inference-models 0.18.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (195) hide show
  1. inference_models/__init__.py +36 -0
  2. inference_models/configuration.py +72 -0
  3. inference_models/constants.py +2 -0
  4. inference_models/entities.py +5 -0
  5. inference_models/errors.py +137 -0
  6. inference_models/logger.py +52 -0
  7. inference_models/model_pipelines/__init__.py +0 -0
  8. inference_models/model_pipelines/auto_loaders/__init__.py +0 -0
  9. inference_models/model_pipelines/auto_loaders/core.py +120 -0
  10. inference_models/model_pipelines/auto_loaders/pipelines_registry.py +36 -0
  11. inference_models/model_pipelines/face_and_gaze_detection/__init__.py +0 -0
  12. inference_models/model_pipelines/face_and_gaze_detection/mediapipe_l2cs.py +200 -0
  13. inference_models/models/__init__.py +0 -0
  14. inference_models/models/auto_loaders/__init__.py +0 -0
  15. inference_models/models/auto_loaders/access_manager.py +168 -0
  16. inference_models/models/auto_loaders/auto_negotiation.py +1329 -0
  17. inference_models/models/auto_loaders/auto_resolution_cache.py +129 -0
  18. inference_models/models/auto_loaders/constants.py +7 -0
  19. inference_models/models/auto_loaders/core.py +1341 -0
  20. inference_models/models/auto_loaders/dependency_models.py +52 -0
  21. inference_models/models/auto_loaders/entities.py +57 -0
  22. inference_models/models/auto_loaders/models_registry.py +497 -0
  23. inference_models/models/auto_loaders/presentation_utils.py +333 -0
  24. inference_models/models/auto_loaders/ranking.py +413 -0
  25. inference_models/models/auto_loaders/utils.py +31 -0
  26. inference_models/models/base/__init__.py +0 -0
  27. inference_models/models/base/classification.py +123 -0
  28. inference_models/models/base/depth_estimation.py +62 -0
  29. inference_models/models/base/documents_parsing.py +111 -0
  30. inference_models/models/base/embeddings.py +66 -0
  31. inference_models/models/base/instance_segmentation.py +87 -0
  32. inference_models/models/base/keypoints_detection.py +93 -0
  33. inference_models/models/base/object_detection.py +143 -0
  34. inference_models/models/base/semantic_segmentation.py +74 -0
  35. inference_models/models/base/types.py +5 -0
  36. inference_models/models/clip/__init__.py +0 -0
  37. inference_models/models/clip/clip_onnx.py +148 -0
  38. inference_models/models/clip/clip_pytorch.py +104 -0
  39. inference_models/models/clip/preprocessing.py +162 -0
  40. inference_models/models/common/__init__.py +0 -0
  41. inference_models/models/common/cuda.py +30 -0
  42. inference_models/models/common/model_packages.py +25 -0
  43. inference_models/models/common/onnx.py +379 -0
  44. inference_models/models/common/roboflow/__init__.py +0 -0
  45. inference_models/models/common/roboflow/model_packages.py +361 -0
  46. inference_models/models/common/roboflow/post_processing.py +436 -0
  47. inference_models/models/common/roboflow/pre_processing.py +1332 -0
  48. inference_models/models/common/torch.py +20 -0
  49. inference_models/models/common/trt.py +266 -0
  50. inference_models/models/deep_lab_v3_plus/__init__.py +0 -0
  51. inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_onnx.py +282 -0
  52. inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_torch.py +264 -0
  53. inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_trt.py +313 -0
  54. inference_models/models/depth_anything_v2/__init__.py +0 -0
  55. inference_models/models/depth_anything_v2/depth_anything_v2_hf.py +77 -0
  56. inference_models/models/dinov3/__init__.py +0 -0
  57. inference_models/models/dinov3/dinov3_classification_onnx.py +348 -0
  58. inference_models/models/dinov3/dinov3_classification_torch.py +323 -0
  59. inference_models/models/doctr/__init__.py +0 -0
  60. inference_models/models/doctr/doctr_torch.py +304 -0
  61. inference_models/models/easy_ocr/__init__.py +0 -0
  62. inference_models/models/easy_ocr/easy_ocr_torch.py +222 -0
  63. inference_models/models/florence2/__init__.py +0 -0
  64. inference_models/models/florence2/florence2_hf.py +897 -0
  65. inference_models/models/grounding_dino/__init__.py +0 -0
  66. inference_models/models/grounding_dino/grounding_dino_torch.py +227 -0
  67. inference_models/models/l2cs/__init__.py +0 -0
  68. inference_models/models/l2cs/l2cs_onnx.py +216 -0
  69. inference_models/models/mediapipe_face_detection/__init__.py +0 -0
