inference-models 0.18.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (195) hide show
  1. inference_models/__init__.py +36 -0
  2. inference_models/configuration.py +72 -0
  3. inference_models/constants.py +2 -0
  4. inference_models/entities.py +5 -0
  5. inference_models/errors.py +137 -0
  6. inference_models/logger.py +52 -0
  7. inference_models/model_pipelines/__init__.py +0 -0
  8. inference_models/model_pipelines/auto_loaders/__init__.py +0 -0
  9. inference_models/model_pipelines/auto_loaders/core.py +120 -0
  10. inference_models/model_pipelines/auto_loaders/pipelines_registry.py +36 -0
  11. inference_models/model_pipelines/face_and_gaze_detection/__init__.py +0 -0
  12. inference_models/model_pipelines/face_and_gaze_detection/mediapipe_l2cs.py +200 -0
  13. inference_models/models/__init__.py +0 -0
  14. inference_models/models/auto_loaders/__init__.py +0 -0
  15. inference_models/models/auto_loaders/access_manager.py +168 -0
  16. inference_models/models/auto_loaders/auto_negotiation.py +1329 -0
  17. inference_models/models/auto_loaders/auto_resolution_cache.py +129 -0
  18. inference_models/models/auto_loaders/constants.py +7 -0
  19. inference_models/models/auto_loaders/core.py +1341 -0
  20. inference_models/models/auto_loaders/dependency_models.py +52 -0
  21. inference_models/models/auto_loaders/entities.py +57 -0
  22. inference_models/models/auto_loaders/models_registry.py +497 -0
  23. inference_models/models/auto_loaders/presentation_utils.py +333 -0
  24. inference_models/models/auto_loaders/ranking.py +413 -0
  25. inference_models/models/auto_loaders/utils.py +31 -0
  26. inference_models/models/base/__init__.py +0 -0
  27. inference_models/models/base/classification.py +123 -0
  28. inference_models/models/base/depth_estimation.py +62 -0
  29. inference_models/models/base/documents_parsing.py +111 -0
  30. inference_models/models/base/embeddings.py +66 -0
  31. inference_models/models/base/instance_segmentation.py +87 -0
  32. inference_models/models/base/keypoints_detection.py +93 -0
  33. inference_models/models/base/object_detection.py +143 -0
  34. inference_models/models/base/semantic_segmentation.py +74 -0
  35. inference_models/models/base/types.py +5 -0
  36. inference_models/models/clip/__init__.py +0 -0
  37. inference_models/models/clip/clip_onnx.py +148 -0
  38. inference_models/models/clip/clip_pytorch.py +104 -0
  39. inference_models/models/clip/preprocessing.py +162 -0
  40. inference_models/models/common/__init__.py +0 -0
  41. inference_models/models/common/cuda.py +30 -0
  42. inference_models/models/common/model_packages.py +25 -0
  43. inference_models/models/common/onnx.py +379 -0
  44. inference_models/models/common/roboflow/__init__.py +0 -0
  45. inference_models/models/common/roboflow/model_packages.py +361 -0
  46. inference_models/models/common/roboflow/post_processing.py +436 -0
  47. inference_models/models/common/roboflow/pre_processing.py +1332 -0
  48. inference_models/models/common/torch.py +20 -0
  49. inference_models/models/common/trt.py +266 -0
  50. inference_models/models/deep_lab_v3_plus/__init__.py +0 -0
  51. inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_onnx.py +282 -0
  52. inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_torch.py +264 -0
  53. inference_models/models/deep_lab_v3_plus/deep_lab_v3_plus_segmentation_trt.py +313 -0
  54. inference_models/models/depth_anything_v2/__init__.py +0 -0
  55. inference_models/models/depth_anything_v2/depth_anything_v2_hf.py +77 -0
  56. inference_models/models/dinov3/__init__.py +0 -0
  57. inference_models/models/dinov3/dinov3_classification_onnx.py +348 -0
  58. inference_models/models/dinov3/dinov3_classification_torch.py +323 -0
  59. inference_models/models/doctr/__init__.py +0 -0
