0
- inference_models/errors.py +137 -0
- inference_models/logger.py +52 -0
- inference_models/model_pipelines/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/core.py +120 -0
- inference_models/model_pipelines/auto_loaders/pipelines_registry.py +36 -0
- inference_models/model_pipelines/face_and_gaze_detection/__init__.py +0 -0
- inference_models/model_pipelines/face_and_gaze_detection/mediapipe_l2cs.py +200 -0
- inference_models/models/__init__.py +0 -0
- inference_models/models/auto_loaders/__init__.py +0 -0
- inference_models/models/auto_loaders/access_manager.py +168 -0
- inference_models/models/auto_loaders/auto_negotiation.py +1329 -0
- inference_models/models/auto_loaders/auto_resolution_cache.py +129 -0
- inference_models/models/auto_loaders/constants.py +7 -0
- inference_models/models/auto_loaders/core.py +1341 -0
- inference_models/models/auto_loaders/dependency_models.py +52 -0
- inference_models/models/auto_loaders/entities.py +57 -0
- inference_models/models/auto_loaders/models_registry.py +497 -0
- inference_models/models/auto_loaders/presentation_utils.py +333 -0
- inference_models/models/auto_loaders/ranking.py +413 -0
- inference_models/models/auto_loaders/utils.py +31 -0
- inference_models/models/base/__init__.py +0 -0
- inference_models/models/base/classification.py +123 -0
- inference_models/models/base/depth_estimation.py +62 -0
- inference_models/models/base/documents_parsing.py +111 -0
- inference_models/models/base/embeddings.py +66 -0
- inference_models/models/base/instance_segmentation.py +87 -0
- inference_models/models/base/keypoints_detection.py +93 -0
- inference_models/models/base/object_detection.py +143 -0
- inference_models/models/base/semantic_segmentation.py +74 -0
- inference_models/models/base/types.py +5 -0
- inference_models/models/clip/__init__.py +0 -0
- inference_models/models/clip/clip_onnx.py +148 -0
- inference_models/models/clip/clip_pytorch.py +104 -0
- inference_models/models/clip/preprocessing.py +162 -0
- inference_models/models/common/__init__.py +0 -0
- inference_models/models/common/cuda.py +30 -0
- inference_models/models/common/model_packages.py +25 -0
- inference_models/models/common/onnx.py +379 -0
- inference_models/models/common/roboflow/__init__.py +0 -0
- inference_models/models/common/roboflow/model_packages.py +361 -0
- inference_models/models/common/roboflow/post_processing.py +436 -0
- inference_models/models/common/roboflow/pre_processing.py +1332 -0
- inference_models/models/common/torch.py +20 -0
- inference_models/models/common/trt.py +266 -0
- inference_models/models/deep_lab_v3_plus/__init__.py +0 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_onnx.py +282 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_torch.py +264 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_trt.py +313 -0
- inference_models/models/depth_anything_v2/__init__.py +0 -0
- inference_models/models/depth_anything_v2/depth_anything_v2_hf.py +77 -0
- inference_models/models/dinov3/__init__.py +0 -0
- inference_models/models/dinov3/dinov3_classification_onnx.py +348 -0
- inference_models/models/dinov3/dinov3_classification_torch.py +323 -0
- inference_models/models/doctr/__init__.py +0 -0
- inference_models/models/doctr/doctr_torch.py +304 -0
- inference_models/models/easy_ocr/__init__.py +0 -0
- inference_models/models/easy_ocr/easy_ocr_torch.py +222 -0
- inference_models/models/florence2/__init__.py +0 -0
- inference_models/models/florence2/florence2_hf.py +897 -0
- inference_models/models/grounding_dino/__init__.py +0 -0
- inference_models/models/grounding_dino/grounding_dino_torch.py +227 -0
- inference_models/models/l2cs/__init__.py +0 -0
- inference_models/models/l2cs/l2cs_onnx.py +216 -0
- inference_models/models/mediapipe_face_detection/__init__.py +0 -0
