endoreg-db 0.3.5__py3-none-any.whl → 0.3.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- endoreg_db/admin.py +3 -3
- endoreg_db/apps.py +6 -6
- endoreg_db/data/__init__.py +64 -64
- endoreg_db/data/active_model/data.yaml +2 -2
- endoreg_db/data/case_template/rule/00_patient_lab_sample_add_default_value.yaml +167 -167
- endoreg_db/data/case_template/rule/01_patient-set-age.yaml +7 -7
- endoreg_db/data/case_template/rule/01_patient-set-gender.yaml +8 -8
- endoreg_db/data/case_template/rule/11_create_patient_lab_sample.yaml +22 -22
- endoreg_db/data/case_template/rule/12_create-patient_medication-anticoagulation.yaml +18 -18
- endoreg_db/data/case_template/rule/13_create-patient_medication_schedule-anticoagulation.yaml +18 -18
- endoreg_db/data/case_template/rule/19_create_patient.yaml +16 -16
- endoreg_db/data/case_template/rule_type/base_types.yaml +35 -35
- endoreg_db/data/case_template/rule_value_type/base_types.yaml +58 -58
- endoreg_db/data/case_template/template/base.yaml +7 -7
- endoreg_db/data/case_template/template_type/pre_endoscopy.yaml +2 -2
- endoreg_db/data/case_template/tmp/_rule_value +13 -13
- endoreg_db/data/case_template/tmp/rule/01_atrial_fibrillation.yaml +21 -21
- endoreg_db/data/case_template/tmp/rule/02_create_object.yaml +9 -9
- endoreg_db/data/case_template/tmp/template/atrial_fibrillation_low_risk.yaml +6 -6
- endoreg_db/data/center/data.yaml +59 -59
- endoreg_db/data/center_resource/green_endoscopy_dashboard_CenterResource.yaml +144 -144
- endoreg_db/data/center_waste/green_endoscopy_dashboard_CenterWaste.yaml +48 -48
- endoreg_db/data/disease/cardiovascular.yaml +37 -37
- endoreg_db/data/disease/hepatology.yaml +4 -4
- endoreg_db/data/disease/misc.yaml +5 -5
- endoreg_db/data/disease/renal.yaml +4 -4
- endoreg_db/data/disease_classification/chronic_kidney_disease.yaml +5 -5
- endoreg_db/data/disease_classification/coronary_vessel_disease.yaml +5 -5
- endoreg_db/data/disease_classification_choice/chronic_kidney_disease.yaml +40 -40
- endoreg_db/data/disease_classification_choice/coronary_vessel_disease.yaml +19 -19
- endoreg_db/data/distribution/date/patient.yaml +6 -6
- endoreg_db/data/distribution/single_categorical/patient.yaml +6 -6
- endoreg_db/data/emission_factor/green_endoscopy_dashboard_EmissionFactor.yaml +132 -132
- endoreg_db/data/endoscope_type/data.yaml +10 -10
- endoreg_db/data/endoscopy_processor/data.yaml +45 -45
- endoreg_db/data/event/cardiology.yaml +27 -27
- endoreg_db/data/event/neurology.yaml +13 -13
- endoreg_db/data/event/surgery.yaml +12 -12
- endoreg_db/data/event/thrombembolism.yaml +19 -19
- endoreg_db/data/examination/examinations/data.yaml +65 -65
- endoreg_db/data/examination/time/data.yaml +47 -47
- endoreg_db/data/examination/time-type/data.yaml +7 -7
- endoreg_db/data/examination/type/data.yaml +5 -5
- endoreg_db/data/gender/data.yaml +18 -18
- endoreg_db/data/information_source/data.yaml +30 -30
- endoreg_db/data/information_source/medication.yaml +5 -5
- endoreg_db/data/lab_value/cardiac_enzymes.yaml +30 -30
- endoreg_db/data/lab_value/coagulation.yaml +48 -48
- endoreg_db/data/lab_value/electrolytes.yaml +189 -189
- endoreg_db/data/lab_value/gastrointestinal_function.yaml +121 -121
- endoreg_db/data/lab_value/hematology.yaml +169 -169
- endoreg_db/data/lab_value/hormones.yaml +53 -53
- endoreg_db/data/lab_value/lipids.yaml +44 -44
- endoreg_db/data/lab_value/misc.yaml +30 -30
- endoreg_db/data/lab_value/renal_function.yaml +10 -10
- endoreg_db/data/label/label/data.yaml +62 -62
- endoreg_db/data/label/label-set/data.yaml +17 -17
- endoreg_db/data/label/label-type/data.yaml +6 -6
- endoreg_db/data/medication/anticoagulation.yaml +64 -64
- endoreg_db/data/medication/tah.yaml +69 -69
- endoreg_db/data/medication_indication/anticoagulation.yaml +120 -120
- endoreg_db/data/medication_indication_type/data.yaml +10 -10
- endoreg_db/data/medication_indication_type/thrombembolism.yaml +40 -40
- endoreg_db/data/medication_intake_time/base.yaml +30 -30
- endoreg_db/data/medication_schedule/apixaban.yaml +94 -94
- endoreg_db/data/medication_schedule/ass.yaml +12 -12
- endoreg_db/data/medication_schedule/enoxaparin.yaml +26 -26
- endoreg_db/data/model_type/data.yaml +6 -6
- endoreg_db/data/patient_lab_sample_type/generic.yaml +5 -5
- endoreg_db/data/pdf_type/data.yaml +28 -28
- endoreg_db/data/product/green_endoscopy_dashboard_Product.yaml +66 -66
- endoreg_db/data/product_group/green_endoscopy_dashboard_ProductGroup.yaml +33 -33
- endoreg_db/data/product_material/green_endoscopy_dashboard_ProductMaterial.yaml +308 -308
- endoreg_db/data/product_weight/green_endoscopy_dashboard_ProductWeight.yaml +88 -88
- endoreg_db/data/profession/data.yaml +70 -70
- endoreg_db/data/reference_product/green_endoscopy_dashboard_ReferenceProduct.yaml +55 -55
- endoreg_db/data/report_reader_flag/ukw-examination-generic.yaml +26 -26
- endoreg_db/data/report_reader_flag/ukw-histology-generic.yaml +19 -19
- endoreg_db/data/resource/green_endoscopy_dashboard_Resource.yaml +15 -15
- endoreg_db/data/transport_route/green_endoscopy_dashboard_TransportRoute.yaml +12 -12
- endoreg_db/data/unit/concentration.yaml +92 -92
- endoreg_db/data/unit/data.yaml +17 -17
- endoreg_db/data/unit/length.yaml +30 -30
- endoreg_db/data/unit/misc.yaml +19 -19
- endoreg_db/data/unit/rate.yaml +5 -5
- endoreg_db/data/unit/time.yaml +12 -12
- endoreg_db/data/unit/volume.yaml +35 -35
- endoreg_db/data/unit/weight.yaml +37 -37
- endoreg_db/data/waste/data.yaml +11 -11
- endoreg_db/forms/__init__.py +2 -2
- endoreg_db/forms/questionnaires/tto_questionnaire.py +23 -23
- endoreg_db/forms/settings/__init__.py +8 -8
- endoreg_db/forms/unit.py +5 -5
