inference-models 0.18.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- inference_models/__init__.py +36 -0
- inference_models/configuration.py +72 -0
- inference_models/constants.py +2 -0
- inference_models/entities.py +5 -0
- inference_models/errors.py +137 -0
- inference_models/logger.py +52 -0
- inference_models/model_pipelines/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/core.py +120 -0
- inference_models/model_pipelines/auto_loaders/pipelines_registry.py +36 -0
- inference_models/model_pipelines/face_and_gaze_detection/__init__.py +0 -0
- inference_models/model_pipelines/face_and_gaze_detection/mediapipe_l2cs.py +200 -0
- inference_models/models/__init__.py +0 -0
- inference_models/models/auto_loaders/__init__.py +0 -0
- inference_models/models/auto_loaders/access_manager.py +168 -0
- inference_models/models/auto_loaders/auto_negotiation.py +1329 -0
- inference_models/models/auto_loaders/auto_resolution_cache.py +129 -0
- inference_models/models/auto_loaders/constants.py +7 -0
- inference_models/models/auto_loaders/core.py +1341 -0
- inference_models/models/auto_loaders/dependency_models.py +52 -0
- inference_models/models/auto_loaders/entities.py +57 -0
- inference_models/models/auto_loaders/models_registry.py +497 -0
- inference_models/models/auto_loaders/presentation_utils.py +333 -0
- inference_models/models/auto_loaders/ranking.py +413 -0
- inference_models/models/auto_loaders/utils.py +31 -0
- inference_models/models/base/__init__.py +0 -0
- inference_models/models/base/classification.py +123 -0
- inference_models/models/base/depth_estimation.py +62 -0
- inference_models/models/base/documents_parsing.py +111 -0
- inference_models/models/base/embeddings.py +66 -0
- inference_models/models/base/instance_segmentation.py +87 -0
- inference_models/models/base/keypoints_detection.py +93 -0
- inference_models/models/base/object_detection.py +143 -0
- inference_models/models/base/semantic_segmentation.py +74 -0
- inference_models/models/base/types.py +5 -0
- inference_models/models/clip/__init__.py +0 -0
- inference_models/models/clip/clip_onnx.py +148 -0
- inference_models/models/clip/clip_pytorch.py +104 -0
- inference_models/models/clip/preprocessing.py +162 -0
- inference_models/models/common/__init__.py +0 -0
- inference_models/models/common/cuda.py +30 -0
- inference_models/models/common/model_packages.py +25 -0
- inference_models/models/common/onnx.py +379 -0
- inference_models/models/common/roboflow/__init__.py +0 -0
- inference_models/models/common/roboflow/model_packages.py +361 -0
- inference_models/models/common/roboflow/post_processing.py +436 -0
- inference_models/models/common/roboflow/pre_processing.py +1332 -0
- inference_models/models/common/torch.py +20 -0
- inference_models/models/common/trt.py +266 -0
- inference_models/models/deep_lab_v3_plus/__init__.py +0 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_onnx.py +282 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_torch.py +264 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_trt.py +313 -0
- inference_models/models/depth_anything_v2/__init__.py +0 -0
- inference_models/models/depth_anything_v2/depth_anything_v2_hf.py +77 -0
- inference_models/models/dinov3/__init__.py +0 -0
- inference_models/models/dinov3/dinov3_classification_onnx.py +348 -0
- inference_models/models/dinov3/dinov3_classification_torch.py +323 -0
- inference_models/models/doctr/__init__.py +0 -0
- inference_models/models/doctr/doctr_torch.py +304 -0
- inference_models/models/easy_ocr/__init__.py +0 -0
- inference_models/models/easy_ocr/easy_ocr_torch.py +222 -0
- inference_models/models/florence2/__init__.py +0 -0
- inference_models/models/florence2/florence2_hf.py +897 -0
- inference_models/models/grounding_dino/__init__.py +0 -0
- inference_models/models/grounding_dino/grounding_dino_torch.py +227 -0
- inference_models/models/l2cs/__init__.py +0 -0
- inference_models/models/l2cs/l2cs_onnx.py +216 -0
- inference_models/models/mediapipe_face_detection/__init__.py +0 -0
- inference_models/models/mediapipe_face_detection/face_detection.py +203 -0
- inference_models/models/moondream2/__init__.py +0 -0
- inference_models/models/moondream2/moondream2_hf.py +281 -0
- inference_models/models/owlv2/__init__.py +0 -0
- inference_models/models/owlv2/cache.py +182 -0
- inference_models/models/owlv2/entities.py +112 -0
- inference_models/models/owlv2/owlv2_hf.py +695 -0
- inference_models/models/owlv2/reference_dataset.py +291 -0
- inference_models/models/paligemma/__init__.py +0 -0
- inference_models/models/paligemma/paligemma_hf.py +209 -0
- inference_models/models/perception_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/perception_encoder_pytorch.py +197 -0
- inference_models/models/perception_encoder/vision_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/vision_encoder/config.py +160 -0
- inference_models/models/perception_encoder/vision_encoder/pe.py +742 -0
- inference_models/models/perception_encoder/vision_encoder/rope.py +344 -0