- inference_models/models/mediapipe_face_detection/face_detection.py +203 -0
- inference_models/models/moondream2/__init__.py +0 -0
- inference_models/models/moondream2/moondream2_hf.py +281 -0
- inference_models/models/owlv2/__init__.py +0 -0
- inference_models/models/owlv2/cache.py +182 -0
- inference_models/models/owlv2/entities.py +112 -0
- inference_models/models/owlv2/owlv2_hf.py +695 -0
- inference_models/models/owlv2/reference_dataset.py +291 -0
- inference_models/models/paligemma/__init__.py +0 -0
- inference_models/models/paligemma/paligemma_hf.py +209 -0
- inference_models/models/perception_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/perception_encoder_pytorch.py +197 -0
- inference_models/models/perception_encoder/vision_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/vision_encoder/config.py +160 -0
- inference_models/models/perception_encoder/vision_encoder/pe.py +742 -0
- inference_models/models/perception_encoder/vision_encoder/rope.py +344 -0
- inference_models/models/perception_encoder/vision_encoder/tokenizer.py +342 -0
- inference_models/models/perception_encoder/vision_encoder/transforms.py +33 -0
- inference_models/models/qwen25vl/__init__.py +1 -0
- inference_models/models/qwen25vl/qwen25vl_hf.py +285 -0
- inference_models/models/resnet/__init__.py +0 -0
- inference_models/models/resnet/resnet_classification_onnx.py +330 -0
- inference_models/models/resnet/resnet_classification_torch.py +305 -0
- inference_models/models/resnet/resnet_classification_trt.py +369 -0
- inference_models/models/rfdetr/__init__.py +0 -0
- inference_models/models/rfdetr/backbone_builder.py +101 -0
- inference_models/models/rfdetr/class_remapping.py +41 -0
- inference_models/models/rfdetr/common.py +115 -0
- inference_models/models/rfdetr/default_labels.py +108 -0
- inference_models/models/rfdetr/dinov2_with_windowed_attn.py +1330 -0
- inference_models/models/rfdetr/misc.py +26 -0
- inference_models/models/rfdetr/ms_deform_attn.py +180 -0
- inference_models/models/rfdetr/ms_deform_attn_func.py +60 -0
- inference_models/models/rfdetr/position_encoding.py +166 -0
- inference_models/models/rfdetr/post_processor.py +83 -0
- inference_models/models/rfdetr/projector.py +373 -0
- inference_models/models/rfdetr/rfdetr_backbone_pytorch.py +394 -0
- inference_models/models/rfdetr/rfdetr_base_pytorch.py +807 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_onnx.py +206 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_pytorch.py +373 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_trt.py +227 -0
- inference_models/models/rfdetr/rfdetr_object_detection_onnx.py +244 -0
- inference_models/models/rfdetr/rfdetr_object_detection_pytorch.py +470 -0
- inference_models/models/rfdetr/rfdetr_object_detection_trt.py +270 -0
- inference_models/models/rfdetr/segmentation_head.py +273 -0
- inference_models/models/rfdetr/transformer.py +767 -0
- inference_models/models/roboflow_instant/__init__.py +0 -0
- inference_models/models/roboflow_instant/roboflow_instant_hf.py +141 -0
- inference_models/models/sam/__init__.py +0 -0
- inference_models/models/sam/cache.py +147 -0
- inference_models/models/sam/entities.py +25 -0
- inference_models/models/sam/sam_torch.py +675 -0
- inference_models/models/sam2/__init__.py +0 -0
- inference_models/models/sam2/cache.py +162 -0
- inference_models/models/sam2/entities.py +43 -0
- inference_models/models/sam2/sam2_torch.py +905 -0
- inference_models/models/sam2_rt/__init__.py +0 -0
- inference_models/models/sam2_rt/sam2_pytorch.py +119 -0
- inference_models/models/smolvlm/__init__.py +0 -0
- inference_models/models/smolvlm/smolvlm_hf.py +245 -0
- inference_models/models/trocr/__init__.py +0 -0
- inference_models/models/trocr/trocr_hf.py +53 -0