- endoreg_db/management/commands/_load_model_template.py +40 -40
- endoreg_db/management/commands/delete_all.py +18 -18
- endoreg_db/management/commands/delete_legacy_images.py +19 -19
- endoreg_db/management/commands/delete_legacy_videos.py +16 -16
- endoreg_db/management/commands/extract_legacy_video_frames.py +18 -18
- endoreg_db/management/commands/fetch_legacy_image_dataset.py +32 -32
- endoreg_db/management/commands/fix_auth_permission.py +20 -20
- endoreg_db/management/commands/import_legacy_images.py +94 -94
- endoreg_db/management/commands/import_legacy_videos.py +76 -76
- endoreg_db/management/commands/load_active_model_data.py +44 -44
- endoreg_db/management/commands/load_ai_model_data.py +44 -44
- endoreg_db/management/commands/load_base_db_data.py +128 -128
- endoreg_db/management/commands/load_center_data.py +42 -42
- endoreg_db/management/commands/load_disease_classification_choices_data.py +40 -40
- endoreg_db/management/commands/load_disease_classification_data.py +40 -40
- endoreg_db/management/commands/load_disease_data.py +39 -39
- endoreg_db/management/commands/load_distribution_data.py +65 -65
- endoreg_db/management/commands/load_endoscope_type_data.py +44 -44
- endoreg_db/management/commands/load_endoscopy_processor_data.py +44 -44
- endoreg_db/management/commands/load_event_data.py +40 -40
- endoreg_db/management/commands/load_examination_data.py +74 -74
- endoreg_db/management/commands/load_g_play_data.py +112 -112
- endoreg_db/management/commands/load_gender_data.py +43 -43
- endoreg_db/management/commands/load_green_endoscopy_wuerzburg_data.py +132 -132
- endoreg_db/management/commands/load_information_source.py +44 -44
- endoreg_db/management/commands/load_lab_value_data.py +49 -49
- endoreg_db/management/commands/load_label_data.py +66 -66
- endoreg_db/management/commands/load_medication_data.py +40 -40
- endoreg_db/management/commands/load_medication_indication_data.py +62 -62
- endoreg_db/management/commands/load_medication_indication_type_data.py +40 -40
- endoreg_db/management/commands/load_medication_intake_time_data.py +40 -40
- endoreg_db/management/commands/load_medication_schedule_data.py +54 -54
- endoreg_db/management/commands/load_pdf_type_data.py +60 -60
- endoreg_db/management/commands/load_profession_data.py +43 -43
- endoreg_db/management/commands/load_report_reader_flag.py +45 -45
- endoreg_db/management/commands/load_unit_data.py +45 -45
- endoreg_db/management/commands/load_user_groups.py +28 -28
- endoreg_db/management/commands/register_ai_model.py +65 -65
- endoreg_db/management/commands/reset_celery_schedule.py +9 -9
- endoreg_db/migrations/0001_initial.py +582 -582
- endoreg_db/migrations/0002_rawvideofile.py +26 -26
- endoreg_db/migrations/0003_rawvideofile_frames_required.py +18 -18
- endoreg_db/migrations/0004_rename_hash_rawvideofile_video_hash.py +18 -18
- endoreg_db/migrations/0005_ffmpegmeta_remove_videoimportmeta_center_and_more.py +56 -56
- endoreg_db/migrations/0006_rawvideofile_center_alter_videometa_processor.py +25 -25
- endoreg_db/migrations/0007_rawvideofile_processor.py +19 -19
- endoreg_db/migrations/0008_rename_frames_required_rawvideofile_state_frames_required.py +18 -18
- endoreg_db/migrations/0009_sensitivemeta_rawvideofile_sensitive_meta.py +31 -31
- endoreg_db/migrations/0010_rename_endoscope_serial_number_sensitivemeta_endoscope_sn.py +18 -18
- endoreg_db/migrations/0011_rawvideofile_state_sensitive_data_retrieved.py +18 -18
- endoreg_db/migrations/0012_rawvideofile_prediction_dir_and_more.py +109 -109
- endoreg_db/migrations/0013_rawpdffile.py +31 -31
- endoreg_db/migrations/0014_pdftype_alter_rawpdffile_file_pdfmeta.py +38 -38
- endoreg_db/migrations/0015_rename_report_processed_rawpdffile_state_report_processed_and_more.py +31 -31
- endoreg_db/migrations/0016_rawpdffile_state_report_processing_required.py +18 -18
- endoreg_db/migrations/0017_firstname_lastname_center_first_names_and_more.py +37 -37
- endoreg_db/migrations/0018_reportreaderflag_reportreaderconfig.py +37 -37
- endoreg_db/migrations/0019_pdftype_cut_off_above_lines_and_more.py +42 -42
- endoreg_db/migrations/0020_rename_endoscopy_info_line_pdftype_endoscope_info_line.py +18 -18
- endoreg_db/migrations/0021_alter_pdftype_endoscope_info_line.py +19 -19
- endoreg_db/migrations/0022_alter_pdftype_endoscope_info_line.py +19 -19
- endoreg_db/migrations/0023_ttoquestionnaire_alter_pdftype_endoscope_info_line.py +59 -59
- endoreg_db/migrations/0024_remove_ttoquestionnaire_infections_and_more.py +27 -27
- endoreg_db/migrations/0025_event_alter_rawpdffile_file_patientevent.py +42 -42
- endoreg_db/migrations/0026_disease_diseaseclassification_and_more.py +166 -166
- endoreg_db/migrations/0027_labvalue_abbreviation_labvalue_default_normal_range_and_more.py +38 -38
- endoreg_db/migrations/0028_alter_unit_abbreviation.py +18 -18
- endoreg_db/migrations/0029_medicationintaketime_and_more.py +75 -75
- endoreg_db/migrations/0030_medicationindicationtype_and_more.py +101 -101
- endoreg_db/migrations/0031_rename_adapt_to_liver_function_medication_adapt_to_age_and_more.py +38 -38
- endoreg_db/migrations/0032_alter_medicationschedule_therapy_duration_d.py +18 -18
- endoreg_db/migrations/0033_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0034_alter_rawpdffile_file.py +20 -20
- endoreg_db/migrations/0035_alter_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0036_alter_rawpdffile_file.py +20 -20
- endoreg_db/migrations/0037_alter_medicationindication_sources.py +18 -18
- endoreg_db/migrations/0038_emissionfactor_material_product_productgroup_and_more.py +164 -164
- endoreg_db/migrations/0039_referenceproduct_name.py +19 -19