  70. inference_models/models/mediapipe_face_detection/face_detection.py +203 -0
  71. inference_models/models/moondream2/__init__.py +0 -0
  72. inference_models/models/moondream2/moondream2_hf.py +281 -0
  73. inference_models/models/owlv2/__init__.py +0 -0
  74. inference_models/models/owlv2/cache.py +182 -0
  75. inference_models/models/owlv2/entities.py +112 -0
  76. inference_models/models/owlv2/owlv2_hf.py +695 -0
  77. inference_models/models/owlv2/reference_dataset.py +291 -0
  78. inference_models/models/paligemma/__init__.py +0 -0
  79. inference_models/models/paligemma/paligemma_hf.py +209 -0
  80. inference_models/models/perception_encoder/__init__.py +0 -0
  81. inference_models/models/perception_encoder/perception_encoder_pytorch.py +197 -0
  82. inference_models/models/perception_encoder/vision_encoder/__init__.py +0 -0
  83. inference_models/models/perception_encoder/vision_encoder/config.py +160 -0
  84. inference_models/models/perception_encoder/vision_encoder/pe.py +742 -0
  85. inference_models/models/perception_encoder/vision_encoder/rope.py +344 -0
  86. inference_models/models/perception_encoder/vision_encoder/tokenizer.py +342 -0
  87. inference_models/models/perception_encoder/vision_encoder/transforms.py +33 -0
  88. inference_models/models/qwen25vl/__init__.py +1 -0
  89. inference_models/models/qwen25vl/qwen25vl_hf.py +285 -0
  90. inference_models/models/resnet/__init__.py +0 -0
  91. inference_models/models/resnet/resnet_classification_onnx.py +330 -0
  92. inference_models/models/resnet/resnet_classification_torch.py +305 -0
  93. inference_models/models/resnet/resnet_classification_trt.py +369 -0
  94. inference_models/models/rfdetr/__init__.py +0 -0
  95. inference_models/models/rfdetr/backbone_builder.py +101 -0
  96. inference_models/models/rfdetr/class_remapping.py +41 -0
  97. inference_models/models/rfdetr/common.py +115 -0
  98. inference_models/models/rfdetr/default_labels.py +108 -0
  99. inference_models/models/rfdetr/dinov2_with_windowed_attn.py +1330 -0
  100. inference_models/models/rfdetr/misc.py +26 -0
  101. inference_models/models/rfdetr/ms_deform_attn.py +180 -0
  102. inference_models/models/rfdetr/ms_deform_attn_func.py +60 -0
  103. inference_models/models/rfdetr/position_encoding.py +166 -0
  104. inference_models/models/rfdetr/post_processor.py +83 -0
  105. inference_models/models/rfdetr/projector.py +373 -0
  106. inference_models/models/rfdetr/rfdetr_backbone_pytorch.py +394 -0
  107. inference_models/models/rfdetr/rfdetr_base_pytorch.py +807 -0
  108. inference_models/models/rfdetr/rfdetr_instance_segmentation_onnx.py +206 -0
  109. inference_models/models/rfdetr/rfdetr_instance_segmentation_pytorch.py +373 -0
  110. inference_models/models/rfdetr/rfdetr_instance_segmentation_trt.py +227 -0
  111. inference_models/models/rfdetr/rfdetr_object_detection_onnx.py +244 -0
  112. inference_models/models/rfdetr/rfdetr_object_detection_pytorch.py +470 -0
  113. inference_models/models/rfdetr/rfdetr_object_detection_trt.py +270 -0
  114. inference_models/models/rfdetr/segmentation_head.py +273 -0
  115. inference_models/models/rfdetr/transformer.py +767 -0
  116. inference_models/models/roboflow_instant/__init__.py +0 -0
  117. inference_models/models/roboflow_instant/roboflow_instant_hf.py +141 -0
  118. inference_models/models/sam/__init__.py +0 -0
  119. inference_models/models/sam/cache.py +147 -0
  120. inference_models/models/sam/entities.py +25 -0
  121. inference_models/models/sam/sam_torch.py +675 -0
  122. inference_models/models/sam2/__init__.py +0 -0
  123. inference_models/models/sam2/cache.py +162 -0
  124. inference_models/models/sam2/entities.py +43 -0
  125. inference_models/models/sam2/sam2_torch.py +905 -0
  126. inference_models/models/sam2_rt/__init__.py +0 -0
  127. inference_models/models/sam2_rt/sam2_pytorch.py +119 -0
  128. inference_models/models/smolvlm/__init__.py +0 -0
  129. inference_models/models/smolvlm/smolvlm_hf.py +245 -0
  130. inference_models/models/trocr/__init__.py +0 -0
  131. inference_models/models/trocr/trocr_hf.py +53 -0
  132. inference_models/models/vit/__init__.py +0 -0
  133. inference_models/models/vit/vit_classification_huggingface.py +319 -0
  134. inference_models/models/vit/vit_classification_onnx.py +326 -0
  135. inference_models/models/vit/vit_classification_trt.py +365 -0
  136. inference_models/models/yolact/__init__.py +1 -0