- inference_models/models/vit/__init__.py +0 -0
- inference_models/models/vit/vit_classification_huggingface.py +319 -0
- inference_models/models/vit/vit_classification_onnx.py +326 -0
- inference_models/models/vit/vit_classification_trt.py +365 -0
- inference_models/models/yolact/__init__.py +1 -0
- inference_models/models/yolact/yolact_instance_segmentation_onnx.py +336 -0
- inference_models/models/yolact/yolact_instance_segmentation_trt.py +361 -0
- inference_models/models/yolo_world/__init__.py +1 -0
- inference_models/models/yolonas/__init__.py +0 -0
- inference_models/models/yolonas/nms.py +44 -0
- inference_models/models/yolonas/yolonas_object_detection_onnx.py +204 -0
- inference_models/models/yolonas/yolonas_object_detection_trt.py +230 -0
- inference_models/models/yolov10/__init__.py +0 -0
- inference_models/models/yolov10/yolov10_object_detection_onnx.py +187 -0
- inference_models/models/yolov10/yolov10_object_detection_trt.py +215 -0
- inference_models/models/yolov11/__init__.py +0 -0
- inference_models/models/yolov11/yolov11_onnx.py +28 -0
- inference_models/models/yolov11/yolov11_torch_script.py +25 -0
- inference_models/models/yolov11/yolov11_trt.py +21 -0
- inference_models/models/yolov12/__init__.py +0 -0
- inference_models/models/yolov12/yolov12_onnx.py +7 -0
- inference_models/models/yolov12/yolov12_torch_script.py +7 -0
- inference_models/models/yolov12/yolov12_trt.py +7 -0
- inference_models/models/yolov5/__init__.py +0 -0
- inference_models/models/yolov5/nms.py +99 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_onnx.py +225 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_trt.py +255 -0
- inference_models/models/yolov5/yolov5_object_detection_onnx.py +192 -0
- inference_models/models/yolov5/yolov5_object_detection_trt.py +218 -0
- inference_models/models/yolov7/__init__.py +0 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_onnx.py +226 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_trt.py +253 -0
- inference_models/models/yolov8/__init__.py +0 -0
- inference_models/models/yolov8/yolov8_classification_onnx.py +181 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_onnx.py +239 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_torch_script.py +201 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_trt.py +268 -0
- inference_models/models/yolov8/yolov8_key_points_detection_onnx.py +263 -0
- inference_models/models/yolov8/yolov8_key_points_detection_torch_script.py +218 -0
- inference_models/models/yolov8/yolov8_key_points_detection_trt.py +287 -0
- inference_models/models/yolov8/yolov8_object_detection_onnx.py +213 -0
- inference_models/models/yolov8/yolov8_object_detection_torch_script.py +166 -0
- inference_models/models/yolov8/yolov8_object_detection_trt.py +231 -0
- inference_models/models/yolov9/__init__.py +0 -0
- inference_models/models/yolov9/yolov9_onnx.py +7 -0
- inference_models/models/yolov9/yolov9_torch_script.py +7 -0
- inference_models/models/yolov9/yolov9_trt.py +7 -0
- inference_models/runtime_introspection/__init__.py +0 -0
- inference_models/runtime_introspection/core.py +410 -0
- inference_models/utils/__init__.py +0 -0
- inference_models/utils/download.py +608 -0
- inference_models/utils/environment.py +28 -0
- inference_models/utils/file_system.py +51 -0
- inference_models/utils/hashing.py +7 -0
- inference_models/utils/imports.py +48 -0
- inference_models/utils/onnx_introspection.py +17 -0
- inference_models/weights_providers/__init__.py +0 -0
- inference_models/weights_providers/core.py +20 -0
- inference_models/weights_providers/entities.py +159 -0
- inference_models/weights_providers/roboflow.py +601 -0
- inference_models-0.18.3.dist-info/METADATA +466 -0
- inference_models-0.18.3.dist-info/RECORD +195 -0
