inference-models 0.18.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- inference_models/__init__.py +36 -0
- inference_models/configuration.py +72 -0
- inference_models/constants.py +2 -0
- inference_models/entities.py +5 -0
- inference_models/errors.py +137 -0
- inference_models/logger.py +52 -0
- inference_models/model_pipelines/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/core.py +120 -0
- inference_models/model_pipelines/auto_loaders/pipelines_registry.py +36 -0
- inference_models/model_pipelines/face_and_gaze_detection/__init__.py +0 -0
- inference_models/model_pipelines/face_and_gaze_detection/mediapipe_l2cs.py +200 -0
- inference_models/models/__init__.py +0 -0
- inference_models/models/auto_loaders/__init__.py +0 -0
- inference_models/models/auto_loaders/access_manager.py +168 -0
- inference_models/models/auto_loaders/auto_negotiation.py +1329 -0
- inference_models/models/auto_loaders/auto_resolution_cache.py +129 -0
- inference_models/models/auto_loaders/constants.py +7 -0
- inference_models/models/auto_loaders/core.py +1341 -0
- inference_models/models/auto_loaders/dependency_models.py +52 -0
- inference_models/models/auto_loaders/entities.py +57 -0
- inference_models/models/auto_loaders/models_registry.py +497 -0
- inference_models/models/auto_loaders/presentation_utils.py +333 -0
- inference_models/models/auto_loaders/ranking.py +413 -0
- inference_models/models/auto_loaders/utils.py +31 -0
- inference_models/models/base/__init__.py +0 -0
- inference_models/models/base/classification.py +123 -0
- inference_models/models/base/depth_estimation.py +62 -0
- inference_models/models/base/documents_parsing.py +111 -0
- inference_models/models/base/embeddings.py +66 -0
- inference_models/models/base/instance_segmentation.py +87 -0
- inference_models/models/base/keypoints_detection.py +93 -0
- inference_models/models/base/object_detection.py +143 -0
- inference_models/models/base/semantic_segmentation.py +74 -0
- inference_models/models/base/types.py +5 -0
- inference_models/models/clip/__init__.py +0 -0
- inference_models/models/clip/clip_onnx.py +148 -0
- inference_models/models/clip/clip_pytorch.py +104 -0
- inference_models/models/clip/preprocessing.py +162 -0
- inference_models/models/common/__init__.py +0 -0
- inference_models/models/common/cuda.py +30 -0
- inference_models/models/common/model_packages.py +25 -0
- inference_models/models/common/onnx.py +379 -0
- inference_models/models/common/roboflow/__init__.py +0 -0
- inference_models/models/common/roboflow/model_packages.py +361 -0
- inference_models/models/common/roboflow/post_processing.py +436 -0
- inference_models/models/common/roboflow/pre_processing.py +1332 -0
- inference_models/models/common/torch.py +20 -0
- inference_models/models/common/trt.py +266 -0
- inference_models/models/deep_lab_v3_plus/__init__.py +0 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_onnx.py +282 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_torch.py +264 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_trt.py +313 -0
- inference_models/models/depth_anything_v2/__init__.py +0 -0
- inference_models/models/depth_anything_v2/depth_anything_v2_hf.py +77 -0
- inference_models/models/dinov3/__init__.py +0 -0
- inference_models/models/dinov3/dinov3_classification_onnx.py +348 -0
- inference_models/models/dinov3/dinov3_classification_torch.py +323 -0
- inference_models/models/doctr/__init__.py +0 -0
- inference_models/models/doctr/doctr_torch.py +304 -0
- inference_models/models/easy_ocr/__init__.py +0 -0
- inference_models/models/easy_ocr/easy_ocr_torch.py +222 -0
- inference_models/models/florence2/__init__.py +0 -0
- inference_models/models/florence2/florence2_hf.py +897 -0
- inference_models/models/grounding_dino/__init__.py +0 -0
- inference_models/models/grounding_dino/grounding_dino_torch.py +227 -0
- inference_models/models/l2cs/__init__.py +0 -0
- inference_models/models/l2cs/l2cs_onnx.py +216 -0
- inference_models/models/mediapipe_face_detection/__init__.py +0 -0
- inference_models/models/mediapipe_face_detection/face_detection.py +203 -0
- inference_models/models/moondream2/__init__.py +0 -0
- inference_models/models/moondream2/moondream2_hf.py +281 -0
- inference_models/models/owlv2/__init__.py +0 -0
- inference_models/models/owlv2/cache.py +182 -0
- inference_models/models/owlv2/entities.py +112 -0
- inference_models/models/owlv2/owlv2_hf.py +695 -0
- inference_models/models/owlv2/reference_dataset.py +291 -0
- inference_models/models/paligemma/__init__.py +0 -0
- inference_models/models/paligemma/paligemma_hf.py +209 -0
- inference_models/models/perception_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/perception_encoder_pytorch.py +197 -0
- inference_models/models/perception_encoder/vision_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/vision_encoder/config.py +160 -0
- inference_models/models/perception_encoder/vision_encoder/pe.py +742 -0
- inference_models/models/perception_encoder/vision_encoder/rope.py +344 -0
- inference_models/models/perception_encoder/vision_encoder/tokenizer.py +342 -0
- inference_models/models/perception_encoder/vision_encoder/transforms.py +33 -0
- inference_models/models/qwen25vl/__init__.py +1 -0
- inference_models/models/qwen25vl/qwen25vl_hf.py +285 -0
- inference_models/models/resnet/__init__.py +0 -0
- inference_models/models/resnet/resnet_classification_onnx.py +330 -0
- inference_models/models/resnet/resnet_classification_torch.py +305 -0
- inference_models/models/resnet/resnet_classification_trt.py +369 -0
- inference_models/models/rfdetr/__init__.py +0 -0
- inference_models/models/rfdetr/backbone_builder.py +101 -0
- inference_models/models/rfdetr/class_remapping.py +41 -0
- inference_models/models/rfdetr/common.py +115 -0
- inference_models/models/rfdetr/default_labels.py +108 -0
- inference_models/models/rfdetr/dinov2_with_windowed_attn.py +1330 -0
- inference_models/models/rfdetr/misc.py +26 -0
- inference_models/models/rfdetr/ms_deform_attn.py +180 -0
- inference_models/models/rfdetr/ms_deform_attn_func.py +60 -0
- inference_models/models/rfdetr/position_encoding.py +166 -0
- inference_models/models/rfdetr/post_processor.py +83 -0
- inference_models/models/rfdetr/projector.py +373 -0
- inference_models/models/rfdetr/rfdetr_backbone_pytorch.py +394 -0
- inference_models/models/rfdetr/rfdetr_base_pytorch.py +807 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_onnx.py +206 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_pytorch.py +373 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_trt.py +227 -0
- inference_models/models/rfdetr/rfdetr_object_detection_onnx.py +244 -0
- inference_models/models/rfdetr/rfdetr_object_detection_pytorch.py +470 -0
- inference_models/models/rfdetr/rfdetr_object_detection_trt.py +270 -0
- inference_models/models/rfdetr/segmentation_head.py +273 -0
- inference_models/models/rfdetr/transformer.py +767 -0
- inference_models/models/roboflow_instant/__init__.py +0 -0
- inference_models/models/roboflow_instant/roboflow_instant_hf.py +141 -0
- inference_models/models/sam/__init__.py +0 -0
- inference_models/models/sam/cache.py +147 -0
- inference_models/models/sam/entities.py +25 -0
- inference_models/models/sam/sam_torch.py +675 -0
- inference_models/models/sam2/__init__.py +0 -0
- inference_models/models/sam2/cache.py +162 -0
- inference_models/models/sam2/entities.py +43 -0
- inference_models/models/sam2/sam2_torch.py +905 -0
- inference_models/models/sam2_rt/__init__.py +0 -0
- inference_models/models/sam2_rt/sam2_pytorch.py +119 -0
- inference_models/models/smolvlm/__init__.py +0 -0
- inference_models/models/smolvlm/smolvlm_hf.py +245 -0
- inference_models/models/trocr/__init__.py +0 -0
- inference_models/models/trocr/trocr_hf.py +53 -0
- inference_models/models/vit/__init__.py +0 -0
- inference_models/models/vit/vit_classification_huggingface.py +319 -0
- inference_models/models/vit/vit_classification_onnx.py +326 -0
- inference_models/models/vit/vit_classification_trt.py +365 -0
- inference_models/models/yolact/__init__.py +1 -0
- inference_models/models/yolact/yolact_instance_segmentation_onnx.py +336 -0
- inference_models/models/yolact/yolact_instance_segmentation_trt.py +361 -0
- inference_models/models/yolo_world/__init__.py +1 -0
- inference_models/models/yolonas/__init__.py +0 -0
- inference_models/models/yolonas/nms.py +44 -0
- inference_models/models/yolonas/yolonas_object_detection_onnx.py +204 -0
- inference_models/models/yolonas/yolonas_object_detection_trt.py +230 -0
- inference_models/models/yolov10/__init__.py +0 -0
- inference_models/models/yolov10/yolov10_object_detection_onnx.py +187 -0
- inference_models/models/yolov10/yolov10_object_detection_trt.py +215 -0
- inference_models/models/yolov11/__init__.py +0 -0
- inference_models/models/yolov11/yolov11_onnx.py +28 -0
- inference_models/models/yolov11/yolov11_torch_script.py +25 -0
- inference_models/models/yolov11/yolov11_trt.py +21 -0
- inference_models/models/yolov12/__init__.py +0 -0
- inference_models/models/yolov12/yolov12_onnx.py +7 -0
- inference_models/models/yolov12/yolov12_torch_script.py +7 -0
- inference_models/models/yolov12/yolov12_trt.py +7 -0
- inference_models/models/yolov5/__init__.py +0 -0