  137. inference_models/models/yolact/yolact_instance_segmentation_onnx.py +336 -0
  138. inference_models/models/yolact/yolact_instance_segmentation_trt.py +361 -0
  139. inference_models/models/yolo_world/__init__.py +1 -0
  140. inference_models/models/yolonas/__init__.py +0 -0
  141. inference_models/models/yolonas/nms.py +44 -0
  142. inference_models/models/yolonas/yolonas_object_detection_onnx.py +204 -0
  143. inference_models/models/yolonas/yolonas_object_detection_trt.py +230 -0
  144. inference_models/models/yolov10/__init__.py +0 -0
  145. inference_models/models/yolov10/yolov10_object_detection_onnx.py +187 -0
  146. inference_models/models/yolov10/yolov10_object_detection_trt.py +215 -0
  147. inference_models/models/yolov11/__init__.py +0 -0
  148. inference_models/models/yolov11/yolov11_onnx.py +28 -0
  149. inference_models/models/yolov11/yolov11_torch_script.py +25 -0
  150. inference_models/models/yolov11/yolov11_trt.py +21 -0
  151. inference_models/models/yolov12/__init__.py +0 -0
  152. inference_models/models/yolov12/yolov12_onnx.py +7 -0
  153. inference_models/models/yolov12/yolov12_torch_script.py +7 -0
  154. inference_models/models/yolov12/yolov12_trt.py +7 -0
  155. inference_models/models/yolov5/__init__.py +0 -0
  156. inference_models/models/yolov5/nms.py +99 -0
  157. inference_models/models/yolov5/yolov5_instance_segmentation_onnx.py +225 -0
  158. inference_models/models/yolov5/yolov5_instance_segmentation_trt.py +255 -0
  159. inference_models/models/yolov5/yolov5_object_detection_onnx.py +192 -0
  160. inference_models/models/yolov5/yolov5_object_detection_trt.py +218 -0
  161. inference_models/models/yolov7/__init__.py +0 -0
  162. inference_models/models/yolov7/yolov7_instance_segmentation_onnx.py +226 -0
  163. inference_models/models/yolov7/yolov7_instance_segmentation_trt.py +253 -0
  164. inference_models/models/yolov8/__init__.py +0 -0
  165. inference_models/models/yolov8/yolov8_classification_onnx.py +181 -0
  166. inference_models/models/yolov8/yolov8_instance_segmentation_onnx.py +239 -0
  167. inference_models/models/yolov8/yolov8_instance_segmentation_torch_script.py +201 -0
  168. inference_models/models/yolov8/yolov8_instance_segmentation_trt.py +268 -0
  169. inference_models/models/yolov8/yolov8_key_points_detection_onnx.py +263 -0
  170. inference_models/models/yolov8/yolov8_key_points_detection_torch_script.py +218 -0
  171. inference_models/models/yolov8/yolov8_key_points_detection_trt.py +287 -0
  172. inference_models/models/yolov8/yolov8_object_detection_onnx.py +213 -0
  173. inference_models/models/yolov8/yolov8_object_detection_torch_script.py +166 -0
  174. inference_models/models/yolov8/yolov8_object_detection_trt.py +231 -0
  175. inference_models/models/yolov9/__init__.py +0 -0
  176. inference_models/models/yolov9/yolov9_onnx.py +7 -0
  177. inference_models/models/yolov9/yolov9_torch_script.py +7 -0
  178. inference_models/models/yolov9/yolov9_trt.py +7 -0
  179. inference_models/runtime_introspection/__init__.py +0 -0
  180. inference_models/runtime_introspection/core.py +410 -0
  181. inference_models/utils/__init__.py +0 -0
  182. inference_models/utils/download.py +608 -0
  183. inference_models/utils/environment.py +28 -0
  184. inference_models/utils/file_system.py +51 -0
  185. inference_models/utils/hashing.py +7 -0
  186. inference_models/utils/imports.py +48 -0
  187. inference_models/utils/onnx_introspection.py +17 -0
  188. inference_models/weights_providers/__init__.py +0 -0
  189. inference_models/weights_providers/core.py +20 -0
  190. inference_models/weights_providers/entities.py +159 -0
  191. inference_models/weights_providers/roboflow.py +601 -0
  192. inference_models-0.18.3.dist-info/METADATA +466 -0
  193. inference_models-0.18.3.dist-info/RECORD +195 -0
  194. inference_models-0.18.3.dist-info/WHEEL +5 -0
  195. inference_models-0.18.3.dist-info/top_level.txt +1 -0
@@ -0,0 +1,192 @@
1
+ from threading import Lock
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+
7
+ from inference_models import Detections, ObjectDetectionModel
8
+ from inference_models.configuration import DEFAULT_DEVICE
9
+ from inference_models.entities import ColorFormat
10
+ from inference_models.errors import (
11
+ EnvironmentConfigurationError,
12
+ MissingDependencyError,
13
+ )
14
+ from inference_models.models.common.model_packages import get_model_package_contents
