inference-models 0.18.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- inference_models/__init__.py +36 -0
- inference_models/configuration.py +72 -0
- inference_models/constants.py +2 -0
- inference_models/entities.py +5 -0
- inference_models/errors.py +137 -0
- inference_models/logger.py +52 -0
- inference_models/model_pipelines/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/core.py +120 -0
- inference_models/model_pipelines/auto_loaders/pipelines_registry.py +36 -0
- inference_models/model_pipelines/face_and_gaze_detection/__init__.py +0 -0
- inference_models/model_pipelines/face_and_gaze_detection/mediapipe_l2cs.py +200 -0
- inference_models/models/__init__.py +0 -0
- inference_models/models/auto_loaders/__init__.py +0 -0
- inference_models/models/auto_loaders/access_manager.py +168 -0
- inference_models/models/auto_loaders/auto_negotiation.py +1329 -0
- inference_models/models/auto_loaders/auto_resolution_cache.py +129 -0
- inference_models/models/auto_loaders/constants.py +7 -0
- inference_models/models/auto_loaders/core.py +1341 -0
- inference_models/models/auto_loaders/dependency_models.py +52 -0
- inference_models/models/auto_loaders/entities.py +57 -0
- inference_models/models/auto_loaders/models_registry.py +497 -0
- inference_models/models/auto_loaders/presentation_utils.py +333 -0
- inference_models/models/auto_loaders/ranking.py +413 -0
- inference_models/models/auto_loaders/utils.py +31 -0
- inference_models/models/base/__init__.py +0 -0
- inference_models/models/base/classification.py +123 -0
- inference_models/models/base/depth_estimation.py +62 -0
- inference_models/models/base/documents_parsing.py +111 -0
- inference_models/models/base/embeddings.py +66 -0
- inference_models/models/base/instance_segmentation.py +87 -0
- inference_models/models/base/keypoints_detection.py +93 -0
- inference_models/models/base/object_detection.py +143 -0
- inference_models/models/base/semantic_segmentation.py +74 -0
- inference_models/models/base/types.py +5 -0
- inference_models/models/clip/__init__.py +0 -0
- inference_models/models/clip/clip_onnx.py +148 -0
- inference_models/models/clip/clip_pytorch.py +104 -0
- inference_models/models/clip/preprocessing.py +162 -0
- inference_models/models/common/__init__.py +0 -0
- inference_models/models/common/cuda.py +30 -0
- inference_models/models/common/model_packages.py +25 -0
- inference_models/models/common/onnx.py +379 -0
- inference_models/models/common/roboflow/__init__.py +0 -0
- inference_models/models/common/roboflow/model_packages.py +361 -0
- inference_models/models/common/roboflow/post_processing.py +436 -0
- inference_models/models/common/roboflow/pre_processing.py +1332 -0
- inference_models/models/common/torch.py +20 -0
- inference_models/models/common/trt.py +266 -0
- inference_models/models/deep_lab_v3_plus/__init__.py +0 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_onnx.py +282 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_torch.py +264 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_trt.py +313 -0
- inference_models/models/depth_anything_v2/__init__.py +0 -0
- inference_models/models/depth_anything_v2/depth_anything_v2_hf.py +77 -0
- inference_models/models/dinov3/__init__.py +0 -0
- inference_models/models/dinov3/dinov3_classification_onnx.py +348 -0
- inference_models/models/dinov3/dinov3_classification_torch.py +323 -0
- inference_models/models/doctr/__init__.py +0 -0
- inference_models/models/doctr/doctr_torch.py +304 -0
- inference_models/models/easy_ocr/__init__.py +0 -0
- inference_models/models/easy_ocr/easy_ocr_torch.py +222 -0
- inference_models/models/florence2/__init__.py +0 -0
- inference_models/models/florence2/florence2_hf.py +897 -0
- inference_models/models/grounding_dino/__init__.py +0 -0
- inference_models/models/grounding_dino/grounding_dino_torch.py +227 -0
- inference_models/models/l2cs/__init__.py +0 -0
- inference_models/models/l2cs/l2cs_onnx.py +216 -0
- inference_models/models/mediapipe_face_detection/__init__.py +0 -0
- inference_models/models/mediapipe_face_detection/face_detection.py +203 -0
- inference_models/models/moondream2/__init__.py +0 -0
- inference_models/models/moondream2/moondream2_hf.py +281 -0
- inference_models/models/owlv2/__init__.py +0 -0
- inference_models/models/owlv2/cache.py +182 -0
- inference_models/models/owlv2/entities.py +112 -0
- inference_models/models/owlv2/owlv2_hf.py +695 -0
- inference_models/models/owlv2/reference_dataset.py +291 -0
- inference_models/models/paligemma/__init__.py +0 -0
- inference_models/models/paligemma/paligemma_hf.py +209 -0
- inference_models/models/perception_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/perception_encoder_pytorch.py +197 -0
- inference_models/models/perception_encoder/vision_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/vision_encoder/config.py +160 -0
- inference_models/models/perception_encoder/vision_encoder/pe.py +742 -0
- inference_models/models/perception_encoder/vision_encoder/rope.py +344 -0
- inference_models/models/perception_encoder/vision_encoder/tokenizer.py +342 -0
- inference_models/models/perception_encoder/vision_encoder/transforms.py +33 -0
- inference_models/models/qwen25vl/__init__.py +1 -0
- inference_models/models/qwen25vl/qwen25vl_hf.py +285 -0
