brainstate 0.1.7__py2.py3-none-any.whl → 0.1.9__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -146
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +509 -470
  58. brainstate/nn/_delay_test.py +238 -0
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1361
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1120
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -208
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/METADATA +91 -99
  127. brainstate-0.1.9.dist-info/RECORD +130 -0
  128. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.7.dist-info/RECORD +0 -131
  133. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,238 +1,238 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import jax.numpy as jnp
4
- import pytest
5
- from absl.testing import absltest
6
- from absl.testing import parameterized
7
-
8
- import brainstate
9
-
10
-
11
- class TestConv(parameterized.TestCase):
12
- def test_Conv2D_img(self):
13
- img = jnp.zeros((2, 200, 198, 4))
14
- for k in range(4):
15
- x = 30 + 60 * k
16
- y = 20 + 60 * k
17
- img = img.at[0, x:x + 10, y:y + 10, k].set(1.0)
18
- img = img.at[1, x:x + 20, y:y + 20, k].set(3.0)
19
-
20
- net = brainstate.nn.Conv2d((200, 198, 4), out_channels=32, kernel_size=(3, 3),
21
- stride=(2, 1), padding='VALID', groups=4)
22
- out = net(img)
23
- print("out shape: ", out.shape)
24
- self.assertEqual(out.shape, (2, 99, 196, 32))
25
- # print("First output channel:")
26
- # plt.figure(figsize=(10, 10))
27
- # plt.imshow(np.array(img)[0, :, :, 0])
28
- # plt.show()
29
-
30
- def test_conv1D(self):
31
- model = brainstate.nn.Conv1d((5, 3), out_channels=32, kernel_size=(3,))
32
- input = jnp.ones((2, 5, 3))
33
- out = model(input)
34
- print("out shape: ", out.shape)
35
- self.assertEqual(out.shape, (2, 5, 32))
36
- # print("First output channel:")
37
- # plt.figure(figsize=(10, 10))
38
- # plt.imshow(np.array(out)[0, :, :])
39
- # plt.show()
40
-
41
- def test_conv2D(self):
42
- model = brainstate.nn.Conv2d((5, 5, 3), out_channels=32, kernel_size=(3, 3))
43
- input = jnp.ones((2, 5, 5, 3))
44
-
45
- out = model(input)
46
- print("out shape: ", out.shape)
47
- self.assertEqual(out.shape, (2, 5, 5, 32))
48
-
49
- def test_conv3D(self):
50
- model = brainstate.nn.Conv3d((5, 5, 5, 3), out_channels=32, kernel_size=(3, 3, 3))
51
- input = jnp.ones((2, 5, 5, 5, 3))
52
- out = model(input)
53
- print("out shape: ", out.shape)
54
- self.assertEqual(out.shape, (2, 5, 5, 5, 32))
55
-
56
-
57
- @pytest.mark.skip(reason="not implemented yet")
58
- class TestConvTranspose1d(parameterized.TestCase):
59
- def test_conv_transpose(self):
60
-
61
- x = jnp.ones((1, 8, 3))
62
- for use_bias in [True, False]:
63
- conv_transpose_module = brainstate.nn.ConvTranspose1d(
64
- in_channels=3,
65
- out_channels=4,
66
- kernel_size=(3,),
67
- padding='VALID',
68
- w_initializer=brainstate.init.Constant(1.),
69
- b_initializer=brainstate.init.Constant(1.) if use_bias else None,
70
- )
71
- self.assertEqual(conv_transpose_module.w.shape, (3, 3, 4))
72
- y = conv_transpose_module(x)
73
- print(y.shape)
74
- correct_ans = jnp.array([[[4., 4., 4., 4.],
75
- [7., 7., 7., 7.],
76
- [10., 10., 10., 10.],
77
- [10., 10., 10., 10.],
78
- [10., 10., 10., 10.],
79
- [10., 10., 10., 10.],
80
- [10., 10., 10., 10.],
81
- [10., 10., 10., 10.],
82
- [7., 7., 7., 7.],
83
- [4., 4., 4., 4.]]])
84
- if not use_bias:
85
- correct_ans -= 1.