15
+ from inference_models.models.common.onnx import (
16
+ run_session_with_batch_size_limit,
17
+ set_execution_provider_defaults,
18
+ )
19
+ from inference_models.models.common.roboflow.model_packages import (
20
+ InferenceConfig,
21
+ PreProcessingMetadata,
22
+ ResizeMode,
23
+ parse_class_names_file,
24
+ parse_inference_config,
25
+ )
26
+ from inference_models.models.common.roboflow.post_processing import rescale_detections
27
+ from inference_models.models.common.roboflow.pre_processing import (
28
+ pre_process_network_input,
29
+ )
30
+ from inference_models.models.yolov5.nms import run_nms_yolov5
31
+ from inference_models.utils.onnx_introspection import (
32
+ get_selected_onnx_execution_providers,
33
+ )
34
+
35
+ try:
36
+ import onnxruntime
37
+ except ImportError as import_error:
38
+ raise MissingDependencyError(
39
+ message=f"Could not import YOLOv5 model with ONNX backend - this error means that some additional dependencies "
40
+ f"are not installed in the environment. If you run the `inference-models` library directly in your Python "
41
+ f"program, make sure the following extras of the package are installed: \n"
42
+ f"\t* `onnx-cpu` - when you wish to use library with CPU support only\n"
43
+ f"\t* `onnx-cu12` - for running on GPU with Cuda 12 installed\n"
44
+ f"\t* `onnx-cu118` - for running on GPU with Cuda 11.8 installed\n"
45
+ f"\t* `onnx-jp6-cu126` - for running on Jetson with Jetpack 6\n"
46
+ f"If you see this error using Roboflow infrastructure, make sure the service you use does support the model. "
47
+ f"You can also contact Roboflow to get support.",
48
+ help_url="https://todo",
49
+ ) from import_error
50
+
51
+
52
+ class YOLOv5ForObjectDetectionOnnx(
53
+ ObjectDetectionModel[torch.Tensor, PreProcessingMetadata, torch.Tensor]
54
+ ):
55
+
56
+ @classmethod
57
+ def from_pretrained(
58
+ cls,
59
+ model_name_or_path: str,
60
+ onnx_execution_providers: Optional[List[Union[str, tuple]]] = None,
61
+ default_onnx_trt_options: bool = True,
62
+ device: torch.device = DEFAULT_DEVICE,
63
+ **kwargs,
64
+ ) -> "YOLOv5ForObjectDetectionOnnx":
65
+ if onnx_execution_providers is None:
66
+ onnx_execution_providers = get_selected_onnx_execution_providers()
67
+ if not onnx_execution_providers:
68
+ raise EnvironmentConfigurationError(
69
+ message=f"Could not initialize model - selected backend is ONNX which requires execution provider to "
70
+ f"be specified - explicitly in `from_pretrained(...)` method or via env variable "
71
+ f"`ONNXRUNTIME_EXECUTION_PROVIDERS`. If you run model locally - adjust your setup, otherwise "
72
+ f"contact the platform support.",
73
+ help_url="https://todo",
74
+ )
75
+ onnx_execution_providers = set_execution_provider_defaults(
76
+ providers=onnx_execution_providers,
77
+ model_package_path=model_name_or_path,
78
+ device=device,
79
+ default_onnx_trt_options=default_onnx_trt_options,
80
+ )
81
+ model_package_content = get_model_package_contents(
82
+ model_package_dir=model_name_or_path,
83
+ elements=[
84
+ "class_names.txt",
85
+ "inference_config.json",
86
+ "weights.onnx",
87
+ ],
88
+ )
89
+ class_names = parse_class_names_file(
90
+ class_names_path=model_package_content["class_names.txt"]
91
+ )
92
+ inference_config = parse_inference_config(
93
+ config_path=model_package_content["inference_config.json"],
94
+ allowed_resize_modes={
95
+ ResizeMode.STRETCH_TO,
96
+ ResizeMode.LETTERBOX,
97
+ ResizeMode.CENTER_CROP,
98
+ ResizeMode.LETTERBOX_REFLECT_EDGES,
99
+ },
100
+ )
101
+ session = onnxruntime.InferenceSession(
102
+ path_or_bytes=model_package_content["weights.onnx"],
103
+ providers=onnx_execution_providers,
104
+ )
105
+ input_batch_size = session.get_inputs()[0].shape[0]
106
+ if isinstance(input_batch_size, str):
107
+ input_batch_size = None
108
+ input_name = session.get_inputs()[0].name
109
+ return cls(
110
+ session=session,
111
+ input_name=input_name,
112
+ class_names=class_names,
113
+ inference_config=inference_config,
114
+ device=device,
115
+ input_batch_size=input_batch_size,
116
+ )
117
+
118
+ def __init__(
119
+ self,
120
+ session: onnxruntime.InferenceSession,
121
+ input_name: str,
122
+ inference_config: InferenceConfig,
123
+ class_names: List[str],
124
+ device: torch.device,
125
+ input_batch_size: Optional[int],
126
+ ):
127
+ self._session = session
128
+ self._input_name = input_name
129
+ self._inference_config = inference_config
