brainstate 0.1.7__py2.py3-none-any.whl → 0.1.9__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -146
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +509 -470
  58. brainstate/nn/_delay_test.py +238 -0
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1361
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1120
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -208
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/METADATA +91 -99
  127. brainstate-0.1.9.dist-info/RECORD +130 -0
  128. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.7.dist-info/RECORD +0 -131
  133. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/top_level.txt +0 -0
@@ -1,26 +1,26 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- from ._base import *
18
- from ._base import __all__ as _base_all
19
- from ._generic import *
20
- from ._generic import __all__ as _generic_all
21
- from ._random_inits import *
22
- from ._random_inits import __all__ as _random_inits_all
23
- from ._regular_inits import *
24
- from ._regular_inits import __all__ as _regular_inits_all
25
-
26
- __all__ = _generic_all + _base_all + _regular_inits_all + _random_inits_all
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ from ._base import *
18
+ from ._base import __all__ as _base_all
19
+ from ._generic import *
20
+ from ._generic import __all__ as _generic_all
21
+ from ._random_inits import *
22
+ from ._random_inits import __all__ as _random_inits_all
23
+ from ._regular_inits import *
24
+ from ._regular_inits import __all__ as _regular_inits_all
25
+
26
+ __all__ = _generic_all + _base_all + _regular_inits_all + _random_inits_all
brainstate/init/_base.py CHANGED
@@ -1,52 +1,52 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from typing import Optional, Tuple
17
-
18
- import numpy as np
19
-
20
- from brainstate.util import PrettyRepr, PrettyType, PrettyAttr
21
-
22
- __all__ = ['Initializer', 'to_size']
23
-
24
-
25
- class Initializer(PrettyRepr):
26
- """
27
- Base class for initializers.
28
- """
29
- __module__ = 'brainstate.init'
30
-
31
- def __call__(self, *args, **kwargs):
32
- raise NotImplementedError
33
-
34
- def __pretty_repr__(self):
35
- """
36
- Pretty repr for the object.
37
- """
38
- yield PrettyType(type=type(self))
39
- for name, value in vars(self).items():
40
- if name.startswith('_'):
41
- continue
42
- yield PrettyAttr(name, repr(value))
43
-
44
-
45
- def to_size(x) -> Optional[Tuple[int]]:
46
- if isinstance(x, (tuple, list)):
47
- return tuple(x)
48
- if isinstance(x, (int, np.integer)):
49
- return (x,)
50
- if x is None:
51
- return x
52
- raise ValueError(f'Cannot make a size for {x}')
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Optional, Tuple
17
+
18
+ import numpy as np
19
+
20
+ from brainstate.util import PrettyRepr, PrettyType, PrettyAttr
21
+
22
+ __all__ = ['Initializer', 'to_size']
23
+
24
+
25
+ class Initializer(PrettyRepr):
26
+ """
27
+ Base class for initializers.
28
+ """
29
+ __module__ = 'brainstate.init'
30
+
31
+ def __call__(self, *args, **kwargs):
32
+ raise NotImplementedError
33
+
34
+ def __pretty_repr__(self):
35
+ """
36
+ Pretty repr for the object.
37
+ """
38
+ yield PrettyType(type=type(self))
39
+ for name, value in vars(self).items():
40
+ if name.startswith('_'):
41
+ continue
42
+ yield PrettyAttr(name, repr(value))
43
+
44
+
45
+ def to_size(x) -> Optional[Tuple[int]]:
46
+ if isinstance(x, (tuple, list)):
47
+ return tuple(x)
48
+ if isinstance(x, (int, np.integer)):
49
+ return (x,)
50
+ if x is None:
51
+ return x
52
+ raise ValueError(f'Cannot make a size for {x}')
@@ -1,244 +1,244 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- from typing import Union, Callable, Optional, Sequence
19
-
20
- import brainunit as bu
21
- import jax
22
- import numpy as np
23
-
24
- from brainstate._state import State
25
- from brainstate._utils import set_module_as
26
- from brainstate.typing import ArrayLike
27
- from ._base import to_size
28
-
29
- __all__ = [
30
- 'param',
31
- 'state',
32
- 'noise',
33
- ]
34
-
35
-
36
- def _is_scalar(x):
37
- return bu.math.isscalar(x)
38
-
39
-
40
- def are_broadcastable_shapes(shape1, shape2):
41
- """
42
- Check if two shapes are broadcastable.
43
-
44
- Parameters:
45
- - shape1: Tuple[int], the shape of the first array.
46
- - shape2: Tuple[int], the shape of the second array.
47
-
48
- Returns:
49
- - bool: True if shapes are broadcastable, False otherwise.