86
- self.assertTrue(jnp.allclose(y, correct_ans))
87
-
88
- def test_single_input_masked_conv_transpose(self):
89
-
90
- x = jnp.ones((1, 8, 3))
91
- m = jnp.tril(jnp.ones((3, 3, 4)))
92
- conv_transpose_module = brainstate.nn.ConvTranspose1d(
93
- in_channels=3,
94
- out_channels=4,
95
- kernel_size=(3,),
96
- padding='VALID',
97
- mask=m,
98
- w_initializer=brainstate.init.Constant(),
99
- b_initializer=brainstate.init.Constant(),
100
- )
101
- self.assertEqual(conv_transpose_module.w.shape, (3, 3, 4))
102
- y = conv_transpose_module(x)
103
- print(y.shape)
104
- correct_ans = jnp.array([[[4., 3., 2., 1.],
105
- [7., 5., 3., 1.],
106
- [10., 7., 4., 1.],
107
- [10., 7., 4., 1.],
108
- [10., 7., 4., 1.],
109
- [10., 7., 4., 1.],
110
- [10., 7., 4., 1.],
111
- [10., 7., 4., 1.],
112
- [7., 5., 3., 1.],
113
- [4., 3., 2., 1.]]])
114
- self.assertTrue(jnp.allclose(y, correct_ans))
115
-
116
- def test_computation_padding_same(self):
117
-
118
- data = jnp.ones([1, 3, 1])
119
- for use_bias in [True, False]:
120
- net = brainstate.nn.ConvTranspose1d(
121
- in_channels=1,
122
- out_channels=1,
123
- kernel_size=3,
124
- stride=1,
125
- padding="SAME",
126
- w_initializer=brainstate.init.Constant(),
127
- b_initializer=brainstate.init.Constant() if use_bias else None,
128
- )
129
- out = net(data)
130
- self.assertEqual(out.shape, (1, 3, 1))
131
- out = jnp.squeeze(out, axis=(0, 2))
132
- expected_out = jnp.asarray([2, 3, 2])
133
- if use_bias:
134
- expected_out += 1
135
- self.assertTrue(jnp.allclose(out, expected_out, rtol=1e-5))
136
-
137
-
138
- @pytest.mark.skip(reason="not implemented yet")
139
- class TestConvTranspose2d(parameterized.TestCase):
140
- def test_conv_transpose(self):
141
-
142
- x = jnp.ones((1, 8, 8, 3))
143
- for use_bias in [True, False]:
144
- conv_transpose_module = brainstate.nn.ConvTranspose2d(
145
- in_channels=3,
146
- out_channels=4,
147
- kernel_size=(3, 3),
148
- padding='VALID',
149
- w_initializer=brainstate.init.Constant(),
150
- b_initializer=brainstate.init.Constant() if use_bias else None,
151
- )
152
- self.assertEqual(conv_transpose_module.w.shape, (3, 3, 3, 4))
153
- y = conv_transpose_module(x)
154
- print(y.shape)
155
-
156
- def test_single_input_masked_conv_transpose(self):
157
-
158
- x = jnp.ones((1, 8, 8, 3))
159
- m = jnp.tril(jnp.ones((3, 3, 3, 4)))
160
- conv_transpose_module = brainstate.nn.ConvTranspose2d(
161
- in_channels=3,
162
- out_channels=4,
163
- kernel_size=(3, 3),
164
- padding='VALID',
165
- mask=m,
166
- w_initializer=brainstate.init.Constant(),
167
- )
168
- y = conv_transpose_module(x)
169
- print(y.shape)
170
-
171
- def test_computation_padding_same(self):
172
-
173
- x = jnp.ones((1, 8, 8, 3))
174
- for use_bias in [True, False]:
175
- conv_transpose_module = brainstate.nn.ConvTranspose2d(
176
- in_channels=3,
177
- out_channels=4,
178
- kernel_size=(3, 3),
179
- stride=1,
180
- padding='SAME',
181
- w_initializer=brainstate.init.Constant(),
182
- b_initializer=brainstate.init.Constant() if use_bias else None,
183
- )
184
- y = conv_transpose_module(x)
185
- print(y.shape)
186
-
187
-
188
- @pytest.mark.skip(reason="not implemented yet")
189
- class TestConvTranspose3d(parameterized.TestCase):
190
- def test_conv_transpose(self):
191
-
192
- x = jnp.ones((1, 8, 8, 8, 3))
193
- for use_bias in [True, False]:
194
- conv_transpose_module = brainstate.nn.ConvTranspose3d(
195
- in_channels=3,
196
- out_channels=4,
197
- kernel_size=(3, 3, 3),
198
- padding='VALID',
199
- w_initializer=brainstate.init.Constant(),
200
- b_initializer=brainstate.init.Constant() if use_bias else None,
201
- )
202
- y = conv_transpose_module(x)
203
- print(y.shape)
204
-
205
- def test_single_input_masked_conv_transpose(self):
206
-
207
- x = jnp.ones((1, 8, 8, 8, 3))
208
- m = jnp.tril(jnp.ones((3, 3, 3, 3, 4)))
209
- conv_transpose_module = brainstate.nn.ConvTranspose3d(
210
- in_channels=3,
211
- out_channels=4,
212
- kernel_size=(3, 3, 3),
213
- padding='VALID',
214
- mask=m,
215
- w_initializer=brainstate.init.Constant(),
216
- )
217
- y = conv_transpose_module(x)
218
- print(y.shape)
219
-
220
- def test_computation_padding_same(self):
221
-
222
- x = jnp.ones((1, 8, 8, 8, 3))
223
- for use_bias in [True, False]:
224
- conv_transpose_module = brainstate.nn.ConvTranspose3d(
225
- in_channels=3,
226
- out_channels=4,
227
- kernel_size=(3, 3, 3),
228
- stride=1,
229
- padding='SAME',
230
- w_initializer=brainstate.init.Constant(),
231
- b_initializer=brainstate.init.Constant() if use_bias else None,
232
- )
233
- y = conv_transpose_module(x)
234
- print(y.shape)
235
-
236
-
237
- if __name__ == '__main__':
238
- absltest.main()
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import jax.numpy as jnp
4
+ import pytest
5
+ from absl.testing import absltest
6
+ from absl.testing import parameterized
7
+
8
+ import brainstate
9
+
10
+
11
+ class TestConv(parameterized.TestCase):
12
+ def test_Conv2D_img(self):
13
+ img = jnp.zeros((2, 200, 198, 4))
14
+ for k in range(4):
15
+ x = 30 + 60 * k
16
+ y = 20 + 60 * k
17
+ img = img.at[0, x:x + 10, y:y + 10, k].set(1.0)
18
+ img = img.at[1, x:x + 20, y:y + 20, k].set(3.0)
19
+
20
+ net = brainstate.nn.Conv2d((200, 198, 4), out_channels=32, kernel_size=(3, 3),
21
+ stride=(2, 1), padding='VALID', groups=4)
22
+ out = net(img)
23
+ print("out shape: ", out.shape)
24
+ self.assertEqual(out.shape, (2, 99, 196, 32))
25
+ # print("First output channel:")
26
+ # plt.figure(figsize=(10, 10))
27
