brainstate 0.1.7__py2.py3-none-any.whl → 0.1.9__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -146
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +509 -470
  58. brainstate/nn/_delay_test.py +238 -0
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1361
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1120
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -208
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/METADATA +91 -99
  127. brainstate-0.1.9.dist-info/RECORD +130 -0
  128. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.7.dist-info/RECORD +0 -131
  133. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,83 +1,83 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from typing import Union, Callable, Optional
17
-
18
- import brainunit as u
19
- import jax
20
-
21
- from brainstate import init
22
- import brainevent
23
- from brainstate._state import ParamState
24
- from brainstate.typing import Size, ArrayLike
25
- from ._module import Module
26
-
27
- __all__ = [
28
- 'EventLinear',
29
- ]
30
-
31
-
32
- class EventLinear(Module):
33
- """
34
-
35
- Parameters
36
- ----------
37
- in_size : Size
38
- Number of pre-synaptic neurons, i.e., input size.
39
- out_size : Size
40
- Number of post-synaptic neurons, i.e., output size.
41
- weight : float or callable or jax.Array or brainunit.Quantity
42
- Maximum synaptic conductance.
43
- block_size : int, optional
44
- Block size for parallel computation.
45
- float_as_event : bool, optional
46
- Whether to treat float as event.
47
- name : str, optional
48
- Name of the module.
49
- """
50
-
51
- __module__ = 'brainstate.nn'
52
-
53
- def __init__(
54
- self,
55
- in_size: Size,
56
- out_size: Size,
57
- weight: Union[Callable, ArrayLike],
58
- float_as_event: bool = True,
59
- block_size: int = 64,
60
- name: Optional[str] = None,
61
- param_type: type = ParamState,
62
- ):
63
- super().__init__(name=name)
64
-
65
- # network parameters
66
- self.in_size = in_size
67
- self.out_size = out_size
68
- self.float_as_event = float_as_event
69
- self.block_size = block_size
70
-
71
- # maximum synaptic conductance
72
- weight = init.param(weight, (self.in_size[-1], self.out_size[-1]), allow_none=False)
73
- self.weight = param_type(weight)
74
-
75
- def update(self, spk: jax.Array) -> Union[jax.Array, u.Quantity]:
76
- weight = self.weight.value
77
- if u.math.size(weight) == 1:
78
- return u.math.ones(self.out_size) * (u.math.sum(spk) * weight)
79
-
80
- if self.float_as_event:
81
- return brainevent.EventArray(spk) @ weight
82
- else:
83
- return spk @ weight
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Union, Callable, Optional
17
+
18
+ import brainevent
19
+ import brainunit as u
20
+ import jax
21
+
22
+ from brainstate import init
23
+ from brainstate._state import ParamState
24
+ from brainstate.typing import Size, ArrayLike
25
+ from ._module import Module
26
+
27
+ __all__ = [
28
+ 'EventLinear',
29
+ ]
30
+
31
+
32
+ class EventLinear(Module):
33
+ """
34
+
35
+ Parameters
36
+ ----------
37
+ in_size : Size
38
+ Number of pre-synaptic neurons, i.e., input size.
39
+ out_size : Size
40
+ Number of post-synaptic neurons, i.e., output size.
41
+ weight : float or callable or jax.Array or brainunit.Quantity
42
+ Maximum synaptic conductance.
43
+ block_size : int, optional
44
+ Block size for parallel computation.
45
+ float_as_event : bool, optional
46
+ Whether to treat float as event.
47
+ name : str, optional
48
+ Name of the module.