- inference_models/models/perception_encoder/vision_encoder/tokenizer.py +342 -0
- inference_models/models/perception_encoder/vision_encoder/transforms.py +33 -0
- inference_models/models/qwen25vl/__init__.py +1 -0
- inference_models/models/qwen25vl/qwen25vl_hf.py +285 -0
- inference_models/models/resnet/__init__.py +0 -0
- inference_models/models/resnet/resnet_classification_onnx.py +330 -0
- inference_models/models/resnet/resnet_classification_torch.py +305 -0
- inference_models/models/resnet/resnet_classification_trt.py +369 -0
- inference_models/models/rfdetr/__init__.py +0 -0
- inference_models/models/rfdetr/backbone_builder.py +101 -0
- inference_models/models/rfdetr/class_remapping.py +41 -0
- inference_models/models/rfdetr/common.py +115 -0
- inference_models/models/rfdetr/default_labels.py +108 -0
- inference_models/models/rfdetr/dinov2_with_windowed_attn.py +1330 -0
- inference_models/models/rfdetr/misc.py +26 -0
- inference_models/models/rfdetr/ms_deform_attn.py +180 -0
- inference_models/models/rfdetr/ms_deform_attn_func.py +60 -0
- inference_models/models/rfdetr/position_encoding.py +166 -0
- inference_models/models/rfdetr/post_processor.py +83 -0
- inference_models/models/rfdetr/projector.py +373 -0
- inference_models/models/rfdetr/rfdetr_backbone_pytorch.py +394 -0
- inference_models/models/rfdetr/rfdetr_base_pytorch.py +807 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_onnx.py +206 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_pytorch.py +373 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_trt.py +227 -0
- inference_models/models/rfdetr/rfdetr_object_detection_onnx.py +244 -0
- inference_models/models/rfdetr/rfdetr_object_detection_pytorch.py +470 -0
- inference_models/models/rfdetr/rfdetr_object_detection_trt.py +270 -0
- inference_models/models/rfdetr/segmentation_head.py +273 -0
- inference_models/models/rfdetr/transformer.py +767 -0
- inference_models/models/roboflow_instant/__init__.py +0 -0
- inference_models/models/roboflow_instant/roboflow_instant_hf.py +141 -0
- inference_models/models/sam/__init__.py +0 -0
- inference_models/models/sam/cache.py +147 -0
- inference_models/models/sam/entities.py +25 -0
- inference_models/models/sam/sam_torch.py +675 -0
- inference_models/models/sam2/__init__.py +0 -0
- inference_models/models/sam2/cache.py +162 -0
- inference_models/models/sam2/entities.py +43 -0
- inference_models/models/sam2/sam2_torch.py +905 -0
- inference_models/models/sam2_rt/__init__.py +0 -0
- inference_models/models/sam2_rt/sam2_pytorch.py +119 -0
- inference_models/models/smolvlm/__init__.py +0 -0
- inference_models/models/smolvlm/smolvlm_hf.py +245 -0
- inference_models/models/trocr/__init__.py +0 -0
- inference_models/models/trocr/trocr_hf.py +53 -0
- inference_models/models/vit/__init__.py +0 -0
- inference_models/models/vit/vit_classification_huggingface.py +319 -0
- inference_models/models/vit/vit_classification_onnx.py +326 -0
- inference_models/models/vit/vit_classification_trt.py +365 -0
- inference_models/models/yolact/__init__.py +1 -0
- inference_models/models/yolact/yolact_instance_segmentation_onnx.py +336 -0
- inference_models/models/yolact/yolact_instance_segmentation_trt.py +361 -0
- inference_models/models/yolo_world/__init__.py +1 -0
- inference_models/models/yolonas/__init__.py +0 -0
- inference_models/models/yolonas/nms.py +44 -0
- inference_models/models/yolonas/yolonas_object_detection_onnx.py +204 -0
- inference_models/models/yolonas/yolonas_object_detection_trt.py +230 -0
- inference_models/models/yolov10/__init__.py +0 -0
- inference_models/models/yolov10/yolov10_object_detection_onnx.py +187 -0
- inference_models/models/yolov10/yolov10_object_detection_trt.py +215 -0
- inference_models/models/yolov11/__init__.py +0 -0
- inference_models/models/yolov11/yolov11_onnx.py +28 -0
- inference_models/models/yolov11/yolov11_torch_script.py +25 -0
- inference_models/models/yolov11/yolov11_trt.py +21 -0
- inference_models/models/yolov12/__init__.py +0 -0
- inference_models/models/yolov12/yolov12_onnx.py +7 -0
- inference_models/models/yolov12/yolov12_torch_script.py +7 -0
- inference_models/models/yolov12/yolov12_trt.py +7 -0
- inference_models/models/yolov5/__init__.py +0 -0
- inference_models/models/yolov5/nms.py +99 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_onnx.py +225 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_trt.py +255 -0
- inference_models/models/yolov5/yolov5_object_detection_onnx.py +192 -0
- inference_models/models/yolov5/yolov5_object_detection_trt.py +218 -0
- inference_models/models/yolov7/__init__.py +0 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_onnx.py +226 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_trt.py +253 -0
- inference_models/models/yolov8/__init__.py +0 -0
- inference_models/models/yolov8/yolov8_classification_onnx.py +181 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_onnx.py +239 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_torch_script.py +201 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_trt.py +268 -0
