brainstate 0.1.7__py2.py3-none-any.whl → 0.1.9__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -146
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +509 -470
  58. brainstate/nn/_delay_test.py +238 -0
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1361
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1120
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -208
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/METADATA +91 -99
  127. brainstate-0.1.9.dist-info/RECORD +130 -0
  128. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.7.dist-info/RECORD +0 -131
  133. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,50 +1,50 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from __future__ import annotations
17
-
18
- import unittest
19
-
20
- import jax.numpy as jnp
21
-
22
- import brainstate
23
-
24
-
25
- class TestMultiStepLR(unittest.TestCase):
26
- def test1(self):
27
- lr = brainstate.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1)
28
- for i in range(40):
29
- r = lr(i)
30
- if i < 10:
31
- self.assertEqual(r, 0.1)
32
- elif i < 20:
33
- self.assertTrue(jnp.allclose(r, 0.01))
34
- elif i < 30:
35
- self.assertTrue(jnp.allclose(r, 0.001))
36
- else:
37
- self.assertTrue(jnp.allclose(r, 0.0001))
38
-
39
- def test2(self):
40
- lr = brainstate.compile.jit(brainstate.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1))
41
- for i in range(40):
42
- r = lr(i)
43
- if i < 10:
44
- self.assertEqual(r, 0.1)
45
- elif i < 20:
46
- self.assertTrue(jnp.allclose(r, 0.01))
47
- elif i < 30:
48
- self.assertTrue(jnp.allclose(r, 0.001))
49
- else:
50
- self.assertTrue(jnp.allclose(r, 0.0001))
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from __future__ import annotations
17
+
18
+ import unittest
19
+
20
+ import jax.numpy as jnp
21
+
22
+ import brainstate
23
+
24
+
25
+ class TestMultiStepLR(unittest.TestCase):
26
+ def test1(self):
27
+ lr = brainstate.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1)
28
+ for i in range(40):
29
+ r = lr(i)
30
+ if i < 10:
31
+ self.assertEqual(r, 0.1)
32
+ elif i < 20:
33
+ self.assertTrue(jnp.allclose(r, 0.01))
34
+ elif i < 30:
35
+ self.assertTrue(jnp.allclose(r, 0.001))
36
+ else:
37
+ self.assertTrue(jnp.allclose(r, 0.0001))
38
+
39
+ def test2(self):
40
+ lr = brainstate.compile.jit(brainstate.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1))
41
+ for i in range(40):
42
+ r = lr(i)
43
+ if i < 10:
44
+ self.assertEqual(r, 0.1)
45
+ elif i < 20:
46
+ self.assertTrue(jnp.allclose(r, 0.01))
47
+ elif i < 30:
48
+ self.assertTrue(jnp.allclose(r, 0.001))
49
+ else:
50
+ self.assertTrue(jnp.allclose(r, 0.0001))
@@ -1,152 +1,152 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import importlib.util
18
- from typing import Hashable, Dict, Optional
19
-
20
- from brainstate._state import ShortTermState, State, StateDictManager
21
- from brainstate.typing import PyTree
22
- from ._base import Optimizer
23
-
24
- optax_installed = importlib.util.find_spec('optax') is not None
25
-
26
- __all__ = [
27
- 'OptaxOptimizer',
28
- 'LBFGS',
29
- ]
30
-
31
-
32
- class OptaxOptimizer(Optimizer):
33
- """Simple train state for the common case with a single Optax optimizer.
34
-
35
- Example usage::
36
-
37
- >>> import jax
38
- >>> import jax.numpy as jnp
39
- >>> import brainstate as brainstate
40
- >>> import optax
41
- ...
42
- >>> class Model(brainstate.nn.Module):
43
- ... def __init__(self):
44
- ... super().__init__()
45
- ... self.linear1 = brainstate.nn.Linear(2, 3)
46
- ... self.linear2 = brainstate.nn.Linear(3, 4)
47
- ... def __call__(self, x):
48
- ... return self.linear2(self.linear1(x))
49
- ...
