inference-models 0.18.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- inference_models/__init__.py +36 -0
- inference_models/configuration.py +72 -0
- inference_models/constants.py +2 -0
- inference_models/entities.py +5 -0
- inference_models/errors.py +137 -0
- inference_models/logger.py +52 -0
- inference_models/model_pipelines/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/__init__.py +0 -0
- inference_models/model_pipelines/auto_loaders/core.py +120 -0
- inference_models/model_pipelines/auto_loaders/pipelines_registry.py +36 -0
- inference_models/model_pipelines/face_and_gaze_detection/__init__.py +0 -0
- inference_models/model_pipelines/face_and_gaze_detection/mediapipe_l2cs.py +200 -0
- inference_models/models/__init__.py +0 -0
- inference_models/models/auto_loaders/__init__.py +0 -0
- inference_models/models/auto_loaders/access_manager.py +168 -0
- inference_models/models/auto_loaders/auto_negotiation.py +1329 -0
- inference_models/models/auto_loaders/auto_resolution_cache.py +129 -0
- inference_models/models/auto_loaders/constants.py +7 -0
- inference_models/models/auto_loaders/core.py +1341 -0
- inference_models/models/auto_loaders/dependency_models.py +52 -0
- inference_models/models/auto_loaders/entities.py +57 -0
- inference_models/models/auto_loaders/models_registry.py +497 -0
- inference_models/models/auto_loaders/presentation_utils.py +333 -0
- inference_models/models/auto_loaders/ranking.py +413 -0
- inference_models/models/auto_loaders/utils.py +31 -0
- inference_models/models/base/__init__.py +0 -0
- inference_models/models/base/classification.py +123 -0
- inference_models/models/base/depth_estimation.py +62 -0
- inference_models/models/base/documents_parsing.py +111 -0
- inference_models/models/base/embeddings.py +66 -0
- inference_models/models/base/instance_segmentation.py +87 -0
- inference_models/models/base/keypoints_detection.py +93 -0
- inference_models/models/base/object_detection.py +143 -0
- inference_models/models/base/semantic_segmentation.py +74 -0
- inference_models/models/base/types.py +5 -0
- inference_models/models/clip/__init__.py +0 -0
- inference_models/models/clip/clip_onnx.py +148 -0
- inference_models/models/clip/clip_pytorch.py +104 -0
- inference_models/models/clip/preprocessing.py +162 -0
- inference_models/models/common/__init__.py +0 -0
- inference_models/models/common/cuda.py +30 -0
- inference_models/models/common/model_packages.py +25 -0
- inference_models/models/common/onnx.py +379 -0
- inference_models/models/common/roboflow/__init__.py +0 -0
- inference_models/models/common/roboflow/model_packages.py +361 -0
- inference_models/models/common/roboflow/post_processing.py +436 -0
- inference_models/models/common/roboflow/pre_processing.py +1332 -0
- inference_models/models/common/torch.py +20 -0
- inference_models/models/common/trt.py +266 -0
- inference_models/models/deep_lab_v3_plus/__init__.py +0 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_onnx.py +282 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_torch.py +264 -0
- inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_trt.py +313 -0
- inference_models/models/depth_anything_v2/__init__.py +0 -0
- inference_models/models/depth_anything_v2/depth_anything_v2_hf.py +77 -0
- inference_models/models/dinov3/__init__.py +0 -0
- inference_models/models/dinov3/dinov3_classification_onnx.py +348 -0
- inference_models/models/dinov3/dinov3_classification_torch.py +323 -0
- inference_models/models/doctr/__init__.py +0 -0
- inference_models/models/doctr/doctr_torch.py +304 -0
- inference_models/models/easy_ocr/__init__.py +0 -0
- inference_models/models/easy_ocr/easy_ocr_torch.py +222 -0
- inference_models/models/florence2/__init__.py +0 -0
- inference_models/models/florence2/florence2_hf.py +897 -0
- inference_models/models/grounding_dino/__init__.py +0 -0
- inference_models/models/grounding_dino/grounding_dino_torch.py +227 -0
- inference_models/models/l2cs/__init__.py +0 -0
- inference_models/models/l2cs/l2cs_onnx.py +216 -0
- inference_models/models/mediapipe_face_detection/__init__.py +0 -0
- inference_models/models/mediapipe_face_detection/face_detection.py +203 -0
- inference_models/models/moondream2/__init__.py +0 -0
- inference_models/models/moondream2/moondream2_hf.py +281 -0
- inference_models/models/owlv2/__init__.py +0 -0
- inference_models/models/owlv2/cache.py +182 -0
- inference_models/models/owlv2/entities.py +112 -0
- inference_models/models/owlv2/owlv2_hf.py +695 -0
- inference_models/models/owlv2/reference_dataset.py +291 -0
- inference_models/models/paligemma/__init__.py +0 -0
- inference_models/models/paligemma/paligemma_hf.py +209 -0
- inference_models/models/perception_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/perception_encoder_pytorch.py +197 -0
- inference_models/models/perception_encoder/vision_encoder/__init__.py +0 -0
- inference_models/models/perception_encoder/vision_encoder/config.py +160 -0
- inference_models/models/perception_encoder/vision_encoder/pe.py +742 -0
- inference_models/models/perception_encoder/vision_encoder/rope.py +344 -0
- inference_models/models/perception_encoder/vision_encoder/tokenizer.py +342 -0
- inference_models/models/perception_encoder/vision_encoder/transforms.py +33 -0
- inference_models/models/qwen25vl/__init__.py +1 -0
- inference_models/models/qwen25vl/qwen25vl_hf.py +285 -0
- inference_models/models/resnet/__init__.py +0 -0
- inference_models/models/resnet/resnet_classification_onnx.py +330 -0
- inference_models/models/resnet/resnet_classification_torch.py +305 -0
- inference_models/models/resnet/resnet_classification_trt.py +369 -0
- inference_models/models/rfdetr/__init__.py +0 -0
- inference_models/models/rfdetr/backbone_builder.py +101 -0
- inference_models/models/rfdetr/class_remapping.py +41 -0
- inference_models/models/rfdetr/common.py +115 -0
- inference_models/models/rfdetr/default_labels.py +108 -0
- inference_models/models/rfdetr/dinov2_with_windowed_attn.py +1330 -0
- inference_models/models/rfdetr/misc.py +26 -0
- inference_models/models/rfdetr/ms_deform_attn.py +180 -0
- inference_models/models/rfdetr/ms_deform_attn_func.py +60 -0
- inference_models/models/rfdetr/position_encoding.py +166 -0
- inference_models/models/rfdetr/post_processor.py +83 -0
- inference_models/models/rfdetr/projector.py +373 -0
- inference_models/models/rfdetr/rfdetr_backbone_pytorch.py +394 -0
- inference_models/models/rfdetr/rfdetr_base_pytorch.py +807 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_onnx.py +206 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_pytorch.py +373 -0
- inference_models/models/rfdetr/rfdetr_instance_segmentation_trt.py +227 -0
- inference_models/models/rfdetr/rfdetr_object_detection_onnx.py +244 -0
- inference_models/models/rfdetr/rfdetr_object_detection_pytorch.py +470 -0
- inference_models/models/rfdetr/rfdetr_object_detection_trt.py +270 -0
- inference_models/models/rfdetr/segmentation_head.py +273 -0
- inference_models/models/rfdetr/transformer.py +767 -0
- inference_models/models/roboflow_instant/__init__.py +0 -0
- inference_models/models/roboflow_instant/roboflow_instant_hf.py +141 -0
- inference_models/models/sam/__init__.py +0 -0
- inference_models/models/sam/cache.py +147 -0
- inference_models/models/sam/entities.py +25 -0
- inference_models/models/sam/sam_torch.py +675 -0
- inference_models/models/sam2/__init__.py +0 -0
- inference_models/models/sam2/cache.py +162 -0
- inference_models/models/sam2/entities.py +43 -0
- inference_models/models/sam2/sam2_torch.py +905 -0
- inference_models/models/sam2_rt/__init__.py +0 -0
- inference_models/models/sam2_rt/sam2_pytorch.py +119 -0
- inference_models/models/smolvlm/__init__.py +0 -0
- inference_models/models/smolvlm/smolvlm_hf.py +245 -0