+ # plt.imshow(np.array(img)[0, :, :, 0])
28
+ # plt.show()
29
+
30
+ def test_conv1D(self):
31
+ model = brainstate.nn.Conv1d((5, 3), out_channels=32, kernel_size=(3,))
32
+ input = jnp.ones((2, 5, 3))
33
+ out = model(input)
34
+ print("out shape: ", out.shape)
35
+ self.assertEqual(out.shape, (2, 5, 32))
36
+ # print("First output channel:")
37
+ # plt.figure(figsize=(10, 10))
38
+ # plt.imshow(np.array(out)[0, :, :])
39
+ # plt.show()
40
+
41
+ def test_conv2D(self):
42
+ model = brainstate.nn.Conv2d((5, 5, 3), out_channels=32, kernel_size=(3, 3))
43
+ input = jnp.ones((2, 5, 5, 3))
44
+
45
+ out = model(input)
46
+ print("out shape: ", out.shape)
47
+ self.assertEqual(out.shape, (2, 5, 5, 32))
48
+
49
+ def test_conv3D(self):
50
+ model = brainstate.nn.Conv3d((5, 5, 5, 3), out_channels=32, kernel_size=(3, 3, 3))
51
+ input = jnp.ones((2, 5, 5, 5, 3))
52
+ out = model(input)
53
+ print("out shape: ", out.shape)
54
+ self.assertEqual(out.shape, (2, 5, 5, 5, 32))
55
+
56
+
57
+ @pytest.mark.skip(reason="not implemented yet")
58
+ class TestConvTranspose1d(parameterized.TestCase):
59
+ def test_conv_transpose(self):
60
+
61
+ x = jnp.ones((1, 8, 3))
62
+ for use_bias in [True, False]:
63
+ conv_transpose_module = brainstate.nn.ConvTranspose1d(
64
+ in_channels=3,
65
+ out_channels=4,
66
+ kernel_size=(3,),
67
+ padding='VALID',
68
+ w_initializer=brainstate.init.Constant(1.),
69
+ b_initializer=brainstate.init.Constant(1.) if use_bias else None,
70
+ )
71
+ self.assertEqual(conv_transpose_module.w.shape, (3, 3, 4))
72
+ y = conv_transpose_module(x)
73
+ print(y.shape)
74
+ correct_ans = jnp.array([[[4., 4., 4., 4.],
75
+ [7., 7., 7., 7.],
76
+ [10., 10., 10., 10.],
77
+ [10., 10., 10., 10.],
78
+ [10., 10., 10., 10.],
79
+ [10., 10., 10., 10.],
80
+ [10., 10., 10., 10.],
81
+ [10., 10., 10., 10.],
82
+ [7., 7., 7., 7.],
83
+ [4., 4., 4., 4.]]])
84
+ if not use_bias:
85
+ correct_ans -= 1.
86
+ self.assertTrue(jnp.allclose(y, correct_ans))
87
+
88
+ def test_single_input_masked_conv_transpose(self):
89
+
90
+ x = jnp.ones((1, 8, 3))
91
+ m = jnp.tril(jnp.ones((3, 3, 4)))
92
+ conv_transpose_module = brainstate.nn.ConvTranspose1d(
93
+ in_channels=3,
94
+ out_channels=4,
95
+ kernel_size=(3,),
96
+ padding='VALID',
97
+ mask=m,
98
+ w_initializer=brainstate.init.Constant(),
99
+ b_initializer=brainstate.init.Constant(),
100
+ )
101
+ self.assertEqual(conv_transpose_module.w.shape, (3, 3, 4))
102
+ y = conv_transpose_module(x)
103
+ print(y.shape)
104
+ correct_ans = jnp.array([[[4., 3., 2., 1.],
105
+ [7., 5., 3., 1.],
106
+ [10., 7., 4., 1.],
107
+ [10., 7., 4., 1.],
108
+ [10., 7., 4., 1.],
109
+ [10., 7., 4., 1.],
110
+ [10., 7., 4., 1.],
111
+ [10., 7., 4., 1.],
112
+ [7., 5., 3., 1.],
113
+ [4., 3., 2., 1.]]])