- endoreg_db/migrations/0040_quizanswertype_quizquestiontype_quizquestion_and_more.py +50 -50
- endoreg_db/migrations/0041_gender_patientmedication_medication_indication_and_more.py +40 -40
- endoreg_db/migrations/0042_casetemplateruletype_casetemplaterulevalue_and_more.py +74 -74
- endoreg_db/migrations/0043_casetemplatetype_name_de_casetemplatetype_name_en.py +23 -23
- endoreg_db/migrations/0044_casetemplateruletype_name_de_and_more.py +23 -23
- endoreg_db/migrations/0045_casetemplaterulevalue_value_type.py +19 -19
- endoreg_db/migrations/0046_casetemplaterulevalue_target_field.py +18 -18
- endoreg_db/migrations/0047_casetemplaterule_target_model.py +18 -18
- endoreg_db/migrations/0048_remove_casetemplaterule_chained_rules_and_more.py +22 -22
- endoreg_db/migrations/0049_remove_casetemplaterule_rule_values.py +17 -17
- endoreg_db/migrations/0050_casetemplaterule_rule_values.py +18 -18
- endoreg_db/migrations/0051_remove_casetemplaterule_calling_rules_and_more.py +27 -27
- endoreg_db/migrations/0052_rename_case_template_type_casetemplate_template_type.py +18 -18
- endoreg_db/migrations/0053_patientlabsampletype_patientlabsample_and_more.py +38 -38
- endoreg_db/migrations/0054_multiplecategoricalvaluedistribution_and_more.py +69 -69
- endoreg_db/migrations/0055_remove_casetemplaterule_rule_values_and_more.py +59 -59
- endoreg_db/migrations/0056_datevaluedistribution_and_more.py +32 -32
- endoreg_db/migrations/0057_remove_datevaluedistribution_max_date_and_more.py +72 -72
- endoreg_db/migrations/0058_datevaluedistribution_description_and_more.py +28 -28
- endoreg_db/migrations/0059_casetemplaterule_rule_values.py +18 -18
- endoreg_db/migrations/0060_labvalue__default_date_value_distribution_and_more.py +44 -44
- endoreg_db/migrations/0061_remove_patientlabvalue_date_patientlabvalue_datetime.py +24 -24
- endoreg_db/migrations/0062_labvalue_numeric_precision.py +18 -18
- endoreg_db/migrations/0063_alter_labvalue_numeric_precision.py +18 -18
- endoreg_db/migrations/0064_casetemplaterule_extra_parameters_and_more.py +23 -23
- endoreg_db/migrations/0065_rename__date_value_distribution_casetemplaterule_date_value_distribution_and_more.py +58 -58
- endoreg_db/migrations/0066_alter_patientlabvalue_patient_and_more.py +29 -29
- endoreg_db/migrations/0067_alter_medicationindication_indication_type.py +19 -19
- endoreg_db/models/__init__.py +74 -74
- endoreg_db/models/ai_model/__init__.py +3 -3
- endoreg_db/models/ai_model/active_model.py +9 -9
- endoreg_db/models/ai_model/model_meta.py +24 -24
- endoreg_db/models/ai_model/model_type.py +25 -25
- endoreg_db/models/ai_model/utils.py +8 -8
- endoreg_db/models/annotation/__init__.py +1 -1
- endoreg_db/models/annotation/binary_classification_annotation_task.py +80 -80
- endoreg_db/models/annotation/image_classification.py +26 -26
- endoreg_db/models/case_template/__init__.py +5 -5
- endoreg_db/models/case_template/case_template.py +81 -81
- endoreg_db/models/case_template/case_template_rule.py +276 -276
- endoreg_db/models/case_template/case_template_rule_value.py +73 -73
- endoreg_db/models/case_template/case_template_type.py +27 -27
- endoreg_db/models/center/__init__.py +4 -4
- endoreg_db/models/center/center.py +24 -24
- endoreg_db/models/center/center_product.py +33 -33
- endoreg_db/models/center/center_resource.py +18 -18
- endoreg_db/models/center/center_waste.py +10 -10
- endoreg_db/models/data_file/__init__.py +5 -5
- endoreg_db/models/data_file/base_classes/__init__.py +2 -2
- endoreg_db/models/data_file/base_classes/abstract_frame.py +50 -50
- endoreg_db/models/data_file/base_classes/abstract_video.py +200 -200
- endoreg_db/models/data_file/frame.py +45 -45
- endoreg_db/models/data_file/import_classes/__init__.py +31 -31
- endoreg_db/models/data_file/import_classes/processing_functions/__init__.py +34 -34
- endoreg_db/models/data_file/import_classes/processing_functions/pdf.py +28 -28
- endoreg_db/models/data_file/import_classes/processing_functions/video.py +260 -260
- endoreg_db/models/data_file/import_classes/raw_pdf.py +188 -188
- endoreg_db/models/data_file/import_classes/raw_video.py +343 -343
- endoreg_db/models/data_file/metadata/__init__.py +3 -3
- endoreg_db/models/data_file/metadata/pdf_meta.py +70 -70
- endoreg_db/models/data_file/metadata/sensitive_meta.py +31 -31
- endoreg_db/models/data_file/metadata/video_meta.py +132 -132
- endoreg_db/models/data_file/report_file.py +89 -89
- endoreg_db/models/data_file/video/__init__.py +6 -6
- endoreg_db/models/data_file/video/import_meta.py +25 -25
- endoreg_db/models/data_file/video/video.py +25 -25
- endoreg_db/models/data_file/video_segment.py +107 -107
- endoreg_db/models/disease.py +55 -55
- endoreg_db/models/emission/emission_factor.py +19 -19
- endoreg_db/models/event.py +21 -21
- endoreg_db/models/examination/__init__.py +3 -3
- endoreg_db/models/examination/examination.py +26 -26
- endoreg_db/models/examination/examination_time.py +27 -27
- endoreg_db/models/examination/examination_time_type.py +24 -24
- endoreg_db/models/examination/examination_type.py +18 -18
- endoreg_db/models/hardware/__init__.py +1 -1
- endoreg_db/models/hardware/endoscope.py +44 -44
- endoreg_db/models/hardware/endoscopy_processor.py +143 -143
- endoreg_db/models/information_source.py +29 -29
- endoreg_db/models/label/label.py +84 -84
- endoreg_db/models/laboratory/lab_value.py +102 -102
- endoreg_db/models/legacy_data/__init__.py +3 -3
- endoreg_db/models/legacy_data/image.py +34 -34
- endoreg_db/models/medication/medication.py +148 -148
- endoreg_db/models/other/__init__.py +4 -4
- endoreg_db/models/other/distribution.py +215 -215
- endoreg_db/models/other/material.py +16 -16