50
- >>> x = brainstate.random.randn(1, 2)
51
- >>> y = jnp.ones((1, 4))
52
- ...
53
- >>> model = Model()
54
- >>> tx = optax.adam(1e-3)
55
- >>> optimizer = brainstate.optim.OptaxOptimizer(tx)
56
- >>> optimizer.register_trainable_weights(model.states(brainstate.ParamState))
57
- ...
58
- >>> loss_fn = lambda: ((model(x) - y) ** 2).mean()
59
- >>> loss_fn()
60
- Array(1.7055722, dtype=float32)
61
- >>> grads = brainstate.augment.grad(loss_fn, model.states(brainstate.ParamState))()
62
- >>> optimizer.update(grads)
63
- >>> loss_fn()
64
- Array(1.6925814, dtype=float32)
65
-
66
- For more exotic usecases (e.g. multiple optimizers) it's probably best to
67
- fork the class and modify it.
68
-
69
- Attributes:
70
- param_states: The parameter states to update.
71
- tx: An Optax gradient transformation.
72
- """
73
-
74
- param_states: StateDictManager
75
- opt_state: Optional[ShortTermState]
76
-
77
- def __init__(
78
- self,
79
- tx: 'optax.GradientTransformation',
80
- ):
81
- """
82
- Instantiate the class and wrap the :class:`FlattedDict` and Optax gradient
83
- transformation. Instantiate the optimizer state to keep track of
84
- :class:`State`.
85
-
86
- Args:
87
- tx: An Optax gradient transformation.
88
- """
89
- super().__init__()
90
-
91
- # tx must be an instance of optax.GradientTransformation
92
- import optax # type: ignore[import-not-found,import-untyped]
93
- if not isinstance(tx, optax.GradientTransformation):
94
- raise TypeError(f"tx must be an instance of optax.GradientTransformation, got {tx}")
95
- self.tx = tx
96
-
97
- # optimizer state
98
- self.opt_state = None
99
-
100
- def register_trainable_weights(self, param_states: Dict[Hashable, State]):
101
- # model
102
- if not isinstance(param_states, dict):
103
- raise TypeError(f"states must be a dict, got {param_states}")
104
- for k, v in param_states.items():
105
- if not isinstance(v, State):
106
- raise TypeError(f"states values must be ParamState, got {v}")
107
- self.param_states.update(param_states)
108
- self.param_states.unique_()
109
-
110
- # wrt
111
- self.opt_state = ShortTermState(self.tx.init({k: v.value for k, v in self.param_states.items()}))
112
- return self
113
-
114
- def update(self, grads: Dict[Hashable, PyTree]):
115
- """Update the model states with the gradients.
116
-
117
- Args:
118
- grads: the gradients derived from ``brainstate.augment.grad``.
119
- """
120
- if self.opt_state is None:
121
- raise ValueError("register_trainable_weights must be called before update.")
122
-
123
- import optax # type: ignore[import-not-found,import-untyped]
124
- grads = {k: grads[k] for k in self.param_states.keys()}
125
- states = {k: v.value for k, v in self.param_states.items()}
126
-
127
- # compute updates
128
- updates, new_opt_state = self.tx.update(grads, self.opt_state.value, states)
129
- new_params = optax.apply_updates(states, updates)
130
-
131
- # update model states and optimizer states
132
- for k, v in self.param_states.items():
133
- v.value = new_params[k]
134
- self.opt_state.value = new_opt_state
135
-
136
-
137
- class LBFGS(OptaxOptimizer):
138
- def __init__(
139
- self,
140
- lr: float,
141
- memory_size: int = 10,
142
- scale_init_precond: bool = True,
143
- ):
144
- import optax # type: ignore[import-not-found,import-untyped]
145
- super().__init__(
146
- optax.lbfgs(
147
- lr,
148
- memory_size=memory_size,
149
- scale_init_precond=scale_init_precond,
150
- linesearch=None,
151
- )
152
- )
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import importlib.util
18
+ from typing import Hashable, Dict, Optional
19
+
20
+ from brainstate._state import ShortTermState, State, StateDictManager
21
+ from brainstate.typing import PyTree
22
+ from ._base import Optimizer
23
+
24
+ optax_installed = importlib.util.find_spec('optax') is not None
25
+
26
+ __all__ = [
27
+ 'OptaxOptimizer',
28
+ 'LBFGS',
29
+ ]
30
+
31
+
32
+ class OptaxOptimizer(Optimizer):
33
+ """Simple train state for the common case with a single Optax optimizer.