- inference_models/models/yolov8/yolov8_key_points_detection_onnx.py +263 -0
- inference_models/models/yolov8/yolov8_key_points_detection_torch_script.py +218 -0
- inference_models/models/yolov8/yolov8_key_points_detection_trt.py +287 -0
- inference_models/models/yolov8/yolov8_object_detection_onnx.py +213 -0
- inference_models/models/yolov8/yolov8_object_detection_torch_script.py +166 -0
- inference_models/models/yolov8/yolov8_object_detection_trt.py +231 -0
- inference_models/models/yolov9/__init__.py +0 -0
- inference_models/models/yolov9/yolov9_onnx.py +7 -0
- inference_models/models/yolov9/yolov9_torch_script.py +7 -0
- inference_models/models/yolov9/yolov9_trt.py +7 -0
- inference_models/runtime_introspection/__init__.py +0 -0
- inference_models/runtime_introspection/core.py +410 -0
- inference_models/utils/__init__.py +0 -0
- inference_models/utils/download.py +608 -0
- inference_models/utils/environment.py +28 -0
- inference_models/utils/file_system.py +51 -0
- inference_models/utils/hashing.py +7 -0
- inference_models/utils/imports.py +48 -0
- inference_models/utils/onnx_introspection.py +17 -0
- inference_models/weights_providers/__init__.py +0 -0
- inference_models/weights_providers/core.py +20 -0
- inference_models/weights_providers/entities.py +159 -0
- inference_models/weights_providers/roboflow.py +601 -0
- inference_models-0.18.3.dist-info/METADATA +466 -0
- inference_models-0.18.3.dist-info/RECORD +195 -0
- inference_models-0.18.3.dist-info/WHEEL +5 -0
- inference_models-0.18.3.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,230 @@
|
|
|
1
|
+
from threading import Lock
|
|
2
|
+
from typing import List, Optional, Tuple, Union
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from inference_models import Detections, ObjectDetectionModel
|
|
8
|
+
from inference_models.configuration import DEFAULT_DEVICE
|
|
9
|
+
from inference_models.entities import ColorFormat
|
|
10
|
+
from inference_models.errors import (
|
|
11
|
+
CorruptedModelPackageError,
|
|
12
|
+
MissingDependencyError,
|
|
13
|
+
ModelRuntimeError,
|
|
14
|
+
)
|
|
15
|
+
from inference_models.models.common.cuda import (
|
|
16
|
+
use_cuda_context,
|
|
17
|
+
use_primary_cuda_context,
|
|
18
|
+
)
|
|
19
|
+
from inference_models.models.common.model_packages import get_model_package_contents
|
|
20
|
+
from inference_models.models.common.roboflow.model_packages import (
|
|
21
|
+
InferenceConfig,
|
|
22
|
+
PreProcessingMetadata,
|
|
23
|
+
ResizeMode,
|
|
24
|
+
TRTConfig,
|
|
25
|
+
parse_class_names_file,
|
|
26
|
+
parse_inference_config,
|
|
27
|
+
parse_trt_config,
|
|
28
|
+
)
|
|
29
|
+
from inference_models.models.common.roboflow.post_processing import rescale_detections
|
|
30
|
+
from inference_models.models.common.roboflow.pre_processing import (
|
|
31
|
+
pre_process_network_input,
|
|
32
|
+
)
|
|
33
|
+
from inference_models.models.common.trt import (
|
|
34
|
+
get_engine_inputs_and_outputs,
|
|
35
|
+
infer_from_trt_engine,
|
|
36
|
+
load_model,
|
|
37
|
+
)
|
|
38
|
+
from inference_models.models.yolonas.nms import run_yolonas_nms_for_object_detection
|
|
39
|
+
|
|
40
|
+
try:
|
|
41
|
+
import tensorrt as trt
|
|
42
|
+
except ImportError as import_error:
|
|
43
|
+
raise MissingDependencyError(
|
|
44
|
+
message=f"Could not import Yolo NAS model with TRT backend - this error means that some additional dependencies "
|
|
45
|
+
f"are not installed in the environment. If you run the `inference-models` library directly in your Python "
|
|
46
|
+
f"program, make sure the following extras of the package are installed: `trt10` - installation can only "
|
|
47
|
+
f"succeed for Linux and Windows machines with Cuda 12 installed. Jetson devices, should have TRT 10.x "
|
|
48
|
+
f"installed for all builds with Jetpack 6. "
|
|
49
|
+
f"If you see this error using Roboflow infrastructure, make sure the service you use does support the model. "
|
|
50
|
+
f"You can also contact Roboflow to get support.",
|
|
51
|
+
help_url="https://todo",
|
|
52
|
+
) from import_error
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
try:
|
|
56
|
+
import pycuda.driver as cuda
|
|
57
|
+
except ImportError as import_error:
|
|
58
|
+
raise MissingDependencyError(
|
|
59
|
+
message="TODO", help_url="https://todo"
|
|
60
|
+
) from import_error
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class YOLONasForObjectDetectionTRT(
|
|
64
|
+
ObjectDetectionModel[torch.Tensor, PreProcessingMetadata, torch.Tensor]
|
|
65
|
+
):
|
|
66
|
+
|
|
67
|
+
@classmethod
|
|
68
|
+
def from_pretrained(
|
|
69
|
+
cls,
|
|
70
|
+
model_name_or_path: str,
|
|
71
|
+
device: torch.device = DEFAULT_DEVICE,
|
|
72
|
+
engine_host_code_allowed: bool = False,
|
|
73
|
+
**kwargs,
|
|
74
|
+
) -> "YOLONasForObjectDetectionTRT":
|
|
75
|
+
if device.type != "cuda":
|
|
76
|
+
raise ModelRuntimeError(
|
|
77
|
+