- inference_models/models/yolov5/nms.py +99 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_onnx.py +225 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_trt.py +255 -0
- inference_models/models/yolov5/yolov5_object_detection_onnx.py +192 -0
- inference_models/models/yolov5/yolov5_object_detection_trt.py +218 -0
- inference_models/models/yolov7/__init__.py +0 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_onnx.py +226 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_trt.py +253 -0
- inference_models/models/yolov8/__init__.py +0 -0
- inference_models/models/yolov8/yolov8_classification_onnx.py +181 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_onnx.py +239 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_torch_script.py +201 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_trt.py +268 -0
- inference_models/models/yolov8/yolov8_key_points_detection_onnx.py +263 -0
- inference_models/models/yolov8/yolov8_key_points_detection_torch_script.py +218 -0
- inference_models/models/yolov8/yolov8_key_points_detection_trt.py +287 -0
- inference_models/models/yolov8/yolov8_object_detection_onnx.py +213 -0
- inference_models/models/yolov8/yolov8_object_detection_torch_script.py +166 -0
- inference_models/models/yolov8/yolov8_object_detection_trt.py +231 -0
- inference_models/models/yolov9/__init__.py +0 -0
- inference_models/models/yolov9/yolov9_onnx.py +7 -0
- inference_models/models/yolov9/yolov9_torch_script.py +7 -0
- inference_models/models/yolov9/yolov9_trt.py +7 -0
- inference_models/runtime_introspection/__init__.py +0 -0
- inference_models/runtime_introspection/core.py +410 -0
- inference_models/utils/__init__.py +0 -0
- inference_models/utils/download.py +608 -0
- inference_models/utils/environment.py +28 -0
- inference_models/utils/file_system.py +51 -0
- inference_models/utils/hashing.py +7 -0
- inference_models/utils/imports.py +48 -0
- inference_models/utils/onnx_introspection.py +17 -0
- inference_models/weights_providers/__init__.py +0 -0
- inference_models/weights_providers/core.py +20 -0
- inference_models/weights_providers/entities.py +159 -0
- inference_models/weights_providers/roboflow.py +601 -0
- inference_models-0.18.3.dist-info/METADATA +466 -0
- inference_models-0.18.3.dist-info/RECORD +195 -0
- inference_models-0.18.3.dist-info/WHEEL +5 -0
- inference_models-0.18.3.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1332 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import List, Optional, Tuple, Union
|
|
3
|
+
|
|
4
|
+
import cv2
|
|
5
|
+
import numpy as np
|
|
6
|
+
import PIL
|
|
7
|
+
import torch
|
|
8
|
+
from PIL.Image import Image
|
|
9
|
+
from skimage import exposure
|
|
10
|
+
from torchvision.transforms import Grayscale, functional
|
|
11
|
+
|
|
12
|
+
from inference_models.entities import ColorFormat, ImageDimensions
|
|
13
|
+
from inference_models.errors import ModelRuntimeError
|
|
14
|
+
from inference_models.logger import LOGGER
|
|
15
|
+
from inference_models.models.common.roboflow.model_packages import (
|
|
16
|
+
AnySizePadding,
|
|
17
|
+
ColorMode,
|
|
18
|
+
ContrastType,
|
|
19
|
+
DivisiblePadding,
|
|
20
|
+
ImagePreProcessing,
|
|
21
|
+
NetworkInputDefinition,
|
|
22
|
+
PreProcessingMetadata,
|
|
23
|
+
ResizeMode,
|
|
24
|
+
StaticCrop,
|
|
25
|
+
StaticCropOffset,
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def pre_process_network_input(
|
|
30
|
+
images: Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]],
|
|
31
|
+
image_pre_processing: ImagePreProcessing,
|
|
32
|
+
network_input: NetworkInputDefinition,
|
|
33
|
+
target_device: torch.device,
|
|
34
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
35
|
+
image_size_wh: Optional[Union[int, Tuple[int, int]]] = None,
|
|
36
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
37
|
+
if network_input.input_channels != 3:
|
|
38
|
+
raise ModelRuntimeError(
|
|
39
|
+
message=f"`inference` currently does not support Roboflow pre-processing for model inputs with "
|
|
40
|
+
f"channels numbers different than 1. Let us know if you need this feature.",
|
|
41
|
+
help_url="https://todo",
|
|
42
|
+
)
|
|
43
|
+
input_color_mode = None
|
|
44
|
+
if input_color_format is not None:
|
|
45
|
+
input_color_mode = ColorMode(input_color_format)
|
|
46
|
+
if isinstance(image_size_wh, (int, float)):
|
|
47
|
+
image_size_wh = int(image_size_wh), int(image_size_wh)
|
|
48
|
+
if isinstance(images, np.ndarray):
|
|
49
|
+
return pre_process_numpy_image(
|
|
50
|
+
image=images,
|
|
51
|
+
image_pre_processing=image_pre_processing,
|
|
52
|
+
network_input=network_input,
|
|
53
|
+
target_device=target_device,
|
|
54
|
+
input_color_mode=input_color_mode,
|
|
55
|
+
image_size_wh=image_size_wh,
|
|
56
|
+
)
|
|
57
|
+
if isinstance(images, torch.Tensor):
|
|
58
|
+
return pre_process_images_tensor(
|
|
59
|
+
images=images,
|
|
60
|
+
image_pre_processing=image_pre_processing,
|
|
61
|
+
network_input=network_input,
|
|
62
|
+
input_color_mode=input_color_mode,
|
|
63
|
+
target_device=target_device,
|
|
64
|
+
image_size_wh=image_size_wh,
|
|
65
|
+
)
|
|
66
|
+
if not isinstance(images, list):
|
|
67
|
+
raise ModelRuntimeError(
|
|
68
|
+
message="Pre-processing supports only np.array or torch.Tensor or list of above.",
|
|
69
|
+
help_url="https://todo",
|
|
70
|
+
)
|
|
71
|
+
if not len(images):
|
|
72
|
+
raise ModelRuntimeError(
|
|
73
|
+
message="Detected empty input to the model", help_url="https://todo"
|
|
74
|
+
)
|
|
75
|
+
if network_input.resize_mode is ResizeMode.FIT_LONGER_EDGE:
|
|
76
|
+
raise ModelRuntimeError(
|
|
77
|
+
message="Model input resize type (fit-longer-edge) cannot be applied equally for "
|
|
78
|
+
"all input batch elements arbitrarily - this type of model does not support input batches.",
|
|
79
|
+
help_url="https://todo",
|
|
80
|
+
)
|
|
81
|
+
if isinstance(images[0], np.ndarray):
|
|
82
|
+
return pre_process_numpy_images_list(
|
|
83
|
+
images=images,
|
|
84
|
+
image_pre_processing=image_pre_processing,
|
|
85
|
+
network_input=network_input,
|
|
86
|
+
input_color_mode=input_color_mode,
|
|
87
|
+
target_device=target_device,
|
|
88
|
+
image_size_wh=image_size_wh,
|
|
89
|
+
)
|
|
90
|
+
if isinstance(images[0], torch.Tensor):
|
|
91
|
+
return pre_process_images_tensor_list(
|
|
92
|
+
images=images,
|
|
93
|
+
image_pre_processing=image_pre_processing,
|
|
94
|
+
network_input=network_input,
|
|
95
|
+
input_color_mode=input_color_mode,
|
|
96
|
+
target_device=target_device,
|
|
97
|
+
image_size_wh=image_size_wh,
|
|
98
|
+
)
|
|
99
|
+
raise ModelRuntimeError(
|
|
100
|
+
message=f"Detected unknown input batch element: {type(images[0])}",
|
|
101
|
+
help_url="https://todo",
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
@torch.inference_mode()
|
|
106
|
+
def pre_process_images_tensor(
|
|
107
|
+
images: torch.Tensor,
|
|
108
|
+
image_pre_processing: ImagePreProcessing,
|
|
109
|
+
network_input: NetworkInputDefinition,
|
|
110
|
+
target_device: torch.device,
|
|
111
|
+
input_color_mode: Optional[ColorMode] = None,
|
|
112
|
+
image_size_wh: Optional[Tuple[int, int]] = None,
|
|
113
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
114
|
+
if input_color_mode is None:
|
|
115
|
+
input_color_mode = ColorMode.RGB
|
|
116
|
+
target_dimensions = (
|
|
117
|
+
network_input.training_input_size.width,
|
|
118
|
+
network_input.training_input_size.height,
|
|
119
|
+
)
|
|
120
|
+
if image_size_wh is not None and image_size_wh != target_dimensions:
|
|
121
|
+
if not network_input.dynamic_spatial_size_supported:
|
|
122
|
+
LOGGER.warning(
|
|
123
|
+
f"Requested image size: {image_size_wh} cannot be applied for model input, as model was trained with "
|
|
124
|
+
f"input resolution and does not support inputs of a different shape. `image_size_wh` gets ignored."
|
|
125
|
+
)
|
|
126
|
+
elif isinstance(network_input.dynamic_spatial_size_mode, DivisiblePadding):
|
|
127
|
+
target_dimensions = (
|
|
128
|
+
make_the_value_divisible(
|
|
129
|
+
x=image_size_wh[0], by=network_input.dynamic_spatial_size_mode.value
|
|
130
|
+
),
|
|
131
|
+
make_the_value_divisible(
|
|
132
|
+
x=image_size_wh[1], by=network_input.dynamic_spatial_size_mode.value
|
|
133
|
+
),
|
|
134
|
+
)
|
|
135
|
+
elif isinstance(network_input.dynamic_spatial_size_mode, AnySizePadding):
|
|
136
|
+
target_dimensions = image_size_wh
|
|
137
|
+
else:
|
|
138
|
+
raise ModelRuntimeError(
|
|
139
|
+
message=f"Handler for dynamic spatial mode of type {type(network_input.dynamic_spatial_size_mode)} "
|
|
140
|
+
f"is not implemented.",
|
|
141
|
+
help_url="",
|
|
142
|
+
)
|
|
143
|
+
if images.device != target_device:
|
|
144
|
+
images = images.to(target_device)
|
|
145
|
+
if len(images.shape) == 3:
|
|
146
|
+
images = torch.unsqueeze(images, 0)
|
|
147
|
+
if (
|
|
148
|
+
images.shape[1] != network_input.input_channels
|
|
149
|
+
and images.shape[3] == network_input.input_channels
|
|
150
|
+
):
|
|
151
|
+
images = images.permute(0, 3, 1, 2)
|
|
152
|
+
original_size = ImageDimensions(width=images.shape[3], height=images.shape[2])
|
|
153
|
+
image, static_crop_offset = apply_pre_processing_to_torch_image(
|
|
154
|
+
image=images,
|
|
155
|
+
image_pre_processing=image_pre_processing,
|
|
156
|
+
network_input_channels=network_input.input_channels,
|
|
157
|
+
)
|
|
158
|
+