- inference_models-0.18.3.dist-info/WHEEL +5 -0
- inference_models-0.18.3.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import Generic, List, Tuple, Union
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from inference_models.models.base.object_detection import Detections
|
|
8
|
+
from inference_models.models.base.types import (
|
|
9
|
+
PreprocessedInputs,
|
|
10
|
+
PreprocessingMetadata,
|
|
11
|
+
RawPrediction,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class StructuredOCRModel(
|
|
16
|
+
ABC, Generic[PreprocessedInputs, PreprocessingMetadata, RawPrediction]
|
|
17
|
+
):
|
|
18
|
+
|
|
19
|
+
@classmethod
|
|
20
|
+
@abstractmethod
|
|
21
|
+
def from_pretrained(cls, model_name_or_path: str, **kwargs) -> "StructuredOCRModel":
|
|
22
|
+
pass
|
|
23
|
+
|
|
24
|
+
@property
|
|
25
|
+
@abstractmethod
|
|
26
|
+
def class_names(self) -> List[str]:
|
|
27
|
+
pass
|
|
28
|
+
|
|
29
|
+
def infer(
|
|
30
|
+
self,
|
|
31
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
32
|
+
**kwargs,
|
|
33
|
+
) -> Tuple[List[str], List[Detections]]:
|
|
34
|
+
pre_processed_images, pre_processing_meta = self.pre_process(images, **kwargs)
|
|
35
|
+
model_results = self.forward(pre_processed_images, **kwargs)
|
|
36
|
+
return self.post_process(model_results, pre_processing_meta, **kwargs)
|
|
37
|
+
|
|
38
|
+
@abstractmethod
|
|
39
|
+
def pre_process(
|
|
40
|
+
self,
|
|
41
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
42
|
+
**kwargs,
|
|
43
|
+
) -> Tuple[PreprocessedInputs, PreprocessingMetadata]:
|
|
44
|
+
pass
|
|
45
|
+
|
|
46
|
+
@abstractmethod
|
|
47
|
+
def forward(
|
|
48
|
+
self, pre_processed_images: PreprocessedInputs, **kwargs
|
|
49
|
+
) -> RawPrediction:
|
|
50
|
+
pass
|
|
51
|
+
|
|
52
|
+
@abstractmethod
|
|
53
|
+
def post_process(
|
|
54
|
+
self,
|
|
55
|
+
model_results: RawPrediction,
|
|
56
|
+
pre_processing_meta: PreprocessingMetadata,
|
|
57
|
+
**kwargs,
|
|
58
|
+
) -> Tuple[List[str], List[Detections]]:
|
|
59
|
+
pass
|
|
60
|
+
|
|
61
|
+
def __call__(
|
|
62
|
+
self,
|
|
63
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
64
|
+
**kwargs,
|
|
65
|
+
) -> Tuple[List[str], List[Detections]]:
|
|
66
|
+
return self.infer(images, **kwargs)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
class TextOnlyOCRModel(ABC, Generic[PreprocessedInputs, RawPrediction]):
|
|
70
|
+
@classmethod
|
|
71
|
+
@abstractmethod
|
|
72
|
+
def from_pretrained(cls, model_name_or_path: str, **kwargs) -> "TextOnlyOCRModel":
|
|
73
|
+
pass
|
|
74
|
+
|
|
75
|
+
def infer(
|
|
76
|
+
self,
|
|
77
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
78
|
+
**kwargs,
|
|
79
|
+
) -> List[str]:
|
|
80
|
+
pre_processed_images = self.pre_process(images, **kwargs)
|
|
81
|
+
model_results = self.forward(pre_processed_images, **kwargs)
|
|
82
|
+
return self.post_process(model_results, **kwargs)
|
|
83
|
+
|
|
84
|
+
@abstractmethod
|
|
85
|
+
def pre_process(
|
|
86
|
+
self,
|
|
87
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
88
|
+
**kwargs,
|
|
89
|
+
) -> PreprocessedInputs:
|
|
90
|
+
pass
|
|
91
|
+
|
|
92
|
+
@abstractmethod
|
|
93
|
+
def forward(
|
|
94
|
+
self, pre_processed_images: PreprocessedInputs, **kwargs
|
|
95
|
+
) -> RawPrediction:
|
|
96
|
+
pass
|
|
97
|
+
|
|
98
|
+
@abstractmethod
|
|
99
|
+
def post_process(
|
|
100
|
+
self,
|
|
101
|
+
model_results: RawPrediction,
|
|
102
|
+
**kwargs,
|
|
103
|
+
) -> List[str]:
|
|
104
|
+
pass
|
|
105
|
+
|
|
106
|
+
def __call__(
|
|
107
|
+
self,
|
|
108
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
109
|
+
**kwargs,
|
|
110
|
+
) -> List[str]:
|
|
111
|
+
return self.infer(images, **kwargs)
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import List, Literal, Union