message=f"TRT engine only runs on CUDA device - {device} device detected.",
|
|
78
|
+
help_url="https://todo",
|
|
79
|
+
)
|
|
80
|
+
model_package_content = get_model_package_contents(
|
|
81
|
+
model_package_dir=model_name_or_path,
|
|
82
|
+
elements=[
|
|
83
|
+
"class_names.txt",
|
|
84
|
+
"inference_config.json",
|
|
85
|
+
"trt_config.json",
|
|
86
|
+
"engine.plan",
|
|
87
|
+
],
|
|
88
|
+
)
|
|
89
|
+
class_names = parse_class_names_file(
|
|
90
|
+
class_names_path=model_package_content["class_names.txt"]
|
|
91
|
+
)
|
|
92
|
+
inference_config = parse_inference_config(
|
|
93
|
+
config_path=model_package_content["inference_config.json"],
|
|
94
|
+
allowed_resize_modes={
|
|
95
|
+
ResizeMode.STRETCH_TO,
|
|
96
|
+
ResizeMode.LETTERBOX,
|
|
97
|
+
ResizeMode.CENTER_CROP,
|
|
98
|
+
ResizeMode.LETTERBOX_REFLECT_EDGES,
|
|
99
|
+
},
|
|
100
|
+
)
|
|
101
|
+
if inference_config.post_processing.type != "nms":
|
|
102
|
+
raise CorruptedModelPackageError(
|
|
103
|
+
message="Expected NMS to be the post-processing",
|
|
104
|
+
help_url="https://todo",
|
|
105
|
+
)
|
|
106
|
+
if inference_config.post_processing.fused is True:
|
|
107
|
+
raise CorruptedModelPackageError(
|
|
108
|
+
message="Model implementation does not support fused NMS",
|
|
109
|
+
help_url="https://todo",
|
|
110
|
+
)
|
|
111
|
+
trt_config = parse_trt_config(
|
|
112
|
+
config_path=model_package_content["trt_config.json"]
|
|
113
|
+
)
|
|
114
|
+
cuda.init()
|
|
115
|
+
cuda_device = cuda.Device(device.index or 0)
|
|
116
|
+
with use_primary_cuda_context(cuda_device=cuda_device) as cuda_context:
|
|
117
|
+
engine = load_model(
|
|
118
|
+
model_path=model_package_content["engine.plan"],
|
|
119
|
+
engine_host_code_allowed=engine_host_code_allowed,
|
|
120
|
+
)
|
|
121
|
+
execution_context = engine.create_execution_context()
|
|
122
|
+
inputs, outputs = get_engine_inputs_and_outputs(engine=engine)
|
|
123
|
+
if len(inputs) != 1:
|
|
124
|
+
raise CorruptedModelPackageError(
|
|
125
|
+
message=f"Implementation assume single model input, found: {len(inputs)}.",
|
|
126
|
+
help_url="https://todo",
|
|
127
|
+
)
|
|
128
|
+
if len(outputs) != 2:
|
|
129
|
+
raise CorruptedModelPackageError(
|
|
130
|
+
message=f"Implementation assume 2 model outputs, found: {len(outputs)}.",
|
|
131
|
+
help_url="https://todo",
|
|
132
|
+
)
|
|
133
|
+
# git rid of outputs order and names verification, as YOLO-NAS clearly produces different outputs
|
|
134
|
+
return cls(
|
|
135
|
+
engine=engine,
|
|
136
|
+
input_name=inputs[0],
|
|
137
|
+
output_names=outputs,
|
|
138
|
+
class_names=class_names,
|
|
139
|
+
inference_config=inference_config,
|
|
140
|
+
trt_config=trt_config,
|
|
141
|
+
device=device,
|
|
142
|
+
cuda_context=cuda_context,
|
|
143
|
+
execution_context=execution_context,
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
def __init__(
|
|
147
|
+
self,
|
|
148
|
+
engine: trt.ICudaEngine,
|
|
149
|
+
input_name: str,
|
|
150
|
+
output_names: List[str],
|
|
151
|
+
class_names: List[str],
|
|
152
|
+
inference_config: InferenceConfig,
|
|
153
|
+
trt_config: TRTConfig,
|
|
154
|
+
device: torch.device,
|
|
155
|
+
cuda_context: cuda.Context,
|
|
156
|
+
execution_context: trt.IExecutionContext,
|
|
157
|
+
):
|
|
158
|
+
self._engine = engine
|
|
159
|
+
self._input_name = input_name
|
|
160
|
+
self._output_names = output_names
|
|
161
|
+
self._class_names = class_names
|
|
162
|
+
self._inference_config = inference_config
|
|
163
|
+
self._trt_config = trt_config
|
|
164
|
+
self._device = device
|
|
165
|
+
self._cuda_context = cuda_context
|
|
166
|
+
self._execution_context = execution_context
|
|
167
|
+
self._session_thread_lock = Lock()
|
|
168
|
+
|
|
169
|
+
@property
|
|
170
|
+
def class_names(self) -> List[str]:
|
|
171
|
+
return self._class_names
|
|
172
|
+
|
|
173
|
+
def pre_process(
|
|
174
|
+
self,
|
|
175
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
176
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
177
|
+
**kwargs,
|
|
178
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
179
|
+
return pre_process_network_input(
|
|
180
|
+
images=images,
|
|
181
|
+
image_pre_processing=self._inference_config.image_pre_processing,
|
|
182
|
+
network_input=self._inference_config.network_input,
|
|
183
|
+
target_device=self._device,
|
|
184
|
+
input_color_format=input_color_format,
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
def forward(self, pre_processed_images: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
188
|
+
with self._session_thread_lock:
|
|
189
|
+
with use_cuda_context(context=self._cuda_context):
|
|
190
|
+
results = infer_from_trt_engine(
|
|
191
|
+
pre_processed_images=pre_processed_images,
|
|
192
|
+
trt_config=self._trt_config,
|
|
193
|
+
engine=self._engine,
|
|
194
|
+
context=self._execution_context,
|
|
195
|
+
device=self._device,
|
|
196
|
+
input_name=self._input_name,
|
|
197
|
+
outputs=self._output_names,
|
|
198
|
+
)
|
|
199
|
+