34
+
35
+ Example usage::
36
+
37
+ >>> import jax
38
+ >>> import jax.numpy as jnp
39
+ >>> import brainstate as brainstate
40
+ >>> import optax
41
+ ...
42
+ >>> class Model(brainstate.nn.Module):
43
+ ... def __init__(self):
44
+ ... super().__init__()
45
+ ... self.linear1 = brainstate.nn.Linear(2, 3)
46
+ ... self.linear2 = brainstate.nn.Linear(3, 4)
47
+ ... def __call__(self, x):
48
+ ... return self.linear2(self.linear1(x))
49
+ ...
50
+ >>> x = brainstate.random.randn(1, 2)
51
+ >>> y = jnp.ones((1, 4))
52
+ ...
53
+ >>> model = Model()
54
+ >>> tx = optax.adam(1e-3)
55
+ >>> optimizer = brainstate.optim.OptaxOptimizer(tx)
56
+ >>> optimizer.register_trainable_weights(model.states(brainstate.ParamState))
57
+ ...
58
+ >>> loss_fn = lambda: ((model(x) - y) ** 2).mean()
59
+ >>> loss_fn()
60
+ Array(1.7055722, dtype=float32)
61
+ >>> grads = brainstate.augment.grad(loss_fn, model.states(brainstate.ParamState))()
62
+ >>> optimizer.update(grads)
63
+ >>> loss_fn()
64
+ Array(1.6925814, dtype=float32)
65
+
66
+ For more exotic usecases (e.g. multiple optimizers) it's probably best to
67
+ fork the class and modify it.
68
+
69
+ Attributes:
70
+ param_states: The parameter states to update.
71
+ tx: An Optax gradient transformation.
72
+ """
73
+
74
+ param_states: StateDictManager
75
+ opt_state: Optional[ShortTermState]
76
+
77
+ def __init__(
78
+ self,
79
+ tx: 'optax.GradientTransformation',
80
+ ):
81
+ """
82
+ Instantiate the class and wrap the :class:`FlattedDict` and Optax gradient
83
+ transformation. Instantiate the optimizer state to keep track of
84
+ :class:`State`.
85
+
86
+ Args:
87
+ tx: An Optax gradient transformation.
88
+ """
89
+ super().__init__()
90
+
91
+ # tx must be an instance of optax.GradientTransformation
92
+ import optax # type: ignore[import-not-found,import-untyped]
93
+ if not isinstance(tx, optax.GradientTransformation):
94
+ raise TypeError(f"tx must be an instance of optax.GradientTransformation, got {tx}")
95
+ self.tx = tx
96
+
97
+ # optimizer state
98
+ self.opt_state = None
99
+
100
+ def register_trainable_weights(self, param_states: Dict[Hashable, State]):
101
+ # model
102
+ if not isinstance(param_states, dict):
103
+ raise TypeError(f"states must be a dict, got {param_states}")
104
+ for k, v in param_states.items():
105
+ if not isinstance(v, State):
106
+ raise TypeError(f"states values must be ParamState, got {v}")
107
+ self.param_states.update(param_states)
108
+ self.param_states.unique_()
109
+
110
+ # wrt
111
+ self.opt_state = ShortTermState(self.tx.init({k: v.value for k, v in self.param_states.items()}))
112
+ return self
113
+
114
+ def update(self, grads: Dict[Hashable, PyTree]):
115
+ """Update the model states with the gradients.