114
+ self.assertTrue(jnp.allclose(y, correct_ans))
115
+
116
+ def test_computation_padding_same(self):
117
+
118
+ data = jnp.ones([1, 3, 1])
119
+ for use_bias in [True, False]:
120
+ net = brainstate.nn.ConvTranspose1d(
121
+ in_channels=1,
122
+ out_channels=1,
123
+ kernel_size=3,
124
+ stride=1,
125
+ padding="SAME",
126
+ w_initializer=brainstate.init.Constant(),
127
+ b_initializer=brainstate.init.Constant() if use_bias else None,
128
+ )
129
+ out = net(data)
130
+ self.assertEqual(out.shape, (1, 3, 1))
131
+ out = jnp.squeeze(out, axis=(0, 2))
132
+ expected_out = jnp.asarray([2, 3, 2])
133
+ if use_bias:
134
+ expected_out += 1
135
+ self.assertTrue(jnp.allclose(out, expected_out, rtol=1e-5))
136
+
137
+
138
+ @pytest.mark.skip(reason="not implemented yet")
139
+ class TestConvTranspose2d(parameterized.TestCase):
140
+ def test_conv_transpose(self):
141
+
142
+ x = jnp.ones((1, 8, 8, 3))
143
+ for use_bias in [True, False]:
144
+ conv_transpose_module = brainstate.nn.ConvTranspose2d(
145
+ in_channels=3,
146
+ out_channels=4,
147
+ kernel_size=(3, 3),
148
+ padding='VALID',
149
+ w_initializer=brainstate.init.Constant(),
150
+ b_initializer=brainstate.init.Constant() if use_bias else None,
151
+ )
152
+ self.assertEqual(conv_transpose_module.w.shape, (3, 3, 3, 4))
153
+ y = conv_transpose_module(x)
154
+ print(y.shape)
155
+
156
+ def test_single_input_masked_conv_transpose(self):
157
+
158
+ x = jnp.ones((1, 8, 8, 3))
159
+ m = jnp.tril(jnp.ones((3, 3, 3, 4)))
160
+ conv_transpose_module = brainstate.nn.ConvTranspose2d(
161
+ in_channels=3,
162
+ out_channels=4,
163
+ kernel_size=(3, 3),
164
+ padding='VALID',
165
+ mask=m,
166
+ w_initializer=brainstate.init.Constant(),
167
+ )
168
+ y = conv_transpose_module(x)
169
+ print(y.shape)
170
+
171
+ def test_computation_padding_same(self):
172
+
173
+ x = jnp.ones((1, 8, 8, 3))
174
+ for use_bias in [True, False]:
175
+ conv_transpose_module = brainstate.nn.ConvTranspose2d(
176
+ in_channels=3,
177
+ out_channels=4,
178
+ kernel_size=(3, 3),
179
+ stride=1,
180
+ padding='SAME',
181
+ w_initializer=brainstate.init.Constant(),
182
+ b_initializer=brainstate.init.Constant() if use_bias else None,
183
+ )
184
+ y = conv_transpose_module(x)
185
+ print(y.shape)
186
+
187
+
188
+ @pytest.mark.skip(reason="not implemented yet")
189
+ class TestConvTranspose3d(parameterized.TestCase):
190
+ def test_conv_transpose(self):
191
+
192
+ x = jnp.ones((1, 8, 8, 8, 3))
193
+ for use_bias in [True, False]:
194
+ conv_transpose_module = brainstate.nn.ConvTranspose3d(
195
+ in_channels=3,
196
+ out_channels=4,
197
+ kernel_size=(3, 3, 3),
198
+ padding='VALID',
199
+ w_initializer=brainstate.init.Constant(),
200
+ b_initializer=brainstate.init.Constant() if use_bias else None,
201
+ )
202
+ y = conv_transpose_module(x)
203
+ print(y.shape)
204
+
205
+ def test_single_input_masked_conv_transpose(self):
206
+
207
+ x = jnp.ones((1, 8, 8, 8, 3))
208
+ m = jnp.tril(jnp.ones((3, 3, 3, 3, 4)))
209
+ conv_transpose_module = brainstate.nn.ConvTranspose3d(
210
+ in_channels=3,
211
+ out_channels=4,
212
+ kernel_size=(3, 3, 3),
213
+ padding='VALID',
214
+ mask=m,
215
+ w_initializer=brainstate.init.Constant(),
216
+ )
217
+ y = conv_transpose_module(x)
218
+ print(y.shape)
219
+
220
+ def test_computation_padding_same(self):
221
+
222
+ x = jnp.ones((1, 8, 8, 8, 3))
223
+ for use_bias in [True, False]:
224
+ conv_transpose_module = brainstate.nn.ConvTranspose3d(
225
+ in_channels=3,
226
+ out_channels=4,
227
+ kernel_size=(3, 3, 3),
228
+ stride=1,
229
+ padding='SAME',
230
+ w_initializer=brainstate.init.Constant(),
231
+ b_initializer=brainstate.init.Constant() if use_bias else None,
232
+ )
233
+ y = conv_transpose_module(x)
234
+ print(y.shape)
235
+
236
+
237
+ if __name__ == '__main__':
238
+ absltest.main()