  60. inference_models/models/doctr/doctr_torch.py +304 -0
  61. inference_models/models/easy_ocr/__init__.py +0 -0
  62. inference_models/models/easy_ocr/easy_ocr_torch.py +222 -0
  63. inference_models/models/florence2/__init__.py +0 -0
  64. inference_models/models/florence2/florence2_hf.py +897 -0
  65. inference_models/models/grounding_dino/__init__.py +0 -0
  66. inference_models/models/grounding_dino/grounding_dino_torch.py +227 -0
  67. inference_models/models/l2cs/__init__.py +0 -0
  68. inference_models/models/l2cs/l2cs_onnx.py +216 -0
  69. inference_models/models/mediapipe_face_detection/__init__.py +0 -0
  70. inference_models/models/mediapipe_face_detection/face_detection.py +203 -0
  71. inference_models/models/moondream2/__init__.py +0 -0
  72. inference_models/models/moondream2/moondream2_hf.py +281 -0
  73. inference_models/models/owlv2/__init__.py +0 -0
  74. inference_models/models/owlv2/cache.py +182 -0
  75. inference_models/models/owlv2/entities.py +112 -0
  76. inference_models/models/owlv2/owlv2_hf.py +695 -0
  77. inference_models/models/owlv2/reference_dataset.py +291 -0
  78. inference_models/models/paligemma/__init__.py +0 -0
  79. inference_models/models/paligemma/paligemma_hf.py +209 -0
  80. inference_models/models/perception_encoder/__init__.py +0 -0
  81. inference_models/models/perception_encoder/perception_encoder_pytorch.py +197 -0
  82. inference_models/models/perception_encoder/vision_encoder/__init__.py +0 -0
  83. inference_models/models/perception_encoder/vision_encoder/config.py +160 -0
  84. inference_models/models/perception_encoder/vision_encoder/pe.py +742 -0
  85. inference_models/models/perception_encoder/vision_encoder/rope.py +344 -0
  86. inference_models/models/perception_encoder/vision_encoder/tokenizer.py +342 -0
  87. inference_models/models/perception_encoder/vision_encoder/transforms.py +33 -0
  88. inference_models/models/qwen25vl/__init__.py +1 -0
  89. inference_models/models/qwen25vl/qwen25vl_hf.py +285 -0
  90. inference_models/models/resnet/__init__.py +0 -0
  91. inference_models/models/resnet/resnet_classification_onnx.py +330 -0
  92. inference_models/models/resnet/resnet_classification_torch.py +305 -0
  93. inference_models/models/resnet/resnet_classification_trt.py +369 -0
  94. inference_models/models/rfdetr/__init__.py +0 -0
  95. inference_models/models/rfdetr/backbone_builder.py +101 -0
  96. inference_models/models/rfdetr/class_remapping.py +41 -0
  97. inference_models/models/rfdetr/common.py +115 -0
  98. inference_models/models/rfdetr/default_labels.py +108 -0
  99. inference_models/models/rfdetr/dinov2_with_windowed_attn.py +1330 -0
  100. inference_models/models/rfdetr/misc.py +26 -0
  101. inference_models/models/rfdetr/ms_deform_attn.py +180 -0
  102. inference_models/models/rfdetr/ms_deform_attn_func.py +60 -0
  103. inference_models/models/rfdetr/position_encoding.py +166 -0
  104. inference_models/models/rfdetr/post_processor.py +83 -0
  105. inference_models/models/rfdetr/projector.py +373 -0
  106. inference_models/models/rfdetr/rfdetr_backbone_pytorch.py +394 -0
  107. inference_models/models/rfdetr/rfdetr_base_pytorch.py +807 -0
  108. inference_models/models/rfdetr/rfdetr_instance_segmentation_onnx.py +206 -0
  109. inference_models/models/rfdetr/rfdetr_instance_segmentation_pytorch.py +373 -0
  110. inference_models/models/rfdetr/rfdetr_instance_segmentation_trt.py +227 -0
  111. inference_models/models/rfdetr/rfdetr_object_detection_onnx.py +244 -0
  112. inference_models/models/rfdetr/rfdetr_object_detection_pytorch.py +470 -0
  113. inference_models/models/rfdetr/rfdetr_object_detection_trt.py +270 -0
  114. inference_models/models/rfdetr/segmentation_head.py +273 -0
  115. inference_models/models/rfdetr/transformer.py +767 -0