- endoreg_db/models/other/resource.py +17 -17
- endoreg_db/models/other/transport_route.py +20 -20
- endoreg_db/models/other/waste.py +20 -20
- endoreg_db/models/patient_examination/__init__.py +35 -35
- endoreg_db/models/permissions/__init__.py +44 -44
- endoreg_db/models/persons/__init__.py +6 -6
- endoreg_db/models/persons/examiner/__init__.py +1 -1
- endoreg_db/models/persons/examiner/examiner.py +15 -15
- endoreg_db/models/persons/examiner/examiner_type.py +1 -1
- endoreg_db/models/persons/first_name.py +17 -17
- endoreg_db/models/persons/gender.py +22 -22
- endoreg_db/models/persons/last_name.py +19 -19
- endoreg_db/models/persons/patient/__init__.py +7 -7
- endoreg_db/models/persons/patient/case/case.py +30 -30
- endoreg_db/models/persons/patient/patient.py +216 -216
- endoreg_db/models/persons/patient/patient_disease.py +16 -16
- endoreg_db/models/persons/patient/patient_event.py +22 -22
- endoreg_db/models/persons/patient/patient_lab_sample.py +106 -106
- endoreg_db/models/persons/patient/patient_lab_value.py +176 -176
- endoreg_db/models/persons/patient/patient_medication.py +43 -43
- endoreg_db/models/persons/patient/patient_medication_schedule.py +27 -27
- endoreg_db/models/persons/person.py +31 -31
- endoreg_db/models/persons/portal_user_information.py +27 -27
- endoreg_db/models/prediction/__init__.py +1 -1
- endoreg_db/models/prediction/image_classification.py +37 -37
- endoreg_db/models/prediction/video_prediction_meta.py +244 -244
- endoreg_db/models/product/__init__.py +4 -4
- endoreg_db/models/product/product.py +97 -97
- endoreg_db/models/product/product_group.py +19 -19
- endoreg_db/models/product/product_material.py +24 -24
- endoreg_db/models/product/product_weight.py +26 -26
- endoreg_db/models/product/reference_product.py +99 -99
- endoreg_db/models/questionnaires/__init__.py +114 -114
- endoreg_db/models/quiz/__init__.py +1 -1
- endoreg_db/models/quiz/quiz_answer.py +41 -41
- endoreg_db/models/quiz/quiz_question.py +54 -54
- endoreg_db/models/report_reader/__init__.py +1 -1
- endoreg_db/models/report_reader/report_reader_config.py +53 -53
- endoreg_db/models/report_reader/report_reader_flag.py +19 -19
- endoreg_db/models/rules/__init__.py +4 -4
- endoreg_db/models/rules/rule.py +23 -23
- endoreg_db/models/rules/rule_applicator.py +224 -224
- endoreg_db/models/rules/rule_attribute_dtype.py +18 -18
- endoreg_db/models/rules/rule_type.py +21 -21
- endoreg_db/models/rules/ruleset.py +19 -19
- endoreg_db/models/unit.py +21 -21
- endoreg_db/queries/__init__.py +4 -4
- endoreg_db/queries/annotations/__init__.py +2 -2
- endoreg_db/queries/annotations/legacy.py +159 -159
- endoreg_db/queries/get/__init__.py +5 -5
- endoreg_db/queries/get/center.py +42 -42
- endoreg_db/queries/get/model.py +13 -13
- endoreg_db/queries/get/patient.py +14 -14
- endoreg_db/queries/get/patient_examination.py +20 -20
- endoreg_db/queries/get/report_file.py +33 -33
- endoreg_db/queries/get/video.py +31 -31
- endoreg_db/serializers/__init__.py +9 -9
- endoreg_db/serializers/ai_model.py +18 -18
- endoreg_db/serializers/annotation.py +17 -17
- endoreg_db/serializers/center.py +11 -11
- endoreg_db/serializers/examination.py +32 -32
- endoreg_db/serializers/frame.py +13 -13
- endoreg_db/serializers/hardware.py +20 -20
- endoreg_db/serializers/label.py +22 -22
- endoreg_db/serializers/patient.py +10 -10
- endoreg_db/serializers/prediction.py +15 -15
- endoreg_db/serializers/report_file.py +7 -7
- endoreg_db/serializers/video.py +27 -27
- endoreg_db/tests.py +3 -3
- endoreg_db/utils/cropping.py +28 -28
- endoreg_db/utils/dataloader.py +92 -92
- endoreg_db/utils/file_operations.py +30 -30
- endoreg_db/utils/hashs.py +33 -33
- endoreg_db/utils/legacy_ocr.py +201 -201
- endoreg_db/utils/ocr.py +197 -197
- endoreg_db/utils/uuid.py +4 -4
- endoreg_db/utils/video_metadata.py +87 -87
- endoreg_db/views.py +3 -3
- {endoreg_db-0.3.5.dist-info → endoreg_db-0.3.6.dist-info}/LICENSE +674 -674
- {endoreg_db-0.3.5.dist-info → endoreg_db-0.3.6.dist-info}/METADATA +2 -2
- endoreg_db-0.3.6.dist-info/RECORD +357 -0
- {endoreg_db-0.3.5.dist-info → endoreg_db-0.3.6.dist-info}/WHEEL +1 -1
- endoreg_db-0.3.5.dist-info/RECORD +0 -357
|
@@ -1,244 +1,244 @@
|
|
|
1
|
-
from django.db import models
|
|
2
|
-
|
|
3
|
-
from endoreg_db.models.label.label import LabelSet
|
|
4
|
-
from ..data_file.video import LegacyVideo, Video
|
|
5
|
-
from ..data_file.frame import LegacyFrame, Frame
|
|
6
|
-
from .image_classification import ImageClassificationPrediction
|
|
7
|
-
from ..data_file.video_segment import LegacyLabelVideoSegment, LabelVideoSegment, find_segments_in_prediction_array
|
|
8
|
-
from ..information_source import get_prediction_information_source
|
|
9
|
-
import numpy as np
|
|
10
|
-
import pickle
|
|
11
|
-
|
|
12
|
-
DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN = 1.5
|
|
13
|
-
DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S = 1.0
|
|
14
|
-
|
|
15
|
-
class AbstractVideoPredictionMeta(models.Model):
|
|
16
|
-
model_meta = models.ForeignKey("ModelMeta", on_delete=models.CASCADE)
|
|
17
|
-
date_created = models.DateTimeField(auto_now_add=True)
|
|
18
|
-
date_modified = models.DateTimeField(auto_now=True)
|
|
19
|
-
video = None # Placeholder for the video field, to be defined in derived classes
|
|
20
|
-
prediction_array = models.BinaryField(blank=True, null=True)
|
|
21
|
-
|
|
22
|
-
class Meta:
|
|
23
|
-
abstract = True
|
|
24
|
-
unique_together = ('model_meta', 'video')
|
|
25
|
-
|
|
26
|
-
def __str__(self):
|
|
27
|
-
return f"Video {self.video.id} - {self.model_meta.name}"
|
|
28
|
-
|
|
29
|
-
def get_labelset(self):
|
|
30
|
-
"""
|
|
31
|
-
Get the labelset of the predictions.