- inference_models/models/resnet/__init__.py +0 -0
- inference_models/models/resnet/resnet_classification_onnx.py +330 -0
- inference_models/models/resnet/resnet_classification_torch.py +305 -0
- inference_models/models/resnet/resnet_classification_trt.py +369 -0
- inference_models/models/rfdetr/__init__.py +0 -0
- inference_models/models/rfdetr/backbone_builder.py +101 -0
- inference_models/models/rfdetr/class_remapping.py +41 -0
- inference_models/models/rfdetr/common.py +115 -0
- inference_models/models/rfdetr/default_labels.py +108 -0
- inference_models/models/rfdetr/dinov2_with_windowed_attn.py +1330 -0
- inference_models/models/rfdetr/misc.py +26 -0
- inference_models/models/rfdetr/ms_deform_attn.py +180 -0
- inference_models/models/rfdetr/ms_deform_attn_func.py +60 -0
- inference_models/models/rfdetr/position_encoding.py +166 -0
- inference_models/models/rfdetr/post_processor.py +83 -0
- inference_models/models/rfdetr/projector.py +373 -0
- inference_models/models/rfdetr/rfdetr_backbone_pytorch.py +394 -0
- inference_models/models/rfdetr/rfdetr_base_pytorch.py +807 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_onnx.py +206 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_pytorch.py +373 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_trt.py +227 -0
- inference_models/models/rfdetr/rfdetr_object_detection_onnx.py +244 -0
- inference_models/models/rfdetr/rfdetr_object_detection_pytorch.py +470 -0
- inference_models/models/rfdetr/rfdetr_object_detection_trt.py +270 -0
- inference_models/models/rfdetr/segmentation_head.py +273 -0
- inference_models/models/rfdetr/transformer.py +767 -0
- inference_models/models/roboflow_instant/__init__.py +0 -0
- inference_models/models/roboflow_instant/roboflow_instant_hf.py +141 -0
- inference_models/models/sam/__init__.py +0 -0
- inference_models/models/sam/cache.py +147 -0
- inference_models/models/sam/entities.py +25 -0
- inference_models/models/sam/sam_torch.py +675 -0
- inference_models/models/sam2/__init__.py +0 -0
- inference_models/models/sam2/cache.py +162 -0
- inference_models/models/sam2/entities.py +43 -0
- inference_models/models/sam2/sam2_torch.py +905 -0
- inference_models/models/sam2_rt/__init__.py +0 -0
- inference_models/models/sam2_rt/sam2_pytorch.py +119 -0
- inference_models/models/smolvlm/__init__.py +0 -0
- inference_models/models/smolvlm/smolvlm_hf.py +245 -0
- inference_models/models/trocr/__init__.py +0 -0
- inference_models/models/trocr/trocr_hf.py +53 -0
- inference_models/models/vit/__init__.py +0 -0
- inference_models/models/vit/vit_classification_huggingface.py +319 -0
- inference_models/models/vit/vit_classification_onnx.py +326 -0
- inference_models/models/vit/vit_classification_trt.py +365 -0
- inference_models/models/yolact/__init__.py +1 -0
- inference_models/models/yolact/yolact_instance_segmentation_onnx.py +336 -0
- inference_models/models/yolact/yolact_instance_segmentation_trt.py +361 -0
- inference_models/models/yolo_world/__init__.py +1 -0
- inference_models/models/yolonas/__init__.py +0 -0
- inference_models/models/yolonas/nms.py +44 -0
- inference_models/models/yolonas/yolonas_object_detection_onnx.py +204 -0
- inference_models/models/yolonas/yolonas_object_detection_trt.py +230 -0
- inference_models/models/yolov10/__init__.py +0 -0
- inference_models/models/yolov10/yolov10_object_detection_onnx.py +187 -0
- inference_models/models/yolov10/yolov10_object_detection_trt.py +215 -0
- inference_models/models/yolov11/__init__.py +0 -0
- inference_models/models/yolov11/yolov11_onnx.py +28 -0
- inference_models/models/yolov11/yolov11_torch_script.py +25 -0
- inference_models/models/yolov11/yolov11_trt.py +21 -0
- inference_models/models/yolov12/__init__.py +0 -0
- inference_models/models/yolov12/yolov12_onnx.py +7 -0
- inference_models/models/yolov12/yolov12_torch_script.py +7 -0
- inference_models/models/yolov12/yolov12_trt.py +7 -0
- inference_models/models/yolov5/__init__.py +0 -0
- inference_models/models/yolov5/nms.py +99 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_onnx.py +225 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_trt.py +255 -0
- inference_models/models/yolov5/yolov5_object_detection_onnx.py +192 -0
- inference_models/models/yolov5/yolov5_object_detection_trt.py +218 -0
- inference_models/models/yolov7/__init__.py +0 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_onnx.py +226 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_trt.py +253 -0
- inference_models/models/yolov8/__init__.py +0 -0
- inference_models/models/yolov8/yolov8_classification_onnx.py +181 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_onnx.py +239 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_torch_script.py +201 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_trt.py +268 -0
- inference_models/models/yolov8/yolov8_key_points_detection_onnx.py +263 -0
- inference_models/models/yolov8/yolov8_key_points_detection_torch_script.py +218 -0
- inference_models/models/yolov8/yolov8_key_points_detection_trt.py +287 -0
- inference_models/models/yolov8/yolov8_object_detection_onnx.py +213 -0
- inference_models/models/yolov8/yolov8_object_detection_torch_script.py +166 -0
- inference_models/models/yolov8/yolov8_object_detection_trt.py +231 -0
- inference_models/models/yolov9/__init__.py +0 -0