  116. inference_models/models/roboflow_instant/__init__.py +0 -0
  117. inference_models/models/roboflow_instant/roboflow_instant_hf.py +141 -0
  118. inference_models/models/sam/__init__.py +0 -0
  119. inference_models/models/sam/cache.py +147 -0
  120. inference_models/models/sam/entities.py +25 -0
  121. inference_models/models/sam/sam_torch.py +675 -0
  122. inference_models/models/sam2/__init__.py +0 -0
  123. inference_models/models/sam2/cache.py +162 -0
  124. inference_models/models/sam2/entities.py +43 -0
  125. inference_models/models/sam2/sam2_torch.py +905 -0
  126. inference_models/models/sam2_rt/__init__.py +0 -0
  127. inference_models/models/sam2_rt/sam2_pytorch.py +119 -0
  128. inference_models/models/smolvlm/__init__.py +0 -0
  129. inference_models/models/smolvlm/smolvlm_hf.py +245 -0
  130. inference_models/models/trocr/__init__.py +0 -0
  131. inference_models/models/trocr/trocr_hf.py +53 -0
  132. inference_models/models/vit/__init__.py +0 -0
  133. inference_models/models/vit/vit_classification_huggingface.py +319 -0
  134. inference_models/models/vit/vit_classification_onnx.py +326 -0
  135. inference_models/models/vit/vit_classification_trt.py +365 -0
  136. inference_models/models/yolact/__init__.py +1 -0
  137. inference_models/models/yolact/yolact_instance_segmentation_onnx.py +336 -0
  138. inference_models/models/yolact/yolact_instance_segmentation_trt.py +361 -0
  139. inference_models/models/yolo_world/__init__.py +1 -0
  140. inference_models/models/yolonas/__init__.py +0 -0
  141. inference_models/models/yolonas/nms.py +44 -0
  142. inference_models/models/yolonas/yolonas_object_detection_onnx.py +204 -0
  143. inference_models/models/yolonas/yolonas_object_detection_trt.py +230 -0
  144. inference_models/models/yolov10/__init__.py +0 -0
  145. inference_models/models/yolov10/yolov10_object_detection_onnx.py +187 -0
  146. inference_models/models/yolov10/yolov10_object_detection_trt.py +215 -0
  147. inference_models/models/yolov11/__init__.py +0 -0
  148. inference_models/models/yolov11/yolov11_onnx.py +28 -0
  149. inference_models/models/yolov11/yolov11_torch_script.py +25 -0
  150. inference_models/models/yolov11/yolov11_trt.py +21 -0
  151. inference_models/models/yolov12/__init__.py +0 -0
  152. inference_models/models/yolov12/yolov12_onnx.py +7 -0
  153. inference_models/models/yolov12/yolov12_torch_script.py +7 -0
  154. inference_models/models/yolov12/yolov12_trt.py +7 -0
  155. inference_models/models/yolov5/__init__.py +0 -0
  156. inference_models/models/yolov5/nms.py +99 -0
  157. inference_models/models/yolov5/yolov5_instance_segmentation_onnx.py +225 -0
  158. inference_models/models/yolov5/yolov5_instance_segmentation_trt.py +255 -0
  159. inference_models/models/yolov5/yolov5_object_detection_onnx.py +192 -0
  160. inference_models/models/yolov5/yolov5_object_detection_trt.py +218 -0
  161. inference_models/models/yolov7/__init__.py +0 -0
  162. inference_models/models/yolov7/yolov7_instance_segmentation_onnx.py +226 -0
  163. inference_models/models/yolov7/yolov7_instance_segmentation_trt.py +253 -0
  164. inference_models/models/yolov8/__init__.py +0 -0
  165. inference_models/models/yolov8/yolov8_classification_onnx.py +181 -0
  166. inference_models/models/yolov8/yolov8_instance_segmentation_onnx.py +239 -0
  167. inference_models/models/yolov8/yolov8_instance_segmentation_torch_script.py +201 -0
  168. inference_models/models/yolov8/yolov8_instance_segmentation_trt.py +268 -0
  169. inference_models/models/yolov8/yolov8_key_points_detection_onnx.py +263 -0
  170. inference_models/models/yolov8/yolov8_key_points_detection_torch_script.py +218 -0
  171. inference_models/models/yolov8/yolov8_key_points_detection_trt.py +287 -0