- inference_models/models/trocr/__init__.py +0 -0
- inference_models/models/trocr/trocr_hf.py +53 -0
- inference_models/models/vit/__init__.py +0 -0
- inference_models/models/vit/vit_classification_huggingface.py +319 -0
- inference_models/models/vit/vit_classification_onnx.py +326 -0
- inference_models/models/vit/vit_classification_trt.py +365 -0
- inference_models/models/yolact/__init__.py +1 -0
- inference_models/models/yolact/yolact_instance_segmentation_onnx.py +336 -0
- inference_models/models/yolact/yolact_instance_segmentation_trt.py +361 -0
- inference_models/models/yolo_world/__init__.py +1 -0
- inference_models/models/yolonas/__init__.py +0 -0
- inference_models/models/yolonas/nms.py +44 -0
- inference_models/models/yolonas/yolonas_object_detection_onnx.py +204 -0
- inference_models/models/yolonas/yolonas_object_detection_trt.py +230 -0
- inference_models/models/yolov10/__init__.py +0 -0
- inference_models/models/yolov10/yolov10_object_detection_onnx.py +187 -0
- inference_models/models/yolov10/yolov10_object_detection_trt.py +215 -0
- inference_models/models/yolov11/__init__.py +0 -0
- inference_models/models/yolov11/yolov11_onnx.py +28 -0
- inference_models/models/yolov11/yolov11_torch_script.py +25 -0
- inference_models/models/yolov11/yolov11_trt.py +21 -0
- inference_models/models/yolov12/__init__.py +0 -0
- inference_models/models/yolov12/yolov12_onnx.py +7 -0
- inference_models/models/yolov12/yolov12_torch_script.py +7 -0
- inference_models/models/yolov12/yolov12_trt.py +7 -0
- inference_models/models/yolov5/__init__.py +0 -0
- inference_models/models/yolov5/nms.py +99 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_onnx.py +225 -0
- inference_models/models/yolov5/yolov5_instance_segmentation_trt.py +255 -0
- inference_models/models/yolov5/yolov5_object_detection_onnx.py +192 -0
- inference_models/models/yolov5/yolov5_object_detection_trt.py +218 -0
- inference_models/models/yolov7/__init__.py +0 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_onnx.py +226 -0
- inference_models/models/yolov7/yolov7_instance_segmentation_trt.py +253 -0
- inference_models/models/yolov8/__init__.py +0 -0
- inference_models/models/yolov8/yolov8_classification_onnx.py +181 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_onnx.py +239 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_torch_script.py +201 -0
- inference_models/models/yolov8/yolov8_instance_segmentation_trt.py +268 -0
- inference_models/models/yolov8/yolov8_key_points_detection_onnx.py +263 -0
- inference_models/models/yolov8/yolov8_key_points_detection_torch_script.py +218 -0
- inference_models/models/yolov8/yolov8_key_points_detection_trt.py +287 -0
- inference_models/models/yolov8/yolov8_object_detection_onnx.py +213 -0
- inference_models/models/yolov8/yolov8_object_detection_torch_script.py +166 -0
- inference_models/models/yolov8/yolov8_object_detection_trt.py +231 -0
- inference_models/models/yolov9/__init__.py +0 -0
- inference_models/models/yolov9/yolov9_onnx.py +7 -0
- inference_models/models/yolov9/yolov9_torch_script.py +7 -0
- inference_models/models/yolov9/yolov9_trt.py +7 -0
- inference_models/runtime_introspection/__init__.py +0 -0
- inference_models/runtime_introspection/core.py +410 -0
- inference_models/utils/__init__.py +0 -0
- inference_models/utils/download.py +608 -0
- inference_models/utils/environment.py +28 -0
- inference_models/utils/file_system.py +51 -0
- inference_models/utils/hashing.py +7 -0
- inference_models/utils/imports.py +48 -0
- inference_models/utils/onnx_introspection.py +17 -0
- inference_models/weights_providers/__init__.py +0 -0
- inference_models/weights_providers/core.py +20 -0
- inference_models/weights_providers/entities.py +159 -0
- inference_models/weights_providers/roboflow.py +601 -0
- inference_models-0.18.3.dist-info/METADATA +466 -0
- inference_models-0.18.3.dist-info/RECORD +195 -0
- inference_models-0.18.3.dist-info/WHEEL +5 -0
- inference_models-0.18.3.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,897 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import os
|
|
3
|
+
import re
|
|
4
|
+
from typing import List, Literal, Optional, Tuple, Union
|
|
5
|
+
|
|
6
|
+
import cv2
|
|
7
|
+
import numpy as np
|
|
8
|
+
import torch
|
|
9
|
+
from peft import LoraConfig, get_peft_model
|
|
10
|
+
from peft.mapping import PEFT_TYPE_TO_PREFIX_MAPPING
|
|
11
|
+
from peft.utils.save_and_load import load_peft_weights, set_peft_model_state_dict
|
|
12
|
+
from transformers import (
|
|
13
|
+
BitsAndBytesConfig,
|
|
14
|
+
Florence2ForConditionalGeneration,
|
|
15
|
+
Florence2Processor,
|
|
16
|
+
)
|
|
17
|
+
|
|
18
|
+
from inference_models import Detections, InstanceDetections
|
|
19
|
+
from inference_models.configuration import DEFAULT_DEVICE
|
|
20
|
+
from inference_models.entities import ColorFormat, ImageDimensions
|
|
21
|
+
from inference_models.errors import CorruptedModelPackageError, ModelRuntimeError
|
|
22
|
+
from inference_models.models.common.roboflow.model_packages import (
|
|
23
|
+
InferenceConfig,
|
|
24
|
+
PreProcessingMetadata,
|
|
25
|
+
ResizeMode,
|
|
26
|
+
parse_inference_config,
|
|
27
|
+
)
|
|
28
|
+
from inference_models.models.common.roboflow.pre_processing import (
|
|
29
|
+
extract_input_images_dimensions,
|
|
30
|
+
pre_process_network_input,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
GRANULARITY_2TASK = {
|
|
34
|
+
"normal": "<CAPTION>",
|
|
35
|
+
"detailed": "<DETAILED_CAPTION>",
|
|
36
|
+
"very_detailed": "<MORE_DETAILED_CAPTION>",
|
|
37
|
+
}
|
|
38
|
+
LABEL_MODE2TASK = {
|
|
39
|
+
"rois": "<REGION_PROPOSAL>",
|
|
40
|
+
"classes": "<OD>",
|
|
41
|
+
"captions": "<DENSE_REGION_CAPTION>",
|
|
42
|
+
}
|
|
43
|
+
LOC_BINS = 1000
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class Florence2HF:
|
|
47
|
+
|
|
48
|
+
@classmethod
|
|
49
|
+
def from_pretrained(
|
|
50
|
+
cls,
|
|
51
|
+
model_name_or_path: str,
|
|
52
|
+
device: torch.device = DEFAULT_DEVICE,
|
|
53
|
+
trust_remote_code: bool = False,
|
|
54
|
+
local_files_only: bool = True,
|
|
55
|
+
quantization_config: Optional[BitsAndBytesConfig] = None,
|
|
56
|
+
disable_quantization: bool = False,
|
|
57
|
+
**kwargs,
|
|
58
|
+
) -> "Florence2HF":
|
|
59
|
+
torch_dtype = torch.float16 if device.type == "cuda" else torch.bfloat16
|
|
60
|
+
inference_config_path = os.path.join(
|
|
61
|
+
model_name_or_path, "inference_config.json"
|
|
62
|
+
)
|
|
63
|
+
inference_config = None
|
|
64
|
+
if os.path.exists(inference_config_path):
|
|
65
|
+
inference_config = parse_inference_config(
|
|
66
|
+
config_path=inference_config_path,
|
|
67
|
+
allowed_resize_modes={
|
|
68
|
+
ResizeMode.STRETCH_TO,
|
|
69
|
+
ResizeMode.LETTERBOX,
|
|
70
|
+
ResizeMode.CENTER_CROP,
|
|
71
|
+
ResizeMode.LETTERBOX_REFLECT_EDGES,
|
|
72
|
+
},
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
adapter_config_path = os.path.join(model_name_or_path, "adapter_config.json")
|
|
76
|
+
is_adapter_package = os.path.exists(adapter_config_path)
|
|
77
|
+
|
|
78
|
+
base_model_path = (
|
|
79
|
+
os.path.join(model_name_or_path, "base")
|
|
80
|
+
if is_adapter_package
|
|
81
|
+
else model_name_or_path
|
|
82
|
+
)
|
|
83
|
+
if not os.path.isdir(base_model_path):
|
|
84
|
+
raise ModelRuntimeError(
|
|
85
|
+
message=f"Provided model path does not exist or is not a directory: {base_model_path}",
|
|
86
|
+
help_url="https://todo",
|
|
87
|
+
)
|
|
88
|
+
if not os.path.isfile(os.path.join(base_model_path, "config.json")):
|
|
89
|
+
raise ModelRuntimeError(
|
|
90
|
+
message=(
|
|
91
|
+
"Provided model directory does not look like a valid HF Florence-2 checkpoint (missing config.json). "
|
|
92
|
+
"If you used the official converter, point to its output directory."