if network_input.resize_mode not in NUMPY_IMAGES_PREPARATION_HANDLERS:
|
|
159
|
+
raise ModelRuntimeError(
|
|
160
|
+
message=f"Unsupported model input resize mode: {network_input.resize_mode}",
|
|
161
|
+
help_url="https://todo",
|
|
162
|
+
)
|
|
163
|
+
return TORCH_IMAGES_PREPARATION_HANDLERS[network_input.resize_mode](
|
|
164
|
+
image,
|
|
165
|
+
network_input,
|
|
166
|
+
input_color_mode,
|
|
167
|
+
original_size,
|
|
168
|
+
ImageDimensions(width=target_dimensions[0], height=target_dimensions[1]),
|
|
169
|
+
static_crop_offset,
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
def apply_pre_processing_to_torch_image(
|
|
174
|
+
image: torch.Tensor,
|
|
175
|
+
image_pre_processing: ImagePreProcessing,
|
|
176
|
+
network_input_channels: int,
|
|
177
|
+
) -> Tuple[torch.Tensor, StaticCropOffset]:
|
|
178
|
+
static_crop_offset = StaticCropOffset(
|
|
179
|
+
offset_x=0,
|
|
180
|
+
offset_y=0,
|
|
181
|
+
crop_width=image.shape[3],
|
|
182
|
+
crop_height=image.shape[2],
|
|
183
|
+
)
|
|
184
|
+
if image_pre_processing.static_crop and image_pre_processing.static_crop.enabled:
|
|
185
|
+
image, static_crop_offset = apply_static_crop_to_torch_image(
|
|
186
|
+
image=image,
|
|
187
|
+
config=image_pre_processing.static_crop,
|
|
188
|
+
)
|
|
189
|
+
if image_pre_processing.grayscale and image_pre_processing.grayscale.enabled:
|
|
190
|
+
image = Grayscale(num_output_channels=network_input_channels)(image)
|
|
191
|
+
if image_pre_processing.contrast and image_pre_processing.contrast.enabled:
|
|
192
|
+
if (
|
|
193
|
+
image_pre_processing.contrast.type
|
|
194
|
+
not in CONTRAST_ADJUSTMENT_METHODS_FOR_TORCH
|
|
195
|
+
):
|
|
196
|
+
raise ModelRuntimeError(
|
|
197
|
+
message=f"Unsupported image contrast adjustment type: {image_pre_processing.contrast.type.value}",
|
|
198
|
+
help_url="https://todo",
|
|
199
|
+
)
|
|
200
|
+
image = CONTRAST_ADJUSTMENT_METHODS_FOR_TORCH[
|
|
201
|
+
image_pre_processing.contrast.type
|
|
202
|
+
](image)
|
|
203
|
+
return image, static_crop_offset
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def apply_static_crop_to_torch_image(
|
|
207
|
+
image: torch.Tensor, config: StaticCrop
|
|
208
|
+
) -> Tuple[torch.Tensor, StaticCropOffset]:
|
|
209
|
+
width, height = image.shape[3], image.shape[2]
|
|
210
|
+
x_min = int(config.x_min / 100 * width)
|
|
211
|
+
y_min = int(config.y_min / 100 * height)
|
|
212
|
+
x_max = int(config.x_max / 100 * width)
|
|
213
|
+
y_max = int(config.y_max / 100 * height)
|
|
214
|
+
cropped_tensor = image[:, :, y_min:y_max, x_min:x_max]
|
|
215
|
+
offset = StaticCropOffset(
|
|
216
|
+
offset_x=x_min,
|
|
217
|
+
offset_y=y_min,
|
|
218
|
+
crop_width=cropped_tensor.shape[3],
|
|
219
|
+
crop_height=cropped_tensor.shape[2],
|
|
220
|
+
)
|
|
221
|
+
return cropped_tensor, offset
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
def apply_adaptive_equalization_to_torch_image(image: torch.Tensor) -> torch.Tensor:
|
|
225
|
+
original_device = image.device
|
|
226
|
+
results = []
|
|
227
|
+
for single_image in image:
|
|
228
|
+
single_image_numpy = np.transpose(single_image.cpu().numpy(), (1, 2, 0))
|
|
229
|
+
image = single_image_numpy.astype(np.float32) / 255
|
|
230
|
+
image_adapted = (
|
|
231
|
+
exposure.equalize_adapthist(image, clip_limit=0.03) * 255
|
|
232
|
+
).astype(np.uint8)
|
|
233
|
+
results.append(torch.from_numpy(image_adapted).to(original_device))
|
|
234
|
+
return torch.stack(results, dim=0).permute(0, 3, 1, 2)
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
def apply_contrast_stretching_to_torch_image(image: torch.Tensor) -> torch.Tensor:
|
|
238
|
+
original_device = image.device
|
|
239
|
+
results = []
|
|
240
|
+
for single_image in image:
|
|
241
|
+
single_image_numpy = np.transpose(single_image.cpu().numpy(), (1, 2, 0))
|
|
242
|
+
p2 = np.percentile(single_image_numpy, 2)
|
|
243
|
+
p98 = np.percentile(single_image_numpy, 98)
|
|
244
|
+
rescaled_image = exposure.rescale_intensity(
|
|
245
|
+
single_image_numpy, in_range=(p2, p98)
|
|
246
|
+
)
|
|
247
|
+
results.append(torch.from_numpy(rescaled_image).to(original_device))
|
|
248
|
+
return torch.stack(results, dim=0).permute(0, 3, 1, 2)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def apply_histogram_equalization_to_torch_image(image: torch.Tensor) -> torch.Tensor:
|
|
252
|
+
original_device = image.device
|
|
253
|
+
results = []
|
|
254
|
+
for single_image in image:
|
|
255
|
+
single_image_numpy = np.transpose(single_image.cpu().numpy(), (1, 2, 0))
|
|
256
|
+
single_image_numpy = single_image_numpy.astype(np.float32) / 255
|
|
257
|
+
image_equalized = exposure.equalize_hist(single_image_numpy) * 255
|
|
258
|
+
results.append(torch.from_numpy(image_equalized).to(original_device))
|
|
259
|
+
return torch.stack(results, dim=0).permute(0, 3, 1, 2)
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
CONTRAST_ADJUSTMENT_METHODS_FOR_TORCH = {
|
|
263
|
+
ContrastType.ADAPTIVE_EQUALIZATION: apply_adaptive_equalization_to_torch_image,
|
|
264
|
+
ContrastType.CONTRAST_STRETCHING: apply_contrast_stretching_to_torch_image,
|
|
265
|
+
ContrastType.HISTOGRAM_EQUALIZATION: apply_histogram_equalization_to_torch_image,
|
|
266
|
+
}
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
def handle_tensor_input_preparation_with_stretch(
|
|
270
|
+
image: torch.Tensor,
|
|
271
|
+
network_input: NetworkInputDefinition,
|
|
272
|
+
input_color_mode: ColorMode,
|
|
273
|
+
original_size: ImageDimensions,
|
|
274
|
+
target_size: ImageDimensions,
|
|
275
|
+
static_crop_offset: StaticCropOffset,
|
|
276
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
277
|
+
size_after_pre_processing = ImageDimensions(
|
|
278
|
+
height=image.shape[2], width=image.shape[3]
|
|
279
|
+
)
|
|
280
|
+
if image.device.type == "cuda":
|
|
281
|
+
image = image.float()
|
|
282
|
+
image = torch.nn.functional.interpolate(
|
|
283
|
+
image,
|
|
284
|
+
size=[target_size.height, target_size.width],
|
|
285
|
+
mode="bilinear",
|
|
286
|
+
)
|
|
287
|
+
if input_color_mode != network_input.color_mode:
|
|
288
|
+
image = image[:, [2, 1, 0], :, :]
|
|
289
|
+
if network_input.scaling_factor is not None:
|
|
290
|
+
image = image / network_input.scaling_factor
|
|
291
|
+
if network_input.normalization is not None:
|
|
292
|
+
if not image.is_floating_point():
|
|
293
|
+
image = image.to(dtype=torch.float32)
|
|
294
|
+
image = functional.normalize(
|
|
295
|
+
image,
|
|
296
|
+
mean=network_input.normalization[0],
|
|
297
|
+
std=network_input.normalization[1],
|
|
298
|
+
)
|
|
299
|
+
metadata = PreProcessingMetadata(
|
|
300
|
+
pad_left=0,
|
|
301
|
+
pad_top=0,
|
|
302
|
+
pad_right=0,
|
|
303
|
+
pad_bottom=0,
|
|
304
|
+
original_size=original_size,
|
|
305
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
306
|
+
inference_size=target_size,
|
|
307
|
+
scale_width=target_size.width / size_after_pre_processing.width,
|
|
308
|
+
scale_height=target_size.height / size_after_pre_processing.height,
|
|
309
|
+
static_crop_offset=static_crop_offset,
|
|
310
|
+
)
|
|
311
|
+
return image.contiguous(), [metadata] * image.shape[0]
|
|
312
|
+
|
|
313
|
+
|
|
314
|
+
def handle_torch_input_preparation_with_letterbox(
|
|
315
|
+
image: torch.Tensor,
|
|
316
|
+
network_input: NetworkInputDefinition,
|
|
317
|
+
input_color_mode: ColorMode,
|
|
318
|
+
original_size: ImageDimensions,
|
|
319
|
+
target_size: ImageDimensions,
|
|
320
|
+
static_crop_offset: StaticCropOffset,
|
|
321
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
322
|
+
original_height, original_width = image.shape[2], image.shape[3]
|
|
323
|
+
size_after_pre_processing = ImageDimensions(
|
|
324
|
+
height=original_height, width=original_width
|
|
325
|
+
)
|
|
326
|
+
scale_w = target_size.width / original_width
|
|
327
|
+
scale_h = target_size.height / original_height
|
|
328
|
+
scale = min(scale_w, scale_h)
|
|
329
|
+
new_width = int(original_width * scale)
|
|
330
|
+
new_height = int(original_height * scale)
|
|
331
|
+
pad_top = int((target_size.height - new_height) / 2)
|
|
332
|
+
pad_left = int((target_size.width - new_width) / 2)
|
|
333
|
+
if image.device.type == "cuda":
|
|
334
|
+
image = image.float()
|
|
335
|
+
image = torch.nn.functional.interpolate(
|
|
336
|
+
image,
|
|
337
|
+
[new_height, new_width],
|
|
338
|
+
mode="bilinear",
|
|
339
|
+
)
|
|
340
|
+
if input_color_mode != network_input.color_mode:
|
|
341
|
+
image = image[:, [2, 1, 0], :, :]
|
|
342
|
+
final_batch = torch.full(
|
|
343
|
+
(
|
|
344
|
+
image.shape[0],
|
|
345
|
+
image.shape[1],
|
|
346
|
+
target_size.height,
|
|
347
|
+
target_size.width,
|
|
348
|
+
),
|
|
349
|
+
network_input.padding_value or 0,
|
|
350
|
+
dtype=torch.float32,
|
|
351
|
+
device=image.device,
|
|
352
|
+
)
|
|
353
|
+
final_batch[
|
|
354
|
+
:, :, pad_top : pad_top + new_height, pad_left : pad_left + new_width
|
|
355
|
+
] = image
|
|
356
|
+
pad_right = target_size.width - pad_left - new_width
|
|
357
|
+
pad_bottom = target_size.height - pad_top - new_height
|
|
358
|
+
metadata = PreProcessingMetadata(
|
|
359
|
+
pad_left=pad_left,
|
|
360
|
+
pad_top=pad_top,
|
|
361
|
+
pad_right=pad_right,
|
|
362
|
+
pad_bottom=pad_bottom,
|
|
363
|
+
original_size=original_size,
|
|
364