return torch.cat(results, dim=-1)
|
|
200
|
+
|
|
201
|
+
def post_process(
|
|
202
|
+
self,
|
|
203
|
+
model_results: torch.Tensor,
|
|
204
|
+
pre_processing_meta: List[PreProcessingMetadata],
|
|
205
|
+
conf_thresh: float = 0.25,
|
|
206
|
+
iou_thresh: float = 0.45,
|
|
207
|
+
max_detections: int = 100,
|
|
208
|
+
class_agnostic: bool = False,
|
|
209
|
+
**kwargs,
|
|
210
|
+
) -> List[Detections]:
|
|
211
|
+
nms_results = run_yolonas_nms_for_object_detection(
|
|
212
|
+
output=model_results,
|
|
213
|
+
conf_thresh=conf_thresh,
|
|
214
|
+
iou_thresh=iou_thresh,
|
|
215
|
+
max_detections=max_detections,
|
|
216
|
+
)
|
|
217
|
+
rescaled_results = rescale_detections(
|
|
218
|
+
detections=nms_results,
|
|
219
|
+
images_metadata=pre_processing_meta,
|
|
220
|
+
)
|
|
221
|
+
results = []
|
|
222
|
+
for result in rescaled_results:
|
|
223
|
+
results.append(
|
|
224
|
+
Detections(
|
|
225
|
+
xyxy=result[:, :4].round().int(),
|
|
226
|
+
class_id=result[:, 5].int(),
|
|
227
|
+
confidence=result[:, 4],
|
|
228
|
+
)
|
|
229
|
+
)
|
|
230
|
+
return results
|
|
File without changes
|
|
@@ -0,0 +1,187 @@
|
|
|
1
|
+
from threading import Lock
|
|
2
|
+
from typing import List, Optional, Tuple, Union
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from inference_models import Detections, ObjectDetectionModel
|
|
8
|
+
from inference_models.configuration import DEFAULT_DEVICE
|
|
9
|
+
from inference_models.entities import ColorFormat
|
|
10
|
+
from inference_models.errors import (
|
|
11
|
+
CorruptedModelPackageError,
|
|
12
|
+
EnvironmentConfigurationError,
|
|
13
|
+
MissingDependencyError,
|
|
14
|
+
)
|
|
15
|
+
from inference_models.models.common.model_packages import get_model_package_contents
|
|
16
|
+
from inference_models.models.common.onnx import (
|
|
17
|
+
run_session_with_batch_size_limit,
|
|
18
|
+
set_execution_provider_defaults,
|
|
19
|
+
)
|
|
20
|
+
from inference_models.models.common.roboflow.model_packages import (
|
|
21
|
+
InferenceConfig,
|
|
22
|
+
PreProcessingMetadata,
|
|
23
|
+
ResizeMode,
|
|
24
|
+
parse_class_names_file,
|
|
25
|
+
parse_inference_config,
|
|
26
|
+
)
|
|
27
|
+
from inference_models.models.common.roboflow.post_processing import (
|
|
28
|
+
rescale_image_detections,
|
|
29
|
+
)
|
|
30
|
+
from inference_models.models.common.roboflow.pre_processing import (
|
|
31
|
+
pre_process_network_input,
|
|
32
|
+
)
|
|
33
|
+
from inference_models.utils.onnx_introspection import (
|
|
34
|
+
get_selected_onnx_execution_providers,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
try:
|
|
38
|
+
import onnxruntime
|
|
39
|
+
except ImportError as import_error:
|
|
40
|
+
raise MissingDependencyError(
|
|
41
|
+
message=f"Could not import YOLOv10 model with ONNX backend - this error means that some additional dependencies "
|
|
42
|
+
f"are not installed in the environment. If you run the `inference-models` library directly in your Python "
|
|
43
|
+
f"program, make sure the following extras of the package are installed: \n"
|
|
44
|
+
f"\t* `onnx-cpu` - when you wish to use library with CPU support only\n"
|
|
45
|
+
f"\t* `onnx-cu12` - for running on GPU with Cuda 12 installed\n"
|
|
46
|
+
f"\t* `onnx-cu118` - for running on GPU with Cuda 11.8 installed\n"
|
|
47
|
+
f"\t* `onnx-jp6-cu126` - for running on Jetson with Jetpack 6\n"
|
|
48
|
+
f"If you see this error using Roboflow infrastructure, make sure the service you use does support the model. "
|
|
49
|
+
f"You can also contact Roboflow to get support.",
|
|
50
|
+
help_url="https://todo",
|
|
51
|
+
) from import_error
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class YOLOv10ForObjectDetectionOnnx(
|
|
55
|
+
ObjectDetectionModel[torch.Tensor, PreProcessingMetadata, torch.Tensor]
|
|
56
|
+
):
|
|
57
|
+
|
|
58
|
+
@classmethod
|
|
59
|
+
def from_pretrained(
|
|
60
|
+
cls,
|
|
61
|
+
model_name_or_path: str,
|
|
62
|
+
onnx_execution_providers: Optional[List[Union[str, tuple]]] = None,
|
|
63
|
+
default_onnx_trt_options: bool = True,
|
|
64
|
+
device: torch.device = DEFAULT_DEVICE,
|
|
65
|
+
**kwargs,
|
|
66
|
+
) -> "YOLOv10ForObjectDetectionOnnx":
|
|
67
|
+
if onnx_execution_providers is None:
|
|
68
|
+
onnx_execution_providers = get_selected_onnx_execution_providers()
|
|
69
|
+
if not onnx_execution_providers:
|
|
70
|
+
raise EnvironmentConfigurationError(
|
|
71
|
+
message=f"Could not initialize model - selected backend is ONNX which requires execution provider to "
|
|
72
|
+
f"be specified - explicitly in `from_pretrained(...)` method or via env variable "
|
|
73
|
+
f"`ONNXRUNTIME_EXECUTION_PROVIDERS`. If you run model locally - adjust your setup, otherwise "
|
|
74
|
+
f"contact the platform support.",
|
|
75
|
+
help_url="https://todo",
|
|
76
|
+
)
|
|
77
|
+
onnx_execution_providers = set_execution_provider_defaults(
|
|
78
|
+
providers=onnx_execution_providers,
|
|
79
|
+
model_package_path=model_name_or_path,
|
|
80
|
+
device=device,
|
|
81
|
+