|
|
32
|
-
"""
|
|
33
|
-
return self.model_meta.labelset
|
|
34
|
-
|
|
35
|
-
def get_video_model(self):
|
|
36
|
-
assert 1 == 2, "This method should be overridden in derived classes"
|
|
37
|
-
|
|
38
|
-
def get_frame_model(self):
|
|
39
|
-
assert 1 == 2, "This method should be overridden in derived classes"
|
|
40
|
-
|
|
41
|
-
def get_label_list(self):
|
|
42
|
-
"""
|
|
43
|
-
Get the label list of the predictions.
|
|
44
|
-
"""
|
|
45
|
-
labelset:LabelSet = self.get_labelset()
|
|
46
|
-
label_list = labelset.get_labels_in_order()
|
|
47
|
-
return label_list
|
|
48
|
-
|
|
49
|
-
def get_video_segment_model(self):
|
|
50
|
-
assert 1 == 2, "This method should be overridden in derived classes"
|
|
51
|
-
|
|
52
|
-
def save_prediction_array(self, prediction_array:np.array):
|
|
53
|
-
"""
|
|
54
|
-
Save the prediction array to the database.
|
|
55
|
-
"""
|
|
56
|
-
self.prediction_array = pickle.dumps(prediction_array)
|
|
57
|
-
self.save()
|
|
58
|
-
|
|
59
|
-
def get_prediction_array(self):
|
|
60
|
-
"""
|
|
61
|
-
Get the prediction array from the database.
|
|
62
|
-
"""
|
|
63
|
-
if self.prediction_array is None:
|
|
64
|
-
return None
|
|
65
|
-
else:
|
|
66
|
-
return pickle.loads(self.prediction_array)
|
|
67
|
-
|
|
68
|
-
def calculate_prediction_array(self):
|
|
69
|
-
assert 1 == 2, "This method should be overridden in derived classes"
|
|
70
|
-
|
|
71
|
-
def apply_running_mean(self, confidence_array, window_size_in_seconds: int = None):
|
|
72
|
-
"""
|
|
73
|
-
Apply a running mean filter to the confidence array for smoothing, assuming a padding
|
|
74
|
-
of 0.5 for the edges.
|
|
75
|
-
|
|
76
|
-
Args:
|
|
77
|
-
self: Object that has video and fps attributes, and to which this function belongs.
|
|
78
|
-
confidence_array: A 2D numpy array with dimensions (num_frames),
|
|
79
|
-
containing confidence scores for each label at each frame.
|
|
80
|
-
window_size_in_seconds: The window size for the running mean in seconds.
|
|
81
|
-
|
|
82
|
-
Returns:
|
|
83
|
-
running_mean_array: A 2D numpy array with the same dimensions as confidence_array,
|
|
84
|
-
containing the smoothed confidence scores.
|
|
85
|
-
"""
|
|
86
|
-
video = self.video
|
|
87
|
-
fps = video.fps
|
|
88
|
-
|
|
89
|
-
if not window_size_in_seconds:
|
|
90
|
-
window_size_in_seconds = DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN
|
|
91
|
-
|
|
92
|
-
# Calculate window size in frames, ensuring at least one frame
|
|
93
|
-
window_size_in_frames = int(window_size_in_seconds * fps)
|
|
94
|
-
window_size_in_frames = max(window_size_in_frames, 1)
|
|
95
|
-
|
|
96
|
-
# Define the window for the running mean
|
|
97
|
-
window = np.ones(window_size_in_frames) / window_size_in_frames
|
|
98
|
-
|
|
99
|
-
# Create running mean array with the same shape as the confidence array
|
|
100
|
-
running_mean_array = np.zeros(confidence_array.shape)
|
|
101
|
-
|
|
102
|
-
# Calculate the padding size
|
|
103
|
-
pad_size = window_size_in_frames // 2
|
|
104
|
-
|
|
105
|
-
# Pad the array with 0.5 on both sides
|
|
106
|
-
padded_confidences = np.pad(confidence_array, (pad_size, pad_size), 'constant', constant_values=(0.5, 0.5))
|
|
107
|
-
|
|
108
|
-
# Apply the running mean filter on the padded array
|
|
109
|
-
running_mean = np.convolve(padded_confidences, window, mode='same')
|
|
110
|
-
|
|
111
|
-
# Remove the padding from the result to match the original shape
|
|
112
|
-
running_mean = running_mean[pad_size:-pad_size]
|
|
113
|
-
|
|
114
|
-
return running_mean
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
def create_video_segments_for_label(self, segments, label):
|
|
118
|
-
"""
|
|
119
|
-
Creates video segments for the given label and segments.
|
|
120
|
-
Segments is a list of tuples (start_frame_number, end_frame_number).