130
+ self._class_names = class_names
131
+ self._device = device
132
+ self._input_batch_size = input_batch_size
133
+ self._session_thread_lock = Lock()
134
+
135
+ @property
136
+ def class_names(self) -> List[str]:
137
+ return self._class_names
138
+
139
+ def pre_process(
140
+ self,
141
+ images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
142
+ input_color_format: Optional[ColorFormat] = None,
143
+ **kwargs,
144
+ ) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
145
+ return pre_process_network_input(
146
+ images=images,
147
+ image_pre_processing=self._inference_config.image_pre_processing,
148
+ network_input=self._inference_config.network_input,
149
+ target_device=self._device,
150
+ input_color_format=input_color_format,
151
+ )
152
+
153
+ def forward(self, pre_processed_images: torch.Tensor, **kwargs) -> torch.Tensor:
154
+ with self._session_thread_lock:
155
+ return run_session_with_batch_size_limit(
156
+ session=self._session,
157
+ inputs={self._input_name: pre_processed_images},
158
+ min_batch_size=self._input_batch_size,
159
+ max_batch_size=self._input_batch_size,
160
+ )[0]
161
+
162
+ def post_process(
163
+ self,
164
+ model_results: torch.Tensor,
165
+ pre_processing_meta: List[PreProcessingMetadata],
166
+ conf_thresh: float = 0.25,
167
+ iou_thresh: float = 0.45,
168
+ max_detections: int = 100,
169
+ class_agnostic: bool = False,
170
+ **kwargs,
171
+ ) -> List[Detections]:
172
+ nms_results = run_nms_yolov5(
173
+ output=model_results.permute(0, 2, 1),
174
+ conf_thresh=conf_thresh,
175
+ iou_thresh=iou_thresh,
176
+ max_detections=max_detections,
177
+ class_agnostic=class_agnostic,
178
+ )
179
+ rescaled_results = rescale_detections(
180
+ detections=nms_results,
181
+ images_metadata=pre_processing_meta,
182
+ )
183
+ results = []
184
+ for result in rescaled_results:
185
+ results.append(
186
+ Detections(
187
+ xyxy=result[:, :4].round().int(),
188
+ class_id=result[:, 5].int(),
189
+ confidence=result[:, 4],
190
+ )
191
+ )
192
+ return results
@@ -0,0 +1,218 @@
1
+ from threading import Lock
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+
7
+ from inference_models import Detections, ObjectDetectionModel
8
+ from inference_models.configuration import DEFAULT_DEVICE
9
+ from inference_models.entities import ColorFormat
10
+ from inference_models.errors import (
11
+ CorruptedModelPackageError,
12
+ MissingDependencyError,
13
+ ModelRuntimeError,
14
+ )
15
+ from inference_models.models.common.cuda import (
16
+ use_cuda_context,
17
+ use_primary_cuda_context,
18
+ )
19
+ from inference_models.models.common.model_packages import get_model_package_contents
20
+ from inference_models.models.common.roboflow.model_packages import (
21
+ InferenceConfig,
22
+ PreProcessingMetadata,
23
+ ResizeMode,
24
+ TRTConfig,
25
+ parse_class_names_file,
26
+ parse_inference_config,
27
+ parse_trt_config,
28
+ )
29
+ from inference_models.models.common.roboflow.post_processing import rescale_detections
30
+ from inference_models.models.common.roboflow.pre_processing import (
31
+ pre_process_network_input,
32
+ )
33
+ from inference_models.models.common.trt import (
34
+ get_engine_inputs_and_outputs,
35
+ infer_from_trt_engine,
36
+ load_model,
37
+ )
38
+ from inference_models.models.yolov5.nms import run_nms_yolov5
39
+
40
+ try:
41
+ import tensorrt as trt
42
+ except ImportError as import_error:
43
+ raise MissingDependencyError(
44
+ message=f"Could not import YOLOv5 model with TRT backend - this error means that some additional dependencies "
45
+ f"are not installed in the environment. If you run the `inference-models` library directly in your Python "
46
+ f"program, make sure the following extras of the package are installed: `trt10` - installation can only "
47
+ f"succeed for Linux and Windows machines with Cuda 12 installed. Jetson devices, should have TRT 10.x "
48
+ f"installed for all builds with Jetpack 6. "
49
+ f"If you see this error using Roboflow infrastructure, make sure the service you use does support the model. "
50
+ f"You can also contact Roboflow to get support.",
51
+ help_url="https://todo",
52
+ )
53
+
54
+ try:
55
+ import pycuda.driver as cuda
56
+ except ImportError as import_error:
57
+ raise MissingDependencyError(
58
+ message="TODO", help_url="https://todo"
59
+ ) from import_error
60
+
61
+
62
+ class YOLOv5ForObjectDetectionTRT(