|
|
93
|
+
),
|
|
94
|
+
help_url="https://todo",
|
|
95
|
+
)
|
|
96
|
+
if (
|
|
97
|
+
quantization_config is None
|
|
98
|
+
and device.type == "cuda"
|
|
99
|
+
and not disable_quantization
|
|
100
|
+
):
|
|
101
|
+
quantization_config = BitsAndBytesConfig(
|
|
102
|
+
load_in_4bit=True,
|
|
103
|
+
bnb_4bit_compute_dtype=torch.float16,
|
|
104
|
+
bnb_4bit_quant_type="nf4",
|
|
105
|
+
)
|
|
106
|
+
# Native HF Florence2 path only (require transformers >= 4.56)
|
|
107
|
+
model = Florence2ForConditionalGeneration.from_pretrained( # type: ignore[arg-type]
|
|
108
|
+
pretrained_model_name_or_path=base_model_path,
|
|
109
|
+
dtype=torch_dtype,
|
|
110
|
+
local_files_only=local_files_only,
|
|
111
|
+
trust_remote_code=trust_remote_code,
|
|
112
|
+
quantization_config=quantization_config,
|
|
113
|
+
)
|
|
114
|
+
if is_adapter_package:
|
|
115
|
+
# Custom LoRA attach to also cover vision modules
|
|
116
|
+
adapter_cfg_path = os.path.join(model_name_or_path, "adapter_config.json")
|
|
117
|
+
with open(adapter_cfg_path, "r") as f:
|
|
118
|
+
adapter_cfg = json.load(f)
|
|
119
|
+
|
|
120
|
+
requested_target_modules = adapter_cfg.get("target_modules") or []
|
|
121
|
+
adapter_task_type = adapter_cfg.get("task_type") or "SEQ_2_SEQ_LM"
|
|
122
|
+
lora_config = LoraConfig(
|
|
123
|
+
r=adapter_cfg.get("r", 8),
|
|
124
|
+
lora_alpha=adapter_cfg.get("lora_alpha", 8),
|
|
125
|
+
lora_dropout=adapter_cfg.get("lora_dropout", 0.0),
|
|
126
|
+
bias="none",
|
|
127
|
+
target_modules=sorted(requested_target_modules),
|
|
128
|
+
use_dora=bool(adapter_cfg.get("use_dora", False)),
|
|
129
|
+
use_rslora=bool(adapter_cfg.get("use_rslora", False)),
|
|
130
|
+
task_type=adapter_task_type,
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
model = get_peft_model(model, lora_config)
|
|
134
|
+
# Load adapter weights
|
|
135
|
+
adapter_state = load_peft_weights(model_name_or_path, device=device.type)
|
|
136
|
+
adapter_state = normalize_adapter_state_dict(adapter_state)
|
|
137
|
+
load_result = set_peft_model_state_dict(
|
|
138
|
+
model, adapter_state, adapter_name="default"
|
|
139
|
+
)
|
|
140
|
+
tuner = lora_config.peft_type
|
|
141
|
+
tuner_prefix = PEFT_TYPE_TO_PREFIX_MAPPING.get(tuner, "")
|
|
142
|
+
adapter_missing_keys = []
|
|
143
|
+
# Filter missing keys specific to the current adapter and tuner prefix.
|
|
144
|
+
for key in load_result.missing_keys:
|
|
145
|
+
if tuner_prefix in key and "default" in key:
|
|
146
|
+
adapter_missing_keys.append(key)
|
|
147
|
+
load_result.missing_keys.clear()
|
|
148
|
+
load_result.missing_keys.extend(adapter_missing_keys)
|
|
149
|
+
if len(load_result.missing_keys) > 0:
|
|
150
|
+
raise CorruptedModelPackageError(
|
|
151
|
+
message="Could not load LoRA weights for the model - found missing checkpoint keys "
|
|
152
|
+
f"({len(load_result.missing_keys)}): {load_result.missing_keys}",
|
|
153
|
+
help_url="https://todo",
|
|
154
|
+
)
|
|
155
|
+
if quantization_config is None:
|
|
156
|
+
model.merge_and_unload()
|
|
157
|
+
# Ensure global dtype consistency (handles CPU bfloat16 vs fp32 mismatches)
|
|
158
|
+
model = model.to(dtype=torch_dtype)
|
|
159
|
+
model = model.to(device)
|
|
160
|
+
|
|
161
|
+
processor = Florence2Processor.from_pretrained( # type: ignore[arg-type]
|
|
162
|
+
pretrained_model_name_or_path=base_model_path,
|
|
163
|
+
local_files_only=local_files_only,
|
|
164
|
+
trust_remote_code=trust_remote_code,
|
|
165
|
+
use_fast=True,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
return cls(
|
|
169
|
+
model=model,
|
|
170
|
+
processor=processor,
|
|
171
|
+
inference_config=inference_config,
|
|
172
|
+
device=device,
|
|
173
|
+
torch_dtype=torch_dtype,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
def __init__(
|
|
177
|
+
self,
|
|
178
|
+
model: Florence2ForConditionalGeneration,
|
|
179
|
+
processor: Florence2Processor,
|
|
180
|
+
inference_config: Optional[InferenceConfig],
|
|
181
|
+
device: torch.device,
|
|
182
|
+
torch_dtype: torch.dtype,
|
|
183
|
+
):
|
|
184
|
+
self._model = model
|
|
185
|
+
self._processor = processor
|
|
186
|
+
self._inference_config = inference_config
|
|
187
|
+
self._device = device
|
|
188
|
+
self._torch_dtype = torch_dtype
|
|
189
|
+
|
|
190
|
+
def classify_image_region(
|
|
191
|
+
self,
|
|
192
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
193
|
+
xyxy: Union[
|
|
194
|
+
torch.Tensor,
|
|
195
|
+
List[List[Union[float, int]]],
|
|
196
|
+
List[Union[float, int]],
|
|
197
|
+
np.ndarray,
|
|
198
|
+
],
|
|
199
|
+
max_new_tokens: int = 4096,
|
|
200
|
+
num_beams: int = 3,
|
|
201
|
+
do_sample: bool = False,
|
|
202
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
203
|
+
) -> List[str]:
|
|
204
|
+
loc_phrases = region_to_loc_phrase(images=images, xyxy=xyxy)
|
|
205
|
+
prompt = [f"<REGION_TO_CATEGORY>{phrase}" for phrase in loc_phrases]
|
|
206
|
+
task = "<REGION_TO_CATEGORY>"
|
|
207
|
+
result = self.prompt(
|
|
208
|
+
images=images,
|
|
209
|
+
prompt=prompt,
|
|
210
|
+
max_new_tokens=max_new_tokens,
|
|
211
|
+
num_beams=num_beams,
|
|
212
|
+
do_sample=do_sample,
|
|
213
|
+
task=task,
|
|
214
|
+
input_color_format=input_color_format,
|
|
215
|
+
)
|
|
216
|
+
return [deduce_localisation(r[task]) for r in result]
|
|
217
|
+
|
|
218
|
+
def caption_image_region(
|
|
219
|
+
self,
|
|
220
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
221
|
+
xyxy: Union[
|
|
222
|
+
torch.Tensor,
|
|
223
|
+
List[List[Union[float, int]]],