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
365
|
+
inference_size=target_size,
|
|
366
|
+
scale_width=scale,
|
|
367
|
+
scale_height=scale,
|
|
368
|
+
static_crop_offset=static_crop_offset,
|
|
369
|
+
)
|
|
370
|
+
if network_input.scaling_factor is not None:
|
|
371
|
+
final_batch = final_batch / network_input.scaling_factor
|
|
372
|
+
if network_input.normalization is not None:
|
|
373
|
+
if not final_batch.is_floating_point():
|
|
374
|
+
final_batch = final_batch.to(dtype=torch.float32)
|
|
375
|
+
final_batch = functional.normalize(
|
|
376
|
+
final_batch,
|
|
377
|
+
mean=network_input.normalization[0],
|
|
378
|
+
std=network_input.normalization[1],
|
|
379
|
+
)
|
|
380
|
+
return final_batch.contiguous(), [metadata] * final_batch.shape[0]
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
def handle_torch_input_preparation_with_center_crop(
|
|
384
|
+
image: torch.Tensor,
|
|
385
|
+
network_input: NetworkInputDefinition,
|
|
386
|
+
input_color_mode: ColorMode,
|
|
387
|
+
original_size: ImageDimensions,
|
|
388
|
+
target_size: ImageDimensions,
|
|
389
|
+
static_crop_offset: StaticCropOffset,
|
|
390
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
391
|
+
if input_color_mode != network_input.color_mode:
|
|
392
|
+
image = image[:, [2, 1, 0], :, :]
|
|
393
|
+
size_after_pre_processing = ImageDimensions(
|
|
394
|
+
height=image.shape[2], width=image.shape[3]
|
|
395
|
+
)
|
|
396
|
+
padding_ltrb = [0, 0, 0, 0]
|
|
397
|
+
if (
|
|
398
|
+
target_size.width > size_after_pre_processing.width
|
|
399
|
+
or target_size.height > size_after_pre_processing.height
|
|
400
|
+
):
|
|
401
|
+
padding_ltrb = [
|
|
402
|
+
(
|
|
403
|
+
(target_size.width - size_after_pre_processing.width) // 2
|
|
404
|
+
if target_size.width > size_after_pre_processing.width
|
|
405
|
+
else 0
|
|
406
|
+
),
|
|
407
|
+
(
|
|
408
|
+
(target_size.height - size_after_pre_processing.height) // 2
|
|
409
|
+
if target_size.height > size_after_pre_processing.height
|
|
410
|
+
else 0
|
|
411
|
+
),
|
|
412
|
+
(
|
|
413
|
+
(target_size.width - size_after_pre_processing.width + 1) // 2
|
|
414
|
+
if target_size.width > size_after_pre_processing.width
|
|
415
|
+
else 0
|
|
416
|
+
),
|
|
417
|
+
(
|
|
418
|
+
(target_size.height - size_after_pre_processing.height + 1) // 2
|
|
419
|
+
if target_size.height > size_after_pre_processing.height
|
|
420
|
+
else 0
|
|
421
|
+
),
|
|
422
|
+
]
|
|
423
|
+
image = functional.pad(image, padding_ltrb, fill=0)
|
|
424
|
+
crop_ltrb = [0, 0, 0, 0]
|
|
425
|
+
if target_size.width != image.shape[3] or target_size.height != image.shape[2]:
|
|
426
|
+
crop_top = int(round((image.shape[2] - target_size.height) / 2.0))
|
|
427
|
+
crop_bottom = image.shape[2] - target_size.height - crop_top
|
|
428
|
+
crop_left = int(round((image.shape[3] - target_size.width) / 2.0))
|
|
429
|
+
crop_right = image.shape[3] - target_size.width - crop_left
|
|
430
|
+
crop_ltrb = [crop_left, crop_top, crop_right, crop_bottom]
|
|
431
|
+
image = functional.crop(
|
|
432
|
+
image, crop_top, crop_left, target_size.height, target_size.width
|
|
433
|
+
)
|
|
434
|
+
if target_size.height > size_after_pre_processing.height:
|
|
435
|
+
reported_padding_top = padding_ltrb[1]
|
|
436
|
+
reported_padding_bottom = padding_ltrb[3]
|
|
437
|
+
else:
|
|
438
|
+
reported_padding_top = -crop_ltrb[1]
|
|
439
|
+
reported_padding_bottom = -crop_ltrb[3]
|
|
440
|
+
if target_size.width > size_after_pre_processing.width:
|
|
441
|
+
reported_padding_left = padding_ltrb[0]
|
|
442
|
+
reported_padding_right = padding_ltrb[2]
|
|
443
|
+
else:
|
|
444
|
+
reported_padding_left = -crop_ltrb[0]
|
|
445
|
+
reported_padding_right = -crop_ltrb[2]
|
|
446
|
+
image_metadata = PreProcessingMetadata(
|
|
447
|
+
pad_left=reported_padding_left,
|
|
448
|
+
pad_top=reported_padding_top,
|
|
449
|
+
pad_right=reported_padding_right,
|
|
450
|
+
pad_bottom=reported_padding_bottom,
|
|
451
|
+
original_size=original_size,
|
|
452
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
453
|
+
inference_size=target_size,
|
|
454
|
+
scale_width=1.0,
|
|
455
|
+
scale_height=1.0,
|
|
456
|
+
static_crop_offset=static_crop_offset,
|
|
457
|
+
)
|
|
458
|
+
if network_input.scaling_factor is not None:
|
|
459
|
+
image = image / network_input.scaling_factor
|
|
460
|
+
if network_input.normalization is not None:
|
|
461
|
+
if not image.is_floating_point():
|
|
462
|
+
image = image.to(dtype=torch.float32)
|
|
463
|
+
image = functional.normalize(
|
|
464
|
+
image,
|
|
465
|
+
mean=network_input.normalization[0],
|
|
466
|
+
std=network_input.normalization[1],
|
|
467
|
+
)
|
|
468
|
+
return image.contiguous(), [image_metadata] * image.shape[0]
|
|
469
|
+
|
|
470
|
+
|
|
471
|
+
def handle_torch_input_preparation_fitting_longer_edge(
|
|
472
|
+
image: torch.Tensor,
|
|
473
|
+
network_input: NetworkInputDefinition,
|
|
474
|
+
input_color_mode: ColorMode,
|
|
475
|
+
original_size: ImageDimensions,
|
|
476
|
+
target_size: ImageDimensions,
|
|
477
|
+
static_crop_offset: StaticCropOffset,
|
|
478
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
479
|
+
original_height, original_width = image.shape[2], image.shape[3]
|
|
480
|
+
size_after_pre_processing = ImageDimensions(
|
|
481
|
+
height=original_height, width=original_width
|
|
482
|
+
)
|
|
483
|
+
scale_ox = target_size.width / size_after_pre_processing.width
|
|
484
|
+
scale_oy = target_size.height / size_after_pre_processing.height
|
|
485
|
+
if scale_ox < scale_oy:
|
|
486
|
+
actual_target_width = target_size.width
|
|
487
|
+
actual_target_height = round(scale_ox * size_after_pre_processing.height)
|
|
488
|
+
else:
|
|
489
|
+
actual_target_width = round(scale_oy * size_after_pre_processing.width)
|
|
490
|
+
actual_target_height = target_size.height
|
|
491
|
+
actual_target_size = ImageDimensions(
|
|
492
|
+
height=actual_target_height,
|
|
493
|
+
width=actual_target_width,
|
|
494
|
+
)
|
|
495
|
+
if image.device.type == "cuda":
|
|
496
|
+
image = image.float()
|
|
497
|
+
image = torch.nn.functional.interpolate(
|
|
498
|
+
image,
|
|
499
|
+
[actual_target_size.height, actual_target_size.width],
|
|
500
|
+
mode="bilinear",
|
|
501
|
+
)
|
|
502
|
+
if input_color_mode != network_input.color_mode:
|
|
503
|
+
image = image[:, [2, 1, 0], :, :]
|
|
504
|
+
image_metadata = PreProcessingMetadata(
|
|
505
|
+
pad_left=0,
|
|
506
|
+
pad_top=0,
|
|
507
|
+
pad_right=0,
|
|
508
|
+
pad_bottom=0,
|
|
509
|
+
original_size=original_size,
|
|
510
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
511
|
+
inference_size=actual_target_size,
|
|
512
|
+
scale_width=actual_target_size.width / size_after_pre_processing.width,
|
|
513
|
+
scale_height=actual_target_size.height / size_after_pre_processing.height,
|
|
514
|
+
static_crop_offset=static_crop_offset,
|
|
515
|
+
)
|
|
516
|
+
if network_input.scaling_factor is not None:
|
|
517
|
+
image = image / network_input.scaling_factor
|
|
518
|
+
if network_input.normalization is not None:
|
|
519
|
+
if not image.is_floating_point():
|
|
520
|
+
image = image.to(dtype=torch.float32)
|
|
521
|
+
image = functional.normalize(
|
|
522
|
+
image,
|
|
523
|
+
mean=network_input.normalization[0],
|
|
524
|
+
std=network_input.normalization[1],
|
|
525
|
+
)
|
|
526
|
+
return image.contiguous(), [image_metadata] * image.shape[0]
|
|
527
|
+
|
|
528
|
+
|
|
529
|
+
TORCH_IMAGES_PREPARATION_HANDLERS = {
|
|
530
|
+
ResizeMode.STRETCH_TO: handle_tensor_input_preparation_with_stretch,
|
|
531
|
+
ResizeMode.LETTERBOX: handle_torch_input_preparation_with_letterbox,
|
|
532
|
+
ResizeMode.CENTER_CROP: handle_torch_input_preparation_with_center_crop,
|
|
533
|
+
ResizeMode.FIT_LONGER_EDGE: handle_torch_input_preparation_fitting_longer_edge,
|
|
534
|
+
ResizeMode.LETTERBOX_REFLECT_EDGES: handle_torch_input_preparation_with_letterbox,
|
|
535
|
+
}
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
@torch.inference_mode()
|
|
539
|
+
def pre_process_images_tensor_list(
|
|
540
|
+
images: List[torch.Tensor],
|
|
541
|
+
image_pre_processing: ImagePreProcessing,
|
|
542
|
+
network_input: NetworkInputDefinition,
|
|
543
|
+
target_device: torch.device,
|
|
544
|
+
input_color_mode: Optional[ColorMode] = None,
|
|
545
|
+
image_size_wh: Optional[Tuple[int, int]] = None,
|
|
546
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
547
|
+
if network_input.resize_mode not in TORCH_LIST_IMAGES_PREPARATION_HANDLERS:
|
|
548
|
+
raise ModelRuntimeError(
|
|
549
|
+
message=f"Unsupported model input resize mode: {network_input.resize_mode}",
|
|
550
|
+
help_url="https://todo",
|
|
551
|
+
)
|
|
552
|
+
if input_color_mode is None:
|
|
553
|
+
input_color_mode = ColorMode.RGB
|
|
554
|
+
target_dimensions = (
|
|
555
|
+
network_input.training_input_size.width,
|
|
556
|
+
network_input.training_input_size.height,
|
|
557
|
+
)
|
|
558
|
+
if image_size_wh is not None and image_size_wh != target_dimensions:
|
|
559
|
+
if not network_input.dynamic_spatial_size_supported:
|
|
560
|
+
LOGGER.warning(
|
|
561
|
+
f"Requested image size: {image_size_wh} cannot be applied for model input, as model was trained with "
|
|
562
|
+
f"input resolution and does not support inputs of a different shape. `image_size_wh` gets ignored."