|
|
121
|
-
Labels is a Label object.
|
|
122
|
-
"""
|
|
123
|
-
video = self.video
|
|
124
|
-
video_segment_model = self.get_video_segment_model()
|
|
125
|
-
information_source = get_prediction_information_source()
|
|
126
|
-
|
|
127
|
-
for segment in segments:
|
|
128
|
-
start_frame_number, end_frame_number = segment
|
|
129
|
-
|
|
130
|
-
video_segment = video_segment_model(
|
|
131
|
-
video=video,
|
|
132
|
-
prediction_meta=self,
|
|
133
|
-
start_frame_number=start_frame_number,
|
|
134
|
-
end_frame_number=end_frame_number,
|
|
135
|
-
source=information_source,
|
|
136
|
-
label=label,
|
|
137
|
-
)
|
|
138
|
-
video_segment.save()
|
|
139
|
-
|
|
140
|
-
def create_video_segments(self, segment_length_threshold_in_s:float=None):
|
|
141
|
-
if not segment_length_threshold_in_s:
|
|
142
|
-
segment_length_threshold_in_s = DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S
|
|
143
|
-
|
|
144
|
-
video = self.video
|
|
145
|
-
fps = video.fps
|
|
146
|
-
min_frame_length = int(segment_length_threshold_in_s * fps)
|
|
147
|
-
|
|
148
|
-
label_list = self.get_label_list()
|
|
149
|
-
|
|
150
|
-
# if prediction array doesnt exist, create it
|
|
151
|
-
if self.prediction_array is None:
|
|
152
|
-
self.calculate_prediction_array()
|
|
153
|
-
|
|
154
|
-
prediction_array = self.get_prediction_array()
|
|
155
|
-
|
|
156
|
-
for i, label in enumerate(label_list):
|
|
157
|
-
# get predictions for this label
|
|
158
|
-
predictions = prediction_array[:, i]
|
|
159
|
-
# find segments of predictions that are longer than the threshold
|
|
160
|
-
# segments is a list of tuples (start_frame_number, end_frame_number)
|
|
161
|
-
segments = find_segments_in_prediction_array(predictions, min_frame_length)
|
|
162
|
-
|
|
163
|
-
# create video segments
|
|
164
|
-
self.create_video_segments_for_label(segments, label)
|
|
165
|
-
|
|
166
|
-
import numpy as np
|
|
167
|
-
class VideoPredictionMeta(AbstractVideoPredictionMeta):
|
|
168
|
-
video = models.OneToOneField("Video", on_delete=models.CASCADE, related_name="video_prediction_meta")
|
|
169
|
-
|
|
170
|
-
def get_video_model(self):
|
|
171
|
-
return Video
|
|
172
|
-
|
|
173
|
-
def get_frame_model(self):
|
|
174
|
-
return Frame
|
|
175
|
-
|
|
176
|
-
def get_video_segment_model(self):
|
|
177
|
-
return LabelVideoSegment
|
|
178
|
-
|
|
179
|
-
def calculate_prediction_array(self, window_size_in_seconds:int=None):
|
|
180
|
-
"""
|
|
181
|
-
Fetches all predictions for this video, labelset, and model meta.
|
|
182
|
-
"""
|
|
183
|
-
video:Video = self.video
|
|
184
|
-
|
|
185
|
-
model_meta = self.model_meta
|
|
186
|
-
label_list = self.get_label_list()
|
|
187
|
-
|
|
188
|
-
prediction_array = np.zeros((video.get_frame_number, len(label_list)))
|
|
189
|
-
for i, label in enumerate(label_list):
|
|
190
|
-
# fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
|
|
191
|
-
predictions = ImageClassificationPrediction.objects.filter(label=label, frame__video=video, model_meta=model_meta).order_by('frame__frame_number')
|
|
192
|
-
confidences = np.array([prediction.confidence for prediction in predictions])
|
|
193
|
-
smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
|
|
194
|
-
# calculate binary predictions
|
|
195
|
-
binary_predictions = smooth_confidences > 0.5
|
|
196
|
-
# add to prediction array
|
|
197
|
-
prediction_array[:, i] = binary_predictions
|
|
198
|
-
|
|
199
|
-
# save prediction array
|
|
200
|
-
self.save_prediction_array(prediction_array)
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
class LegacyVideoPredictionMeta(AbstractVideoPredictionMeta):
|
|
204
|
-
video = models.OneToOneField("LegacyVideo", on_delete=models.CASCADE, related_name="video_prediction_meta")
|
|
205
|
-
|
|
206
|
-
def get_video_model(self):
|
|
207
|
-
return LegacyVideo
|
|
208
|
-
|
|
209
|
-
def get_frame_model(self):
|
|
210
|
-
return LegacyFrame
|
|
211
|
-
|
|
212
|
-
def get_video_segment_model(self):
|
|
213
|
-
return LegacyLabelVideoSegment
|
|
214
|
-
|
|
215
|
-
def calculate_prediction_array(self, window_size_in_seconds:int=None):
|
|
216
|
-
"""
|
|
217
|
-
Fetches all predictions for this video, labelset, and model meta.