  172. inference_models/models/yolov8/yolov8_object_detection_onnx.py +213 -0
  173. inference_models/models/yolov8/yolov8_object_detection_torch_script.py +166 -0
  174. inference_models/models/yolov8/yolov8_object_detection_trt.py +231 -0
  175. inference_models/models/yolov9/__init__.py +0 -0
  176. inference_models/models/yolov9/yolov9_onnx.py +7 -0
  177. inference_models/models/yolov9/yolov9_torch_script.py +7 -0
  178. inference_models/models/yolov9/yolov9_trt.py +7 -0
  179. inference_models/runtime_introspection/__init__.py +0 -0
  180. inference_models/runtime_introspection/core.py +410 -0
  181. inference_models/utils/__init__.py +0 -0
  182. inference_models/utils/download.py +608 -0
  183. inference_models/utils/environment.py +28 -0
  184. inference_models/utils/file_system.py +51 -0
  185. inference_models/utils/hashing.py +7 -0
  186. inference_models/utils/imports.py +48 -0
  187. inference_models/utils/onnx_introspection.py +17 -0
  188. inference_models/weights_providers/__init__.py +0 -0
  189. inference_models/weights_providers/core.py +20 -0
  190. inference_models/weights_providers/entities.py +159 -0
  191. inference_models/weights_providers/roboflow.py +601 -0
  192. inference_models-0.18.3.dist-info/METADATA +466 -0
  193. inference_models-0.18.3.dist-info/RECORD +195 -0
  194. inference_models-0.18.3.dist-info/WHEEL +5 -0
  195. inference_models-0.18.3.dist-info/top_level.txt +1 -0
@@ -0,0 +1,263 @@
1
+ from threading import Lock
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+
7
+ from inference_models import Detections, KeyPoints, KeyPointsDetectionModel
8
+ from inference_models.configuration import DEFAULT_DEVICE
9
+ from inference_models.entities import ColorFormat
10
+ from inference_models.errors import (
11
+ CorruptedModelPackageError,
12
+ EnvironmentConfigurationError,
13
+ MissingDependencyError,
14
+ )
15
+ from inference_models.models.common.model_packages import get_model_package_contents
16
+ from inference_models.models.common.onnx import (
17
+ run_session_with_batch_size_limit,
18
+ set_execution_provider_defaults,
19
+ )
20
+ from inference_models.models.common.roboflow.model_packages import (
21
+ InferenceConfig,
22
+ PreProcessingMetadata,
23
+ ResizeMode,
24
+ parse_class_names_file,
25
+ parse_inference_config,
26
+ parse_key_points_metadata,
27
+ )
28
+ from inference_models.models.common.roboflow.post_processing import (
29
+ post_process_nms_fused_model_output,
30
+ rescale_key_points_detections,
31
+ run_nms_for_key_points_detection,
32
+ )
33
+ from inference_models.models.common.roboflow.pre_processing import (
34
+ pre_process_network_input,
35
+ )
36
+ from inference_models.utils.onnx_introspection import (
37
+ get_selected_onnx_execution_providers,
38
+ )
39
+
40
+ try:
41
+ import onnxruntime
42
+ except ImportError as import_error:
43
+ raise MissingDependencyError(
44
+ message=f"Could not import YOLOv8 model with ONNX backend - this error means that some additional dependencies "
45
+ f"are not installed in the environment. If you run the `inference-models` library directly in your Python "
46
+ f"program, make sure the following extras of the package are installed: \n"
47
+ f"\t* `onnx-cpu` - when you wish to use library with CPU support only\n"
48
+ f"\t* `onnx-cu12` - for running on GPU with Cuda 12 installed\n"
49
+ f"\t* `onnx-cu118` - for running on GPU with Cuda 11.8 installed\n"
50
+ f"\t* `onnx-jp6-cu126` - for running on Jetson with Jetpack 6\n"
51
+ f"If you see this error using Roboflow infrastructure, make sure the service you use does support the model. "
52
+ f"You can also contact Roboflow to get support.",
53
+ help_url="https://todo",
54
+ ) from import_error
55
+
56
+
57
+ class YOLOv8ForKeyPointsDetectionOnnx(
58