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class TextImageEmbeddingModel(ABC):
|
|
10
|
+
|
|
11
|
+
@classmethod
|
|
12
|
+
@abstractmethod
|
|
13
|
+
def from_pretrained(
|
|
14
|
+
cls, model_name_or_path: str, **kwargs
|
|
15
|
+
) -> "TextImageEmbeddingModel":
|
|
16
|
+
pass
|
|
17
|
+
|
|
18
|
+
def compare_embeddings(
|
|
19
|
+
self,
|
|
20
|
+
x: Union[
|
|
21
|
+
torch.Tensor,
|
|
22
|
+
List[torch.Tensor],
|
|
23
|
+
np.ndarray,
|
|
24
|
+
List[np.ndarray],
|
|
25
|
+
str,
|
|
26
|
+
List[str],
|
|
27
|
+
],
|
|
28
|
+
y: Union[
|
|
29
|
+
torch.Tensor,
|
|
30
|
+
List[torch.Tensor],
|
|
31
|
+
np.ndarray,
|
|
32
|
+
List[np.ndarray],
|
|
33
|
+
str,
|
|
34
|
+
List[str],
|
|
35
|
+
],
|
|
36
|
+
x_type: Literal["image", "text"] = "image",
|
|
37
|
+
y_type: Literal["image", "text"] = "text",
|
|
38
|
+
**kwargs,
|
|
39
|
+
) -> torch.Tensor:
|
|
40
|
+
if x_type == "image":
|
|
41
|
+
x_embeddings = self.embed_images(images=x, **kwargs)
|
|
42
|
+
else:
|
|
43
|
+
x_embeddings = self.embed_text(texts=x, **kwargs)
|
|
44
|
+
if y_type == "image":
|
|
45
|
+
y_embeddings = self.embed_images(images=y, **kwargs)
|
|
46
|
+
else:
|
|
47
|
+
y_embeddings = self.embed_text(texts=y, **kwargs)
|
|
48
|
+
x_embeddings_norm = F.normalize(x_embeddings, p=2, dim=1)
|
|
49
|
+
y_embeddings_morm = F.normalize(y_embeddings, p=2, dim=1)
|
|
50
|
+
return x_embeddings_norm @ y_embeddings_morm.T
|
|
51
|
+
|
|
52
|
+
@abstractmethod
|
|
53
|
+
def embed_images(
|
|
54
|
+
self,
|
|
55
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
56
|
+
**kwargs,
|
|
57
|
+
) -> torch.Tensor:
|
|
58
|
+
pass
|
|
59
|
+
|
|
60
|
+
@abstractmethod
|
|
61
|
+
def embed_text(
|
|
62
|
+
self,
|
|
63
|
+
texts: Union[str, List[str]],
|
|
64
|
+
**kwargs,
|
|
65
|
+
) -> torch.Tensor:
|
|
66
|
+
pass
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Generic, List, Optional, Tuple, Union
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import supervision as sv
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from inference_models.models.base.types import (
|
|
10
|
+
PreprocessedInputs,
|
|
11
|
+
PreprocessingMetadata,
|
|
12
|
+
RawPrediction,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@dataclass
|
|
17
|
+
class InstanceDetections:
|
|
18
|
+
xyxy: torch.Tensor # (n_boxes, 4)
|
|
19
|
+
class_id: torch.Tensor # (n_boxes, )
|
|
20
|
+
confidence: torch.Tensor # (n_boxes, )
|
|
21
|
+
mask: torch.Tensor # (n_boxes, mask_height, mask_width)
|
|
22
|
+
image_metadata: Optional[dict] = None
|
|
23
|
+
bboxes_metadata: Optional[List[dict]] = (
|
|
24
|
+
None # if given, list of size equal to # of bboxes
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
def to_supervision(self) -> sv.Detections:
|
|
28
|
+
return sv.Detections(
|
|
29
|
+
xyxy=self.xyxy.cpu().numpy(),
|
|
30
|
+
class_id=self.class_id.cpu().numpy(),
|
|
31
|
+
confidence=self.confidence.cpu().numpy(),
|
|
32
|
+
mask=self.mask.cpu().numpy(),
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class InstanceSegmentationModel(
|
|
37
|
+
ABC, Generic[PreprocessedInputs, PreprocessingMetadata, RawPrediction]
|
|
38
|
+
):
|
|
39
|
+
|
|
40
|
+
@classmethod
|
|
41
|
+
@abstractmethod
|
|
42
|
+
def from_pretrained(
|
|
43
|
+
cls, model_name_or_path: str, **kwargs
|
|
44
|
+
) -> "InstanceSegmentationModel":
|
|
45
|
+
pass
|
|
46
|
+
|
|
47
|
+
@property
|
|
48
|
+
@abstractmethod
|
|
49
|
+
def class_names(self) -> List[str]:
|
|
50
|
+
pass
|
|
51
|
+
|
|
52
|
+
def infer(
|
|
53
|
+
self,
|
|
54
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
55
|
+
**kwargs,
|
|
56
|
+
) -> List[InstanceDetections]:
|
|
57
|
+
pre_processed_images, pre_processing_meta = self.pre_process(images, **kwargs)
|
|
58
|
+
model_results = self.forward(pre_processed_images, **kwargs)