|
|
224
|
+
List[Union[float, int]],
|
|
225
|
+
np.ndarray,
|
|
226
|
+
],
|
|
227
|
+
max_new_tokens: int = 4096,
|
|
228
|
+
num_beams: int = 3,
|
|
229
|
+
do_sample: bool = False,
|
|
230
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
231
|
+
) -> List[str]:
|
|
232
|
+
loc_phrases = region_to_loc_phrase(images=images, xyxy=xyxy)
|
|
233
|
+
prompt = [f"<REGION_TO_DESCRIPTION>{phrase}" for phrase in loc_phrases]
|
|
234
|
+
task = "<REGION_TO_DESCRIPTION>"
|
|
235
|
+
result = self.prompt(
|
|
236
|
+
images=images,
|
|
237
|
+
prompt=prompt,
|
|
238
|
+
max_new_tokens=max_new_tokens,
|
|
239
|
+
num_beams=num_beams,
|
|
240
|
+
do_sample=do_sample,
|
|
241
|
+
task=task,
|
|
242
|
+
input_color_format=input_color_format,
|
|
243
|
+
)
|
|
244
|
+
return [deduce_localisation(r[task]) for r in result]
|
|
245
|
+
|
|
246
|
+
def ocr_image_region(
|
|
247
|
+
self,
|
|
248
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
249
|
+
xyxy: Union[
|
|
250
|
+
torch.Tensor,
|
|
251
|
+
List[List[Union[float, int]]],
|
|
252
|
+
List[Union[float, int]],
|
|
253
|
+
np.ndarray,
|
|
254
|
+
],
|
|
255
|
+
max_new_tokens: int = 4096,
|
|
256
|
+
num_beams: int = 3,
|
|
257
|
+
do_sample: bool = False,
|
|
258
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
259
|
+
) -> List[str]:
|
|
260
|
+
loc_phrases = region_to_loc_phrase(images=images, xyxy=xyxy)
|
|
261
|
+
prompt = [f"<REGION_TO_OCR>{phrase}" for phrase in loc_phrases]
|
|
262
|
+
task = "<REGION_TO_OCR>"
|
|
263
|
+
result = self.prompt(
|
|
264
|
+
images=images,
|
|
265
|
+
prompt=prompt,
|
|
266
|
+
max_new_tokens=max_new_tokens,
|
|
267
|
+
num_beams=num_beams,
|
|
268
|
+
do_sample=do_sample,
|
|
269
|
+
task=task,
|
|
270
|
+
input_color_format=input_color_format,
|
|
271
|
+
)
|
|
272
|
+
return [deduce_localisation(r[task]) for r in result]
|
|
273
|
+
|
|
274
|
+
def segment_region(
|
|
275
|
+
self,
|
|
276
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
277
|
+
xyxy: Union[
|
|
278
|
+
torch.Tensor,
|
|
279
|
+
List[List[Union[float, int]]],
|
|
280
|
+
List[Union[float, int]],
|
|
281
|
+
np.ndarray,
|
|
282
|
+
],
|
|
283
|
+
max_new_tokens: int = 4096,
|
|
284
|
+
num_beams: int = 3,
|
|
285
|
+
do_sample: bool = False,
|
|
286
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
287
|
+
) -> List[InstanceDetections]:
|
|
288
|
+
loc_phrases = region_to_loc_phrase(images=images, xyxy=xyxy)
|
|
289
|
+
prompt = [f"<REGION_TO_SEGMENTATION>{phrase}" for phrase in loc_phrases]
|
|
290
|
+
task = "<REGION_TO_SEGMENTATION>"
|
|
291
|
+
inputs, image_dimensions, pre_processing_metadata = self.pre_process_generation(
|
|
292
|
+
images=images, prompt=prompt, input_color_format=input_color_format
|
|
293
|
+
)
|
|
294
|
+
generated_ids = self.generate(
|
|
295
|
+
inputs=inputs,
|
|
296
|
+
max_new_tokens=max_new_tokens,
|
|
297
|
+
num_beams=num_beams,
|
|
298
|
+
do_sample=do_sample,
|
|
299
|
+
)
|
|
300
|
+
result = self.post_process_generation(
|
|
301
|
+
generated_ids=generated_ids,
|
|
302
|
+
image_dimensions=image_dimensions,
|
|
303
|
+
task=task,
|
|
304
|
+
)
|
|
305
|
+
if pre_processing_metadata is None:
|
|
306
|
+
pre_processing_metadata = [None] * len(image_dimensions)
|
|
307
|
+
return [
|
|
308
|
+
parse_instance_segmentation_prediction(
|
|
309
|
+
prediction=r[task],
|
|
310
|
+
input_image_dimensions=i,
|
|
311
|
+
image_metadata=image_metadata,
|
|
312
|
+
device=self._device,
|
|
313
|
+
)
|
|
314
|
+
for r, i, image_metadata in zip(
|
|
315
|
+
result, image_dimensions, pre_processing_metadata
|
|
316
|
+
)
|
|
317
|
+
]
|
|
318
|
+
|
|
319
|
+
def segment_phrase(
|
|
320
|
+
self,
|
|
321
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
322
|
+
phrase: str,
|
|
323
|
+
max_new_tokens: int = 4096,
|
|
324
|
+
num_beams: int = 3,
|
|
325
|
+
do_sample: bool = False,
|
|
326
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
327
|
+
) -> List[InstanceDetections]:
|
|
328
|
+
prompt = f"<REFERRING_EXPRESSION_SEGMENTATION>{phrase}"
|
|
329
|
+
task = "<REFERRING_EXPRESSION_SEGMENTATION>"
|
|
330
|
+
inputs, image_dimensions, pre_processing_metadata = self.pre_process_generation(
|
|
331
|
+
images=images, prompt=prompt, input_color_format=input_color_format
|
|
332
|
+
)
|
|
333
|
+
generated_ids = self.generate(
|
|
334
|
+
inputs=inputs,
|
|
335
|
+
max_new_tokens=max_new_tokens,
|
|
336
|
+
num_beams=num_beams,
|
|
337
|
+
do_sample=do_sample,
|
|
338
|
+
)
|
|
339
|
+
result = self.post_process_generation(
|
|
340
|
+
generated_ids=generated_ids,
|
|
341
|
+
image_dimensions=image_dimensions,
|
|
342
|
+
task=task,
|
|
343
|
+
)
|
|
344
|
+
if pre_processing_metadata is None:
|
|
345
|
+
pre_processing_metadata = [None] * len(image_dimensions)
|
|
346
|
+
image_dimensions = extract_input_images_dimensions(images=images)
|
|
347
|
+
return [
|
|
348
|
+
parse_instance_segmentation_prediction(
|
|
349
|
+
prediction=r[task],
|
|
350
|
+
input_image_dimensions=i,
|
|
351
|
+
image_metadata=image_metadata,
|
|
352
|
+
device=self._device,
|
|
353
|
+
)
|
|
354
|
+
for r, i, image_metadata in zip(
|
|
355
|
+
result, image_dimensions, pre_processing_metadata
|
|
356
|
+
)
|
|
357
|
+
]
|
|
358
|
+
|
|
359
|
+
def ground_phrase(
|
|
360
|
+
self,
|
|
361
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
362
|
+
phrase: str,
|
|
363
|
+
max_new_tokens: int = 4096,
|
|
364
|
+
num_beams: int = 3,
|
|
365
|
+
do_sample: bool = False,
|
|
366
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