49
+ """
50
+
51
+ __module__ = 'brainstate.nn'
52
+
53
+ def __init__(
54
+ self,
55
+ in_size: Size,
56
+ out_size: Size,
57
+ weight: Union[Callable, ArrayLike],
58
+ float_as_event: bool = True,
59
+ block_size: int = 64,
60
+ name: Optional[str] = None,
61
+ param_type: type = ParamState,
62
+ ):
63
+ super().__init__(name=name)
64
+
65
+ # network parameters
66
+ self.in_size = in_size
67
+ self.out_size = out_size
68
+ self.float_as_event = float_as_event
69
+ self.block_size = block_size
70
+
71
+ # maximum synaptic conductance
72
+ weight = init.param(weight, (self.in_size[-1], self.out_size[-1]), allow_none=False)
73
+ self.weight = param_type(weight)
74
+
75
+ def update(self, spk: jax.Array) -> Union[jax.Array, u.Quantity]:
76
+ weight = self.weight.value
77
+ if u.math.size(weight) == 1:
78
+ return u.math.ones(self.out_size) * (u.math.sum(spk) * weight)
79
+
80
+ if self.float_as_event:
81
+ return brainevent.EventArray(spk) @ weight
82
+ else:
83
+ return spk @ weight
@@ -1,120 +1,120 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import jax
18
- import jax.numpy as jnp
19
- import pytest
20
-
21
- import brainstate
22
-
23
-
24
- class TestEventLinear:
25
- @pytest.mark.parametrize('bool_x', [True, False])
26
- @pytest.mark.parametrize('homo_w', [True, False])
27
- def test1(self, homo_w, bool_x):
28
- x = brainstate.random.rand(20) < 0.1
29
- if not bool_x:
30
- x = jnp.asarray(x, dtype=float)
31
- m = brainstate.nn.EventLinear(
32
- 20, 40,
33
- 1.5 if homo_w else brainstate.init.KaimingUniform(),
34
- float_as_event=bool_x
35
- )
36
- y = m(x)
37
- print(y)
38
-
39
- assert (jnp.allclose(y, (x.sum() * m.weight.value) if homo_w else (x @ m.weight.value)))
40
-
41
- def test_grad_bool(self):
42
- n_in = 20
43
- n_out = 30
44
- x = brainstate.random.rand(n_in) < 0.3
45
- fn = brainstate.nn.EventLinear(n_in, n_out, brainstate.init.KaimingUniform())
46
-
47
- with pytest.raises(TypeError):
48
- print(jax.grad(lambda x: fn(x).sum())(x))
49
-
50
- @pytest.mark.parametrize('bool_x', [True, False])
51
- @pytest.mark.parametrize('homo_w', [True, False])
52
- def test_vjp(self, bool_x, homo_w):
53
- n_in = 20
54
- n_out = 30
55
- if bool_x:
56
- x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
57
- else:
58
- x = brainstate.random.rand(n_in)
59
-
60
- fn = brainstate.nn.EventLinear(
61
- n_in,
62
- n_out,
63
- 1.5 if homo_w else brainstate.init.KaimingUniform(),
64
- float_as_event=bool_x
65
- )
66
- w = fn.weight.value
67
-
68
- def f(x, w):
69
- fn.weight.value = w
70
- return fn(x).sum()
71
-
72
- r1 = jax.grad(f, argnums=(0, 1))(x, w)
73
-
74
- # -------------------
75
- # TRUE gradients
76
-
77
- def f2(x, w):
78
- y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
79
- return y.sum()
80
-
81
- r2 = jax.grad(f2, argnums=(0, 1))(x, w)
82
- assert (jnp.allclose(r1[0], r2[0]))
83
-
84
- if not jnp.allclose(r1[1], r2[1]):
85
- print(r1[1] - r2[1])
86
-
87
- assert (jnp.allclose(r1[1], r2[1]))
88
-
89
- @pytest.mark.parametrize('bool_x', [True, False])
90
- @pytest.mark.parametrize('homo_w', [True, False])
91
- def test_jvp(self, bool_x, homo_w):
92
- n_in = 20
93
- n_out = 30
94
- if bool_x:
95
- x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
96
- else:
97
- x = brainstate.random.rand(n_in)
98
-
99
- fn = brainstate.nn.EventLinear(
100
- n_in, n_out, 1.5 if homo_w else brainstate.init.KaimingUniform(),
101
- float_as_event=bool_x
102
- )
103
- w = fn.weight.value
104
-
105
- def f(x, w):
106
- fn.weight.value = w
107
- return fn(x)
108
-
109
- o1, r1 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
110
-
111
- # -------------------
112
- # TRUE gradients
113
-
114
- def f2(x, w):
115
- y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