|
|
59
|
+
return self.post_process(model_results, pre_processing_meta, **kwargs)
|
|
60
|
+
|
|
61
|
+
@abstractmethod
|
|
62
|
+
def pre_process(
|
|
63
|
+
self, images: Union[torch.Tensor, List[torch.Tensor]], **kwargs
|
|
64
|
+
) -> Tuple[PreprocessedInputs, PreprocessingMetadata]:
|
|
65
|
+
pass
|
|
66
|
+
|
|
67
|
+
@abstractmethod
|
|
68
|
+
def forward(
|
|
69
|
+
self, pre_processed_images: PreprocessedInputs, **kwargs
|
|
70
|
+
) -> RawPrediction:
|
|
71
|
+
pass
|
|
72
|
+
|
|
73
|
+
@abstractmethod
|
|
74
|
+
def post_process(
|
|
75
|
+
self,
|
|
76
|
+
model_results: RawPrediction,
|
|
77
|
+
pre_processing_meta: PreprocessedInputs,
|
|
78
|
+
**kwargs,
|
|
79
|
+
) -> List[InstanceDetections]:
|
|
80
|
+
pass
|
|
81
|
+
|
|
82
|
+
def __call__(
|
|
83
|
+
self,
|
|
84
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
85
|
+
**kwargs,
|
|
86
|
+
) -> List[InstanceDetections]:
|
|
87
|
+
return self.infer(images, **kwargs)
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Generic, List, Optional, Tuple, Union
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import supervision as sv
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from inference_models.models.base.object_detection import Detections
|
|
10
|
+
from inference_models.models.base.types import (
|
|
11
|
+
PreprocessedInputs,
|
|
12
|
+
PreprocessingMetadata,
|
|
13
|
+
RawPrediction,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@dataclass
|
|
18
|
+
class KeyPoints:
|
|
19
|
+
xy: torch.Tensor # (instances, instance_key_points, 2)
|
|
20
|
+
class_id: torch.Tensor # (instances, )
|
|
21
|
+
confidence: torch.Tensor # (instances, instance_key_points)
|
|
22
|
+
image_metadata: Optional[dict] = None
|
|
23
|
+
key_points_metadata: Optional[List[dict]] = (
|
|
24
|
+
None # if given, list of size equal to # of instances
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
def to_supervision(self) -> sv.KeyPoints:
|
|
28
|
+
return sv.KeyPoints(
|
|
29
|
+
xy=self.xy.cpu().numpy(),
|
|
30
|
+
class_id=self.class_id.cpu().numpy(),
|
|
31
|
+
confidence=self.confidence.cpu().numpy(),
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class KeyPointsDetectionModel(
|
|
36
|
+
ABC, Generic[PreprocessedInputs, PreprocessingMetadata, RawPrediction]
|
|
37
|
+
):
|
|
38
|
+
|
|
39
|
+
@classmethod
|
|
40
|
+
@abstractmethod
|
|
41
|
+
def from_pretrained(
|
|
42
|
+
cls, model_name_or_path: str, **kwargs
|
|
43
|
+
) -> "KeyPointsDetectionModel":
|
|
44
|
+
pass
|
|
45
|
+
|
|
46
|
+
@property
|
|
47
|
+
@abstractmethod
|
|
48
|
+
def class_names(self) -> List[str]:
|
|
49
|
+
pass
|
|
50
|
+
|
|
51
|
+
@property
|
|
52
|
+
@abstractmethod
|
|
53
|
+
def skeletons(self) -> List[List[Tuple[int, int]]]:
|
|
54
|
+
pass
|
|
55
|
+
|
|
56
|
+
def infer(
|
|
57
|
+
self,
|
|
58
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
59
|
+
**kwargs,
|
|
60
|
+
) -> Tuple[List[KeyPoints], Optional[List[Detections]]]:
|
|
61
|
+
pre_processed_images, pre_processing_meta = self.pre_process(images, **kwargs)
|
|
62
|
+
model_results = self.forward(pre_processed_images, **kwargs)
|
|
63
|
+
return self.post_process(model_results, pre_processing_meta, **kwargs)
|
|
64
|
+
|
|
65
|
+
@abstractmethod
|
|
66
|
+
def pre_process(
|
|
67
|
+
self,
|
|
68
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
69
|
+
**kwargs,
|
|
70
|
+
) -> Tuple[PreprocessedInputs, PreprocessingMetadata]:
|
|
71
|
+
pass
|
|
72
|
+
|
|
73
|
+
@abstractmethod
|
|
74
|
+
def forward(
|
|
75
|
+
self, pre_processed_images: PreprocessedInputs, **kwargs
|
|
76
|
+
) -> RawPrediction:
|
|
77
|
+
pass
|
|
78
|
+
|
|
79
|
+
@abstractmethod
|
|
80
|
+
def post_process(
|
|
81
|
+
self,
|
|
82
|
+
model_results: RawPrediction,
|
|