367
|
+
) -> List[Detections]:
|
|
368
|
+
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{phrase}"
|
|
369
|
+
task = "<CAPTION_TO_PHRASE_GROUNDING>"
|
|
370
|
+
inputs, image_dimensions, pre_processing_metadata = self.pre_process_generation(
|
|
371
|
+
images=images, prompt=prompt, input_color_format=input_color_format
|
|
372
|
+
)
|
|
373
|
+
generated_ids = self.generate(
|
|
374
|
+
inputs=inputs,
|
|
375
|
+
max_new_tokens=max_new_tokens,
|
|
376
|
+
num_beams=num_beams,
|
|
377
|
+
do_sample=do_sample,
|
|
378
|
+
)
|
|
379
|
+
result = self.post_process_generation(
|
|
380
|
+
generated_ids=generated_ids,
|
|
381
|
+
image_dimensions=image_dimensions,
|
|
382
|
+
task=task,
|
|
383
|
+
)
|
|
384
|
+
if pre_processing_metadata is None:
|
|
385
|
+
pre_processing_metadata = [None] * len(image_dimensions)
|
|
386
|
+
return [
|
|
387
|
+
parse_object_detection_prediction(
|
|
388
|
+
prediction=r[task],
|
|
389
|
+
image_metadata=image_metadata,
|
|
390
|
+
device=self._device,
|
|
391
|
+
)
|
|
392
|
+
for r, image_metadata in zip(result, pre_processing_metadata)
|
|
393
|
+
]
|
|
394
|
+
|
|
395
|
+
def detect_objects(
|
|
396
|
+
self,
|
|
397
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
398
|
+
labels_mode: Literal["classes", "captions", "rois"] = "classes",
|
|
399
|
+
classes: Optional[List[str]] = None,
|
|
400
|
+
max_new_tokens: int = 4096,
|
|
401
|
+
num_beams: int = 3,
|
|
402
|
+
do_sample: bool = False,
|
|
403
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
404
|
+
) -> List[Detections]:
|
|
405
|
+
if classes:
|
|
406
|
+
classes_str = "<and>".join(classes)
|
|
407
|
+
# not using <OPEN_VOCABULARY_DETECTION> as it associates number of objects with phrases
|
|
408
|
+
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{classes_str}"
|
|
409
|
+
task = "<CAPTION_TO_PHRASE_GROUNDING>"
|
|
410
|
+
else:
|
|
411
|
+
task = LABEL_MODE2TASK[labels_mode]
|
|
412
|
+
prompt = task
|
|
413
|
+
inputs, image_dimensions, pre_processing_metadata = self.pre_process_generation(
|
|
414
|
+
images=images, prompt=prompt, input_color_format=input_color_format
|
|
415
|
+
)
|
|
416
|
+
generated_ids = self.generate(
|
|
417
|
+
inputs=inputs,
|
|
418
|
+
max_new_tokens=max_new_tokens,
|
|
419
|
+
num_beams=num_beams,
|
|
420
|
+
do_sample=do_sample,
|
|
421
|
+
)
|
|
422
|
+
result = self.post_process_generation(
|
|
423
|
+
generated_ids=generated_ids,
|
|
424
|
+
image_dimensions=image_dimensions,
|
|
425
|
+
task=task,
|
|
426
|
+
)
|
|
427
|
+
if pre_processing_metadata is None:
|
|
428
|
+
pre_processing_metadata = [None] * len(image_dimensions)
|
|
429
|
+
return [
|
|
430
|
+
parse_object_detection_prediction(
|
|
431
|
+
prediction=r[task],
|
|
432
|
+
image_metadata=image_metadata,
|
|
433
|
+
expected_classes=classes,
|
|
434
|
+
device=self._device,
|
|
435
|
+
)
|
|
436
|
+
for r, image_metadata in zip(result, pre_processing_metadata)
|
|
437
|
+
]
|
|
438
|
+
|
|
439
|
+
def caption_image(
|
|
440
|
+
self,
|
|
441
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
442
|
+
granularity: Literal["normal", "detailed", "very_detailed"] = "normal",
|
|
443
|
+
max_new_tokens: int = 4096,
|
|
444
|
+
num_beams: int = 3,
|
|
445
|
+
do_sample: bool = False,
|
|
446
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
447
|
+
) -> List[str]:
|
|
448
|
+
task = GRANULARITY_2TASK[granularity]
|
|
449
|
+
result = self.prompt(
|
|
450
|
+
images=images,
|
|
451
|
+
prompt=task,
|
|
452
|
+
max_new_tokens=max_new_tokens,
|
|
453
|
+
num_beams=num_beams,
|
|
454
|
+
do_sample=do_sample,
|
|
455
|
+
task=task,
|
|
456
|
+
input_color_format=input_color_format,
|
|
457
|
+
)
|
|
458
|
+
return [r[task] for r in result]
|
|
459
|
+
|
|
460
|
+
def parse_document(
|
|
461
|
+
self,
|
|
462
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
463
|
+
max_new_tokens: int = 4096,
|
|
464
|
+
num_beams: int = 3,
|
|
465
|
+
do_sample: bool = False,
|
|
466
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
467
|
+
) -> List[Detections]:
|
|
468
|
+
task = "<OCR_WITH_REGION>"
|
|
469
|
+
inputs, image_dimensions, pre_processing_metadata = self.pre_process_generation(
|
|
470
|
+
images=images, prompt=task, input_color_format=input_color_format
|
|
471
|
+
)
|
|
472
|
+
generated_ids = self.generate(
|
|
473
|
+
inputs=inputs,
|
|
474
|
+
max_new_tokens=max_new_tokens,
|
|
475
|
+
num_beams=num_beams,
|
|
476
|
+
do_sample=do_sample,
|
|
477
|
+
)
|
|
478
|
+
result = self.post_process_generation(
|
|
479
|
+
generated_ids=generated_ids,
|
|
480
|
+
image_dimensions=image_dimensions,
|
|
481
|
+
task=task,
|
|
482
|
+
)
|
|
483
|
+
if pre_processing_metadata is None:
|
|
484
|
+
pre_processing_metadata = [None] * len(image_dimensions)
|
|
485
|
+
return [
|
|
486
|
+
parse_dense_ocr_prediction(
|
|
487
|
+
prediction=r[task], image_metadata=image_metadata, device=self._device
|
|
488
|
+
)
|
|
489
|
+
for r, image_metadata in zip(result, pre_processing_metadata)
|
|
490
|
+
]
|
|
491
|
+
|
|
492
|
+
def ocr_image(
|
|
493
|
+
self,
|
|
494
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
495
|
+
max_new_tokens: int = 4096,
|
|
496
|
+
num_beams: int = 3,
|
|
497
|
+
do_sample: bool = False,
|
|
498
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
499
|
+
) -> List[str]:
|
|
500
|
+
task = "<OCR>"
|
|
501
|
+
result = self.prompt(
|
|
502
|
+
images=images,
|
|
503
|
+
prompt=task,
|
|
504
|
+
max_new_tokens=max_new_tokens,
|
|
505
|