- inference_models/models/yolov9/yolov9_onnx.py +7 -0
- inference_models/models/yolov9/yolov9_torch_script.py +7 -0
- inference_models/models/yolov9/yolov9_trt.py +7 -0
- inference_models/runtime_introspection/__init__.py +0 -0
- inference_models/runtime_introspection/core.py +410 -0
- inference_models/utils/__init__.py +0 -0
- inference_models/utils/download.py +608 -0
- inference_models/utils/environment.py +28 -0
- inference_models/utils/file_system.py +51 -0
- inference_models/utils/hashing.py +7 -0
- inference_models/utils/imports.py +48 -0
- inference_models/utils/onnx_introspection.py +17 -0
- inference_models/weights_providers/__init__.py +0 -0
- inference_models/weights_providers/core.py +20 -0
- inference_models/weights_providers/entities.py +159 -0
- inference_models/weights_providers/roboflow.py +601 -0
- inference_models-0.18.3.dist-info/METADATA +466 -0
- inference_models-0.18.3.dist-info/RECORD +195 -0
- inference_models-0.18.3.dist-info/WHEEL +5 -0
- inference_models-0.18.3.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,742 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
import math
|
|
3
|
+
import random
|
|
4
|
+
from collections import OrderedDict
|
|
5
|
+
from dataclasses import asdict
|
|
6
|
+
from functools import partial
|
|
7
|
+
from logging import getLogger
|
|
8
|
+
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Union
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
import torch
|
|
12
|
+
import torch.nn as nn
|
|
13
|
+
from einops import rearrange
|
|
14
|
+
from timm.layers import DropPath
|
|
15
|
+
from torch import nn
|
|
16
|
+
from torch.nn import functional as F
|
|
17
|
+
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
|
18
|
+
from torch.nn.parameter import Parameter
|
|
19
|
+
from torch.utils.checkpoint import checkpoint
|
|
20
|
+
|
|
21
|
+
from inference_models.logger import LOGGER
|
|
22
|
+
from inference_models.models.perception_encoder.vision_encoder.config import (
|
|
23
|
+
PE_TEXT_CONFIG,
|
|
24
|
+
PE_VISION_CONFIG,
|
|
25
|
+
PEConfig,
|
|
26
|
+
PETextConfig,
|
|
27
|
+
fetch_pe_checkpoint,
|
|
28
|
+
)
|
|
29
|
+
from inference_models.models.perception_encoder.vision_encoder.rope import Rope2D
|
|
30
|
+
|
|
31
|
+
logger = getLogger()
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class LayerScale(nn.Module):
|
|
35
|
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
|
36
|
+
super().__init__()
|
|
37
|
+
self.inplace = inplace
|
|
38
|
+
self.dim = dim
|
|
39
|
+
self.init_values = init_values
|
|
40
|
+
|
|
41
|
+
def forward(self, x):
|
|
42
|
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
43
|
+
|
|
44
|
+
def init_tensors(self):
|
|
45
|
+
self.gamma = nn.Parameter(self.init_values * torch.ones(self.dim))
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class AttentionPooling(nn.Module):
|
|
49
|
+
def __init__(
|
|
50
|
+
self,
|
|
51
|
+
embed_dim: int,
|
|
52
|
+
num_heads: int,
|
|
53
|
+
num_probe: int = 1,
|
|
54
|
+
mlp_ratio: int = 4,
|
|
55
|
+
act_layer: Callable = nn.GELU,
|
|
56
|
+
norm_layer: Callable = nn.LayerNorm,
|
|
57
|
+
):
|
|
58
|
+
super().__init__()
|
|
59
|
+
|
|
60
|
+
self.embed_dim = embed_dim
|
|
61
|
+
self.num_heads = num_heads
|
|
62
|
+
|
|
63
|
+
assert (
|
|
64
|
+
self.embed_dim % num_heads == 0
|
|
65
|
+
), "embed_dim must be divisible by num_heads"
|
|
66
|
+
|
|
67
|
+
self.probe = nn.Parameter(torch.randn(1, num_probe, self.embed_dim))
|
|
68
|
+
self.attn = nn.MultiheadAttention(
|
|
69
|
+
self.embed_dim, self.num_heads, batch_first=True
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
self.layernorm = norm_layer(embed_dim)
|
|
73
|
+
self.mlp_width = int(embed_dim * mlp_ratio)
|
|
74
|
+
self.mlp = nn.Sequential(
|
|
75
|
+
OrderedDict(
|
|
76
|
+
[
|
|
77
|
+
("c_fc", nn.Linear(self.embed_dim, self.mlp_width)),
|
|
78
|
+
("gelu", act_layer()),
|
|
79
|
+
("c_proj", nn.Linear(self.mlp_width, self.embed_dim)),
|
|
80
|
+
]
|
|
81
|
+
)
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
def forward(self, x: torch.Tensor):
|
|
85
|
+
batch, _, _ = x.shape
|
|
86
|
+
|
|
87
|
+
q = self.probe.repeat((batch, 1, 1)).to(x.dtype)
|
|
88
|
+
x = self.attn(q, x, x, need_weights=False)[0]
|
|
89
|
+
x = x + self.mlp(self.layernorm(x))
|
|
90
|
+
|
|
91
|
+
return x
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
class SelfAttention(nn.Module):
|
|
95
|
+
r"""
|
|
96
|
+
Implements sequence packed attention and RoPe
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
def __init__(
|
|
100
|
+
self,
|
|
101
|
+
embed_dim: int,
|
|
102
|
+
num_heads: int,
|
|
103
|
+
rope: Optional[nn.Module] = None,
|
|
104
|
+
):
|
|
105
|
+
super(SelfAttention, self).__init__()
|
|
106
|
+
self.embed_dim = embed_dim
|
|
107
|
+
|
|
108
|
+
self.num_heads = num_heads
|
|
109
|
+
self.head_dim = embed_dim // num_heads
|
|
110
|
+
assert (
|
|
111
|
+
self.head_dim * num_heads == self.embed_dim
|
|
112
|
+
), "embed_dim must be divisible by num_heads"
|
|
113
|
+
|
|
114
|
+
# To make this compatibile with nn.MultiHeadAttention
|
|
115
|
+
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
|
|
116
|
+
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
|
|
117
|
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
|
118
|
+
|
|
119
|
+