116
+
117
+ Args:
118
+ grads: the gradients derived from ``brainstate.augment.grad``.
119
+ """
120
+ if self.opt_state is None:
121
+ raise ValueError("register_trainable_weights must be called before update.")
122
+
123
+ import optax # type: ignore[import-not-found,import-untyped]
124
+ grads = {k: grads[k] for k in self.param_states.keys()}
125
+ states = {k: v.value for k, v in self.param_states.items()}
126
+
127
+ # compute updates
128
+ updates, new_opt_state = self.tx.update(grads, self.opt_state.value, states)
129
+ new_params = optax.apply_updates(states, updates)
130
+
131
+ # update model states and optimizer states
132
+ for k, v in self.param_states.items():
133
+ v.value = new_params[k]
134
+ self.opt_state.value = new_opt_state
135
+
136
+
137
+ class LBFGS(OptaxOptimizer):
138
+ def __init__(
139
+ self,
140
+ lr: float,
141
+ memory_size: int = 10,
142
+ scale_init_precond: bool = True,
143
+ ):
144
+ import optax # type: ignore[import-not-found,import-untyped]
145
+ super().__init__(
146
+ optax.lbfgs(
147
+ lr,
148
+ memory_size=memory_size,
149
+ scale_init_precond=scale_init_precond,
150
+ linesearch=None,
151
+ )
152
+ )
@@ -1,53 +1,53 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import unittest
18
-
19
- import jax
20
- import optax
21
-
22
- import brainstate
23
-
24
-
25
- class TestOptaxOptimizer(unittest.TestCase):
26
- def test1(self):
27
- class Model(brainstate.nn.Module):
28
- def __init__(self):
29
- super().__init__()
30
- self.linear1 = brainstate.nn.Linear(2, 3)
31
- self.linear2 = brainstate.nn.Linear(3, 4)
32
-
33
- def __call__(self, x):
34
- return self.linear2(self.linear1(x))
35
-
36
- x = brainstate.random.randn(1, 2)
37
- y = jax.numpy.ones((1, 4))
38
-
39
- model = Model()
40
- tx = optax.adam(1e-3)
41
- optimizer = brainstate.optim.OptaxOptimizer(tx)
42
- optimizer.register_trainable_weights(model.states(brainstate.ParamState))
43
-
44
- loss_fn = lambda: ((model(x) - y) ** 2).mean()
45
- prev_loss = loss_fn()
46
-
47
- grads = brainstate.augment.grad(loss_fn, model.states(brainstate.ParamState))()
48
- optimizer.update(grads)
49
-
50
- new_loss = loss_fn()
51
-
52
- print(new_loss, prev_loss)
53
- self.assertLess(new_loss, prev_loss)
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import unittest
18
+
19
+ import jax
20
+ import optax
21
+
22
+ import brainstate
23
+
24
+
25
+ class TestOptaxOptimizer(unittest.TestCase):
26
+ def test1(self):
27
+ class Model(brainstate.nn.Module):
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.linear1 = brainstate.nn.Linear(2, 3)
31
+ self.linear2 = brainstate.nn.Linear(3, 4)
32
+
33
+ def __call__(self, x):
34
+ return self.linear2(self.linear1(x))
35
+
36
+ x = brainstate.random.randn(1, 2)
37
+ y = jax.numpy.ones((1, 4))
38
+
39
+ model = Model()
40
+ tx = optax.adam(1e-3)
41
+ optimizer = brainstate.optim.OptaxOptimizer(tx)
42
+ optimizer.register_trainable_weights(model.states(brainstate.ParamState))
43
+
44
+ loss_fn = lambda: ((model(x) - y) ** 2).mean()
45
+ prev_loss = loss_fn()
46
+
47
+ grads = brainstate.augment.grad(loss_fn, model.states(brainstate.ParamState))()
48
+ optimizer.update(grads)
49
+
50
+ new_loss = loss_fn()
51
+
52
+ print(new_loss, prev_loss)
53
+ self.assertLess(new_loss, prev_loss)