default_onnx_trt_options=default_onnx_trt_options,
|
|
82
|
+
)
|
|
83
|
+
model_package_content = get_model_package_contents(
|
|
84
|
+
model_package_dir=model_name_or_path,
|
|
85
|
+
elements=[
|
|
86
|
+
"class_names.txt",
|
|
87
|
+
"inference_config.json",
|
|
88
|
+
"weights.onnx",
|
|
89
|
+
],
|
|
90
|
+
)
|
|
91
|
+
class_names = parse_class_names_file(
|
|
92
|
+
class_names_path=model_package_content["class_names.txt"]
|
|
93
|
+
)
|
|
94
|
+
inference_config = parse_inference_config(
|
|
95
|
+
config_path=model_package_content["inference_config.json"],
|
|
96
|
+
allowed_resize_modes={
|
|
97
|
+
ResizeMode.STRETCH_TO,
|
|
98
|
+
ResizeMode.LETTERBOX,
|
|
99
|
+
ResizeMode.CENTER_CROP,
|
|
100
|
+
ResizeMode.LETTERBOX_REFLECT_EDGES,
|
|
101
|
+
},
|
|
102
|
+
)
|
|
103
|
+
session = onnxruntime.InferenceSession(
|
|
104
|
+
path_or_bytes=model_package_content["weights.onnx"],
|
|
105
|
+
providers=onnx_execution_providers,
|
|
106
|
+
)
|
|
107
|
+
input_batch_size = session.get_inputs()[0].shape[0]
|
|
108
|
+
if isinstance(input_batch_size, str):
|
|
109
|
+
input_batch_size = None
|
|
110
|
+
input_name = session.get_inputs()[0].name
|
|
111
|
+
return cls(
|
|
112
|
+
session=session,
|
|
113
|
+
input_name=input_name,
|
|
114
|
+
class_names=class_names,
|
|
115
|
+
inference_config=inference_config,
|
|
116
|
+
device=device,
|
|
117
|
+
input_batch_size=input_batch_size,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
def __init__(
|
|
121
|
+
self,
|
|
122
|
+
session: onnxruntime.InferenceSession,
|
|
123
|
+
input_name: str,
|
|
124
|
+
inference_config: InferenceConfig,
|
|
125
|
+
class_names: List[str],
|
|
126
|
+
device: torch.device,
|
|
127
|
+
input_batch_size: Optional[int],
|
|
128
|
+
):
|
|
129
|
+
self._session = session
|
|
130
|
+
self._input_name = input_name
|
|
131
|
+
self._inference_config = inference_config
|
|
132
|
+
self._class_names = class_names
|
|
133
|
+
self._device = device
|
|
134
|
+
self._input_batch_size = input_batch_size
|
|
135
|
+
self._session_thread_lock = Lock()
|
|
136
|
+
|
|
137
|
+
@property
|
|
138
|
+
def class_names(self) -> List[str]:
|
|
139
|
+
return self._class_names
|
|
140
|
+
|
|
141
|
+
def pre_process(
|
|
142
|
+
self,
|
|
143
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
144
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
145
|
+
**kwargs,
|
|
146
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
147
|
+
return pre_process_network_input(
|
|
148
|
+
images=images,
|
|
149
|
+
image_pre_processing=self._inference_config.image_pre_processing,
|
|
150
|
+
network_input=self._inference_config.network_input,
|
|
151
|
+
target_device=self._device,
|
|
152
|
+
input_color_format=input_color_format,
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
def forward(self, pre_processed_images: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
156
|
+
with self._session_thread_lock:
|
|
157
|
+
return run_session_with_batch_size_limit(
|
|
158
|
+
session=self._session,
|
|
159
|
+
inputs={self._input_name: pre_processed_images},
|
|
160
|
+
min_batch_size=self._input_batch_size,
|
|
161
|
+
max_batch_size=self._input_batch_size,
|
|
162
|
+
)[0]
|
|
163
|
+
|
|
164
|
+
def post_process(
|
|
165
|
+
self,
|
|
166
|
+
model_results: torch.Tensor,
|
|
167
|
+
pre_processing_meta: List[PreProcessingMetadata],
|
|
168
|
+
conf_thresh: float = 0.25,
|
|
169
|
+
max_detections: int = 100,
|
|
170
|
+
**kwargs,
|
|
171
|
+
) -> List[Detections]:
|
|
172
|
+
results = []
|
|
173
|
+
for image_result, metadata in zip(model_results, pre_processing_meta):
|
|
174
|
+
mask = image_result[:, 4] > conf_thresh
|
|
175
|
+
filtered = image_result[mask][:max_detections]
|
|
176
|
+
rescaled = rescale_image_detections(
|
|
177
|
+
image_detections=filtered,
|
|
178
|
+
image_metadata=metadata,
|
|
179
|
+
)
|
|
180
|
+
results.append(
|
|
181
|
+
Detections(
|
|
182
|
+
xyxy=rescaled[:, :4].round().int(),
|
|
183
|
+
class_id=rescaled[:, 5].int(),
|
|
184
|
+
confidence=rescaled[:, 4],
|
|
185
|
+
)
|
|
186
|
+
)
|
|
187
|
+
return results
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
from threading import Lock
|
|
2
|
+
from typing import List, Optional, Tuple, Union
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from inference_models import Detections, ObjectDetectionModel
|
|
8
|
+
from inference_models.configuration import DEFAULT_DEVICE
|
|
9
|
+
from inference_models.entities import ColorFormat
|
|
10
|
+
from inference_models.errors import (
|
|
11
|
+
CorruptedModelPackageError,
|
|
12
|
+
MissingDependencyError,
|
|
13
|
+
ModelRuntimeError,
|
|
14
|
+
)
|
|
15
|
+
from inference_models.models.common.cuda import (
|
|
16
|
+
use_cuda_context,
|
|
17
|
+
use_primary_cuda_context,
|
|
18
|
+
)
|
|
19
|
+
from inference_models.models.common.model_packages import get_model_package_contents
|
|
20
|
+
from inference_models.models.common.roboflow.model_packages import (
|
|
21
|
+
InferenceConfig,
|
|
22
|
+