self.rope = rope
|
|
120
|
+
self.scale = self.head_dim ** (-0.5)
|
|
121
|
+
|
|
122
|
+
def init_tensors(self):
|
|
123
|
+
xavier_uniform_(self.in_proj_weight)
|
|
124
|
+
constant_(self.in_proj_bias, 0.0)
|
|
125
|
+
constant_(self.out_proj.bias, 0.0)
|
|
126
|
+
|
|
127
|
+
def forward(self, x, attn_mask=None):
|
|
128
|
+
batch, seq, embed_dim = x.shape
|
|
129
|
+
proj = F.linear(x, self.in_proj_weight, self.in_proj_bias)
|
|
130
|
+
|
|
131
|
+
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
|
132
|
+
proj = (
|
|
133
|
+
proj.unflatten(-1, (3, embed_dim))
|
|
134
|
+
.unsqueeze(0)
|
|
135
|
+
.transpose(0, -2)
|
|
136
|
+
.squeeze(-2)
|
|
137
|
+
.contiguous()
|
|
138
|
+
)
|
|
139
|
+
q, k, v = proj[0], proj[1], proj[2]
|
|
140
|
+
|
|
141
|
+
# Use "q_" so that we don't accidentally quit in pdb :)
|
|
142
|
+
q = rearrange(q, "b s (h d) -> b h s d", h=self.num_heads)
|
|
143
|
+
k = rearrange(k, "b s (h d) -> b h s d", h=self.num_heads)
|
|
144
|
+
v = rearrange(v, "b s (h d) -> b h s d", h=self.num_heads)
|
|
145
|
+
|
|
146
|
+
if self.rope:
|
|
147
|
+
q, k = self.rope(q, k)
|
|
148
|
+
|
|
149
|
+
attn = F.scaled_dot_product_attention(
|
|
150
|
+
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale
|
|
151
|
+
)
|
|
152
|
+
attn = rearrange(attn, "b h s d -> b s (h d)")
|
|
153
|
+
|
|
154
|
+
return F.linear(attn, self.out_proj.weight, self.out_proj.bias)
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class ResidualAttentionBlock(nn.Module):
|
|
158
|
+
def __init__(
|
|
159
|
+
self,
|
|
160
|
+
d_model: int,
|
|
161
|
+
n_head: int,
|
|
162
|
+
mlp_ratio: float = 4.0,
|
|
163
|
+
ls_init_value: float = None,
|
|
164
|
+
act_layer: Callable = nn.GELU,
|
|
165
|
+
norm_layer: Callable = nn.LayerNorm,
|
|
166
|
+
drop_path: float = 0.0,
|
|
167
|
+
rope: Optional[nn.Module] = None,
|
|
168
|
+
):
|
|
169
|
+
super().__init__()
|
|
170
|
+
|
|
171
|
+
if rope:
|
|
172
|
+
self.attn = SelfAttention(d_model, n_head, rope=rope)
|
|
173
|
+
else:
|
|
174
|
+
self.attn = nn.MultiheadAttention(d_model, n_head, batch_first=True)
|
|
175
|
+
|
|
176
|
+
self.ls_1 = (
|
|
177
|
+
LayerScale(d_model, ls_init_value)
|
|
178
|
+
if ls_init_value is not None
|
|
179
|
+
else nn.Identity()
|
|
180
|
+
)
|
|
181
|
+
self.ls_2 = (
|
|
182
|
+
LayerScale(d_model, ls_init_value)
|
|
183
|
+
if ls_init_value is not None
|
|
184
|
+
else nn.Identity()
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
self.ln_1 = norm_layer(d_model)
|
|
188
|
+
self.ln_2 = norm_layer(d_model)
|
|
189
|
+
|
|
190
|
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
191
|
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
192
|
+
|
|
193
|
+
mlp_width = int(d_model * mlp_ratio)
|
|
194
|
+
self.mlp = nn.Sequential(
|
|
195
|
+
OrderedDict(
|
|
196
|
+
[
|
|
197
|
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
|
198
|
+
("gelu", act_layer()),
|
|
199
|
+
("c_proj", nn.Linear(mlp_width, d_model)),
|
|
200
|
+
]
|
|
201
|
+
)
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
def _call_attn(
|
|
205
|
+
self,
|
|
206
|
+
q_x: torch.Tensor,
|
|
207
|
+
attn_mask: Optional[torch.Tensor] = None,
|
|
208
|
+
):
|
|
209
|
+
|
|
210
|
+
if attn_mask is not None:
|
|
211
|
+
# Leave boolean masks as is
|
|
212
|
+
if not attn_mask.dtype == torch.bool:
|
|
213
|
+
attn_mask = attn_mask.to(q_x.dtype)
|
|
214
|
+
|
|
215
|
+
if isinstance(self.attn, SelfAttention):
|
|
216
|
+
return self.attn(q_x, attn_mask=attn_mask)
|
|
217
|
+
else:
|
|
218
|
+
return self.attn(q_x, q_x, q_x, attn_mask=attn_mask, need_weights=False)[0]
|
|
219
|
+
|
|
220
|
+
def forward(
|
|
221
|
+
self,
|
|
222
|
+
x: torch.Tensor,
|
|
223
|
+
attn_mask: Optional[torch.Tensor] = None,
|
|
224
|
+
):
|
|
225
|
+
x = x + self.drop_path1(
|
|
226
|
+
self.ls_1(self._call_attn(self.ln_1(x), attn_mask=attn_mask))
|
|
227
|
+
)
|
|
228
|
+
x = x + self.drop_path2(self.ls_2(self.mlp(self.ln_2(x))))
|
|
229
|
+
return x
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
class Transformer(nn.Module):
|
|
233
|
+
def __init__(
|
|
234
|
+
self,
|
|
235
|
+
width: int,
|
|
236
|
+
layers: int,
|
|
237
|
+
heads: int,
|
|
238
|
+
mlp_ratio: float = 4.0,
|
|
239
|
+
ls_init_value: float = None,
|
|
240
|
+
act_layer: Callable = nn.GELU,
|
|
241
|
+
norm_layer: Callable = nn.LayerNorm,
|
|
242
|
+
drop_path: float = 0.0,
|
|
243
|
+
rope: Optional[nn.Module] = None,
|
|
244
|
+
):
|
|
245
|
+
super().__init__()
|
|
246
|
+
self.width = width
|
|
247
|
+
self.layers = layers
|
|
248
|
+
self.grad_checkpointing = False
|
|
249
|
+
|
|
250
|
+
self.resblocks = nn.ModuleList(
|
|
251
|
+
[
|
|
252
|
+
ResidualAttentionBlock(
|
|
253
|
+
width,
|
|
254
|
+
heads,
|
|
255
|
+
mlp_ratio,
|
|
256
|
+
ls_init_value=ls_init_value,
|
|
257
|
+
act_layer=act_layer,
|
|
258
|
+
norm_layer=norm_layer,
|
|
259
|
+
drop_path=drop_path,
|
|
260
|
+
rope=rope,
|
|
261
|
+
)
|
|
262
|
+
for _ in range(layers)
|
|
263
|
+
]
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
@torch.jit.ignore
|
|
267
|
+
def set_grad_checkpointing(self, enable=True):
|
|
268
|
+
self.grad_checkpointing = enable
|
|
269
|
+
|
|
270
|
+
@torch.jit.ignore
|
|
271
|
+
def truncate(self, layer_idx: int):
|
|
272
|
+
"""Delete layers so the last layer is the given layer index."""