|
|
563
|
+
)
|
|
564
|
+
elif isinstance(network_input.dynamic_spatial_size_mode, DivisiblePadding):
|
|
565
|
+
target_dimensions = (
|
|
566
|
+
make_the_value_divisible(
|
|
567
|
+
x=image_size_wh[0], by=network_input.dynamic_spatial_size_mode.value
|
|
568
|
+
),
|
|
569
|
+
make_the_value_divisible(
|
|
570
|
+
x=image_size_wh[1], by=network_input.dynamic_spatial_size_mode.value
|
|
571
|
+
),
|
|
572
|
+
)
|
|
573
|
+
elif isinstance(network_input.dynamic_spatial_size_mode, AnySizePadding):
|
|
574
|
+
target_dimensions = image_size_wh
|
|
575
|
+
else:
|
|
576
|
+
raise ModelRuntimeError(
|
|
577
|
+
message=f"Handler for dynamic spatial mode of type {type(network_input.dynamic_spatial_size_mode)} "
|
|
578
|
+
f"is not implemented.",
|
|
579
|
+
help_url="",
|
|
580
|
+
)
|
|
581
|
+
images, static_crop_offsets, original_sizes = (
|
|
582
|
+
apply_pre_processing_to_list_of_torch_image(
|
|
583
|
+
images=images,
|
|
584
|
+
image_pre_processing=image_pre_processing,
|
|
585
|
+
network_input_channels=network_input.input_channels,
|
|
586
|
+
target_device=target_device,
|
|
587
|
+
)
|
|
588
|
+
)
|
|
589
|
+
return TORCH_LIST_IMAGES_PREPARATION_HANDLERS[network_input.resize_mode](
|
|
590
|
+
images,
|
|
591
|
+
network_input,
|
|
592
|
+
input_color_mode,
|
|
593
|
+
original_sizes,
|
|
594
|
+
ImageDimensions(width=target_dimensions[0], height=target_dimensions[1]),
|
|
595
|
+
static_crop_offsets,
|
|
596
|
+
target_device,
|
|
597
|
+
)
|
|
598
|
+
|
|
599
|
+
|
|
600
|
+
def apply_pre_processing_to_list_of_torch_image(
|
|
601
|
+
images: List[torch.Tensor],
|
|
602
|
+
image_pre_processing: ImagePreProcessing,
|
|
603
|
+
network_input_channels: int,
|
|
604
|
+
target_device: torch.device,
|
|
605
|
+
) -> Tuple[List[torch.Tensor], List[StaticCropOffset], List[ImageDimensions]]:
|
|
606
|
+
result_images, result_offsets, original_sizes = [], [], []
|
|
607
|
+
for image in images:
|
|
608
|
+
if len(image.shape) != 3:
|
|
609
|
+
raise ModelRuntimeError(
|
|
610
|
+
message="When providing List[torch.Tensor] as input, model requires tensors to have 3 dimensions.",
|
|
611
|
+
help_url="https://todo",
|
|
612
|
+
)
|
|
613
|
+
image = image.to(target_device)
|
|
614
|
+
if image.shape[0] != 3 and image.shape[-1] == 3:
|
|
615
|
+
image = image.permute(2, 0, 1)
|
|
616
|
+
original_sizes.append(
|
|
617
|
+
ImageDimensions(height=image.shape[1], width=image.shape[2])
|
|
618
|
+
)
|
|
619
|
+
result_image, result_offset = apply_pre_processing_to_torch_image(
|
|
620
|
+
image=image.unsqueeze(0),
|
|
621
|
+
image_pre_processing=image_pre_processing,
|
|
622
|
+
network_input_channels=network_input_channels,
|
|
623
|
+
)
|
|
624
|
+
result_images.append(result_image)
|
|
625
|
+
result_offsets.append(result_offset)
|
|
626
|
+
return result_images, result_offsets, original_sizes
|
|
627
|
+
|
|
628
|
+
|
|
629
|
+
def handle_tensor_list_input_preparation_with_stretch(
|
|
630
|
+
images: List[torch.Tensor],
|
|
631
|
+
network_input: NetworkInputDefinition,
|
|
632
|
+
input_color_mode: ColorMode,
|
|
633
|
+
original_sizes: List[ImageDimensions],
|
|
634
|
+
target_size: ImageDimensions,
|
|
635
|
+
static_crop_offsets: List[StaticCropOffset],
|
|
636
|
+
target_device: torch.device,
|
|
637
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
638
|
+
processed = []
|
|
639
|
+
images_metadata = []
|
|
640
|
+
for img, offset, original_size in zip(images, static_crop_offsets, original_sizes):
|
|
641
|
+
size_after_pre_processing = ImageDimensions(
|
|
642
|
+
height=img.shape[2], width=img.shape[3]
|
|
643
|
+
)
|
|
644
|
+
if input_color_mode != network_input.color_mode:
|
|
645
|
+
img = img[:, [2, 1, 0], :, :]
|
|
646
|
+
if img.device.type == "cuda":
|
|
647
|
+
img = img.float()
|
|
648
|
+
img = torch.nn.functional.interpolate(
|
|
649
|
+
img,
|
|
650
|
+
size=[target_size.height, target_size.width],
|
|
651
|
+
mode="bilinear",
|
|
652
|
+
)
|
|
653
|
+
if network_input.scaling_factor is not None:
|
|
654
|
+
img = img / network_input.scaling_factor
|
|
655
|
+
if network_input.normalization is not None:
|
|
656
|
+
if not img.is_floating_point():
|
|
657
|
+
img = img.to(dtype=torch.float32)
|
|
658
|
+
img = functional.normalize(
|
|
659
|
+
img,
|
|
660
|
+
mean=network_input.normalization[0],
|
|
661
|
+
std=network_input.normalization[1],
|
|
662
|
+
)
|
|
663
|
+
processed.append(img.contiguous())
|
|
664
|
+
image_metadata = PreProcessingMetadata(
|
|
665
|
+
pad_left=0,
|
|
666
|
+
pad_top=0,
|
|
667
|
+
pad_right=0,
|
|
668
|
+
pad_bottom=0,
|
|
669
|
+
original_size=original_size,
|
|
670
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
671
|
+
inference_size=target_size,
|
|
672
|
+
scale_width=target_size.width / size_after_pre_processing.width,
|
|
673
|
+
scale_height=target_size.height / size_after_pre_processing.height,
|
|
674
|
+
static_crop_offset=offset,
|
|
675
|
+
)
|
|
676
|
+
images_metadata.append(image_metadata)
|
|
677
|
+
return torch.concat(processed, dim=0).contiguous(), images_metadata
|
|
678
|
+
|
|
679
|
+
|
|
680
|
+
def handle_tensor_list_input_preparation_with_letterbox(
|
|
681
|
+
images: List[torch.Tensor],
|
|
682
|
+
network_input: NetworkInputDefinition,
|
|
683
|
+
input_color_mode: ColorMode,
|
|
684
|
+
original_sizes: List[ImageDimensions],
|
|
685
|
+
target_size: ImageDimensions,
|
|
686
|
+
static_crop_offsets: List[StaticCropOffset],
|
|
687
|
+
target_device: torch.device,
|
|
688
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
689
|
+
num_images = len(images)
|
|
690
|
+
final_batch = torch.full(
|
|
691
|
+
(num_images, 3, target_size.height, target_size.width),
|
|
692
|
+
network_input.padding_value or 0,
|
|
693
|
+
dtype=torch.float32,
|
|
694
|
+
device=target_device,
|
|
695
|
+
)
|
|
696
|
+
original_shapes = torch.tensor(
|
|
697
|
+
[[img.shape[2], img.shape[3]] for img in images], dtype=torch.float32
|
|
698
|
+
)
|
|
699
|
+
scale_w = target_size.width / original_shapes[:, 1]
|
|
700
|
+
scale_h = target_size.height / original_shapes[:, 0]
|
|
701
|
+
scales = torch.minimum(scale_w, scale_h)
|
|
702
|
+
new_ws = (original_shapes[:, 1] * scales).int()
|
|
703
|
+
new_hs = (original_shapes[:, 0] * scales).int()
|
|
704
|
+
pad_tops = ((target_size.height - new_hs) / 2).int()
|
|
705
|
+
pad_lefts = ((target_size.width - new_ws) / 2).int()
|
|
706
|
+
images_metadata = []
|
|
707
|
+
for i in range(num_images):
|
|
708
|
+
img = images[i]
|
|
709
|
+
if len(img.shape) != 4:
|
|
710
|
+
raise ModelRuntimeError(
|
|
711
|
+
message="When providing List[torch.Tensor] as input, model requires tensors to have 3 dimensions.",
|
|
712
|
+
help_url="https://todo",
|
|
713
|
+
)
|
|
714
|
+
original_size = original_sizes[i]
|
|
715
|
+
size_after_pre_processing = ImageDimensions(
|
|
716
|
+
height=img.shape[2], width=img.shape[3]
|
|
717
|
+
)
|
|
718
|
+
if input_color_mode != network_input.color_mode:
|
|
719
|
+
img = img[:, [2, 1, 0], :, :]
|
|
720
|
+
new_h_i, new_w_i = new_hs[i].item(), new_ws[i].item()
|
|
721
|
+
if img.device.type == "cuda":
|
|
722
|
+
img = img.float()
|
|
723
|
+
img = torch.nn.functional.interpolate(
|
|
724
|
+
img,
|
|
725
|
+
size=[new_h_i, new_w_i],
|
|
726
|
+
mode="bilinear",
|
|
727
|
+
)
|
|
728
|
+
pad_top_i, pad_left_i = pad_tops[i].item(), pad_lefts[i].item()
|
|
729
|
+
final_batch[
|
|
730
|
+
i, :, pad_top_i : pad_top_i + new_h_i, pad_left_i : pad_left_i + new_w_i
|
|
731
|
+
] = img
|
|
732
|
+
pad_right = target_size.width - pad_left_i - new_w_i
|
|
733
|
+
pad_bottom = target_size.height - pad_top_i - new_h_i
|
|
734
|
+
image_metadata = PreProcessingMetadata(
|
|
735
|
+
pad_left=pad_left_i,
|
|
736
|
+
pad_top=pad_top_i,
|
|
737
|
+
pad_right=pad_right,
|
|
738
|
+
pad_bottom=pad_bottom,
|
|
739
|
+
original_size=original_size,
|
|
740
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
741
|
+
inference_size=target_size,
|
|
742
|
+
scale_width=scales[i].item(),
|
|
743
|
+
scale_height=scales[i].item(),
|
|
744
|
+
static_crop_offset=static_crop_offsets[i],
|
|
745
|
+
)
|
|
746
|
+
images_metadata.append(image_metadata)
|
|
747
|
+
if network_input.scaling_factor is not None:
|
|
748
|
+
final_batch = final_batch / network_input.scaling_factor
|
|
749
|
+
if network_input.normalization:
|
|
750
|
+
if not final_batch.is_floating_point():
|
|
751
|
+
final_batch = final_batch.to(dtype=torch.float32)
|
|
752
|
+
final_batch = functional.normalize(
|
|
753
|
+
final_batch,
|
|
754
|
+
mean=network_input.normalization[0],
|
|
755
|
+
std=network_input.normalization[1],
|
|
756
|
+
)
|
|
757
|
+
return final_batch.contiguous(), images_metadata
|
|
758
|
+
|
|
759
|
+
|
|
760
|
+
def handle_tensor_list_input_preparation_with_center_crop(
|
|
761
|
+
images: List[torch.Tensor],
|
|
762
|
+
network_input: NetworkInputDefinition,
|
|
763
|
+
input_color_mode: ColorMode,
|
|
764
|
+
original_sizes: List[ImageDimensions],
|
|
765
|
+
target_size: ImageDimensions,
|
|
766
|
+
static_crop_offsets: List[StaticCropOffset],
|
|
767
|
+
target_device: torch.device,
|
|
768
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
769
|
+
result_tensors, result_metadata = [], []
|
|
770
|
+
for image, offset, original_size in zip(
|
|
771
|
+
images, static_crop_offsets, original_sizes
|
|
772
|
+
):
|
|
773
|
+
if len(image.shape) != 4:
|
|
774
|
+
# TODO!
|
|
775
|
+
raise ModelRuntimeError(
|
|
776
|
+
message="When providing List[torch.Tensor] as input, model requires tensors to have 3 dimensions.",
|
|
777
|
+
help_url="https://todo",
|
|
778
|
+
)
|
|
779
|
+
image = image.to(target_device)
|
|
780
|
+
if (
|
|
781
|
+
image.shape[1] != network_input.input_channels
|
|
782
|
+
and image.shape[3] == network_input.input_channels
|
|
783
|
+
):
|
|
784
|
+
image = image.permute(0, 3, 1, 2)
|
|
785
|
+
tensor, metadata = handle_torch_input_preparation_with_center_crop(
|
|
786
|
+
image=image,
|
|
787
|
+
network_input=network_input,
|
|
788
|
+
input_color_mode=input_color_mode,
|
|
789
|
+
original_size=original_size,
|
|
790
|
+
target_size=target_size,
|
|
791
|
+
static_crop_offset=offset,
|
|
792
|
+
)
|
|
793
|
+
result_tensors.append(tensor)
|
|
794
|
+
result_metadata.append(metadata[0])
|
|
795
|
+
return torch.concat(result_tensors, dim=0), result_metadata
|
|
796
|
+
|
|
797
|
+
|
|
798
|
+
TORCH_LIST_IMAGES_PREPARATION_HANDLERS = {
|
|
799
|
+
ResizeMode.STRETCH_TO: handle_tensor_list_input_preparation_with_stretch,
|
|
800
|
+
ResizeMode.LETTERBOX: handle_tensor_list_input_preparation_with_letterbox,
|
|
801
|
+
ResizeMode.CENTER_CROP: handle_tensor_list_input_preparation_with_center_crop,
|
|
802
|
+
ResizeMode.LETTERBOX_REFLECT_EDGES: handle_tensor_list_input_preparation_with_letterbox,
|
|
803
|
+
}
|
|
804
|
+
|
|
805
|
+
|
|
806
|
+
def pre_process_numpy_images_list(
|
|
807
|
+
images: List[np.ndarray],
|
|
808
|
+
image_pre_processing: ImagePreProcessing,
|
|
809
|
+
network_input: NetworkInputDefinition,
|
|
810
|
+
target_device: torch.device,
|
|
811
|
+
input_color_mode: Optional[ColorMode] = None,
|
|
812
|
+
image_size_wh: Optional[Tuple[int, int]] = None,
|
|
813
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
814
|
+
result_tensors, result_metadata = [], []
|
|
815
|
+
for image in images:
|
|
816
|
+
tensor, metadata = pre_process_numpy_image(
|
|
817
|
+
image=image,
|
|
818
|
+
image_pre_processing=image_pre_processing,
|
|
819
|
+
network_input=network_input,
|
|
820
|
+
target_device=target_device,
|
|
821
|
+
input_color_mode=input_color_mode,
|
|
822
|
+
image_size_wh=image_size_wh,
|
|
823
|
+
)
|
|
824
|
+
result_tensors.append(tensor)
|
|
825
|
+
result_metadata.extend(metadata)
|
|
826
|
+
return torch.concat(result_tensors, dim=0).contiguous(), result_metadata
|
|
827
|
+
|
|
828
|
+
|
|
829
|
+
@torch.inference_mode()
|
|
830
|
+
def pre_process_numpy_image(
|
|
831
|
+
image: np.ndarray,
|
|
832
|
+
image_pre_processing: ImagePreProcessing,
|
|
833
|
+
network_input: NetworkInputDefinition,
|
|
834
|
+
target_device: torch.device,
|
|
835
|
+
input_color_mode: Optional[ColorMode] = None,
|
|
836
|
+
image_size_wh: Optional[Tuple[int, int]] = None,
|
|
837
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
838
|
+
if input_color_mode is None:
|
|
839
|
+
input_color_mode = ColorMode.BGR
|
|
840
|
+
target_dimensions = (
|
|
841
|
+
network_input.training_input_size.width,
|
|
842
|
+
network_input.training_input_size.height,
|
|
843
|
+
)
|
|
844
|
+
if image_size_wh is not None and image_size_wh != target_dimensions:
|
|
845
|
+
if not network_input.dynamic_spatial_size_supported:
|
|
846
|
+
LOGGER.warning(
|
|
847
|
+
f"Requested image size: {image_size_wh} cannot be applied for model input, as model was trained with "
|
|
848
|
+
f"input resolution and does not support inputs of a different shape. `image_size_wh` gets ignored."
|
|
849
|
+
)
|
|
850
|
+
elif isinstance(network_input.dynamic_spatial_size_mode, DivisiblePadding):
|
|
851
|
+
target_dimensions = (
|
|
852
|
+
make_the_value_divisible(
|
|
853
|
+
x=image_size_wh[0], by=network_input.dynamic_spatial_size_mode.value
|
|
854
|
+
),
|
|
855
|
+
make_the_value_divisible(
|
|
856
|
+
x=image_size_wh[1], by=network_input.dynamic_spatial_size_mode.value
|
|
857
|
+
),
|
|
858
|
+
)
|
|
859
|
+
elif isinstance(network_input.dynamic_spatial_size_mode, AnySizePadding):
|
|
860
|
+
target_dimensions = image_size_wh
|
|
861
|
+
else:
|
|
862
|
+
raise ModelRuntimeError(
|
|
863
|
+
message=f"Handler for dynamic spatial mode of type {type(network_input.dynamic_spatial_size_mode)} "
|
|
864
|
+
f"is not implemented.",
|
|
865
|
+
help_url="",
|
|
866
|
+
)
|
|
867
|
+
original_size = ImageDimensions(width=image.shape[1], height=image.shape[0])
|
|
868
|
+
image, static_crop_offset = apply_pre_processing_to_numpy_image(
|
|
869
|
+
image=image,
|
|
870
|
+
image_pre_processing=image_pre_processing,
|
|
871
|
+
network_input_channels=network_input.input_channels,
|
|
872
|
+
input_color_mode=input_color_mode,
|
|
873
|
+
)
|
|
874
|
+
if network_input.resize_mode not in NUMPY_IMAGES_PREPARATION_HANDLERS:
|
|
875
|
+
raise ModelRuntimeError(
|
|
876
|
+
message=f"Unsupported model input resize mode: {network_input.resize_mode}",
|
|
877
|
+
help_url="https://todo",
|
|
878
|
+
)
|
|
879
|
+
return NUMPY_IMAGES_PREPARATION_HANDLERS[network_input.resize_mode](
|
|
880
|
+
image,
|
|
881
|
+
network_input,
|
|
882
|
+
target_device,
|
|
883
|
+
input_color_mode,
|
|
884
|
+
original_size,
|
|
885
|
+
ImageDimensions(width=target_dimensions[0], height=target_dimensions[1]),
|
|
886
|
+
static_crop_offset,
|
|
887
|
+
)
|
|
888
|
+
|
|
889
|
+
|
|
890
|
+
def apply_pre_processing_to_numpy_image(
|
|
891
|
+
image: np.ndarray,
|
|
892
|
+
image_pre_processing: ImagePreProcessing,
|
|
893
|
+
network_input_channels: int,
|
|
894
|
+
input_color_mode: Optional[ColorMode] = None,
|
|
895
|
+
) -> Tuple[np.ndarray, StaticCropOffset]:
|
|
896
|
+
if input_color_mode is None:
|
|
897
|
+
input_color_mode = ColorMode.BGR
|
|
898
|
+
static_crop_offset = StaticCropOffset(
|
|
899
|
+
offset_x=0,
|
|
900
|
+
offset_y=0,
|
|
901
|
+
crop_width=image.shape[1],
|
|
902
|
+
crop_height=image.shape[0],
|
|
903
|
+
)
|
|
904
|
+
if image_pre_processing.static_crop and image_pre_processing.static_crop.enabled:
|
|
905
|
+
image, static_crop_offset = apply_static_crop_to_numpy_image(
|
|
906
|
+
image=image,
|
|
907
|
+
config=image_pre_processing.static_crop,
|
|
908
|
+
)
|
|
909
|
+
if image_pre_processing.grayscale and image_pre_processing.grayscale.enabled:
|
|
910
|
+
mode = (
|
|
911
|
+
cv2.COLOR_BGR2GRAY
|
|
912
|
+
if input_color_mode is ColorMode.BGR
|
|
913
|
+
else cv2.COLOR_RGB2GRAY
|
|
914
|
+
)
|
|
915
|
+
image = cv2.cvtColor(image, mode)
|
|
916
|
+
image = np.stack([image] * network_input_channels, axis=2)
|
|
917
|
+
if image_pre_processing.contrast and image_pre_processing.contrast.enabled:
|
|
918
|
+
if (
|
|
919
|
+
image_pre_processing.contrast.type
|
|
920
|
+
not in CONTRAST_ADJUSTMENT_METHODS_FOR_NUMPY
|
|
921
|
+
):
|
|
922
|
+
raise ModelRuntimeError(
|
|
923
|
+
message=f"Unsupported image contrast adjustment type: {image_pre_processing.contrast.type.value}",
|
|
924
|
+
help_url="https://todo",
|
|
925
|
+
)
|
|
926
|
+
image = CONTRAST_ADJUSTMENT_METHODS_FOR_NUMPY[
|
|
927
|
+
image_pre_processing.contrast.type
|
|
928
|
+
](image)
|
|
929
|
+
return image, static_crop_offset
|
|
930
|
+
|
|
931
|
+
|
|
932
|
+
def apply_static_crop_to_numpy_image(
|
|
933
|
+
image: np.ndarray, config: StaticCrop
|
|
934
|
+
) -> Tuple[np.ndarray, StaticCropOffset]:
|
|
935
|
+
width, height = image.shape[1], image.shape[0]
|
|
936
|
+
x_min = int(config.x_min / 100 * width)
|
|
937
|
+
y_min = int(config.y_min / 100 * height)
|
|
938
|
+
x_max = int(config.x_max / 100 * width)
|
|
939
|
+
y_max = int(config.y_max / 100 * height)
|
|
940
|
+
result_image = image[y_min:y_max, x_min:x_max]
|
|
941
|
+
return result_image, StaticCropOffset(
|
|
942
|
+
offset_x=x_min,
|
|
943
|
+
offset_y=y_min,
|
|
944
|
+
crop_width=result_image.shape[1],
|
|
945
|
+
crop_height=result_image.shape[0],
|
|
946
|
+
)
|
|
947
|
+
|
|
948
|
+
|
|
949
|
+
def apply_adaptive_equalization_to_numpy_image(image: np.ndarray) -> np.ndarray:
|
|
950
|
+
image = image.astype(np.float32) / 255
|
|
951
|
+
image_adapted = exposure.equalize_adapthist(image, clip_limit=0.03) * 255
|
|
952
|
+
return image_adapted.astype(np.uint8)
|
|
953
|
+
|
|
954
|
+
|
|
955
|
+
def apply_contrast_stretching_to_numpy_image(image: np.ndarray) -> np.ndarray:
|
|
956
|
+
p2 = np.percentile(image, 2)
|
|
957
|
+
p98 = np.percentile(image, 98)
|
|
958
|
+
return exposure.rescale_intensity(image, in_range=(p2, p98))
|
|
959
|
+
|
|
960
|
+
|
|
961
|
+
def apply_histogram_equalization_to_numpy_image(image: np.ndarray) -> np.ndarray:
|
|
962
|
+
image = image.astype(np.float32) / 255
|
|
963
|
+
image_equalized = exposure.equalize_hist(image) * 255
|
|
964
|
+
return image_equalized.astype(np.uint8)
|
|
965
|
+
|
|
966
|
+
|
|
967
|
+
CONTRAST_ADJUSTMENT_METHODS_FOR_NUMPY = {