50
- """
51
- # Reverse the shapes to compare from the last dimension
52
- shape1_reversed = shape1[::-1]
53
- shape2_reversed = shape2[::-1]
54
-
55
- # Iterate over the dimensions of the shorter shape
56
- for dim1, dim2 in zip(shape1_reversed, shape2_reversed):
57
- # Check if the dimensions are not equal and neither is 1
58
- if dim1 != dim2 and 1 not in (dim1, dim2):
59
- return False
60
-
61
- # If all dimensions are compatible, the shapes are broadcastable
62
- return True
63
-
64
-
65
- def _expand_params_to_match_sizes(params, sizes):
66
- """
67
- Expand the dimensions of params to match the dimensions of sizes.
68
-
69
- Parameters:
70
- - params: jax.Array or np.ndarray, the parameter array to be expanded.
71
- - sizes: tuple[int] or list[int], the target shape dimensions.
72
-
73
- Returns:
74
- - Expanded params with dimensions matching sizes.
75
- """
76
- params_dim = params.ndim
77
- sizes_dim = len(sizes)
78
- dim_diff = sizes_dim - params_dim
79
-
80
- # Add new axes to params if it has fewer dimensions than sizes
81
- for _ in range(dim_diff):
82
- params = bu.math.expand_dims(params, axis=0) # Add new axis at the last dimension
83
- return params
84
-
85
-
86
- @set_module_as('brainstate.init')
87
- def param(
88
- parameter: Union[Callable, ArrayLike, State],
89
- sizes: Union[int, Sequence[int]],
90
- batch_size: Optional[int] = None,
91
- allow_none: bool = True,
92
- allow_scalar: bool = True,
93
- ):
94
- """Initialize parameters.
95
-
96
- Parameters
97
- ----------
98
- parameter: callable, ArrayLike, State
99
- The initialization of the parameter.
100
- - If it is None, the created parameter will be None.
101
- - If it is a callable function :math:`f`, the ``f(size)`` will be returned.
102
- - If it is an instance of :py:class:`init.Initializer``, the ``f(size)`` will be returned.
103
- - If it is a tensor, then this function check whether ``tensor.shape`` is equal to the given ``size``.
104
- sizes: int, sequence of int
105
- The shape of the parameter.
106
- batch_size: int
107
- The batch size.
108
- allow_none: bool
109
- Whether allow the parameter is None.
110
- allow_scalar: bool
111
- Whether allow the parameter is a scalar value.
112
-
113
- Returns
114
- -------
115
- param: ArrayType, float, int, bool, None
116
- The initialized parameter.
117
-
118
- See Also
119
- --------
120
- noise, state
121
- """
122
- # Check if the parameter is None
123
- if parameter is None:
124
- if allow_none:
125
- return None
126
- else:
127
- raise ValueError(f'Expect a parameter with type of float, ArrayType, Initializer, or '
128
- f'Callable function, but we got None. ')
129
-
130
- # Check if the parameter is a scalar value
131
- if allow_scalar and _is_scalar(parameter):
132
- return parameter
133
-
134
- # Convert sizes to a tuple
135
- sizes = tuple(to_size(sizes))
136
-
137
- # Check if the parameter is a callable function
138
- if callable(parameter):
139
- if batch_size is not None:
140
- sizes = (batch_size,) + sizes
141
- return parameter(sizes)
142
- elif isinstance(parameter, (np.ndarray, jax.Array, bu.Quantity, State)):
143
- parameter = parameter
144
- else:
145
- raise ValueError(f'Unknown parameter type: {type(parameter)}')
146
-
147
- # Check if the shape of the parameter matches the given size
148
- if not are_broadcastable_shapes(parameter.shape, sizes):
149
- raise ValueError(f'The shape of the parameter {parameter.shape} does not match with the given size {sizes}')
150
-
151
- # Expand the parameter to match the given batch size
152
- param_value = parameter.value if isinstance(parameter, State) else parameter
153
- if batch_size is not None:
154
- if param_value.ndim <= len(sizes):
155
- # add a new axis to the params so that it matches the dimensionality of the given shape ``sizes``
156
- param_value = _expand_params_to_match_sizes(param_value, sizes)
157
- param_value = bu.math.repeat(
158
- bu.math.expand_dims(param_value, axis=0),
159
- batch_size,
160
- axis=0
161
- )
162
- else:
163
- if param_value.shape[0] != batch_size:
164
- raise ValueError(f'The batch size of the parameter {param_value.shape[0]} '
165
- f'does not match with the given batch size {batch_size}')
166
- return type(parameter)(param_value) if isinstance(parameter, State) else param_value
167
-
168
-
169
- @set_module_as('brainstate.init')
170
- def state(
171
- init: Union[Callable, jax.typing.ArrayLike],
172
- sizes: Union[int, Sequence[int]] = None,
173
- batch_size: Optional[int] = None,
174
- ):
175
- """
176
- Initialize a :math:`~.State` from a callable function or a data.