|
|
273
|
+
self.layers = ((self.layers + layer_idx) % self.layers) + 1
|
|
274
|
+
self.resblocks = nn.ModuleList(self.resblocks[: self.layers])
|
|
275
|
+
|
|
276
|
+
def forward(
|
|
277
|
+
self,
|
|
278
|
+
x: torch.Tensor,
|
|
279
|
+
attn_mask: Optional[torch.Tensor] = None,
|
|
280
|
+
layer_idx: int = -1,
|
|
281
|
+
):
|
|
282
|
+
stop_idx = (self.layers + layer_idx) % self.layers
|
|
283
|
+
|
|
284
|
+
for i, r in enumerate(self.resblocks):
|
|
285
|
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
286
|
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
|
287
|
+
x = checkpoint(r, x, None, None, attn_mask)
|
|
288
|
+
else:
|
|
289
|
+
x = r(x, attn_mask=attn_mask)
|
|
290
|
+
|
|
291
|
+
if i == stop_idx:
|
|
292
|
+
break
|
|
293
|
+
|
|
294
|
+
return x
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
class VisionTransformer(nn.Module):
|
|
298
|
+
def __init__(
|
|
299
|
+
self,
|
|
300
|
+
patch_size: int,
|
|
301
|
+
width: int,
|
|
302
|
+
layers: int,
|
|
303
|
+
heads: int,
|
|
304
|
+
mlp_ratio: float,
|
|
305
|
+
act_layer: Callable = nn.GELU,
|
|
306
|
+
norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5),
|
|
307
|
+
use_ln_pre: bool = True,
|
|
308
|
+
use_ln_post: bool = True,
|
|
309
|
+
ls_init_value: float = None,
|
|
310
|
+
drop_path: float = 0.0,
|
|
311
|
+
image_size: int = 448, # Pretrain image size only; you can pass in any image size
|
|
312
|
+
use_abs_posemb: bool = True,
|
|
313
|
+
use_rope2d: bool = True,
|
|
314
|
+
use_cls_token: bool = False,
|
|
315
|
+
output_dim: Optional[int] = 1280,
|
|
316
|
+
attn_pooler_heads: int = 8,
|
|
317
|
+
pool_type: Literal["attn", "tok", "avg", "none"] = "attn",
|
|
318
|
+
):
|
|
319
|
+
super().__init__()
|
|
320
|
+
assert pool_type in ("attn", "tok", "avg", "none")
|
|
321
|
+
self.pool_type = pool_type
|
|
322
|
+
self.patch_size = patch_size
|
|
323
|
+
|
|
324
|
+
self.output_dim = output_dim or width
|
|
325
|
+
self.proj_dim = output_dim
|
|
326
|
+
self.heads = heads
|
|
327
|
+
self.width = width
|
|
328
|
+
self.layers = layers
|
|
329
|
+
|
|
330
|
+
self.use_abs_posemb = use_abs_posemb
|
|
331
|
+
self.use_cls_token = use_cls_token
|
|
332
|
+
self.use_rope2d = use_rope2d
|
|
333
|
+
self.image_size = image_size
|
|
334
|
+
|
|
335
|
+
self.conv1 = nn.Conv2d(
|
|
336
|
+
in_channels=3,
|
|
337
|
+
out_channels=width,
|
|
338
|
+
kernel_size=patch_size,
|
|
339
|
+
stride=patch_size,
|
|
340
|
+
bias=False,
|
|
341
|
+
)
|
|
342
|
+
self.rope = (
|
|
343
|
+
Rope2D(
|
|
344
|
+
dim=width // heads,
|
|
345
|
+
use_cls_token=self.use_cls_token,
|
|
346
|
+
)
|
|
347
|
+
if self.use_rope2d
|
|
348
|
+
else None
|
|
349
|
+
)
|
|
350
|
+
|
|
351
|
+
self.ln_pre = norm_layer(width) if use_ln_pre else nn.Identity()
|
|
352
|
+
self.ln_post = norm_layer(self.width) if use_ln_post else nn.Identity()
|
|
353
|
+
|
|
354
|
+
self.transformer = Transformer(
|
|
355
|
+
width,
|
|
356
|
+
layers,
|
|
357
|
+
heads,
|
|
358
|
+
mlp_ratio,
|
|
359
|
+
ls_init_value=ls_init_value,
|
|
360
|
+
act_layer=act_layer,
|
|
361
|
+
norm_layer=norm_layer,
|
|
362
|
+
drop_path=drop_path,
|
|
363
|
+
rope=self.rope,
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
if pool_type == "attn":
|
|
367
|
+
self.attn_pool = AttentionPooling(
|
|
368
|
+
embed_dim=width,
|
|
369
|
+
num_heads=attn_pooler_heads,
|
|
370
|
+
act_layer=act_layer,
|
|
371
|
+
norm_layer=norm_layer,
|
|
372
|
+
)
|
|
373
|
+
else:
|
|
374
|
+
self.attn_pool = None
|
|
375
|
+
|
|
376
|
+
self.init_tensors()
|
|
377
|
+
|
|
378
|
+
def init_tensors(self):
|
|
379
|
+
def init_submodule_tensors(module):
|
|
380
|
+
for name, child in module.named_children():
|
|
381
|
+
if hasattr(child, "init_tensors"):
|
|
382
|
+
logger.debug(f"Initializing tensors for submodule: {name}")
|
|
383
|
+
child.init_tensors()
|
|
384
|
+
init_submodule_tensors(child)
|
|
385
|
+
|
|
386
|
+
init_submodule_tensors(self)
|
|
387
|
+
self.rope.init_tensors()
|
|
388
|
+
|
|
389
|
+
# class embeddings and positional embeddings
|
|
390
|
+
init_scale = self.width**-0.5
|
|
391
|
+
|
|
392
|
+
if self.use_cls_token:
|
|
393
|
+
self.class_embedding = nn.Parameter(init_scale * torch.randn(self.width))
|
|
394
|
+
|
|
395
|
+
if self.use_abs_posemb:
|
|
396
|
+
self.posemb_grid_size = self.image_size // self.patch_size
|
|
397
|
+
self.positional_embedding = nn.Parameter(
|
|
398
|
+
init_scale
|
|
399
|
+
* torch.randn(
|
|
400
|
+
int(self.use_cls_token) + self.posemb_grid_size**2, self.width
|
|
401
|
+
)
|
|
402
|
+
)
|
|
403
|
+
|
|
404
|
+
if self.proj_dim is not None:
|
|
405
|
+
self.proj = nn.Parameter(
|
|
406
|
+
init_scale * torch.randn(self.width, self.proj_dim)
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
def load_ckpt(self, ckpt_path: str):
|
|
410
|
+
_sd = torch.load(ckpt_path, weights_only=True)
|
|
411
|
+
if "state_dict" in _sd:
|
|
412
|
+
_sd = _sd["state_dict"]
|
|
413
|
+
elif "weights" in _sd:
|
|
414
|
+
_sd = _sd["weights"]
|
|
415
|
+
|
|
416
|
+
# for backwards compatibility
|
|
417
|
+
_sd = {k.replace("module.", ""): v for k, v in _sd.items()}
|
|
418
|
+
if any(k.startswith("visual.") for k in _sd):
|
|
419
|
+
_sd = {k.replace("visual.", ""): v for k, v in _sd.items() if "visual" in k}
|
|
420
|
+
|
|
421
|
+
m, u = self.load_state_dict(_sd, strict=False)
|
|
422
|
+
LOGGER.warning(f"Missing keys for loading vision encoder: {m}")
|
|
423
|
+
LOGGER.info(f"Unexpected keys for loading vision encoder: {u}")
|
|
424
|
+
|
|
425
|
+
def truncate(self, layer_idx: int):
|
|
426
|
+
"""Delete layers so the last layer is the given layer index."""