|
|
218
|
-
"""
|
|
219
|
-
video:LegacyVideo = self.video
|
|
220
|
-
|
|
221
|
-
model_meta = self.model_meta
|
|
222
|
-
label_list = self.get_label_list()
|
|
223
|
-
|
|
224
|
-
prediction_array = np.zeros((video.get_frame_number, len(label_list)))
|
|
225
|
-
for i, label in enumerate(label_list):
|
|
226
|
-
# fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
|
|
227
|
-
predictions = ImageClassificationPrediction.objects.filter(label=label, legacy_frame__video=video, model_meta=model_meta).order_by('legacy_frame__frame_number')
|
|
228
|
-
confidences = np.array([prediction.confidence for prediction in predictions])
|
|
229
|
-
smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
|
|
230
|
-
# calculate binary predictions
|
|
231
|
-
binary_predictions = smooth_confidences > 0.5
|
|
232
|
-
# add to prediction array
|
|
233
|
-
prediction_array[:, i] = binary_predictions
|
|
234
|
-
|
|
235
|
-
# save prediction array
|
|
236
|
-
self.save_prediction_array(prediction_array)
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
1
|
+
from django.db import models
|
|
2
|
+
|
|
3
|
+
from endoreg_db.models.label.label import LabelSet
|
|
4
|
+
from ..data_file.video import LegacyVideo, Video
|
|
5
|
+
from ..data_file.frame import LegacyFrame, Frame
|
|
6
|
+
from .image_classification import ImageClassificationPrediction
|
|
7
|
+
from ..data_file.video_segment import LegacyLabelVideoSegment, LabelVideoSegment, find_segments_in_prediction_array
|
|
8
|
+
from ..information_source import get_prediction_information_source
|
|
9
|
+
import numpy as np
|
|
10
|
+
import pickle
|
|
11
|
+
|
|
12
|
+
DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN = 1.5
|
|
13
|
+
DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S = 1.0
|
|
14
|
+
|
|
15
|
+
class AbstractVideoPredictionMeta(models.Model):
|
|
16
|
+
model_meta = models.ForeignKey("ModelMeta", on_delete=models.CASCADE)
|
|
17
|
+
date_created = models.DateTimeField(auto_now_add=True)
|
|
18
|
+
date_modified = models.DateTimeField(auto_now=True)
|
|
19
|
+
video = None # Placeholder for the video field, to be defined in derived classes
|
|
20
|
+
prediction_array = models.BinaryField(blank=True, null=True)
|
|
21
|
+
|
|
22
|
+
class Meta:
|
|
23
|
+
abstract = True
|
|
24
|
+
unique_together = ('model_meta', 'video')
|
|
25
|
+
|
|
26
|
+
def __str__(self):
|
|
27
|
+
return f"Video {self.video.id} - {self.model_meta.name}"
|
|
28
|
+
|
|
29
|
+
def get_labelset(self):
|
|
30
|
+
"""
|
|
31
|
+
Get the labelset of the predictions.
|
|
32
|
+
"""
|
|
33
|
+
return self.model_meta.labelset
|
|
34
|
+
|
|
35
|
+
def get_video_model(self):
|
|
36
|
+
assert 1 == 2, "This method should be overridden in derived classes"
|
|
37
|
+
|
|
38
|
+
def get_frame_model(self):
|
|
39
|
+
assert 1 == 2, "This method should be overridden in derived classes"
|
|
40
|
+
|
|
41
|
+
def get_label_list(self):
|
|
42
|
+
"""
|
|
43
|
+
Get the label list of the predictions.
|
|
44
|
+
"""
|
|
45
|
+
labelset:LabelSet = self.get_labelset()
|
|
46
|
+
label_list = labelset.get_labels_in_order()
|
|
47
|
+
return label_list
|
|
48
|
+
|
|
49
|
+
def get_video_segment_model(self):
|
|
50
|
+
assert 1 == 2, "This method should be overridden in derived classes"
|
|
51
|
+
|
|
52
|
+
def save_prediction_array(self, prediction_array:np.array):
|
|
53
|
+
"""
|
|
54
|
+
Save the prediction array to the database.
|
|
55
|
+
"""
|
|
56
|
+
self.prediction_array = pickle.dumps(prediction_array)
|
|
57
|
+
self.save()
|
|
58
|
+
|
|
59
|
+
def get_prediction_array(self):
|
|
60
|
+
"""
|
|
61
|
+
Get the prediction array from the database.
|
|
62
|
+
"""
|
|
63
|
+
if self.prediction_array is None:
|
|
64
|
+
return None
|
|
65
|
+
else:
|
|
66
|
+
return pickle.loads(self.prediction_array)
|
|
67
|
+
|
|
68
|
+
def calculate_prediction_array(self):
|
|
69
|
+
assert 1 == 2, "This method should be overridden in derived classes"
|
|
70
|
+
|
|
71
|
+
def apply_running_mean(self, confidence_array, window_size_in_seconds: int = None):
|
|
72
|
+
"""
|
|
73
|
+
Apply a running mean filter to the confidence array for smoothing, assuming a padding
|
|
74
|
+
of 0.5 for the edges.
|
|
75
|
+
|
|
76
|
+
Args:
|
|
77
|
+
self: Object that has video and fps attributes, and to which this function belongs.
|
|
78
|
+
confidence_array: A 2D numpy array with dimensions (num_frames),
|
|
79
|
+
containing confidence scores for each label at each frame.
|
|
80
|
+
window_size_in_seconds: The window size for the running mean in seconds.
|
|
81
|
+
|
|
82
|
+
Returns:
|
|
83
|
+
running_mean_array: A 2D numpy array with the same dimensions as confidence_array,
|
|
84
|
+
containing the smoothed confidence scores.
|
|
85
|
+
"""
|
|
86
|
+
video = self.video
|
|
87
|
+
fps = video.fps
|
|
88
|
+
|
|
89
|
+
if not window_size_in_seconds:
|
|
90
|
+
window_size_in_seconds = DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN
|
|
91
|
+
|
|
92
|
+
# Calculate window size in frames, ensuring at least one frame
|
|
93
|
+
window_size_in_frames = int(window_size_in_seconds * fps)
|
|
94
|
+
window_size_in_frames = max(window_size_in_frames, 1)
|
|
95
|
+
|
|
96
|
+
# Define the window for the running mean
|
|
97
|
+
window = np.ones(window_size_in_frames) / window_size_in_frames
|
|
98
|
+
|
|
99
|
+
# Create running mean array with the same shape as the confidence array
|
|
100
|
+
running_mean_array = np.zeros(confidence_array.shape)
|
|
101
|
+
|
|
102
|
+
# Calculate the padding size
|
|
103
|
+
pad_size = window_size_in_frames // 2
|
|
104
|
+
|
|
105
|
+
# Pad the array with 0.5 on both sides
|
|
106
|
+
padded_confidences = np.pad(confidence_array, (pad_size, pad_size), 'constant', constant_values=(0.5, 0.5))
|
|
107
|
+
|
|
108
|
+
# Apply the running mean filter on the padded array
|
|
109
|
+
running_mean = np.convolve(padded_confidences, window, mode='same')
|
|
110
|
+
|
|
111
|
+
# Remove the padding from the result to match the original shape
|
|
112
|
+
running_mean = running_mean[pad_size:-pad_size]
|
|
113
|
+
|
|
114
|
+
return running_mean
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
def create_video_segments_for_label(self, segments, label):
|
|
118
|
+
"""
|
|
119
|
+
Creates video segments for the given label and segments.
|
|
120
|
+
Segments is a list of tuples (start_frame_number, end_frame_number).
|
|
121
|
+
Labels is a Label object.