63
+ ObjectDetectionModel[torch.Tensor, PreProcessingMetadata, torch.Tensor]
64
+ ):
65
+
66
+ @classmethod
67
+ def from_pretrained(
68
+ cls,
69
+ model_name_or_path: str,
70
+ device: torch.device = DEFAULT_DEVICE,
71
+ engine_host_code_allowed: bool = False,
72
+ **kwargs,
73
+ ) -> "YOLOv5ForObjectDetectionTRT":
74
+ if device.type != "cuda":
75
+ raise ModelRuntimeError(
76
+ message=f"TRT engine only runs on CUDA device - {device} device detected.",
77
+ help_url="https://todo",
78
+ )
79
+ model_package_content = get_model_package_contents(
80
+ model_package_dir=model_name_or_path,
81
+ elements=[
82
+ "class_names.txt",
83
+ "inference_config.json",
84
+ "trt_config.json",
85
+ "engine.plan",
86
+ ],
87
+ )
88
+ class_names = parse_class_names_file(
89
+ class_names_path=model_package_content["class_names.txt"]
90
+ )
91
+ inference_config = parse_inference_config(
92
+ config_path=model_package_content["inference_config.json"],
93
+ allowed_resize_modes={
94
+ ResizeMode.STRETCH_TO,
95
+ ResizeMode.LETTERBOX,
96
+ ResizeMode.CENTER_CROP,
97
+ ResizeMode.LETTERBOX_REFLECT_EDGES,
98
+ },
99
+ )
100
+ trt_config = parse_trt_config(
101
+ config_path=model_package_content["trt_config.json"]
102
+ )
103
+ cuda.init()
104
+ cuda_device = cuda.Device(device.index or 0)
105
+ with use_primary_cuda_context(cuda_device=cuda_device) as cuda_context:
106
+ engine = load_model(
107
+ model_path=model_package_content["engine.plan"],
108
+ engine_host_code_allowed=engine_host_code_allowed,
109
+ )
110
+ execution_context = engine.create_execution_context()
111
+ inputs, outputs = get_engine_inputs_and_outputs(engine=engine)
112
+ if len(inputs) != 1:
113
+ raise CorruptedModelPackageError(
114
+ message=f"Implementation assume single model input, found: {len(inputs)}.",
115
+ help_url="https://todo",
116
+ )
117
+ if len(outputs) != 1:
118
+ raise CorruptedModelPackageError(
119
+ message=f"Implementation assume single model output, found: {len(outputs)}.",
120
+ help_url="https://todo",
121
+ )
122
+ return cls(
123
+ engine=engine,
124
+ input_name=inputs[0],
125
+ output_name=outputs[0],
126
+ class_names=class_names,
127
+ inference_config=inference_config,
128
+ trt_config=trt_config,
129
+ device=device,
130
+ cuda_context=cuda_context,
131
+ execution_context=execution_context,
132
+ )
133
+
134
+ def __init__(
135
+ self,
136
+ engine: trt.ICudaEngine,
137
+ input_name: str,
138
+ output_name: str,
139
+ class_names: List[str],
140
+ inference_config: InferenceConfig,
141
+ trt_config: TRTConfig,
142
+ device: torch.device,
143
+ cuda_context: cuda.Context,
144
+ execution_context: trt.IExecutionContext,
145
+ ):
146
+ self._engine = engine
147
+ self._input_name = input_name
148
+ self._output_names = [output_name]
149
+ self._class_names = class_names
150
+ self._inference_config = inference_config
151
+ self._trt_config = trt_config
152
+ self._device = device
153
+ self._cuda_context = cuda_context
154
+ self._execution_context = execution_context
155
+ self._session_thread_lock = Lock()
156
+
157
+ @property
158
+ def class_names(self) -> List[str]:
159
+ return self._class_names
160
+
161
+ def pre_process(
162
+ self,
163
+ images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
164
+ input_color_format: Optional[ColorFormat] = None,
165
+ **kwargs,
166
+ ) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
167
+ return pre_process_network_input(
168
+ images=images,
169
+ image_pre_processing=self._inference_config.image_pre_processing,
170
+ network_input=self._inference_config.network_input,
171
+ target_device=self._device,
172
+ input_color_format=input_color_format,
173
+ )
174
+
175
+ def forward(self, pre_processed_images: torch.Tensor, **kwargs) -> torch.Tensor:
176
+ with self._session_thread_lock:
177
+ with use_cuda_context(context=self._cuda_context):
178
+ return infer_from_trt_engine(
179
+ pre_processed_images=pre_processed_images,
180
+ trt_config=self._trt_config,
181
+ engine=self._engine,
182
+ context=self._execution_context,
183
+ device=self._device,
184
+ input_name=self._input_name,
185
+ outputs=self._output_names,
186
+ )[0]
187
+
188
+ def post_process(
189
+ self,
190
+ model_results: torch.Tensor,
191
+ pre_processing_meta: List[PreProcessingMetadata],
192
+ conf_thresh: float = 0.25,
193
+ iou_thresh: float = 0.45,
194
+ max_detections: int = 100,
195
+ class_agnostic: bool = False,