|
|
427
|
+
self.transformer.truncate(layer_idx)
|
|
428
|
+
self.layers = self.transformer.layers
|
|
429
|
+
|
|
430
|
+
@classmethod
|
|
431
|
+
def from_config(
|
|
432
|
+
cls,
|
|
433
|
+
name: str,
|
|
434
|
+
pretrained: bool = False,
|
|
435
|
+
checkpoint_path: Optional[str] = None,
|
|
436
|
+
**kwdargs,
|
|
437
|
+
):
|
|
438
|
+
if name not in PE_VISION_CONFIG:
|
|
439
|
+
raise RuntimeError(f"{name} not found in configs.")
|
|
440
|
+
|
|
441
|
+
args = asdict(PE_VISION_CONFIG[name])
|
|
442
|
+
args.update(kwdargs)
|
|
443
|
+
|
|
444
|
+
model = cls(**args)
|
|
445
|
+
if pretrained:
|
|
446
|
+
model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path))
|
|
447
|
+
|
|
448
|
+
return model
|
|
449
|
+
|
|
450
|
+
@classmethod
|
|
451
|
+
def available_configs(cls):
|
|
452
|
+
return list(PE_VISION_CONFIG.keys())
|
|
453
|
+
|
|
454
|
+
@torch.jit.ignore
|
|
455
|
+
def set_grad_checkpointing(self, enable=True):
|
|
456
|
+
self.transformer.set_grad_checkpointing(enable=enable)
|
|
457
|
+
|
|
458
|
+
def _sample_abs_posemb(self, grid_h: int, grid_w: int):
|
|
459
|
+
"""Interpolates the absolute position embedding if necessary."""
|
|
460
|
+
if self.posemb_grid_size == grid_h and self.posemb_grid_size == grid_w:
|
|
461
|
+
return self.positional_embedding[None, ...]
|
|
462
|
+
|
|
463
|
+
pos_embed = self.positional_embedding
|
|
464
|
+
if self.use_cls_token:
|
|
465
|
+
cls_token_embed, pos_embed = pos_embed[:1], pos_embed[1:]
|
|
466
|
+
|
|
467
|
+
pos_embed = (
|
|
468
|
+
pos_embed.reshape(1, self.posemb_grid_size, self.posemb_grid_size, -1)
|
|
469
|
+
.permute(0, 3, 1, 2)
|
|
470
|
+
.contiguous()
|
|
471
|
+
)
|
|
472
|
+
pos_embed = F.interpolate(
|
|
473
|
+
pos_embed, size=(grid_h, grid_w), mode="bilinear", align_corners=False
|
|
474
|
+
)
|
|
475
|
+
pos_embed = pos_embed.permute(0, 2, 3, 1).reshape(-1, self.width).contiguous()
|
|
476
|
+
|
|
477
|
+
if self.use_cls_token:
|
|
478
|
+
pos_embed = torch.cat([cls_token_embed, pos_embed], dim=0)
|
|
479
|
+
|
|
480
|
+
return pos_embed[None, ...]