PreProcessingMetadata,
|
|
23
|
+
ResizeMode,
|
|
24
|
+
TRTConfig,
|
|
25
|
+
parse_class_names_file,
|
|
26
|
+
parse_inference_config,
|
|
27
|
+
parse_trt_config,
|
|
28
|
+
)
|
|
29
|
+
from inference_models.models.common.roboflow.post_processing import (
|
|
30
|
+
rescale_image_detections,
|
|
31
|
+
)
|
|
32
|
+
from inference_models.models.common.roboflow.pre_processing import (
|
|
33
|
+
pre_process_network_input,
|
|
34
|
+
)
|
|
35
|
+
from inference_models.models.common.trt import (
|
|
36
|
+
get_engine_inputs_and_outputs,
|
|
37
|
+
infer_from_trt_engine,
|
|
38
|
+
load_model,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
try:
|
|
42
|
+
import tensorrt as trt
|
|
43
|
+
except ImportError as import_error:
|
|
44
|
+
raise MissingDependencyError(
|
|
45
|
+
message=f"Could not import YOLOv10 model with TRT backend - this error means that some additional dependencies "
|
|
46
|
+
f"are not installed in the environment. If you run the `inference-models` library directly in your Python "
|
|
47
|
+
f"program, make sure the following extras of the package are installed: `trt10` - installation can only "
|
|
48
|
+
f"succeed for Linux and Windows machines with Cuda 12 installed. Jetson devices, should have TRT 10.x "
|
|
49
|
+
f"installed for all builds with Jetpack 6. "
|
|
50
|
+
f"If you see this error using Roboflow infrastructure, make sure the service you use does support the model. "
|
|
51
|
+
f"You can also contact Roboflow to get support.",
|
|
52
|
+
help_url="https://todo",
|
|
53
|
+
) from import_error
|
|
54
|
+
|
|
55
|
+
try:
|
|
56
|
+
import pycuda.driver as cuda
|
|
57
|
+
except ImportError as import_error:
|
|
58
|
+
raise MissingDependencyError(
|
|
59
|
+
message="TODO",
|
|
60
|
+
help_url="https://todo",
|
|
61
|
+
) from import_error
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class YOLOv10ForObjectDetectionTRT(
|
|
65
|
+
ObjectDetectionModel[torch.Tensor, PreProcessingMetadata, torch.Tensor]
|
|
66
|
+
):
|
|
67
|
+
|
|
68
|
+
@classmethod
|
|
69
|
+
def from_pretrained(
|
|
70
|
+
cls,
|
|
71
|
+
model_name_or_path: str,
|
|
72
|
+
device: torch.device = DEFAULT_DEVICE,
|
|
73
|
+
engine_host_code_allowed: bool = False,
|
|
74
|
+
**kwargs,
|
|
75
|
+
) -> "YOLOv10ForObjectDetectionTRT":
|
|
76
|
+
if device.type != "cuda":
|
|
77
|
+
raise ModelRuntimeError(
|
|
78
|
+
message="TRT engine only runs on CUDA device - {device} device detected.",
|
|
79
|
+
help_url="https://todo",
|
|
80
|
+
)
|
|
81
|
+
model_package_content = get_model_package_contents(
|
|
82
|
+
model_package_dir=model_name_or_path,
|
|
83
|
+
elements=[
|
|
84
|
+
"class_names.txt",
|
|
85
|
+
"inference_config.json",
|
|
86
|
+
"trt_config.json",
|
|
87
|
+
"engine.plan",
|
|
88
|
+
],
|
|
89
|
+
)
|
|
90
|
+
class_names = parse_class_names_file(
|
|
91
|
+
class_names_path=model_package_content["class_names.txt"]
|
|
92
|
+
)
|
|
93
|
+
inference_config = parse_inference_config(
|
|
94
|
+
config_path=model_package_content["inference_config.json"],
|
|
95
|
+
allowed_resize_modes={
|
|
96
|
+
ResizeMode.STRETCH_TO,
|
|
97
|
+
ResizeMode.LETTERBOX,
|
|
98
|
+
ResizeMode.CENTER_CROP,
|
|
99
|
+
ResizeMode.LETTERBOX_REFLECT_EDGES,
|
|
100
|
+
},
|
|
101
|
+
)
|
|
102
|
+
trt_config = parse_trt_config(
|
|
103
|
+
config_path=model_package_content["trt_config.json"]
|
|
104
|
+
)
|
|
105
|
+
cuda.init()
|
|
106
|
+
cuda_device = cuda.Device(device.index or 0)
|
|
107
|
+
with use_primary_cuda_context(cuda_device=cuda_device) as cuda_context:
|
|
108
|
+
engine = load_model(
|
|
109
|
+
model_path=model_package_content["engine.plan"],
|
|
110
|
+
engine_host_code_allowed=engine_host_code_allowed,
|
|
111
|
+
)
|
|
112
|
+
execution_context = engine.create_execution_context()
|
|
113
|
+
inputs, outputs = get_engine_inputs_and_outputs(engine=engine)
|
|
114
|
+
if len(inputs) != 1:
|
|
115
|
+
raise CorruptedModelPackageError(
|
|
116
|
+
message=f"Implementation assume single model input, found: {len(inputs)}.",
|
|
117
|
+
help_url="https://todo",
|
|
118
|
+
)
|
|
119
|
+
if len(outputs) != 1:
|
|
120
|
+
raise CorruptedModelPackageError(
|
|
121
|
+
message=f"Implementation assume single model output, found: {len(outputs)}.",
|
|
122
|
+
help_url="https://todo",
|
|
123
|
+
)
|
|
124
|
+
return cls(
|
|
125
|
+
engine=engine,
|
|
126
|
+
input_name=inputs[0],
|
|
127
|
+
output_name=outputs[0],
|
|
128
|
+
class_names=class_names,
|
|
129
|
+
inference_config=inference_config,
|
|
130
|
+
trt_config=trt_config,
|
|
131
|
+
device=device,
|
|
132
|
+
cuda_context=cuda_context,
|
|
133
|
+
execution_context=execution_context,
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
def __init__(
|
|
137
|
+
self,
|
|
138
|
+
engine: trt.ICudaEngine,
|
|
139
|
+
input_name: str,
|
|
140
|
+
output_name: str,
|
|
141
|
+
class_names: List[str],
|
|
142
|
+
inference_config: InferenceConfig,
|
|
143
|
+
trt_config: TRTConfig,
|
|
144
|
+
device: torch.device,
|
|
145
|
+