116
- return y
117
-
118
- o2, r2 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
119
- assert (jnp.allclose(o1, o2))
120
- assert (jnp.allclose(r1, r2))
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import jax
18
+ import jax.numpy as jnp
19
+ import pytest
20
+
21
+ import brainstate
22
+
23
+
24
+ class TestEventLinear:
25
+ @pytest.mark.parametrize('bool_x', [True, False])
26
+ @pytest.mark.parametrize('homo_w', [True, False])
27
+ def test1(self, homo_w, bool_x):
28
+ x = brainstate.random.rand(20) < 0.1
29
+ if not bool_x:
30
+ x = jnp.asarray(x, dtype=float)
31
+ m = brainstate.nn.EventLinear(
32
+ 20, 40,
33
+ 1.5 if homo_w else brainstate.init.KaimingUniform(),
34
+ float_as_event=bool_x
35
+ )
36
+ y = m(x)
37
+ print(y)
38
+
39
+ assert (jnp.allclose(y, (x.sum() * m.weight.value) if homo_w else (x @ m.weight.value)))
40
+
41
+ def test_grad_bool(self):
42
+ n_in = 20
43
+ n_out = 30
44
+ x = brainstate.random.rand(n_in) < 0.3
45
+ fn = brainstate.nn.EventLinear(n_in, n_out, brainstate.init.KaimingUniform())
46
+
47
+ with pytest.raises(TypeError):
48
+ print(jax.grad(lambda x: fn(x).sum())(x))
49
+
50
+ @pytest.mark.parametrize('bool_x', [True, False])
51
+ @pytest.mark.parametrize('homo_w', [True, False])
52
+ def test_vjp(self, bool_x, homo_w):
53
+ n_in = 20
54
+ n_out = 30
55
+ if bool_x:
56
+ x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
57
+ else:
58
+ x = brainstate.random.rand(n_in)
59
+
60
+ fn = brainstate.nn.EventLinear(
61
+ n_in,
62
+ n_out,
63
+ 1.5 if homo_w else brainstate.init.KaimingUniform(),
64
+ float_as_event=bool_x
65
+ )
66
+ w = fn.weight.value
67
+
68
+ def f(x, w):
69
+ fn.weight.value = w
70
+ return fn(x).sum()
71
+
72
+ r1 = jax.grad(f, argnums=(0, 1))(x, w)
73
+
74
+ # -------------------
75
+ # TRUE gradients
76
+
77
+ def f2(x, w):
78
+ y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
79
+ return y.sum()
80
+
81
+ r2 = jax.grad(f2, argnums=(0, 1))(x, w)
82
+ assert (jnp.allclose(r1[0], r2[0]))
83
+
84
+ if not jnp.allclose(r1[1], r2[1]):
85
+ print(r1[1] - r2[1])
86
+
87
+ assert (jnp.allclose(r1[1], r2[1]))
88
+
89
+ @pytest.mark.parametrize('bool_x', [True, False])
90
+ @pytest.mark.parametrize('homo_w', [True, False])
91
+ def test_jvp(self, bool_x, homo_w):
92
+ n_in = 20
93
+ n_out = 30
94
+ if bool_x:
95
+ x = jax.numpy.asarray(brainstate.random.rand(n_in) < 0.3, dtype=float)
96
+ else:
97
+ x = brainstate.random.rand(n_in)
98
+
99
+ fn = brainstate.nn.EventLinear(
100
+ n_in, n_out, 1.5 if homo_w else brainstate.init.KaimingUniform(),
101
+ float_as_event=bool_x
102
+ )
103
+ w = fn.weight.value
104
+
105
+ def f(x, w):
106
+ fn.weight.value = w
107
+ return fn(x)
108
+
109
+ o1, r1 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
110
+
111
+ # -------------------
112
+ # TRUE gradients
113
+
114
+ def f2(x, w):
115
+ y = (x @ (jnp.ones([n_in, n_out]) * w)) if homo_w else (x @ w)
116
+ return y
117
+
118
+ o2, r2 = jax.jvp(f, (x, w), (jnp.ones_like(x), jnp.ones_like(w)))
119
+ assert (jnp.allclose(o1, o2))
120
+ assert (jnp.allclose(r1, r2))
@@ -1,107 +1,107 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import unittest
18
-
19
- import brainunit as u
20
- from absl.testing import parameterized
21
-
22
- import brainstate
23
-
24
-
25
- class TestDense(parameterized.TestCase):
26
- @parameterized.product(
27
- size=[(10,),
28
- (20, 10),
29
- (5, 8, 10)],
30
- num_out=[20, ]
31
- )
32
- def test_Dense1(self, size, num_out):
33
- f = brainstate.nn.Linear(10, num_out)
34
- x = brainstate.random.random(size)
35
- y = f(x)
36
- self.assertTrue(y.shape == size[:-1] + (num_out,))
37
-
38
-
39
- class TestSparseMatrix(unittest.TestCase):
40
- def test_csr(self):