|
|
481
|
+
|
|
482
|
+
def _pool(self, x: torch.Tensor):
|
|
483
|
+
if self.pool_type == "tok":
|
|
484
|
+
return x[:, 0]
|
|
485
|
+
elif self.pool_type == "avg":
|
|
486
|
+
return x.mean(dim=1)
|
|
487
|
+
elif self.pool_type == "attn":
|
|
488
|
+
return self.attn_pool(x).squeeze(1)
|
|
489
|
+
elif self.pool_type == "none":
|
|
490
|
+
return x
|
|
491
|
+
else:
|
|
492
|
+
raise NotImplementedError
|
|
493
|
+
|
|
494
|
+
def forward_features(
|
|
495
|
+
self,
|
|
496
|
+
x: torch.Tensor,
|
|
497
|
+
norm: bool = False,
|
|
498
|
+
layer_idx: int = -1,
|
|
499
|
+
strip_cls_token: bool = False,
|
|
500
|
+
):
|
|
501
|
+
batch, _, h, w = x.shape
|
|
502
|
+
grid_h, grid_w = h // self.patch_size, w // self.patch_size
|
|
503
|
+
|
|
504
|
+
x = self.conv1(x)
|
|
505
|
+
x = x.permute(0, 2, 3, 1).reshape(batch, -1, self.width)
|
|
506
|
+
|
|
507
|
+
if self.use_cls_token:
|
|
508
|
+
x = torch.cat(
|
|
509
|
+
[self.class_embedding.view(1, 1, -1).expand(batch, -1, -1), x],
|
|
510
|
+
dim=1,
|
|
511
|
+
)
|
|
512
|
+
|
|
513
|
+
if self.use_abs_posemb:
|
|
514
|
+
x = x + self._sample_abs_posemb(grid_h, grid_w)
|
|
515
|
+
|
|
516
|
+
if self.use_rope2d:
|
|
517
|
+
self.rope.update_grid(x.device, grid_h, grid_w)
|
|
518
|
+
|
|
519
|
+
x = self.ln_pre(x)
|
|
520
|
+
x = self.transformer(x, layer_idx=layer_idx)
|
|
521
|
+
|
|
522
|
+
if norm:
|
|
523
|
+
x = self.ln_post(x)
|
|
524
|
+
|
|
525
|
+
if strip_cls_token and self.use_cls_token:
|
|
526
|
+
x = x[:, 1:, :]
|
|
527
|
+
|
|
528
|
+
return x
|
|
529
|
+
|
|
530
|
+
def forward(self, x: torch.Tensor, **kwargs):
|
|
531
|
+
x = self.forward_features(x, norm=True, **kwargs)
|
|
532
|
+
x = self._pool(x)
|
|
533
|
+
|
|
534
|
+
if self.proj_dim is not None:
|
|
535
|
+
x = x @ self.proj
|
|
536
|
+
|
|
537
|
+
return x
|
|
538
|
+
|
|
539
|
+
|
|
540
|
+
class TextTransformer(nn.Module):
|
|
541
|
+
def __init__(
|
|
542
|
+
self,
|
|
543
|
+
context_length: int = 72,
|
|
544
|
+
vocab_size: int = 49408,
|
|
545
|
+
width: int = 512,
|
|
546
|
+
heads: int = 8,
|
|
547
|
+
layers: int = 12,
|
|
548
|
+
mlp_ratio: float = 4.0,
|
|
549
|
+
ls_init_value: float = None,
|
|
550
|
+
output_dim: int = 1280,
|
|
551
|
+
no_causal_mask: bool = False,
|
|
552
|
+
pad_id: int = 0,
|
|
553
|
+
pool_type: str = "argmax",
|
|
554
|
+
proj_bias: bool = False,
|
|
555
|
+
act_layer: Callable = nn.GELU,
|
|
556
|
+
norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5),
|
|
557
|
+
output_tokens: bool = False,
|
|
558
|
+
use_ln_post: bool = True,
|
|
559
|
+
):
|
|
560
|
+
super().__init__()
|
|
561
|
+
assert pool_type in ("first", "last", "argmax", "none")
|
|
562
|
+
self.pool_type = pool_type
|
|
563
|
+
self.output_tokens = output_tokens
|
|
564
|
+
self.num_pos = self.context_length = context_length
|
|
565
|
+
self.vocab_size = vocab_size
|
|
566
|
+
self.width = width
|
|
567
|
+
self.output_dim = output_dim
|
|
568
|
+
self.heads = heads
|
|
569
|
+
self.pad_id = pad_id
|
|
570
|
+
self.layers = layers
|
|
571
|
+
|
|
572
|
+
self.token_embedding = nn.Embedding(vocab_size, width)
|
|
573
|
+
self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
|
|
574
|
+
|
|
575
|
+
self.transformer = Transformer(
|
|
576
|
+
width=width,
|
|
577
|
+
layers=layers,
|
|
578
|
+
heads=heads,
|
|
579
|
+
mlp_ratio=mlp_ratio,
|
|
580
|
+
ls_init_value=ls_init_value,
|
|
581
|
+
act_layer=act_layer,
|
|
582
|
+
norm_layer=norm_layer,
|
|
583
|
+
)
|
|
584
|
+
|
|
585
|
+
self.ln_final = norm_layer(width) if use_ln_post else nn.Identity()
|
|
586
|
+
|
|
587
|
+
if no_causal_mask:
|
|
588
|
+
self.attn_mask = None
|
|
589
|
+
else:
|
|
590
|
+
self.register_buffer(
|
|
591
|
+
"attn_mask", self.build_causal_mask(), persistent=False
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
if pool_type == "attn" or pool_type == "attn_eos":
|
|
595
|
+
self.attn_pool = AttentionPooling(
|
|
596
|
+
embed_dim=width,
|
|
597
|
+
num_heads=heads,
|
|
598
|
+
act_layer=act_layer,
|
|
599
|
+
norm_layer=norm_layer,
|
|
600
|
+
)
|
|
601
|
+
else: # argmax
|
|
602
|
+
self.attn_pool = None
|
|
603
|
+
|
|
604
|
+
if proj_bias:
|
|
605
|
+
self.text_projection = nn.Linear(width, output_dim)
|
|
606
|
+
else:
|
|
607
|
+
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
|
608
|
+
|
|
609
|
+
def build_causal_mask(self):
|
|
610
|
+
# lazily create causal attention mask, with full attention between the tokens
|
|
611
|
+
# pytorch uses additive attention mask; fill with -inf
|
|
612
|
+
mask = torch.empty(self.num_pos, self.num_pos)
|
|
613
|
+
mask.fill_(float("-inf"))
|
|
614
|
+
mask.triu_(1) # zero out the lower diagonal
|
|
615
|
+
return mask
|
|
616
|
+
|
|
617
|
+
def load_ckpt(self, ckpt_path: str):
|
|
618
|
+
_sd = torch.load(ckpt_path, weights_only=True)
|
|
619
|
+
if "state_dict" in _sd:
|
|
620
|
+
_sd = _sd["state_dict"]
|