+ KeyPointsDetectionModel[torch.Tensor, PreProcessingMetadata, torch.Tensor]
59
+ ):
60
+
61
+ @classmethod
62
+ def from_pretrained(
63
+ cls,
64
+ model_name_or_path: str,
65
+ onnx_execution_providers: Optional[List[Union[str, tuple]]] = None,
66
+ default_onnx_trt_options: bool = True,
67
+ device: torch.device = DEFAULT_DEVICE,
68
+ **kwargs,
69
+ ) -> "YOLOv8ForKeyPointsDetectionOnnx":
70
+ if onnx_execution_providers is None:
71
+ onnx_execution_providers = get_selected_onnx_execution_providers()
72
+ if not onnx_execution_providers:
73
+ raise EnvironmentConfigurationError(
74
+ message=f"Could not initialize model - selected backend is ONNX which requires execution provider to "
75
+ f"be specified - explicitly in `from_pretrained(...)` method or via env variable "
76
+ f"`ONNXRUNTIME_EXECUTION_PROVIDERS`. If you run model locally - adjust your setup, otherwise "
77
+ f"contact the platform support.",
78
+ help_url="https://todo",
79
+ )
80
+ onnx_execution_providers = set_execution_provider_defaults(
81
+ providers=onnx_execution_providers,
82
+ model_package_path=model_name_or_path,
83
+ device=device,
84
+ default_onnx_trt_options=default_onnx_trt_options,
85
+ )
86
+ model_package_content = get_model_package_contents(
87
+ model_package_dir=model_name_or_path,
88
+ elements=[
89
+ "class_names.txt",
90
+ "inference_config.json",
91
+ "weights.onnx",
92
+ "keypoints_metadata.json",
93
+ ],
94
+ )
95
+ class_names = parse_class_names_file(
96
+ class_names_path=model_package_content["class_names.txt"]
97
+ )
98
+ inference_config = parse_inference_config(
99
+ config_path=model_package_content["inference_config.json"],
100
+ allowed_resize_modes={
101
+ ResizeMode.STRETCH_TO,
102
+ ResizeMode.LETTERBOX,
103
+ ResizeMode.CENTER_CROP,
104
+ ResizeMode.LETTERBOX_REFLECT_EDGES,
105
+ },
106
+ )
107
+ if inference_config.post_processing.type != "nms":
108
+ raise CorruptedModelPackageError(
109
+ message="Expected NMS to be the post-processing",
110
+ help_url="https://todo",
111
+ )
112
+ parsed_key_points_metadata, skeletons = parse_key_points_metadata(
113
+ key_points_metadata_path=model_package_content["keypoints_metadata.json"]
114
+ )
115
+ session = onnxruntime.InferenceSession(
116
+ path_or_bytes=model_package_content["weights.onnx"],
117
+ providers=onnx_execution_providers,
118
+ )
119
+ input_batch_size = session.get_inputs()[0].shape[0]
120
+ if isinstance(input_batch_size, str):
121
+ input_batch_size = None
122
+ input_name = session.get_inputs()[0].name
123
+ return cls(
124
+ session=session,
125
+ input_name=input_name,
126
+ class_names=class_names,
127
+ inference_config=inference_config,
128
+ device=device,
129
+ input_batch_size=input_batch_size,
130
+ parsed_key_points_metadata=parsed_key_points_metadata,
131
+ skeletons=skeletons,
132
+ )
133
+
134
+ def __init__(
135
+ self,
136
+ session: onnxruntime.InferenceSession,
137
+ input_name: str,
138
+ inference_config: InferenceConfig,
139
+ class_names: List[str],
140
+ device: torch.device,
141
+ input_batch_size: Optional[int],
142
+ parsed_key_points_metadata: List[List[str]],
143
+ skeletons: List[List[Tuple[int, int]]],
144
+ ):
145
+ self._session = session
146
+ self._input_name = input_name
147
+ self._inference_config = inference_config
148
+ self._class_names = class_names
149
+ self._skeletons = skeletons
150
+ self._device = device
151
+ self._input_batch_size = input_batch_size
152
+ self._session_thread_lock = Lock()
153
+ self._parsed_key_points_metadata = parsed_key_points_metadata
154
+ self._key_points_classes_for_instances = torch.tensor(
155
+ [len(e) for e in self._parsed_key_points_metadata], device=device
156
+ )
157
+ self._key_points_slots_in_prediction = max(
158
+ len(e) for e in parsed_key_points_metadata
159
+ )
160
+
161