+
num_beams=num_beams,
|
|
506
|
+
do_sample=do_sample,
|
|
507
|
+
task=task,
|
|
508
|
+
input_color_format=input_color_format,
|
|
509
|
+
)
|
|
510
|
+
return [r[task] for r in result]
|
|
511
|
+
|
|
512
|
+
def prompt(
|
|
513
|
+
self,
|
|
514
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
515
|
+
prompt: Union[str, List[str]],
|
|
516
|
+
max_new_tokens: int = 4096,
|
|
517
|
+
num_beams: int = 3,
|
|
518
|
+
do_sample: bool = False,
|
|
519
|
+
skip_special_tokens: bool = False,
|
|
520
|
+
task: Optional[str] = None,
|
|
521
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
522
|
+
**kwargs,
|
|
523
|
+
) -> List[str]:
|
|
524
|
+
inputs, image_dimensions, _ = self.pre_process_generation(
|
|
525
|
+
images=images, prompt=prompt, input_color_format=input_color_format
|
|
526
|
+
)
|
|
527
|
+
generated_ids = self.generate(
|
|
528
|
+
inputs=inputs,
|
|
529
|
+
max_new_tokens=max_new_tokens,
|
|
530
|
+
num_beams=num_beams,
|
|
531
|
+
do_sample=do_sample,
|
|
532
|
+
)
|
|
533
|
+
return self.post_process_generation(
|
|
534
|
+
generated_ids=generated_ids,
|
|
535
|
+
skip_special_tokens=skip_special_tokens,
|
|
536
|
+
image_dimensions=image_dimensions,
|
|
537
|
+
task=task,
|
|
538
|
+
)
|
|
539
|
+
|
|
540
|
+
def pre_process_generation(
|
|
541
|
+
self,
|
|
542
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
543
|
+
prompt: Union[str, List[str]],
|
|
544
|
+
input_color_format: Optional[ColorFormat] = None,
|
|
545
|
+
**kwargs,
|
|
546
|
+
) -> Tuple[dict, List[ImageDimensions], Optional[List[PreProcessingMetadata]]]:
|
|
547
|
+
# # maybe don't need to convert to tensor here, since processor also accepts numpy arrays
|
|
548
|
+
# # but need to handle input_color_format here and this is consistent with how we do it in other models
|
|
549
|
+
def _to_tensor(image: Union[np.ndarray, torch.Tensor]) -> torch.Tensor:
|
|
550
|
+
is_numpy = isinstance(image, np.ndarray)
|
|
551
|
+
if is_numpy:
|
|
552
|
+
tensor_image = torch.from_numpy(image.copy()).permute(2, 0, 1)
|
|
553
|
+
else:
|
|
554
|
+
tensor_image = image
|
|
555
|
+
if input_color_format == "bgr" or (is_numpy and input_color_format is None):
|
|
556
|
+
tensor_image = tensor_image[[2, 1, 0], :, :]
|
|
557
|
+
return tensor_image
|
|
558
|
+
|
|
559
|
+
if self._inference_config is None:
|
|
560
|
+
if isinstance(images, torch.Tensor) and images.ndim > 3:
|
|
561
|
+
image_list = [_to_tensor(img) for img in images]
|
|
562
|
+
elif not isinstance(images, list):
|
|
563
|
+
image_list = [_to_tensor(images)]
|
|
564
|
+
else:
|
|
565
|
+
image_list = [_to_tensor(img) for img in images]
|
|
566
|
+
image_dimensions = extract_input_images_dimensions(images=image_list)
|
|
567
|
+
pre_processing_metadata = None
|
|
568
|
+
else:
|
|
569
|
+
images, pre_processing_metadata = pre_process_network_input(
|
|
570
|
+
images=images,
|
|
571
|
+
image_pre_processing=self._inference_config.image_pre_processing,
|
|
572
|
+
network_input=self._inference_config.network_input,
|
|
573
|
+
target_device=self._device,
|
|
574
|
+
input_color_format=input_color_format,
|
|
575
|
+
)
|
|
576
|
+
image_list = [e[0] for e in torch.split(images, 1, dim=0)]
|
|
577
|
+
image_dimensions = [
|
|
578
|
+
e.size_after_pre_processing for e in pre_processing_metadata
|
|
579
|
+
]
|
|
580
|
+
|
|
581
|
+
if isinstance(prompt, list):
|
|
582
|
+
if len(prompt) != len(image_dimensions):
|
|
583
|
+
raise ModelRuntimeError(
|
|
584
|
+
message="Provided prompt as list, but the number of prompt elements does not match number of input images.",
|
|
585
|
+
help_url="https://todo",
|
|
586
|
+
)
|
|
587
|
+
else:
|
|
588
|
+
prompt = [prompt] * len(image_dimensions)
|
|
589
|
+
|
|
590
|
+
inputs = self._processor(
|
|
591
|
+
text=prompt, images=image_list, return_tensors="pt"
|
|
592
|
+
).to(self._device, self._torch_dtype)
|
|
593
|
+
return inputs, image_dimensions, pre_processing_metadata
|
|
594
|
+
|
|
595
|
+
def generate(
|
|
596
|
+
self,
|
|
597
|
+
inputs: dict,
|
|
598
|
+
max_new_tokens: int = 4096,
|
|
599
|
+
num_beams: int = 3,
|
|
600
|
+
do_sample: bool = False,
|
|
601
|
+
**kwargs,
|
|
602
|
+
) -> torch.Tensor:
|
|
603
|
+
return self._model.generate(
|
|
604
|
+
input_ids=inputs["input_ids"],
|
|
605
|
+
pixel_values=inputs["pixel_values"],
|
|
606
|
+
max_new_tokens=max_new_tokens,
|
|
607
|
+
num_beams=num_beams,
|
|
608
|
+
do_sample=do_sample,
|
|
609
|
+
**kwargs,
|
|
610
|
+
)
|
|
611
|
+
|
|
612
|
+
def post_process_generation(
|
|
613
|
+
self,
|
|
614
|
+
generated_ids: torch.Tensor,
|
|
615
|
+
skip_special_tokens: bool = False,
|
|
616
|
+
image_dimensions: Optional[List[ImageDimensions]] = None,
|
|
617
|
+
task: Optional[str] = None,
|
|
618
|
+
**kwargs,
|
|
619
|
+
) -> Union[List[dict], List[str]]:
|
|
620
|
+
generated_texts = self._processor.batch_decode(
|
|
621
|
+
generated_ids, skip_special_tokens=skip_special_tokens
|
|
622
|
+
)
|
|
623
|
+
if image_dimensions is None or task is None:
|
|
624
|
+
return generated_texts
|
|
625
|
+
results = []
|
|
626
|
+
for single_image_text, single_image_dimensions in zip(
|
|
627
|
+
generated_texts, image_dimensions
|
|
628
|
+
):
|
|
629
|
+
post_processed = self._processor.post_process_generation(
|
|
630
|
+
single_image_text,
|
|
631
|
+
task=task,
|
|
632
|
+
image_size=(
|
|
633
|
+
single_image_dimensions.width,
|
|
634
|
+
single_image_dimensions.height,
|
|
635
|
+
),
|
|
636
|
+
)
|
|
637
|
+
results.append(post_processed)
|
|
638
|
+