|
621
|
+
elif "weights" in _sd:
|
|
622
|
+
_sd = _sd["weights"]
|
|
623
|
+
|
|
624
|
+
_sd = {k.replace("module.", ""): v for k, v in _sd.items()}
|
|
625
|
+
|
|
626
|
+
m, u = self.load_state_dict(_sd, strict=False)
|
|
627
|
+
|
|
628
|
+
if m:
|
|
629
|
+
LOGGER.warning(f"Missing keys for loading model: {m}")
|
|
630
|
+
if u:
|
|
631
|
+
LOGGER.warning(f"Unexpected keys for loading model: {u}")
|
|
632
|
+
|
|
633
|
+
def build_cls_mask(self, text):
|
|
634
|
+
cls_mask = (text != self.pad_id).unsqueeze(1)
|
|
635
|
+
cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=True)
|
|
636
|
+
additive_mask = torch.empty(cls_mask.shape, device=cls_mask.device)
|
|
637
|
+
additive_mask.fill_(0)
|
|
638
|
+
additive_mask.masked_fill_(~cls_mask, float("-inf"))
|
|
639
|
+
additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0)
|
|
640
|
+
return additive_mask
|
|
641
|
+
|
|
642
|
+
def text_global_pool(
|
|
643
|
+
self, x, text: Optional[torch.Tensor] = None, pool_type: str = "argmax"
|
|
644
|
+
):
|
|
645
|
+
if pool_type == "first":
|
|
646
|
+
pooled, tokens = x[:, 0], x[:, 1:]
|
|
647
|
+
elif pool_type == "last":
|
|
648
|
+
pooled, tokens = x[:, -1], x[:, :-1]
|
|
649
|
+
elif pool_type == "argmax":
|
|
650
|
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
|
651
|
+
assert text is not None
|
|
652
|
+
pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
|
|
653
|
+
else:
|
|
654
|
+
pooled = tokens = x
|
|
655
|
+
|
|
656
|
+
return pooled, tokens
|
|
657
|
+
|
|
658
|
+
def forward(self, text):
|
|
659
|
+
seq_len = text.shape[1]
|
|
660
|
+
x = self.token_embedding(text)
|
|
661
|
+
attn_mask = self.attn_mask
|
|
662
|
+
if attn_mask is not None:
|
|
663
|
+
attn_mask = attn_mask[:seq_len, :seq_len]
|
|
664
|
+
|
|
665
|
+
x = x + self.positional_embedding[:seq_len]
|
|
666
|
+
x = self.transformer(x, attn_mask=attn_mask)
|
|
667
|
+
|
|
668
|
+
x = self.ln_final(x)
|
|
669
|
+
pooled, tokens = self.text_global_pool(x, text, pool_type=self.pool_type)
|
|
670
|
+
|
|
671
|
+
if self.text_projection is not None:
|
|
672
|
+
if isinstance(self.text_projection, nn.Linear):
|
|
673
|
+
pooled = self.text_projection(pooled)
|
|
674
|
+
else:
|
|
675
|
+
pooled = pooled @ self.text_projection
|
|
676
|
+
|
|
677
|
+
if self.output_tokens:
|
|
678
|
+
return pooled, tokens
|
|
679
|
+
|
|
680
|
+
return pooled
|
|
681
|
+
|
|
682
|
+
|
|
683
|
+
class CLIP(TextTransformer):
|
|
684
|
+
def __init__(
|
|
685
|
+
self,
|
|
686
|
+
vision_cfg: PEConfig,
|
|
687
|
+
text_cfg: PETextConfig,
|
|
688
|
+
init_logit_scale: float = np.log(1 / 0.07),
|
|
689
|
+
):
|
|
690
|
+
super(CLIP, self).__init__(**asdict(text_cfg))
|
|
691
|
+
self.visual = VisionTransformer(**asdict(vision_cfg))
|
|
692
|
+
self.image_size = self.visual.image_size # For ease of use
|
|
693
|
+
self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
|
|
694
|
+
|
|
695
|
+
def encode_image(self, image, normalize: bool = False):
|
|
696
|
+
x = self.visual(image)
|
|
697
|
+
return F.normalize(x, dim=-1) if normalize else x
|
|
698
|
+
|
|
699
|
+
def encode_video(self, video, normalize: bool = False): # b n c h w
|
|
700
|
+
b, n, c, h, w = video.shape
|
|
701
|
+
frms = video.reshape(b * n, c, h, w)
|
|
702
|
+
frm_feats = self.encode_image(frms, normalize=normalize)
|
|
703
|
+
video_feats = frm_feats.reshape(b, n, -1)
|
|
704
|
+
video_feats = video_feats.mean(dim=1)
|
|
705
|
+
return video_feats
|
|
706
|
+
|
|
707
|
+
def encode_text(self, text, normalize: bool = False):
|
|
708
|
+
x = super().forward(text)
|
|
709
|
+
return F.normalize(x, dim=-1) if normalize else x
|
|
710
|
+
|
|
711
|
+
def forward(
|
|
712
|
+
self,
|
|
713
|
+
image: Optional[torch.Tensor] = None,
|
|
714
|
+
text: Optional[torch.Tensor] = None,
|
|
715
|
+
):
|
|
716
|
+
image_features = (
|
|
717
|
+
self.encode_image(image, normalize=True) if image is not None else None
|
|
718
|
+
)
|
|
719
|
+
text_features = (
|
|
720
|
+
self.encode_text(text, normalize=True) if text is not None else None
|
|
721
|
+
)
|
|
722
|
+
return image_features, text_features, self.logit_scale.exp()
|
|
723
|
+
|
|
724
|
+
@classmethod
|
|
725
|
+
def from_config(
|
|
726
|
+
cls,
|
|
727
|
+
name: str,
|
|
728
|
+
pretrained: bool = False,
|
|
729
|
+
checkpoint_path: Optional[str] = None, # To load your own
|
|
730
|
+
):
|
|
731
|
+
if name not in PE_VISION_CONFIG or name not in PE_TEXT_CONFIG:
|
|
732
|
+
raise RuntimeError(f"{name} not found in configs.")
|
|
733
|
+
|
|
734
|
+
model = cls(PE_VISION_CONFIG[name], PE_TEXT_CONFIG[name])
|
|
735
|
+
if pretrained:
|
|
736
|
+
model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path))
|
|
737
|
+
|
|
738
|
+
return model
|
|
739
|
+
|
|
740
|
+
@classmethod
|
|
741
|
+
def available_configs(cls):
|
|
742
|
+
return [k for k in PE_VISION_CONFIG if k in PE_TEXT_CONFIG]
|