177
- """
178
- sizes = to_size(sizes)
179
- if callable(init):
180
- if sizes is None:
181
- raise ValueError('"varshape" cannot be None when data is a callable function.')
182
- sizes = list(sizes)
183
- if isinstance(batch_size, int):
184
- sizes.insert(0, batch_size)
185
- return State(init(sizes))
186
-
187
- else:
188
- if sizes is not None:
189
- if bu.math.shape(init) != sizes:
190
- raise ValueError(f'The shape of "data" {bu.math.shape(init)} does not match with "var_shape" {sizes}')
191
- if isinstance(batch_size, int):
192
- batch_size = batch_size
193
- data = State(
194
- bu.math.repeat(
195
- bu.math.expand_dims(init, axis=0),
196
- batch_size,
197
- axis=0
198
- )
199
- )
200
- else:
201
- data = State(init)
202
- return data
203
-
204
-
205
- @set_module_as('brainstate.init')
206
- def noise(
207
- noises: Optional[Union[ArrayLike, Callable]],
208
- size: Union[int, Sequence[int]],
209
- num_vars: int = 1,
210
- noise_idx: int = 0,
211
- ) -> Optional[Callable]:
212
- """Initialize a noise function.
213
-
214
- Parameters
215
- ----------
216
- noises: Any
217
- size: Shape
218
- The size of the noise.
219
- num_vars: int
220
- The number of variables.
221
- noise_idx: int
222
- The index of the current noise among all noise variables.
223
-
224
- Returns
225
- -------
226
- noise_func: function, None
227
- The noise function.
228
-
229
- See Also
230
- --------
231
- variable_, parameter, delay
232
-
233
- """
234
- if callable(noises):
235
- return noises
236
- elif noises is None:
237
- return None
238
- else:
239
- noises = param(noises, size, allow_none=False)
240
- if num_vars > 1:
241
- noises_ = [None] * num_vars
242
- noises_[noise_idx] = noises
243
- noises = tuple(noises_)
244
- return lambda *args, **kwargs: noises
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+ from typing import Union, Callable, Optional, Sequence
19
+
20
+ import brainunit as bu
21
+ import jax
22
+ import numpy as np
23
+
24
+ from brainstate._state import State
25
+ from brainstate._utils import set_module_as
26
+ from brainstate.typing import ArrayLike
27
+ from ._base import to_size
28
+
29
+ __all__ = [
30
+ 'param',
31
+ 'state',
32
+ 'noise',
33
+ ]
34
+
35
+
36
+ def _is_scalar(x):
37
+ return bu.math.isscalar(x)
38
+
39
+
40
+ def are_broadcastable_shapes(shape1, shape2):
41
+ """
42
+ Check if two shapes are broadcastable.
43
+
44
+ Parameters:
45
+ - shape1: Tuple[int], the shape of the first array.
46
+ - shape2: Tuple[int], the shape of the second array.
47
+
48
+ Returns:
49
+ - bool: True if shapes are broadcastable, False otherwise.
50
+ """
51
+ # Reverse the shapes to compare from the last dimension
52
+ shape1_reversed = shape1[::-1]
53
+ shape2_reversed = shape2[::-1]
54
+
55
+ # Iterate over the dimensions of the shorter shape
56
+ for dim1, dim2 in zip(shape1_reversed, shape2_reversed):
57
+ # Check if the dimensions are not equal and neither is 1
58
+ if dim1 != dim2 and 1 not in (dim1, dim2):
59
+ return False
60
+
61
+ # If all dimensions are compatible, the shapes are broadcastable
62
+ return True
63
+
64
+
65
+ def _expand_params_to_match_sizes(params, sizes):
66
+ """
67
+ Expand the dimensions of params to match the dimensions of sizes.
68
+
69
+ Parameters:
70
+ - params: jax.Array or np.ndarray, the parameter array to be expanded.
71
+ - sizes: tuple[int] or list[int], the target shape dimensions.
72
+
73
+ Returns:
74
+ - Expanded params with dimensions matching sizes.
75
+ """
76
+ params_dim = params.ndim
77
+ sizes_dim = len(sizes)
78
+ dim_diff = sizes_dim - params_dim
79
+
80
+ # Add new axes to params if it has fewer dimensions than sizes
81
+ for _ in range(dim_diff):
82
+ params = bu.math.expand_dims(params, axis=0) # Add new axis at the last dimension
83
+ return params
84
+
85
+
86
+ @set_module_as('brainstate.init')
87
+ def param(
88
+ parameter: Union[Callable, ArrayLike, State],
89
+ sizes: Union[int, Sequence[int]],
90
+ batch_size: Optional[int] = None,
91
+ allow_none: bool = True,
92
+ allow_scalar: bool = True,
93
+ ):
94
+ """Initialize parameters.