+ @property
162
+ def class_names(self) -> List[str]:
163
+ return self._class_names
164
+
165
+ @property
166
+ def key_points_classes(self) -> List[List[str]]:
167
+ return self._parsed_key_points_metadata
168
+
169
+ @property
170
+ def skeletons(self) -> List[List[Tuple[int, int]]]:
171
+ return self._skeletons
172
+
173
+ def pre_process(
174
+ self,
175
+ images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
176
+ input_color_format: Optional[ColorFormat] = None,
177
+ image_size: Optional[Tuple[int, int]] = None,
178
+ **kwargs,
179
+ ) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
180
+ return pre_process_network_input(
181
+ images=images,
182
+ image_pre_processing=self._inference_config.image_pre_processing,
183
+ network_input=self._inference_config.network_input,
184
+ target_device=self._device,
185
+ input_color_format=input_color_format,
186
+ image_size_wh=image_size,
187
+ )
188
+
189
+ def forward(self, pre_processed_images: torch.Tensor, **kwargs) -> torch.Tensor:
190
+ with self._session_thread_lock:
191
+ return run_session_with_batch_size_limit(
192
+ session=self._session,
193
+ inputs={self._input_name: pre_processed_images},
194
+ min_batch_size=self._input_batch_size,
195
+ max_batch_size=self._input_batch_size,
196
+ )[0]
197
+
198
+ def post_process(
199
+ self,
200
+ model_results: torch.Tensor,
201
+ pre_processing_meta: List[PreProcessingMetadata],
202
+ conf_thresh: float = 0.25,
203
+ iou_thresh: float = 0.45,
204
+ max_detections: int = 100,
205
+ class_agnostic: bool = False,
206
+ key_points_threshold: float = 0.3,
207
+ **kwargs,
208
+ ) -> Tuple[List[KeyPoints], Optional[List[Detections]]]:
209
+ if self._inference_config.post_processing.fused:
210
+ nms_results = post_process_nms_fused_model_output(
211
+ output=model_results, conf_thresh=conf_thresh
212
+ )
213
+ else:
214
+ nms_results = run_nms_for_key_points_detection(
215
+ output=model_results,
216
+ num_classes=len(self._class_names),
217
+ key_points_slots_in_prediction=self._key_points_slots_in_prediction,
218
+ conf_thresh=conf_thresh,
219
+ iou_thresh=iou_thresh,
220
+ max_detections=max_detections,
221
+ class_agnostic=class_agnostic,
222
+ )
223
+ rescaled_results = rescale_key_points_detections(
224
+ detections=nms_results,
225
+ images_metadata=pre_processing_meta,
226
+ num_classes=len(self._class_names),
227
+ key_points_slots_in_prediction=self._key_points_slots_in_prediction,
228
+ )
229
+ detections, all_key_points = [], []
230
+ for result in rescaled_results:
231
+ class_id = result[:, 5].int()
232
+ detections.append(
233
+ Detections(
234
+ xyxy=result[:, :4].round().int(),
235
+ class_id=class_id,
236
+ confidence=result[:, 4],
237
+ )
238
+ )
239
+ key_points_reshaped = result[:, 6:].view(
240
+ result.shape[0], self._key_points_slots_in_prediction, 3
241
+ )
242
+ xy = key_points_reshaped[:, :, :2]
243
+ confidence = key_points_reshaped[:, :, 2]
244
+ key_points_classes_for_instance_class = (
245
+ (self._key_points_classes_for_instances[class_id])
246
+ .unsqueeze(1)
247
+ .to(device=result.device)
248
+ )
249
+ instances_class_mask = (
250
+ torch.arange(self._key_points_slots_in_prediction, device=result.device)
251
+ .unsqueeze(0)
252
+ .repeat(result.shape[0], 1)
253
+ < key_points_classes_for_instance_class
254
+ )
255
+
256
+ confidence_mask = confidence < key_points_threshold
257
+ mask = instances_class_mask & confidence_mask
258
+ xy[mask] = 0.0
259
+ confidence[mask] = 0.0
260
+ all_key_points.append(
261
+ KeyPoints(xy=xy.round().int(), class_id=class_id, confidence=confidence)
262
+ )
263
+ return all_key_points, detections
@@ -0,0 +1,218 @@
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torchvision # DO NOT REMOVE, THIS IMPORT ENABLES NMS OPERATION
6
+
7