cuda_context: cuda.Context,
|
|
146
|
+
execution_context: trt.IExecutionContext,
|
|
147
|
+
):
|
|
148
|
+
self._engine = engine
|
|
149
|
+
self._input_name = input_name
|
|
150
|
+
self._output_names = [output_name]
|
|
151
|
+
self._class_names = class_names
|
|
152
|
+
self._inference_config = inference_config
|
|
153
|
+
self._trt_config = trt_config
|
|
154
|
+
self._device = device
|
|
155
|
+
self._cuda_context = cuda_context
|
|
156
|
+
self._execution_context = execution_context
|
|
157
|
+
self._session_thread_lock = Lock()
|
|
158
|
+
|
|
159
|
+
@property
|
|
160
|
+
def class_names(self) -> List[str]:
|
|
161
|
+
return self._class_names
|
|
162
|
+
|
|
163
|
+
def pre_process(
|
|
164
|
+
self,
|
|
165
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
166
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
167
|
+
**kwargs,
|
|
168
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
169
|
+
return pre_process_network_input(
|
|
170
|
+
images=images,
|
|
171
|
+
image_pre_processing=self._inference_config.image_pre_processing,
|
|
172
|
+
network_input=self._inference_config.network_input,
|
|
173
|
+
target_device=self._device,
|
|
174
|
+
input_color_format=input_color_format,
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
def forward(self, pre_processed_images: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
178
|
+
with self._session_thread_lock:
|
|
179
|
+
with use_cuda_context(context=self._cuda_context):
|
|
180
|
+
return infer_from_trt_engine(
|
|
181
|
+
pre_processed_images=pre_processed_images,
|
|
182
|
+
trt_config=self._trt_config,
|
|
183
|
+
engine=self._engine,
|
|
184
|
+
context=self._execution_context,
|
|
185
|
+
device=self._device,
|
|
186
|
+
input_name=self._input_name,
|
|
187
|
+
outputs=self._output_names,
|
|
188
|
+
)[0]
|
|
189
|
+
|
|
190
|
+
def post_process(
|
|
191
|
+
self,
|
|
192
|
+
model_results: torch.Tensor,
|
|
193
|
+
pre_processing_meta: List[PreProcessingMetadata],
|
|
194
|
+
conf_thresh: float = 0.25,
|
|
195
|
+
iou_thresh: float = 0.45,
|
|
196
|
+
max_detections: int = 100,
|
|
197
|
+
class_agnostic: bool = False,
|
|
198
|
+
**kwargs,
|
|
199
|
+
) -> List[Detections]:
|
|
200
|
+
results = []
|
|
201
|
+
for image_result, metadata in zip(model_results, pre_processing_meta):
|
|
202
|
+
mask = image_result[:, 4] > conf_thresh
|
|
203
|
+
filtered = image_result[mask][:max_detections]
|
|
204
|
+
rescaled = rescale_image_detections(
|
|
205
|
+
image_detections=filtered,
|
|
206
|
+
image_metadata=metadata,
|
|
207
|
+
)
|
|
208
|
+
results.append(
|
|
209
|
+
Detections(
|
|
210
|
+
xyxy=rescaled[:, :4].round().int(),
|
|
211
|
+
class_id=rescaled[:, 5].int(),
|
|
212
|
+
confidence=rescaled[:, 4],
|
|
213
|
+
)
|
|
214
|
+
)
|
|
215
|
+
return results
|
|
File without changes
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
from inference_models.models.yolov8.yolov8_classification_onnx import (
|
|
2
|
+
YOLOv8ForClassificationOnnx,
|
|
3
|
+
)
|
|
4
|
+
from inference_models.models.yolov8.yolov8_instance_segmentation_onnx import (
|
|
5
|
+
YOLOv8ForInstanceSegmentationOnnx,
|
|
6
|
+
)
|
|
7
|
+
from inference_models.models.yolov8.yolov8_key_points_detection_onnx import (
|
|
8
|
+
YOLOv8ForKeyPointsDetectionOnnx,
|
|
9
|
+
)
|
|
10
|
+
from inference_models.models.yolov8.yolov8_object_detection_onnx import (
|
|
11
|
+
YOLOv8ForObjectDetectionOnnx,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class YOLOv11ForObjectDetectionOnnx(YOLOv8ForObjectDetectionOnnx):
|
|
16
|
+
pass
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class YOLOv11ForInstanceSegmentationOnnx(YOLOv8ForInstanceSegmentationOnnx):
|
|
20
|
+
pass
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class YOLOv11ForForKeyPointsDetectionOnnx(YOLOv8ForKeyPointsDetectionOnnx):
|
|
24
|
+
pass
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class YOLOv11ForClassificationOnnx(YOLOv8ForClassificationOnnx):
|
|
28
|
+
pass
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
from inference_models.models.yolov8.yolov8_instance_segmentation_torch_script import (
|
|
2
|
+
YOLOv8ForInstanceSegmentationTorchScript,
|
|
3
|
+
)
|
|
4
|
+
from inference_models.models.yolov8.yolov8_key_points_detection_torch_script import (
|
|
5
|
+
YOLOv8ForKeyPointsDetectionTorchScript,
|
|
6
|
+
)
|
|
7
|
+
from inference_models.models.yolov8.yolov8_object_detection_torch_script import (
|
|
8
|
+
YOLOv8ForObjectDetectionTorchScript,
|
|
9
|
+
)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class YOLOv11ForObjectDetectionTorchScript(YOLOv8ForObjectDetectionTorchScript):
|
|
13
|
+
pass
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class YOLOv11ForInstanceSegmentationTorchScript(
|
|
17
|
+
YOLOv8ForInstanceSegmentationTorchScript
|
|
18
|
+
):
|
|
19
|
+
pass
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class YOLOv11ForForKeyPointsDetectionTorchScript(
|
|
23
|
+
YOLOv8ForKeyPointsDetectionTorchScript
|
|
24
|
+
):
|
|
25
|
+
pass
|