83
|
+
pre_processing_meta: PreprocessingMetadata,
|
|
84
|
+
**kwargs,
|
|
85
|
+
) -> Tuple[List[KeyPoints], Optional[List[Detections]]]:
|
|
86
|
+
pass
|
|
87
|
+
|
|
88
|
+
def __call__(
|
|
89
|
+
self,
|
|
90
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
91
|
+
**kwargs,
|
|
92
|
+
) -> Tuple[List[KeyPoints], Optional[List[Detections]]]:
|
|
93
|
+
return self.infer(images, **kwargs)
|
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Generic, List, Optional, Tuple, Union
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import supervision as sv
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from inference_models.models.base.types import (
|
|
10
|
+
PreprocessedInputs,
|
|
11
|
+
PreprocessingMetadata,
|
|
12
|
+
RawPrediction,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@dataclass
|
|
17
|
+
class Detections:
|
|
18
|
+
xyxy: torch.Tensor # (n_boxes, 4)
|
|
19
|
+
class_id: torch.Tensor # (n_boxes, )
|
|
20
|
+
confidence: torch.Tensor # (n_boxes, )
|
|
21
|
+
image_metadata: Optional[dict] = None
|
|
22
|
+
bboxes_metadata: Optional[List[dict]] = (
|
|
23
|
+
None # if given, list of size equal to # of bboxes
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
def to_supervision(self) -> sv.Detections:
|
|
27
|
+
return sv.Detections(
|
|
28
|
+
xyxy=self.xyxy.cpu().numpy(),
|
|
29
|
+
class_id=self.class_id.cpu().numpy(),
|
|
30
|
+
confidence=self.confidence.cpu().numpy(),
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class ObjectDetectionModel(
|
|
35
|
+
ABC, Generic[PreprocessedInputs, PreprocessingMetadata, RawPrediction]
|
|
36
|
+
):
|
|
37
|
+
|
|
38
|
+
@classmethod
|
|
39
|
+
@abstractmethod
|
|
40
|
+
def from_pretrained(
|
|
41
|
+
cls, model_name_or_path: str, **kwargs
|
|
42
|
+
) -> "ObjectDetectionModel":
|
|
43
|
+
pass
|
|
44
|
+
|
|
45
|
+
@property
|
|
46
|
+
@abstractmethod
|
|
47
|
+
def class_names(self) -> List[str]:
|
|
48
|
+
pass
|
|
49
|
+
|
|
50
|
+
def infer(
|
|
51
|
+
self,
|
|
52
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
53
|
+
**kwargs,
|
|
54
|
+
) -> List[Detections]:
|
|
55
|
+
pre_processed_images, pre_processing_meta = self.pre_process(images, **kwargs)
|
|
56
|
+
model_results = self.forward(pre_processed_images, **kwargs)
|
|
57
|
+
return self.post_process(model_results, pre_processing_meta, **kwargs)
|
|
58
|
+
|
|
59
|
+
@abstractmethod
|
|
60
|
+
def pre_process(
|
|
61
|
+
self,
|
|
62
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
63
|
+
**kwargs,
|
|
64
|
+
) -> Tuple[PreprocessedInputs, PreprocessingMetadata]:
|
|
65
|
+
pass
|
|
66
|
+
|
|
67
|
+
@abstractmethod
|
|
68
|
+
def forward(
|
|
69
|
+
self, pre_processed_images: PreprocessedInputs, **kwargs
|
|
70
|
+
) -> RawPrediction:
|
|
71
|
+
pass
|
|
72
|
+
|
|
73
|
+
@abstractmethod
|
|
74
|
+
def post_process(
|
|
75
|
+
self,
|
|
76
|
+
model_results: RawPrediction,
|
|
77
|
+
pre_processing_meta: PreprocessingMetadata,
|
|
78
|
+
**kwargs,
|
|
79
|
+
) -> List[Detections]:
|
|
80
|
+
pass
|
|
81
|
+
|
|
82
|
+
def __call__(
|
|
83
|
+
self,
|
|
84
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
85
|
+
**kwargs,
|
|
86
|
+
) -> List[Detections]:
|
|
87
|
+
return self.infer(images, **kwargs)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class OpenVocabularyObjectDetectionModel(
|
|
91
|
+
ABC, Generic[PreprocessedInputs, PreprocessingMetadata, RawPrediction]
|
|
92
|
+
):
|
|
93
|
+
|
|
94
|
+
@classmethod
|
|
95
|
+
@abstractmethod
|
|
96
|
+
def from_pretrained(
|
|
97
|
+
cls, model_name_or_path: str, **kwargs
|
|
98
|
+
) -> "OpenVocabularyObjectDetectionModel":
|
|
99
|
+
pass
|
|
100
|
+
|
|
101
|
+
def infer(
|
|
102
|
+
self,
|
|
103
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
104
|
+
classes: Union[str, List[str]],