+ from inference_models import Detections, KeyPoints, KeyPointsDetectionModel
8
+ from inference_models.configuration import DEFAULT_DEVICE
9
+ from inference_models.entities import ColorFormat
10
+ from inference_models.errors import CorruptedModelPackageError
11
+ from inference_models.models.common.model_packages import get_model_package_contents
12
+ from inference_models.models.common.roboflow.model_packages import (
13
+ InferenceConfig,
14
+ PreProcessingMetadata,
15
+ ResizeMode,
16
+ parse_class_names_file,
17
+ parse_inference_config,
18
+ parse_key_points_metadata,
19
+ )
20
+ from inference_models.models.common.roboflow.post_processing import (
21
+ post_process_nms_fused_model_output,
22
+ rescale_key_points_detections,
23
+ run_nms_for_key_points_detection,
24
+ )
25
+ from inference_models.models.common.roboflow.pre_processing import (
26
+ pre_process_network_input,
27
+ )
28
+ from inference_models.models.common.torch import generate_batch_chunks
29
+
30
+
31
+ class YOLOv8ForKeyPointsDetectionTorchScript(
32
+ KeyPointsDetectionModel[torch.Tensor, PreProcessingMetadata, torch.Tensor]
33
+ ):
34
+
35
+ @classmethod
36
+ def from_pretrained(
37
+ cls,
38
+ model_name_or_path: str,
39
+ device: torch.device = DEFAULT_DEVICE,
40
+ **kwargs,
41
+ ) -> "YOLOv8ForKeyPointsDetectionTorchScript":
42
+ model_package_content = get_model_package_contents(
43
+ model_package_dir=model_name_or_path,
44
+ elements=[
45
+ "class_names.txt",
46
+ "inference_config.json",
47
+ "weights.torchscript",
48
+ "keypoints_metadata.json",
49
+ ],
50
+ )
51
+ class_names = parse_class_names_file(
52
+ class_names_path=model_package_content["class_names.txt"]
53
+ )
54
+ inference_config = parse_inference_config(
55
+ config_path=model_package_content["inference_config.json"],
56
+ allowed_resize_modes={
57
+ ResizeMode.STRETCH_TO,
58
+ ResizeMode.LETTERBOX,
59
+ ResizeMode.CENTER_CROP,
60
+ ResizeMode.LETTERBOX_REFLECT_EDGES,
61
+ },
62
+ )
63
+ if inference_config.post_processing.type != "nms":
64
+ raise CorruptedModelPackageError(
65
+ message="Expected NMS to be the post-processing",
66
+ help_url="https://todo",
67
+ )
68
+ if inference_config.forward_pass.static_batch_size is None:
69
+ raise CorruptedModelPackageError(
70
+ message="Expected static batch size to be registered in the inference configuration.",
71
+ help_url="https://todo",
72
+ )
73
+ parsed_key_points_metadata, skeletons = parse_key_points_metadata(
74
+ key_points_metadata_path=model_package_content["keypoints_metadata.json"]
75
+ )
76
+ model = torch.jit.load(
77
+ model_package_content["weights.torchscript"], map_location=device
78
+ ).eval()
79
+ return cls(
80
+ model=model,
81
+ class_names=class_names,
82
+ inference_config=inference_config,
83
+ device=device,
84
+ parsed_key_points_metadata=parsed_key_points_metadata,
85
+ skeletons=skeletons,
86
+ )
87
+
88
+ def __init__(
89
+ self,
90
+ model: torch.nn.Module,
91
+ inference_config: InferenceConfig,
92
+ class_names: List[str],
93
+ device: torch.device,
94
+ parsed_key_points_metadata: List[List[str]],
95
+ skeletons: List[List[Tuple[int, int]]],
96
+ ):
97
+ self._model = model
98
+ self._inference_config = inference_config
99
+ self._class_names = class_names
100
+ self._skeletons = skeletons
101
+ self._device = device
102
+ self._parsed_key_points_metadata = parsed_key_points_metadata
103
+ self._key_points_classes_for_instances = torch.tensor(
104
+ [len(e) for e in self._parsed_key_points_metadata], device=device
105
+ )
106
+ self._key_points_slots_in_prediction = max(
107
+ len(e) for e in parsed_key_points_metadata
108
+ )
109
+
110
+ @property
111
+ def class_names(self) -> List[str]:
112
+ return self._class_names
113
+
114
+ @property
115
+ def key_points_classes(self) -> List[List[str]]:
116
+ return self._parsed_key_points_metadata
117
+
118
+ @property
119
+ def skeletons(self) -> List[List[Tuple[int, int]]]:
120
+ return self._skeletons
121
+
122
+ def pre_process(
123
+ self,
124
+ images: Union[torch.Tensor, List[torch.Tensor], np.ndarray, List[np.ndarray]],
125
+ input_color_format: Optional[ColorFormat] = None,
126
+ **kwargs,
127
+ ) -> Tuple[torch.Tensor, List[PreProcessingMetadata]]:
128
+ return pre_process_network_input(
129
+ images=images,
130
+ image_pre_processing=self._inference_config.image_pre_processing,
131
+ network_input=self._inference_config.network_input,
132
+ target_device=self._device,
133
+ input_color_format=input_color_format,
134
+ )
135
+
136
+ def forward(self, pre_processed_images: torch.Tensor, **kwargs) -> torch.Tensor:
137
+ with torch.inference_mode():
138
+ if (
139
+ pre_processed_images.shape[0]
140
+ == self._inference_config.forward_pass.static_batch_size
141
+ ):
142
+ return self._model(pre_processed_images).to(self._device)
143
+ results = []
144
+ for input_tensor, padding_size in generate_batch_chunks(
145
+ input_batch=pre_processed_images,
146
+ chunk_size=self._inference_config.forward_pass.static_batch_size,
147
+ ):
148
+ result_for_chunk = self._model(input_tensor)
149
+ if padding_size > 0:
150
+ result_for_chunk = result_for_chunk[:-padding_size]
151
+ results.append(result_for_chunk)
152
+ return torch.cat(results, dim=0).to(self._device)
153
+
154
+ def post_process(
155
+ self,
156
+ model_results: torch.Tensor,
157
+ pre_processing_meta: List[PreProcessingMetadata],
158
+ conf_thresh: float = 0.25,
159
+ iou_thresh: float = 0.45,
160
+ max_detections: int = 100,
161
+ class_agnostic: bool = False,
162
+ key_points_threshold: float = 0.3,
163
+ **kwargs,
164
+ ) -> Tuple[List[KeyPoints], Optional[List[Detections]]]:
165
+ if self._inference_config.post_processing.fused:
166
+ nms_results = post_process_nms_fused_model_output(
167
+ output=model_results, conf_thresh=conf_thresh
168
+ )
169
+ else:
170
+ nms_results = run_nms_for_key_points_detection(
171
+ output=model_results,
172
+ num_classes=len(self._class_names),
173
+ key_points_slots_in_prediction=self._key_points_slots_in_prediction,
174
+ conf_thresh=conf_thresh,
175
+ iou_thresh=iou_thresh,
176
+ max_detections=max_detections,
177
+ class_agnostic=class_agnostic,
178
+ )
179
+ rescaled_results = rescale_key_points_detections(
180
+ detections=nms_results,
181
+ images_metadata=pre_processing_meta,
182
+ num_classes=len(self._class_names),
183
+ key_points_slots_in_prediction=self._key_points_slots_in_prediction,
184
+ )
185
+ detections, all_key_points = [], []
186
+ for result in rescaled_results:
187
+ class_id = result[:, 5].int()
188
+ detections.append(
189
+ Detections(
190
+ xyxy=result[:, :4].round().int(),
191
+ class_id=class_id,
192
+ confidence=result[:, 4],
193
+ )
194
+ )
195
+ key_points_reshaped = result[:, 6:].view(
196
+ result.shape[0], self._key_points_slots_in_prediction, 3
197
+ )
198
+ xy = key_points_reshaped[:, :, :2]
199
+ confidence = key_points_reshaped[:, :, 2]
200
+ key_points_classes_for_instance_class = (
201
+ (self._key_points_classes_for_instances[class_id])
202
+ .unsqueeze(1)
203
+ .to(device=result.device)
204
+ )
205
+ instances_class_mask = (
206
+ torch.arange(self._key_points_slots_in_prediction, device=result.device)
207
+ .unsqueeze(0)
208
+ .repeat(result.shape[0], 1)
209
+ < key_points_classes_for_instance_class
210
+ )
211
+ confidence_mask = confidence < key_points_threshold
212
+ mask = instances_class_mask & confidence_mask
213
+ xy[mask] = 0.0
214
+ confidence[mask] = 0.0
215
+ all_key_points.append(
216
+ KeyPoints(xy=xy.round().int(), class_id=class_id, confidence=confidence)
217
+ )
218
+ return all_key_points, detections