196
+ **kwargs,
197
+ ) -> List[Detections]:
198
+ nms_results = run_nms_yolov5(
199
+ output=model_results.permute(0, 2, 1),
200
+ conf_thresh=conf_thresh,
201
+ iou_thresh=iou_thresh,
202
+ max_detections=max_detections,
203
+ class_agnostic=class_agnostic,
204
+ )
205
+ rescaled_results = rescale_detections(
206
+ detections=nms_results,
207
+ images_metadata=pre_processing_meta,
208
+ )
209
+ results = []
210
+ for result in rescaled_results:
211
+ results.append(
212
+ Detections(
213
+ xyxy=result[:, :4].round().int(),
214
+ class_id=result[:, 5].int(),
215
+ confidence=result[:, 4],
216
+ )
217
+ )
218
+ return results
File without changes
@@ -0,0 +1,226 @@
1
+ from threading import Lock
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+
7
+ from inference_models import InstanceDetections, InstanceSegmentationModel
8
+ from inference_models.configuration import DEFAULT_DEVICE
9
+ from inference_models.entities import ColorFormat
10
+ from inference_models.errors import (
11
+ EnvironmentConfigurationError,
12
+ MissingDependencyError,
13
+ )
14
+ from inference_models.models.common.model_packages import get_model_package_contents
15
+ from inference_models.models.common.onnx import (
16
+ run_session_with_batch_size_limit,
17
+ set_execution_provider_defaults,
18
+ )
19
+ from inference_models.models.common.roboflow.model_packages import (
20
+ InferenceConfig,
21
+ PreProcessingMetadata,
22
+ ResizeMode,
23
+ parse_class_names_file,
24
+ parse_inference_config,
25
+ )
26
+ from inference_models.models.common.roboflow.post_processing import (
27
+ align_instance_segmentation_results,
28
+ crop_masks_to_boxes,
29
+ preprocess_segmentation_masks,
30
+ run_nms_for_instance_segmentation,
31
+ )
32
+ from inference_models.models.common.roboflow.pre_processing import (
33
+ pre_process_network_input,
34
+ )
35
+ from inference_models.utils.onnx_introspection import (
36
+ get_selected_onnx_execution_providers,
37
+ )
38
+
39
+ try:
40
+ import onnxruntime
41
+ except ImportError as import_error:
42
+ raise MissingDependencyError(
43
+ message=f"Could not import YOLOv7 model with ONNX backend - this error means that some additional dependencies "
44
+ f"are not installed in the environment. If you run the `inference-models` library directly in your Python "
45
+ f"program, make sure the following extras of the package are installed: \n"
46
+ f"\t* `onnx-cpu` - when you wish to use library with CPU support only\n"
47
+ f"\t* `onnx-cu12` - for running on GPU with Cuda 12 installed\n"
48
+ f"\t* `onnx-cu118` - for running on GPU with Cuda 11.8 installed\n"
49
+ f"\t* `onnx-jp6-cu126` - for running on Jetson with Jetpack 6\n"
50
+ f"If you see this error using Roboflow infrastructure, make sure the service you use does support the model. "
51
+ f"You can also contact Roboflow to get support.",
52
+ help_url="https://todo",
53
+ ) from import_error
54
+
55
+
56
+ class YOLOv7ForInstanceSegmentationOnnx(
57
+ InstanceSegmentationModel[
58
+ torch.Tensor, PreProcessingMetadata, Tuple[torch.Tensor, torch.Tensor]
59
+ ]
60
+ ):
61
+
62
+ @classmethod
63
+ def from_pretrained(
64
+ cls,
65
+ model_name_or_path: str,
66
+ onnx_execution_providers: Optional[List[Union[str, tuple]]] = None,
67
+ default_onnx_trt_options: bool = True,
68
+ device: torch.device = DEFAULT_DEVICE,
69
+ **kwargs,
70
+ ) -> "YOLOv7ForInstanceSegmentationOnnx":
71
+ if onnx_execution_providers is None:
72
+ onnx_execution_providers = get_selected_onnx_execution_providers()
73
+ if not onnx_execution_providers:
74
+ raise EnvironmentConfigurationError(
75
+ message=f"Could not initialize model - selected backend is ONNX which requires execution provider to "
76
+ f"be specified - explicitly in `from_pretrained(...)` method or via env variable "
77
+ f"`ONNXRUNTIME_EXECUTION_PROVIDERS`. If you run model locally - adjust your setup, otherwise "
78
+ f"contact the platform support.",
79
+ help_url="https://todo",
80
+ )
81
+ onnx_execution_providers = set_execution_provider_defaults(
82
+ providers=onnx_execution_providers,
83
+ model_package_path=model_name_or_path,
84
+ device=device,
85
+ default_onnx_trt_options=default_onnx_trt_options,
86
+ )
87
+ model_package_content = get_model_package_contents(
88
+ model_package_dir=model_name_or_path,
89
+ elements=[
90
+ "class_names.txt",
91
+ "inference_config.json",
92
+ "weights.onnx",
93
+ ],
94
+ )
95