41
- data = brainstate.random.rand(10, 20)
42
- data = data * (data > 0.9)
43
- f = brainstate.nn.SparseLinear(u.sparse.CSR.fromdense(data))
44
-
45
- x = brainstate.random.rand(10)
46
- y = f(x)
47
- self.assertTrue(
48
- u.math.allclose(
49
- y,
50
- x @ data
51
- )
52
- )
53
-
54
- x = brainstate.random.rand(5, 10)
55
- y = f(x)
56
- self.assertTrue(
57
- u.math.allclose(
58
- y,
59
- x @ data
60
- )
61
- )
62
-
63
- def test_csc(self):
64
- data = brainstate.random.rand(10, 20)
65
- data = data * (data > 0.9)
66
- f = brainstate.nn.SparseLinear(u.sparse.CSC.fromdense(data))
67
-
68
- x = brainstate.random.rand(10)
69
- y = f(x)
70
- self.assertTrue(
71
- u.math.allclose(
72
- y,
73
- x @ data
74
- )
75
- )
76
-
77
- x = brainstate.random.rand(5, 10)
78
- y = f(x)
79
- self.assertTrue(
80
- u.math.allclose(
81
- y,
82
- x @ data
83
- )
84
- )
85
-
86
- def test_coo(self):
87
- data = brainstate.random.rand(10, 20)
88
- data = data * (data > 0.9)
89
- f = brainstate.nn.SparseLinear(u.sparse.COO.fromdense(data))
90
-
91
- x = brainstate.random.rand(10)
92
- y = f(x)
93
- self.assertTrue(
94
- u.math.allclose(
95
- y,
96
- x @ data
97
- )
98
- )
99
-
100
- x = brainstate.random.rand(5, 10)
101
- y = f(x)
102
- self.assertTrue(
103
- u.math.allclose(
104
- y,
105
- x @ data
106
- )
107
- )
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import unittest
18
+
19
+ import brainunit as u
20
+ from absl.testing import parameterized
21
+
22
+ import brainstate
23
+
24
+
25
+ class TestDense(parameterized.TestCase):
26
+ @parameterized.product(
27
+ size=[(10,),
28
+ (20, 10),
29
+ (5, 8, 10)],
30
+ num_out=[20, ]
31
+ )
32
+ def test_Dense1(self, size, num_out):
33
+ f = brainstate.nn.Linear(10, num_out)
34
+ x = brainstate.random.random(size)
35
+ y = f(x)
36
+ self.assertTrue(y.shape == size[:-1] + (num_out,))
37
+
38
+
39
+ class TestSparseMatrix(unittest.TestCase):
40
+ def test_csr(self):
41
+ data = brainstate.random.rand(10, 20)
42
+ data = data * (data > 0.9)
43
+ f = brainstate.nn.SparseLinear(u.sparse.CSR.fromdense(data))
44
+
45
+ x = brainstate.random.rand(10)
46
+ y = f(x)
47
+ self.assertTrue(
48
+ u.math.allclose(
49
+ y,
50
+ x @ data
51
+ )
52
+ )
53
+
54
+ x = brainstate.random.rand(5, 10)
55
+ y = f(x)
56
+ self.assertTrue(
57
+ u.math.allclose(
58
+ y,
59
+ x @ data
60
+ )
61
+ )
62
+
63
+ def test_csc(self):
64
+ data = brainstate.random.rand(10, 20)
65
+ data = data * (data > 0.9)
66
+ f = brainstate.nn.SparseLinear(u.sparse.CSC.fromdense(data))
67
+
68
+ x = brainstate.random.rand(10)
69
+ y = f(x)
70
+ self.assertTrue(
71
+ u.math.allclose(
72
+ y,
73
+ x @ data
74
+ )
75
+ )
76
+
77
+ x = brainstate.random.rand(5, 10)
78
+ y = f(x)
79
+ self.assertTrue(
80
+ u.math.allclose(
81
+ y,
82
+ x @ data
83
+ )
84
+ )
85
+
86
+ def test_coo(self):
87
+ data = brainstate.random.rand(10, 20)
88
+ data = data * (data > 0.9)
89
+ f = brainstate.nn.SparseLinear(u.sparse.COO.fromdense(data))
90
+
91
+ x = brainstate.random.rand(10)
92
+ y = f(x)
93
+ self.assertTrue(
94
+ u.math.allclose(
95
+ y,
96
+ x @ data
97
+ )
98
+ )
99
+
100
+ x = brainstate.random.rand(5, 10)
101
+ y = f(x)
102
+ self.assertTrue(
103
+ u.math.allclose(
104
+ y,
105
+ x @ data
106
+ )
107
+ )
brainstate/nn/_ltp.py CHANGED
@@ -1,28 +1,28 @@
1
- # Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
-
19
- from ._synapse import Synapse
20
-
21
- __all__ = [
22
- 'LongTermPlasticity',
23
- ]
24
-
25
-
26
- class LongTermPlasticity(Synapse):
27
- pass
28
-
1
+ # Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+
19
+ from ._synapse import Synapse
20
+
21
+ __all__ = [
22
+ 'LongTermPlasticity',
23
+ ]
24
+
25
+
26
+ class LongTermPlasticity(Synapse):
27
+ pass
28
+