|
|
968
|
+
ContrastType.ADAPTIVE_EQUALIZATION: apply_adaptive_equalization_to_numpy_image,
|
|
969
|
+
ContrastType.CONTRAST_STRETCHING: apply_contrast_stretching_to_numpy_image,
|
|
970
|
+
ContrastType.HISTOGRAM_EQUALIZATION: apply_histogram_equalization_to_numpy_image,
|
|
971
|
+
}
|
|
972
|
+
|
|
973
|
+
|
|
974
|
+
def handle_numpy_input_preparation_with_stretch(
|
|
975
|
+
image: np.ndarray,
|
|
976
|
+
network_input: NetworkInputDefinition,
|
|
977
|
+
target_device: torch.device,
|
|
978
|
+
input_color_mode: ColorMode,
|
|
979
|
+
original_size: ImageDimensions,
|
|
980
|
+
target_size: ImageDimensions,
|
|
981
|
+
static_crop_offset: StaticCropOffset,
|
|
982
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
983
|
+
size_after_pre_processing = ImageDimensions(
|
|
984
|
+
height=image.shape[0], width=image.shape[1]
|
|
985
|
+
)
|
|
986
|
+
resized_image = cv2.resize(image, (target_size.width, target_size.height))
|
|
987
|
+
tensor = torch.from_numpy(resized_image).to(device=target_device)
|
|
988
|
+
tensor = torch.unsqueeze(tensor, 0)
|
|
989
|
+
tensor = tensor.permute(0, 3, 1, 2)
|
|
990
|
+
if input_color_mode != network_input.color_mode:
|
|
991
|
+
tensor = tensor[:, [2, 1, 0], :, :]
|
|
992
|
+
if network_input.scaling_factor is not None:
|
|
993
|
+
tensor = tensor / network_input.scaling_factor
|
|
994
|
+
if network_input.normalization:
|
|
995
|
+
if not tensor.is_floating_point():
|
|
996
|
+
tensor = tensor.to(dtype=torch.float32)
|
|
997
|
+
tensor = functional.normalize(
|
|
998
|
+
tensor,
|
|
999
|
+
mean=network_input.normalization[0],
|
|
1000
|
+
std=network_input.normalization[1],
|
|
1001
|
+
)
|
|
1002
|
+
image_metadata = PreProcessingMetadata(
|
|
1003
|
+
pad_left=0,
|
|
1004
|
+
pad_top=0,
|
|
1005
|
+
pad_right=0,
|
|
1006
|
+
pad_bottom=0,
|
|
1007
|
+
original_size=original_size,
|
|
1008
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
1009
|
+
inference_size=target_size,
|
|
1010
|
+
scale_width=target_size.width / size_after_pre_processing.width,
|
|
1011
|
+
scale_height=target_size.height / size_after_pre_processing.height,
|
|
1012
|
+
static_crop_offset=static_crop_offset,
|
|
1013
|
+
)
|
|
1014
|
+
return tensor.contiguous(), [image_metadata]
|
|
1015
|
+
|
|
1016
|
+
|
|
1017
|
+
def handle_numpy_input_preparation_with_letterbox(
|
|
1018
|
+
image: np.ndarray,
|
|
1019
|
+
network_input: NetworkInputDefinition,
|
|
1020
|
+
target_device: torch.device,
|
|
1021
|
+
input_color_mode: ColorMode,
|
|
1022
|
+
original_size: ImageDimensions,
|
|
1023
|
+
target_size: ImageDimensions,
|
|
1024
|
+
static_crop_offset: StaticCropOffset,
|
|
1025
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
1026
|
+
padding_value = network_input.padding_value or 0
|
|
1027
|
+
original_height, original_width = image.shape[0], image.shape[1]
|
|
1028
|
+
size_after_pre_processing = ImageDimensions(
|
|
1029
|
+
height=original_height, width=original_width
|
|
1030
|
+
)
|
|
1031
|
+
scale_w = target_size.width / original_width
|
|
1032
|
+
scale_h = target_size.height / original_height
|
|
1033
|
+
scale = min(scale_w, scale_h)
|
|
1034
|
+
new_width = int(original_width * scale)
|
|
1035
|
+
new_height = int(original_height * scale)
|
|
1036
|
+
pad_top = int((target_size.height - new_height) / 2)
|
|
1037
|
+
pad_left = int((target_size.width - new_width) / 2)
|
|
1038
|
+
scaled_image = cv2.resize(image, (new_width, new_height))
|
|
1039
|
+
scaled_image_tensor = torch.from_numpy(scaled_image).to(target_device)
|
|
1040
|
+
scaled_image_tensor = scaled_image_tensor.permute(2, 0, 1)
|
|
1041
|
+
final_batch = torch.full(
|
|
1042
|
+
(
|
|
1043
|
+
1,
|
|
1044
|
+
image.shape[2],
|
|
1045
|
+
target_size.height,
|
|
1046
|
+
target_size.width,
|
|
1047
|
+
),
|
|
1048
|
+
padding_value,
|
|
1049
|
+
dtype=torch.float32,
|
|
1050
|
+
device=target_device,
|
|
1051
|
+
)
|
|
1052
|
+
final_batch[
|
|
1053
|
+
0, :, pad_top : pad_top + new_height, pad_left : pad_left + new_width
|
|
1054
|
+
] = scaled_image_tensor
|
|
1055
|
+
if input_color_mode != network_input.color_mode:
|
|
1056
|
+
final_batch = final_batch[:, [2, 1, 0], :, :]
|
|
1057
|
+
pad_right = target_size.width - pad_left - new_width
|
|
1058
|
+
pad_bottom = target_size.height - pad_top - new_height
|
|
1059
|
+
image_metadata = PreProcessingMetadata(
|
|
1060
|
+
pad_left=pad_left,
|
|
1061
|
+
pad_top=pad_top,
|
|
1062
|
+
pad_right=pad_right,
|
|
1063
|
+
pad_bottom=pad_bottom,
|
|
1064
|
+
original_size=original_size,
|
|
1065
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
1066
|
+
inference_size=target_size,
|
|
1067
|
+
scale_width=scale,
|
|
1068
|
+
scale_height=scale,
|
|
1069
|
+
static_crop_offset=static_crop_offset,
|
|
1070
|
+
)
|
|
1071
|
+
if network_input.scaling_factor is not None:
|
|
1072
|
+
final_batch = final_batch / network_input.scaling_factor
|
|
1073
|
+
if network_input.normalization is not None:
|
|
1074
|
+
if not final_batch.is_floating_point():
|
|
1075
|
+
final_batch = final_batch.to(dtype=torch.float32)
|
|
1076
|
+
final_batch = functional.normalize(
|
|
1077
|
+
final_batch,
|
|
1078
|
+
mean=network_input.normalization[0],
|
|
1079
|
+
std=network_input.normalization[1],
|
|
1080
|
+
)
|
|
1081
|
+
return final_batch.contiguous(), [image_metadata]
|
|
1082
|
+
|
|
1083
|
+
|
|
1084
|
+
def handle_numpy_input_preparation_with_center_crop(
|
|
1085
|
+
image: np.ndarray,
|
|
1086
|
+
network_input: NetworkInputDefinition,
|
|
1087
|
+
target_device: torch.device,
|
|
1088
|
+
input_color_mode: ColorMode,
|
|
1089
|
+
original_size: ImageDimensions,
|
|
1090
|
+
target_size: ImageDimensions,
|
|
1091
|
+
static_crop_offset: StaticCropOffset,
|
|
1092
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
1093
|
+
original_height, original_width = image.shape[0], image.shape[1]
|
|
1094
|
+
size_after_pre_processing = ImageDimensions(
|
|
1095
|
+
height=original_height, width=original_width
|
|
1096
|
+
)
|
|
1097
|
+
canvas = np.zeros((target_size.height, target_size.width, 3), dtype=np.uint8)
|
|
1098
|
+
canvas_ox_padding = max(target_size.width - image.shape[1], 0)
|
|
1099
|
+
canvas_padding_left = canvas_ox_padding // 2
|
|
1100
|
+
canvas_padding_right = canvas_ox_padding - canvas_padding_left
|
|
1101
|
+
canvas_oy_padding = max(target_size.height - image.shape[0], 0)
|
|
1102
|
+
canvas_padding_top = canvas_oy_padding // 2
|
|
1103
|
+
canvas_padding_bottom = canvas_oy_padding - canvas_padding_top
|
|
1104
|
+
original_image_ox_padding = max(image.shape[1] - target_size.width, 0)
|
|
1105
|
+
original_image_padding_left = original_image_ox_padding // 2
|
|
1106
|
+
original_image_padding_right = (
|
|
1107
|
+
original_image_ox_padding - original_image_padding_left
|
|
1108
|
+
)
|
|
1109
|
+
original_image_oy_padding = max(image.shape[0] - target_size.height, 0)
|
|
1110
|
+
original_image_padding_top = original_image_oy_padding // 2
|
|
1111
|
+
original_image_padding_bottom = (
|
|
1112
|
+
original_image_oy_padding - original_image_padding_top
|
|
1113
|
+
)
|
|
1114
|
+
canvas[
|
|
1115
|
+
canvas_padding_top : canvas.shape[0] - canvas_padding_bottom,
|
|
1116
|
+
canvas_padding_left : canvas.shape[1] - canvas_padding_right,
|
|
1117
|
+
] = image[
|
|
1118
|
+
original_image_padding_top : image.shape[0] - original_image_padding_bottom,
|
|
1119
|
+
original_image_padding_left : image.shape[1] - original_image_padding_right,
|
|
1120
|
+
]
|
|
1121
|
+
if canvas.shape[0] > image.shape[0]:
|
|
1122
|
+
reported_padding_top = canvas_padding_top
|
|
1123
|
+
reported_padding_bottom = canvas_padding_bottom
|
|
1124
|
+
else:
|
|
1125
|
+
reported_padding_top = -original_image_padding_top
|
|
1126
|
+
reported_padding_bottom = -original_image_padding_bottom
|
|
1127
|
+
if canvas.shape[1] > image.shape[1]:
|
|
1128
|
+
reported_padding_left = canvas_padding_left
|
|
1129
|
+
reported_padding_right = canvas_padding_right
|
|
1130
|
+
else:
|
|
1131
|
+
reported_padding_left = -original_image_padding_left
|
|
1132
|
+
reported_padding_right = -original_image_padding_right
|
|
1133
|
+
image_metadata = PreProcessingMetadata(
|
|
1134
|
+
pad_left=reported_padding_left,
|
|
1135
|
+
pad_top=reported_padding_top,
|
|
1136
|
+
pad_right=reported_padding_right,
|
|
1137
|
+
pad_bottom=reported_padding_bottom,
|
|
1138
|
+
original_size=original_size,
|
|
1139
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
1140
|
+
inference_size=target_size,
|
|
1141
|
+
scale_width=1.0,
|
|
1142
|
+
scale_height=1.0,
|
|
1143
|
+
static_crop_offset=static_crop_offset,
|
|
1144
|
+
)
|
|
1145
|
+
tensor = torch.from_numpy(canvas).to(device=target_device)
|
|
1146
|
+
tensor = torch.unsqueeze(tensor, 0)