|
|
105
|
+
**kwargs,
|
|
106
|
+
) -> List[Detections]:
|
|
107
|
+
pre_processed_images, pre_processing_meta = self.pre_process(images, **kwargs)
|
|
108
|
+
model_results = self.forward(pre_processed_images, classes, **kwargs)
|
|
109
|
+
return self.post_process(model_results, pre_processing_meta, **kwargs)
|
|
110
|
+
|
|
111
|
+
@abstractmethod
|
|
112
|
+
def pre_process(
|
|
113
|
+
self,
|
|
114
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
115
|
+
**kwargs,
|
|
116
|
+
) -> Tuple[PreprocessedInputs, PreprocessingMetadata]:
|
|
117
|
+
pass
|
|
118
|
+
|
|
119
|
+
@abstractmethod
|
|
120
|
+
def forward(
|
|
121
|
+
self,
|
|
122
|
+
pre_processed_images: PreprocessedInputs,
|
|
123
|
+
classes: List[str],
|
|
124
|
+
**kwargs,
|
|
125
|
+
) -> RawPrediction:
|
|
126
|
+
pass
|
|
127
|
+
|
|
128
|
+
@abstractmethod
|
|
129
|
+
def post_process(
|
|
130
|
+
self,
|
|
131
|
+
model_results: RawPrediction,
|
|
132
|
+
pre_processing_meta: PreprocessingMetadata,
|
|
133
|
+
**kwargs,
|
|
134
|
+
) -> List[Detections]:
|
|
135
|
+
pass
|
|
136
|
+
|
|
137
|
+
def __call__(
|
|
138
|
+
self,
|
|
139
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
140
|
+
classes: List[str],
|
|
141
|
+
**kwargs,
|
|
142
|
+
) -> List[Detections]:
|
|
143
|
+
return self.infer(images=images, classes=classes, **kwargs)
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Generic, List, Optional, Tuple, Union
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import supervision as sv
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from inference_models.models.base.types import (
|
|
10
|
+
PreprocessedInputs,
|
|
11
|
+
PreprocessingMetadata,
|
|
12
|
+
RawPrediction,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@dataclass
|
|
17
|
+
class SemanticSegmentationResult:
|
|
18
|
+
segmentation_map: torch.Tensor
|
|
19
|
+
confidence: torch.Tensor
|
|
20
|
+
image_metadata: Optional[dict] = None
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class SemanticSegmentationModel(
|
|
24
|
+
ABC, Generic[PreprocessedInputs, PreprocessingMetadata, RawPrediction]
|
|
25
|
+
):
|
|
26
|
+
|
|
27
|
+
@classmethod
|
|
28
|
+
@abstractmethod
|
|
29
|
+
def from_pretrained(
|
|
30
|
+
cls, model_name_or_path: str, **kwargs
|
|
31
|
+
) -> "SemanticSegmentationModel":
|
|
32
|
+
pass
|
|
33
|
+
|
|
34
|
+
@property
|
|
35
|
+
@abstractmethod
|
|
36
|
+
def class_names(self) -> List[str]:
|
|
37
|
+
pass
|
|
38
|
+
|
|
39
|
+
def infer(
|
|
40
|
+
self,
|
|
41
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
42
|
+
**kwargs,
|
|
43
|
+
) -> List[SemanticSegmentationResult]:
|
|
44
|
+
pre_processed_images, pre_processing_meta = self.pre_process(images, **kwargs)
|
|
45
|
+
model_results = self.forward(pre_processed_images, **kwargs)
|
|
46
|
+
return self.post_process(model_results, pre_processing_meta, **kwargs)
|
|
47
|
+
|
|
48
|
+
@abstractmethod
|
|
49
|
+
def pre_process(
|
|
50
|
+
self, images: Union[torch.Tensor, List[torch.Tensor]], **kwargs
|
|
51
|
+
) -> PreprocessedInputs:
|
|
52
|
+
pass
|
|
53
|
+
|
|
54
|
+
@abstractmethod
|
|
55
|
+
def forward(
|
|
56
|
+
self, pre_processed_images: PreprocessedInputs, **kwargs
|
|
57
|
+
) -> RawPrediction:
|
|
58
|
+
pass
|
|
59
|
+
|
|
60
|
+
@abstractmethod
|
|
61
|
+
def post_process(
|
|
62
|
+
self,
|
|
63
|
+
model_results: RawPrediction,
|
|
64
|
+
pre_processing_meta: PreprocessedInputs,
|
|
65
|
+
**kwargs,
|
|
66
|
+
) -> List[SemanticSegmentationResult]:
|
|
67
|
+
pass
|
|
68
|
+
|
|
69
|
+
def __call__(
|
|
70
|
+
self,
|
|
71
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
72
|
+
**kwargs,
|
|
73
|
+
) -> List[SemanticSegmentationResult]:
|
|
74
|
+
return self.infer(images, **kwargs)
|
|
File without changes
|