|
|
122
|
+
"""
|
|
123
|
+
video = self.video
|
|
124
|
+
video_segment_model = self.get_video_segment_model()
|
|
125
|
+
information_source = get_prediction_information_source()
|
|
126
|
+
|
|
127
|
+
for segment in segments:
|
|
128
|
+
start_frame_number, end_frame_number = segment
|
|
129
|
+
|
|
130
|
+
video_segment = video_segment_model(
|
|
131
|
+
video=video,
|
|
132
|
+
prediction_meta=self,
|
|
133
|
+
start_frame_number=start_frame_number,
|
|
134
|
+
end_frame_number=end_frame_number,
|
|
135
|
+
source=information_source,
|
|
136
|
+
label=label,
|
|
137
|
+
)
|
|
138
|
+
video_segment.save()
|
|
139
|
+
|
|
140
|
+
def create_video_segments(self, segment_length_threshold_in_s:float=None):
|
|
141
|
+
if not segment_length_threshold_in_s:
|
|
142
|
+
segment_length_threshold_in_s = DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S
|
|
143
|
+
|
|
144
|
+
video = self.video
|
|
145
|
+
fps = video.fps
|
|
146
|
+
min_frame_length = int(segment_length_threshold_in_s * fps)
|
|
147
|
+
|
|
148
|
+
label_list = self.get_label_list()
|
|
149
|
+
|
|
150
|
+
# if prediction array doesnt exist, create it
|
|
151
|
+
if self.prediction_array is None:
|
|
152
|
+
self.calculate_prediction_array()
|
|
153
|
+
|
|
154
|
+
prediction_array = self.get_prediction_array()
|
|
155
|
+
|
|
156
|
+
for i, label in enumerate(label_list):
|
|
157
|
+
# get predictions for this label
|
|
158
|
+
predictions = prediction_array[:, i]
|
|
159
|
+
# find segments of predictions that are longer than the threshold
|
|
160
|
+
# segments is a list of tuples (start_frame_number, end_frame_number)
|
|
161
|
+
segments = find_segments_in_prediction_array(predictions, min_frame_length)
|
|
162
|
+
|
|
163
|
+
# create video segments
|
|
164
|
+
self.create_video_segments_for_label(segments, label)
|
|
165
|
+
|
|
166
|
+
import numpy as np
|
|
167
|
+
class VideoPredictionMeta(AbstractVideoPredictionMeta):
|
|
168
|
+
video = models.OneToOneField("Video", on_delete=models.CASCADE, related_name="video_prediction_meta")
|
|
169
|
+
|
|
170
|
+
def get_video_model(self):
|
|
171
|
+
return Video
|
|
172
|
+
|
|
173
|
+
def get_frame_model(self):
|
|
174
|
+
return Frame
|
|
175
|
+
|
|
176
|
+
def get_video_segment_model(self):
|
|
177
|
+
return LabelVideoSegment
|
|
178
|
+
|
|
179
|
+
def calculate_prediction_array(self, window_size_in_seconds:int=None):
|
|
180
|
+
"""
|
|
181
|
+
Fetches all predictions for this video, labelset, and model meta.
|
|
182
|
+
"""
|
|
183
|
+
video:Video = self.video
|
|
184
|
+
|
|
185
|
+
model_meta = self.model_meta
|
|
186
|
+
label_list = self.get_label_list()
|
|
187
|
+
|
|
188
|
+
prediction_array = np.zeros((video.get_frame_number, len(label_list)))
|
|
189
|
+
for i, label in enumerate(label_list):
|
|
190
|
+
# fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
|
|
191
|
+
predictions = ImageClassificationPrediction.objects.filter(label=label, frame__video=video, model_meta=model_meta).order_by('frame__frame_number')
|
|
192
|
+
confidences = np.array([prediction.confidence for prediction in predictions])
|
|
193
|
+
smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
|
|
194
|
+
# calculate binary predictions
|
|
195
|
+
binary_predictions = smooth_confidences > 0.5
|
|
196
|
+
# add to prediction array
|
|
197
|
+
prediction_array[:, i] = binary_predictions
|
|
198
|
+
|
|
199
|
+
# save prediction array
|
|
200
|
+
self.save_prediction_array(prediction_array)
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
class LegacyVideoPredictionMeta(AbstractVideoPredictionMeta):
|
|
204
|
+
video = models.OneToOneField("LegacyVideo", on_delete=models.CASCADE, related_name="video_prediction_meta")
|
|
205
|
+
|
|
206
|
+
def get_video_model(self):
|
|
207
|
+
return LegacyVideo
|
|
208
|
+
|
|
209
|
+
def get_frame_model(self):
|
|
210
|
+
return LegacyFrame
|
|
211
|
+
|
|
212
|
+
def get_video_segment_model(self):
|
|
213
|
+
return LegacyLabelVideoSegment
|
|
214
|
+
|
|
215
|
+
def calculate_prediction_array(self, window_size_in_seconds:int=None):
|
|
216
|
+
"""
|
|
217
|
+
Fetches all predictions for this video, labelset, and model meta.
|
|
218
|
+
"""
|
|
219
|
+
video:LegacyVideo = self.video
|
|
220
|
+
|
|
221
|
+
model_meta = self.model_meta
|
|
222
|
+
label_list = self.get_label_list()
|
|
223
|
+
|
|
224
|
+
prediction_array = np.zeros((video.get_frame_number, len(label_list)))
|
|
225
|
+
for i, label in enumerate(label_list):
|
|
226
|
+
# fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
|
|
227
|
+
predictions = ImageClassificationPrediction.objects.filter(label=label, legacy_frame__video=video, model_meta=model_meta).order_by('legacy_frame__frame_number')
|
|
228
|
+
confidences = np.array([prediction.confidence for prediction in predictions])
|
|
229
|
+
smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
|
|
230
|
+
# calculate binary predictions
|
|
231
|
+
binary_predictions = smooth_confidences > 0.5
|
|
232
|
+
# add to prediction array
|
|
233
|
+
prediction_array[:, i] = binary_predictions
|
|
234
|
+
|
|
235
|
+
# save prediction array
|
|
236
|
+
self.save_prediction_array(prediction_array)
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
|
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
from .product import Product
|
|
2
|
-
from .product_material import ProductMaterial
|
|
3
|
-
from .product_group import ProductGroup
|
|
4
|
-
from .reference_product import ReferenceProduct
|
|
1
|
+
from .product import Product
|
|
2
|
+
from .product_material import ProductMaterial
|
|
3
|
+
from .product_group import ProductGroup
|
|
4
|
+
from .reference_product import ReferenceProduct
|
|
5
5
|
from .product_weight import ProductWeight
|