|
|
1147
|
+
tensor = tensor.permute(0, 3, 1, 2)
|
|
1148
|
+
if input_color_mode != network_input.color_mode:
|
|
1149
|
+
tensor = tensor[:, [2, 1, 0], :, :]
|
|
1150
|
+
if network_input.scaling_factor is not None:
|
|
1151
|
+
tensor = tensor / network_input.scaling_factor
|
|
1152
|
+
if network_input.normalization:
|
|
1153
|
+
if not tensor.is_floating_point():
|
|
1154
|
+
tensor = tensor.to(dtype=torch.float32)
|
|
1155
|
+
tensor = functional.normalize(
|
|
1156
|
+
tensor,
|
|
1157
|
+
mean=network_input.normalization[0],
|
|
1158
|
+
std=network_input.normalization[1],
|
|
1159
|
+
)
|
|
1160
|
+
return tensor.contiguous(), [image_metadata]
|
|
1161
|
+
|
|
1162
|
+
|
|
1163
|
+
def handle_numpy_input_preparation_fitting_longer_edge(
|
|
1164
|
+
image: np.ndarray,
|
|
1165
|
+
network_input: NetworkInputDefinition,
|
|
1166
|
+
target_device: torch.device,
|
|
1167
|
+
input_color_mode: ColorMode,
|
|
1168
|
+
original_size: ImageDimensions,
|
|
1169
|
+
target_size: ImageDimensions,
|
|
1170
|
+
static_crop_offset: StaticCropOffset,
|
|
1171
|
+
) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
|
|
1172
|
+
original_height, original_width = image.shape[0], image.shape[1]
|
|
1173
|
+
size_after_pre_processing = ImageDimensions(
|
|
1174
|
+
height=original_height, width=original_width
|
|
1175
|
+
)
|
|
1176
|
+
scale_ox = target_size.width / size_after_pre_processing.width
|
|
1177
|
+
scale_oy = target_size.height / size_after_pre_processing.height
|
|
1178
|
+
if scale_ox < scale_oy:
|
|
1179
|
+
actual_target_width = target_size.width
|
|
1180
|
+
actual_target_height = round(scale_ox * size_after_pre_processing.height)
|
|
1181
|
+
else:
|
|
1182
|
+
actual_target_width = round(scale_oy * size_after_pre_processing.width)
|
|
1183
|
+
actual_target_height = target_size.height
|
|
1184
|
+
actual_target_size = ImageDimensions(
|
|
1185
|
+
height=actual_target_height,
|
|
1186
|
+
width=actual_target_width,
|
|
1187
|
+
)
|
|
1188
|
+
scaled_image = cv2.resize(
|
|
1189
|
+
image, (actual_target_size.width, actual_target_size.height)
|
|
1190
|
+
)
|
|
1191
|
+
image_metadata = PreProcessingMetadata(
|
|
1192
|
+
pad_left=0,
|
|
1193
|
+
pad_top=0,
|
|
1194
|
+
pad_right=0,
|
|
1195
|
+
pad_bottom=0,
|
|
1196
|
+
original_size=original_size,
|
|
1197
|
+
size_after_pre_processing=size_after_pre_processing,
|
|
1198
|
+
inference_size=actual_target_size,
|
|
1199
|
+
scale_width=actual_target_size.width / size_after_pre_processing.width,
|
|
1200
|
+
scale_height=actual_target_size.height / size_after_pre_processing.height,
|
|
1201
|
+
static_crop_offset=static_crop_offset,
|
|
1202
|
+
)
|
|
1203
|
+
tensor = torch.from_numpy(scaled_image).to(device=target_device)
|
|
1204
|
+
tensor = torch.unsqueeze(tensor, 0)
|
|
1205
|
+
tensor = tensor.permute(0, 3, 1, 2)
|
|
1206
|
+
if input_color_mode != network_input.color_mode:
|
|
1207
|
+
tensor = tensor[:, [2, 1, 0], :, :]
|
|
1208
|
+
if network_input.scaling_factor is not None:
|
|
1209
|
+
tensor = tensor / network_input.scaling_factor
|
|
1210
|
+
if network_input.normalization:
|
|
1211
|
+
if not tensor.is_floating_point():
|
|
1212
|
+
tensor = tensor.to(dtype=torch.float32)
|
|
1213
|
+
tensor = functional.normalize(
|
|
1214
|
+
tensor,
|
|
1215
|
+
mean=network_input.normalization[0],
|
|
1216
|
+
std=network_input.normalization[1],
|
|
1217
|
+
)
|
|
1218
|
+
return tensor.contiguous(), [image_metadata]
|
|
1219
|
+
|
|
1220
|
+
|
|
1221
|
+
NUMPY_IMAGES_PREPARATION_HANDLERS = {
|
|
1222
|
+
ResizeMode.STRETCH_TO: handle_numpy_input_preparation_with_stretch,
|
|
1223
|
+
ResizeMode.LETTERBOX: handle_numpy_input_preparation_with_letterbox,
|
|
1224
|
+
ResizeMode.CENTER_CROP: handle_numpy_input_preparation_with_center_crop,
|
|
1225
|
+
ResizeMode.FIT_LONGER_EDGE: handle_numpy_input_preparation_fitting_longer_edge,
|
|
1226
|
+
ResizeMode.LETTERBOX_REFLECT_EDGES: handle_numpy_input_preparation_with_letterbox,
|
|
1227
|
+
}
|
|
1228
|
+
|
|
1229
|
+
|
|
1230
|
+
def extract_input_images_dimensions(
|
|
1231
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
1232
|
+
) -> List[ImageDimensions]:
|
|
1233
|
+
if isinstance(images, np.ndarray):
|
|
1234
|
+
return [ImageDimensions(height=images.shape[0], width=images.shape[1])]
|
|
1235
|
+
if isinstance(images, torch.Tensor):
|
|
1236
|
+
if len(images.shape) == 3:
|
|
1237
|
+
images = torch.unsqueeze(images, dim=0)
|
|
1238
|
+
image_dimensions = []
|
|
1239
|
+
for image in images:
|
|
1240
|
+
image_dimensions.append(
|
|
1241
|
+
ImageDimensions(height=image.shape[1], width=image.shape[2])
|
|
1242
|
+
)
|
|
1243
|
+
return image_dimensions
|
|
1244
|
+
if not isinstance(images, list):
|
|
1245
|
+
raise ModelRuntimeError(
|
|
1246
|
+
message="Pre-processing supports only np.array or torch.Tensor or list of above.",
|
|
1247
|
+
help_url="https://todo",
|
|
1248
|
+
)
|
|
1249
|
+
if not len(images):
|
|
1250
|
+
raise ModelRuntimeError(
|
|
1251
|
+
message="Detected empty input to the model", help_url="https://todo"
|
|
1252
|
+
)
|
|
1253
|
+
if isinstance(images[0], np.ndarray):
|
|
1254
|
+
return [ImageDimensions(height=i.shape[0], width=i.shape[1]) for i in images]
|
|
1255
|
+
if isinstance(images[0], torch.Tensor):
|
|
1256
|
+
image_dimensions = []
|
|
1257
|
+
for image in images:
|
|
1258
|
+
image_dimensions.append(
|
|
1259
|
+
ImageDimensions(height=image.shape[1], width=image.shape[2])
|
|
1260
|
+
)
|
|
1261
|
+
return image_dimensions
|
|
1262
|
+
raise ModelRuntimeError(
|
|
1263
|
+
message=f"Detected unknown input batch element: {type(images[0])}",
|
|
1264
|
+
help_url="https://todo",
|
|
1265
|
+
)
|
|
1266
|
+
|
|
1267
|
+
|
|
1268
|
+
def images_to_pillow(
|
|
1269
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
1270
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
1271
|
+
model_color_format: ColorFormat = "rgb",
|
|
1272
|
+
) -> Tuple[List[Image], List[ImageDimensions]]:
|
|
1273
|
+
if isinstance(images, np.ndarray):
|
|
1274
|
+
input_color_format = input_color_format or "bgr"
|
|
1275
|
+
if input_color_format != model_color_format:
|
|
1276
|
+
images = images[:, :, ::-1]
|
|
1277
|
+
h, w = images.shape[:2]
|
|
1278
|
+
return [PIL.Image.fromarray(images)], [ImageDimensions(height=h, width=w)]
|
|
1279
|
+
if isinstance(images, torch.Tensor):
|
|
1280
|
+
input_color_format = input_color_format or "rgb"
|
|
1281
|
+
if len(images.shape) == 3:
|
|
1282
|
+
images = torch.unsqueeze(images, dim=0)
|
|
1283
|
+
if input_color_format != model_color_format:
|
|
1284
|
+
images = images[:, [2, 1, 0], :, :]
|
|
1285
|
+
result = []
|
|
1286
|
+
dimensions = []
|
|
1287
|
+
for image in images:
|
|
1288
|
+
np_image = image.permute(1, 2, 0).cpu().numpy()
|
|
1289
|
+
result.append(PIL.Image.fromarray(np_image))
|
|
1290
|
+
dimensions.append(
|
|
1291
|
+
ImageDimensions(height=np_image.shape[0], width=np_image.shape[1])
|
|
1292
|
+
)
|
|
1293
|
+
return result, dimensions
|
|
1294
|
+
if not isinstance(images, list):
|
|
1295
|
+
raise ModelRuntimeError(
|
|
1296
|
+
message="Pre-processing supports only np.array or torch.Tensor or list of above.",
|
|
1297
|
+
help_url="https://todo",
|
|
1298
|
+
)
|
|
1299
|
+
if not len(images):
|
|
1300
|
+
raise ModelRuntimeError(
|
|
1301
|
+
message="Detected empty input to the model", help_url="https://todo"
|
|
1302
|
+
)
|
|
1303
|
+
if isinstance(images[0], np.ndarray):
|
|
1304
|
+
input_color_format = input_color_format or "bgr"
|
|
1305
|
+
if input_color_format != model_color_format:
|
|
1306
|
+
images = [i[:, :, ::-1] for i in images]
|
|
1307
|
+
dimensions = [
|
|
1308
|
+
ImageDimensions(height=i.shape[0], width=i.shape[1]) for i in images
|
|
1309
|
+
]
|
|
1310
|
+
images = [PIL.Image.fromarray(i) for i in images]
|
|
1311
|
+
return images, dimensions
|
|
1312
|
+
if isinstance(images[0], torch.Tensor):
|
|
1313
|
+
result = []
|
|
1314
|
+
dimensions = []
|
|
1315
|
+
input_color_format = input_color_format or "rgb"
|
|
1316
|
+
for image in images:
|
|
1317
|
+
if input_color_format != model_color_format:
|
|
1318
|
+
image = image[[2, 1, 0], :, :]
|
|
1319
|
+
np_image = image.permute(1, 2, 0).cpu().numpy()
|
|
1320
|
+
result.append(PIL.Image.fromarray(np_image))
|
|
1321
|
+
dimensions.append(
|
|
1322
|
+
ImageDimensions(height=np_image.shape[0], width=np_image.shape[1])
|
|
1323
|
+
)
|
|
1324
|
+
return result, dimensions
|
|
1325
|
+
raise ModelRuntimeError(
|
|
1326
|
+
message=f"Detected unknown input batch element: {type(images[0])}",
|
|
1327
|
+
help_url="https://todo",
|
|
1328
|
+
)
|
|
1329
|
+
|
|
1330
|
+
|
|
1331
|
+
def make_the_value_divisible(x: int, by: int) -> int:
|
|
1332
|
+
return math.ceil(x / by) * by
|