return results
|
|
639
|
+
|
|
640
|
+
|
|
641
|
+
def region_to_loc_phrase(
|
|
642
|
+
images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
|
|
643
|
+
xyxy: Union[
|
|
644
|
+
torch.Tensor, List[List[Union[float, int]]], List[Union[float, int]], np.ndarray
|
|
645
|
+
],
|
|
646
|
+
) -> List[str]:
|
|
647
|
+
if isinstance(xyxy, torch.Tensor):
|
|
648
|
+
xyxy = xyxy.cpu().numpy()
|
|
649
|
+
if isinstance(xyxy, np.ndarray):
|
|
650
|
+
xyxy = xyxy.tolist()
|
|
651
|
+
image_dimensions = extract_input_images_dimensions(images=images)
|
|
652
|
+
if not xyxy:
|
|
653
|
+
raise ModelRuntimeError(
|
|
654
|
+
message="Provided empty region grounding.", help_url="https://todo"
|
|
655
|
+
)
|
|
656
|
+
nested = isinstance(xyxy[0], list)
|
|
657
|
+
if not nested:
|
|
658
|
+
xyxy = [xyxy] * len(image_dimensions)
|
|
659
|
+
if len(xyxy) != len(image_dimensions):
|
|
660
|
+
raise ModelRuntimeError(
|
|
661
|
+
message="Provided multiple regions - it is expected to provide a single region for each image, but number "
|
|
662
|
+
"of regions does not match number of input images.",
|
|
663
|
+
help_url="https://todo",
|
|
664
|
+
)
|
|
665
|
+
result = []
|
|
666
|
+
for image_xyxy, single_image_dimensions in zip(xyxy, image_dimensions):
|
|
667
|
+
if _coordinates_are_relative(xyxy=image_xyxy):
|
|
668
|
+
left_top_x = _coordinate_to_loc(value=image_xyxy[0])
|
|
669
|
+
left_top_y = _coordinate_to_loc(value=image_xyxy[1])
|
|
670
|
+
right_bottom_x = _coordinate_to_loc(value=image_xyxy[2])
|
|
671
|
+
right_bottom_y = _coordinate_to_loc(value=image_xyxy[3])
|
|
672
|
+
loc_string = f"<loc_{left_top_x}><loc_{left_top_y}><loc_{right_bottom_x}><loc_{right_bottom_y}>"
|
|
673
|
+
result.append(loc_string)
|
|
674
|
+
else:
|
|
675
|
+
left_top_x = _coordinate_to_loc(
|
|
676
|
+
value=image_xyxy[0] / single_image_dimensions.width
|
|
677
|
+
)
|
|
678
|
+
left_top_y = _coordinate_to_loc(
|
|
679
|
+
value=image_xyxy[1] / single_image_dimensions.height
|
|
680
|
+
)
|
|
681
|
+
right_bottom_x = _coordinate_to_loc(
|
|
682
|
+
value=image_xyxy[2] / single_image_dimensions.width
|
|
683
|
+
)
|
|
684
|
+
right_bottom_y = _coordinate_to_loc(
|
|
685
|
+
value=image_xyxy[3] / single_image_dimensions.height
|
|
686
|
+
)
|
|
687
|
+
loc_string = f"<loc_{left_top_x}><loc_{left_top_y}><loc_{right_bottom_x}><loc_{right_bottom_y}>"
|
|
688
|
+
result.append(loc_string)
|
|
689
|
+
return result
|
|
690
|
+
|
|
691
|
+
|
|
692
|
+
def _coordinates_are_relative(xyxy: List[Union[float, int]]) -> bool:
|
|
693
|
+
return all(0 <= c <= 1 for c in xyxy)
|
|
694
|
+
|
|
695
|
+
|
|
696
|
+
def _coordinate_to_loc(value: float) -> int:
|
|
697
|
+
loc_bin = round(_scale_value(value=value, min_value=0.0, max_value=1.0) * LOC_BINS)
|
|
698
|
+
return _scale_value( # to make sure 0-999 cutting out 1000 on 1.0
|
|
699
|
+
value=loc_bin,
|
|
700
|
+
min_value=0,
|
|
701
|
+
max_value=LOC_BINS - 1,
|
|
702
|
+
)
|
|
703
|
+
|
|
704
|
+
|
|
705
|
+
def _scale_value(
|
|
706
|
+
value: Union[int, float],
|
|
707
|
+
min_value: Union[int, float],
|
|
708
|
+
max_value: Union[int, float],
|
|
709
|
+
) -> Union[int, float]:
|
|
710
|
+
return max(min(value, max_value), min_value)
|
|
711
|
+
|
|
712
|
+
|
|
713
|
+
def parse_dense_ocr_prediction(
|
|
714
|
+
prediction: dict,
|
|
715
|
+
image_metadata: Optional[PreProcessingMetadata],
|
|
716
|
+
device: torch.device,
|
|
717
|
+
) -> Detections:
|
|
718
|
+
bboxes = prediction["quad_boxes"]
|
|
719
|
+
labels = prediction.get("labels", [""] * len(bboxes))
|
|
720
|
+
class_ids = [0] * len(bboxes)
|
|
721
|
+
xyxy = []
|
|
722
|
+
for box in bboxes:
|
|
723
|
+
np_box = np.array(box).reshape(-1, 2).round().astype(np.int32)
|
|
724
|
+
min_x, min_y = np_box[:, 0].min(), np_box[:, 1].min()
|
|
725
|
+
max_x, max_y = np_box[:, 0].max(), np_box[:, 1].max()
|
|
726
|
+
xyxy.append([min_x, min_y, max_x, max_y])
|
|
727
|
+
xyxy = torch.tensor(xyxy, device=device).round().int()
|
|
728
|
+
if image_metadata is not None and (
|
|
729
|
+
image_metadata.static_crop_offset.offset_x > 0
|
|
730
|
+
or image_metadata.static_crop_offset.offset_y > 0
|
|
731
|
+
):
|
|
732
|
+
static_crop_offsets = torch.as_tensor(
|
|
733
|
+
[
|
|
734
|
+
image_metadata.static_crop_offset.offset_x,
|
|
735
|
+
image_metadata.static_crop_offset.offset_y,
|
|
736
|
+
image_metadata.static_crop_offset.offset_x,
|
|
737
|
+
image_metadata.static_crop_offset.offset_y,
|
|
738
|
+
],
|
|
739
|
+
dtype=xyxy.dtype,
|
|
740
|
+
device=xyxy.device,
|
|
741
|
+
)
|
|
742
|
+
xyxy.add_(static_crop_offsets).round_()
|
|
743
|
+
class_ids = torch.tensor(class_ids, device=device).int()
|
|
744
|
+
confidence = torch.tensor([1.0] * len(labels), device=device)
|
|
745
|
+
bboxes_metadata = [{"class_name": label} for label in labels]
|
|
746
|
+
return Detections(
|
|
747
|
+
xyxy=xyxy,
|
|
748
|
+
class_id=class_ids,
|
|
749
|
+
confidence=confidence,
|
|
750
|
+
bboxes_metadata=bboxes_metadata,
|
|
751
|
+
)
|
|
752
|
+
|
|
753
|
+
|
|
754
|
+
def parse_object_detection_prediction(
|
|
755
|
+
prediction: dict,
|
|
756
|
+
image_metadata: Optional[PreProcessingMetadata],
|
|
757
|
+
device: torch.device,
|
|
758
|
+
expected_classes: Optional[List[int]] = None,
|
|
759
|
+
) -> Detections:
|
|
760
|
+
bboxes = prediction["bboxes"]
|
|
761
|
+
labels = prediction.get(
|
|
762
|
+
"labels", prediction.get("bboxes_labels", [""] * len(bboxes))
|
|
763
|
+
)
|
|
764
|
+
if not expected_classes:
|
|
765
|
+