+ class_names = parse_class_names_file(
96
+ class_names_path=model_package_content["class_names.txt"]
97
+ )
98
+ inference_config = parse_inference_config(
99
+ config_path=model_package_content["inference_config.json"],
100
+ allowed_resize_modes={
101
+ ResizeMode.STRETCH_TO,
102
+ ResizeMode.LETTERBOX,
103
+ ResizeMode.CENTER_CROP,
104
+ ResizeMode.LETTERBOX_REFLECT_EDGES,
105
+ },
106
+ )
107
+ session = onnxruntime.InferenceSession(
108
+ path_or_bytes=model_package_content["weights.onnx"],
109
+ providers=onnx_execution_providers,
110
+ )
111
+ input_batch_size = session.get_inputs()[0].shape[0]
112
+ if isinstance(input_batch_size, str):
113
+ input_batch_size = None
114
+ input_name = session.get_inputs()[0].name
115
+ return cls(
116
+ session=session,
117
+ input_name=input_name,
118
+ class_names=class_names,
119
+ inference_config=inference_config,
120
+ device=device,
121
+ input_batch_size=input_batch_size,
122
+ )
123
+
124
+ def __init__(
125
+ self,
126
+ session: onnxruntime.InferenceSession,
127
+ input_name: str,
128
+ inference_config: InferenceConfig,
129
+ class_names: List[str],
130
+ device: torch.device,
131
+ input_batch_size: Optional[int],
132
+ ):
133
+ self._session = session
134
+ self._input_name = input_name
135
+ self._inference_config = inference_config
136
+ self._class_names = class_names
137
+ self._device = device
138
+ self._input_batch_size = input_batch_size
139
+ self._session_thread_lock = Lock()
140
+
141
+ @property
142
+ def class_names(self) -> List[str]:
143
+ return self._class_names
144
+
145
+ def pre_process(
146
+ self,
147
+ images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
148
+ input_color_format: Optional[ColorFormat] = None,
149
+ **kwargs,
150
+ ) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
151
+ return pre_process_network_input(
152
+ images=images,
153
+ image_pre_processing=self._inference_config.image_pre_processing,
154
+ network_input=self._inference_config.network_input,
155
+ target_device=self._device,
156
+ input_color_format=input_color_format,
157
+ )
158
+
159
+ def forward(
160
+ self, pre_processed_images: torch.Tensor, **kwargs
161
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
162
+ with self._session_thread_lock:
163
+ raw_outputs = run_session_with_batch_size_limit(
164
+ session=self._session,
165
+ inputs={self._input_name: pre_processed_images},
166
+ min_batch_size=self._input_batch_size,
167
+ max_batch_size=self._input_batch_size,
168
+ )
169
+ instances, protos = raw_outputs[0], raw_outputs[4]
170
+ return instances, protos
171
+
172
+ def post_process(
173
+ self,
174
+ model_results: Tuple[torch.Tensor, torch.Tensor],
175
+ pre_processing_meta: List[PreProcessingMetadata],
176
+ conf_thresh: float = 0.25,
177
+ iou_thresh: float = 0.45,
178
+ max_detections: int = 100,
179
+ class_agnostic: bool = False,
180
+ **kwargs,
181
+ ) -> List[InstanceDetections]:
182
+ instances, protos = model_results
183
+ nms_results = run_nms_for_instance_segmentation(
184
+ output=instances.permute(0, 2, 1),
185
+ conf_thresh=conf_thresh,
186
+ iou_thresh=iou_thresh,
187
+ max_detections=max_detections,
188
+ class_agnostic=class_agnostic,
189
+ )
190
+ final_results = []
191
+ for image_bboxes, image_protos, image_meta in zip(
192
+ nms_results, protos, pre_processing_meta
193
+ ):
194
+ pre_processed_masks = preprocess_segmentation_masks(
195
+ protos=image_protos,
196
+ masks_in=image_bboxes[:, 6:],
197
+ )
198
+ cropped_masks = crop_masks_to_boxes(
199
+ image_bboxes[:, :4], pre_processed_masks
200
+ )
201
+ padding = (
202
+ image_meta.pad_left,
203
+ image_meta.pad_top,
204
+ image_meta.pad_right,
205
+ image_meta.pad_bottom,
206
+ )
207
+ aligned_boxes, aligned_masks = align_instance_segmentation_results(
208
+ image_bboxes=image_bboxes,
209
+ masks=cropped_masks,
210
+ padding=padding,
211
+ scale_height=image_meta.scale_height,
212
+ scale_width=image_meta.scale_width,
213
+ original_size=image_meta.original_size,
214
+ size_after_pre_processing=image_meta.size_after_pre_processing,
215
+ inference_size=image_meta.inference_size,
216
+ static_crop_offset=image_meta.static_crop_offset,
217
+ )
218
+ final_results.append(
219
+ InstanceDetections(
220
+ xyxy=aligned_boxes[:, :4].round().int(),
221
+ class_id=aligned_boxes[:, 5].int(),
222
+ confidence=aligned_boxes[:, 4],
223
+ mask=aligned_masks,
224
+ )
225
+ )
226
+ return final_results