class_ids = [0] * len(bboxes)
|
|
766
|
+
else:
|
|
767
|
+
class_name2idx = {c: i for i, c in enumerate(expected_classes)}
|
|
768
|
+
unknown_class_id = len(expected_classes)
|
|
769
|
+
class_ids = []
|
|
770
|
+
for label in labels:
|
|
771
|
+
class_ids.append(class_name2idx.get(label, unknown_class_id))
|
|
772
|
+
xyxy = torch.tensor(bboxes, device=device).round().int()
|
|
773
|
+
if image_metadata is not None and (
|
|
774
|
+
image_metadata.static_crop_offset.offset_x > 0
|
|
775
|
+
or image_metadata.static_crop_offset.offset_y > 0
|
|
776
|
+
):
|
|
777
|
+
static_crop_offsets = torch.as_tensor(
|
|
778
|
+
[
|
|
779
|
+
image_metadata.static_crop_offset.offset_x,
|
|
780
|
+
image_metadata.static_crop_offset.offset_y,
|
|
781
|
+
image_metadata.static_crop_offset.offset_x,
|
|
782
|
+
image_metadata.static_crop_offset.offset_y,
|
|
783
|
+
],
|
|
784
|
+
dtype=xyxy.dtype,
|
|
785
|
+
device=xyxy.device,
|
|
786
|
+
)
|
|
787
|
+
xyxy.add_(static_crop_offsets).round_()
|
|
788
|
+
class_ids = torch.tensor(class_ids, device=device).int()
|
|
789
|
+
confidence = torch.tensor([1.0] * len(labels), device=device)
|
|
790
|
+
bboxes_metadata = None
|
|
791
|
+
if not expected_classes:
|
|
792
|
+
bboxes_metadata = [{"class_name": label} for label in labels]
|
|
793
|
+
return Detections(
|
|
794
|
+
xyxy=xyxy,
|
|
795
|
+
class_id=class_ids,
|
|
796
|
+
confidence=confidence,
|
|
797
|
+
bboxes_metadata=bboxes_metadata,
|
|
798
|
+
)
|
|
799
|
+
|
|
800
|
+
|
|
801
|
+
def deduce_localisation(result: str) -> str:
|
|
802
|
+
if "<loc" not in result:
|
|
803
|
+
return result
|
|
804
|
+
return result[: result.index("<loc")]
|
|
805
|
+
|
|
806
|
+
|
|
807
|
+
def parse_instance_segmentation_prediction(
|
|
808
|
+
prediction: dict,
|
|
809
|
+
input_image_dimensions: ImageDimensions,
|
|
810
|
+
image_metadata: Optional[PreProcessingMetadata],
|
|
811
|
+
device: torch.device,
|
|
812
|
+
) -> InstanceDetections:
|
|
813
|
+
xyxy = []
|
|
814
|
+
masks = []
|
|
815
|
+
for polygons in prediction["polygons"]:
|
|
816
|
+
for polygon in polygons:
|
|
817
|
+
mask = np.zeros(
|
|
818
|
+
(input_image_dimensions.height, input_image_dimensions.width),
|
|
819
|
+
dtype=np.uint8,
|
|
820
|
+
)
|
|
821
|
+
np_polygon = np.array(polygon).reshape(-1, 2).round().astype(np.int32)
|
|
822
|
+
if len(np_polygon) < 3:
|
|
823
|
+
continue
|
|
824
|
+
mask = cv2.fillPoly(mask, pts=[np_polygon], color=255)
|
|
825
|
+
mask = mask > 0
|
|
826
|
+
masks.append(mask)
|
|
827
|
+
min_x, min_y = np_polygon[:, 0].min(), np_polygon[:, 1].min()
|
|
828
|
+
max_x, max_y = np_polygon[:, 0].max(), np_polygon[:, 1].max()
|
|
829
|
+
xyxy.append([min_x, min_y, max_x, max_y])
|
|
830
|
+
class_ids = [0] * len(xyxy)
|
|
831
|
+
confidence = [1.0] * len(xyxy)
|
|
832
|
+
xyxy = torch.tensor(xyxy, device=device).round().int()
|
|
833
|
+
mask = torch.from_numpy(np.stack(masks, axis=0)).to(device)
|
|
834
|
+
if image_metadata is not None and (
|
|
835
|
+
image_metadata.static_crop_offset.offset_x > 0
|
|
836
|
+
or image_metadata.static_crop_offset.offset_y > 0
|
|
837
|
+
):
|
|
838
|
+
static_crop_offsets = torch.as_tensor(
|
|
839
|
+
[
|
|
840
|
+
image_metadata.static_crop_offset.offset_x,
|
|
841
|
+
image_metadata.static_crop_offset.offset_y,
|
|
842
|
+
image_metadata.static_crop_offset.offset_x,
|
|
843
|
+
image_metadata.static_crop_offset.offset_y,
|
|
844
|
+
],
|
|
845
|
+
dtype=xyxy.dtype,
|
|
846
|
+
device=device,
|
|
847
|
+
)
|
|
848
|
+
xyxy.add_(static_crop_offsets).round_()
|
|
849
|
+
mask_canvas = torch.zeros(
|
|
850
|
+
(
|
|
851
|
+
mask.shape[0],
|
|
852
|
+
image_metadata.original_size.height,
|
|
853
|
+
image_metadata.original_size.width,
|
|
854
|
+
),
|
|
855
|
+
dtype=torch.bool,
|
|
856
|
+
device=device,
|
|
857
|
+
)
|
|
858
|
+
mask_canvas[
|
|
859
|
+
:,
|
|
860
|
+
image_metadata.static_crop_offset.offset_y : image_metadata.static_crop_offset.offset_y
|
|
861
|
+
+ mask.shape[1],
|
|
862
|
+
image_metadata.static_crop_offset.offset_x : image_metadata.static_crop_offset.offset_x
|
|
863
|
+
+ mask.shape[2],
|
|
864
|
+
] = mask
|
|
865
|
+
return InstanceDetections(
|
|
866
|
+
xyxy=xyxy,
|
|
867
|
+
class_id=torch.tensor(class_ids, device=device).int(),
|
|
868
|
+
confidence=torch.tensor(confidence, device=device),
|
|
869
|
+
mask=mask,
|
|
870
|
+
)
|
|
871
|
+
|
|
872
|
+
|
|
873
|
+
def normalize_adapter_state_dict(adapter_state: dict) -> dict:
|
|
874
|
+
normalized = {}
|
|
875
|
+
for key, value in adapter_state.items():
|
|
876
|
+
new_key = key
|
|
877
|
+
# Ensure Florence-2 PEFT prefix matches injected structure
|
|
878
|
+
if (
|
|
879
|
+
"base_model.model.vision_tower." in new_key
|
|
880
|
+
and "base_model.model.model.vision_tower." not in new_key
|
|
881
|
+
):
|
|
882
|
+
new_key = new_key.replace(
|
|
883
|
+
"base_model.model.vision_tower.",
|
|
884
|
+
"base_model.model.model.vision_tower.",
|
|
885
|
+
)
|
|
886
|
+
# Normalize original repo FFN path to HF-native
|
|
887
|
+
if ".ffn.fn.net.fc1" in new_key:
|
|
888
|
+
new_key = new_key.replace(".ffn.fn.net.fc1", ".ffn.fc1")
|
|
889
|
+
if ".ffn.fn.net.fc2" in new_key:
|
|
890
|
+
new_key = new_key.replace(".ffn.fn.net.fc2", ".ffn.fc2")
|
|
891
|
+
# Normalize language path if needed
|
|
892
|
+
if ".language_model.model." in new_key:
|
|
893
|
+
new_key = new_key.replace(
|
|
894
|
+
".language_model.model.", ".model.language_model."
|
|
895
|
+
)
|
|
896
|
+
normalized[new_key] = value
|
|
897
|
+
return normalized
|