95
+
96
+ Parameters
97
+ ----------
98
+ parameter: callable, ArrayLike, State
99
+ The initialization of the parameter.
100
+ - If it is None, the created parameter will be None.
101
+ - If it is a callable function :math:`f`, the ``f(size)`` will be returned.
102
+ - If it is an instance of :py:class:`init.Initializer``, the ``f(size)`` will be returned.
103
+ - If it is a tensor, then this function check whether ``tensor.shape`` is equal to the given ``size``.
104
+ sizes: int, sequence of int
105
+ The shape of the parameter.
106
+ batch_size: int
107
+ The batch size.
108
+ allow_none: bool
109
+ Whether allow the parameter is None.
110
+ allow_scalar: bool
111
+ Whether allow the parameter is a scalar value.
112
+
113
+ Returns
114
+ -------
115
+ param: ArrayType, float, int, bool, None
116
+ The initialized parameter.
117
+
118
+ See Also
119
+ --------
120
+ noise, state
121
+ """
122
+ # Check if the parameter is None
123
+ if parameter is None:
124
+ if allow_none:
125
+ return None
126
+ else:
127
+ raise ValueError(f'Expect a parameter with type of float, ArrayType, Initializer, or '
128
+ f'Callable function, but we got None. ')
129
+
130
+ # Check if the parameter is a scalar value
131
+ if allow_scalar and _is_scalar(parameter):
132
+ return parameter
133
+
134
+ # Convert sizes to a tuple
135
+ sizes = tuple(to_size(sizes))
136
+
137
+ # Check if the parameter is a callable function
138
+ if callable(parameter):
139
+ if batch_size is not None:
140
+ sizes = (batch_size,) + sizes
141
+ return parameter(sizes)
142
+ elif isinstance(parameter, (np.ndarray, jax.Array, bu.Quantity, State)):
143
+ parameter = parameter
144
+ else:
145
+ raise ValueError(f'Unknown parameter type: {type(parameter)}')
146
+
147
+ # Check if the shape of the parameter matches the given size
148
+ if not are_broadcastable_shapes(parameter.shape, sizes):
149
+ raise ValueError(f'The shape of the parameter {parameter.shape} does not match with the given size {sizes}')
150
+
151
+ # Expand the parameter to match the given batch size
152
+ param_value = parameter.value if isinstance(parameter, State) else parameter
153
+ if batch_size is not None:
154
+ if param_value.ndim <= len(sizes):
155
+ # add a new axis to the params so that it matches the dimensionality of the given shape ``sizes``
156
+ param_value = _expand_params_to_match_sizes(param_value, sizes)
157
+ param_value = bu.math.repeat(
158
+ bu.math.expand_dims(param_value, axis=0),
159
+ batch_size,
160
+ axis=0
161
+ )
162
+ else:
163
+ if param_value.shape[0] != batch_size:
164
+ raise ValueError(f'The batch size of the parameter {param_value.shape[0]} '
165
+ f'does not match with the given batch size {batch_size}')
166
+ return type(parameter)(param_value) if isinstance(parameter, State) else param_value
167
+
168
+
169
+ @set_module_as('brainstate.init')
170
+ def state(
171
+ init: Union[Callable, jax.typing.ArrayLike],
172
+ sizes: Union[int, Sequence[int]] = None,
173
+ batch_size: Optional[int] = None,
174
+ ):
175
+ """
176
+ Initialize a :math:`~.State` from a callable function or a data.
177
+ """
178
+ sizes = to_size(sizes)
179
+ if callable(init):
180
+ if sizes is None:
181
+ raise ValueError('"varshape" cannot be None when data is a callable function.')
182
+ sizes = list(sizes)
183
+ if isinstance(batch_size, int):
184
+ sizes.insert(0, batch_size)
185
+ return State(init(sizes))
186
+
187
+ else:
188
+ if sizes is not None:
189
+ if bu.math.shape(init) != sizes:
190
+ raise ValueError(f'The shape of "data" {bu.math.shape(init)} does not match with "var_shape" {sizes}')
191
+ if isinstance(batch_size, int):
192
+ batch_size = batch_size
193
+ data = State(
194
+ bu.math.repeat(
195
+ bu.math.expand_dims(init, axis=0),
196
+ batch_size,
197
+ axis=0
198
+ )
199
+ )
200
+ else:
201
+ data = State(init)
202
+ return data
203
+
204
+
205
+ @set_module_as('brainstate.init')
206
+ def noise(
207
+ noises: Optional[Union[ArrayLike, Callable]],
208
+ size: Union[int, Sequence[int]],
209
+ num_vars: int = 1,
210
+ noise_idx: int = 0,
211
+ ) -> Optional[Callable]:
212
+ """Initialize a noise function.
213
+
214
+ Parameters
215
+ ----------
216
+ noises: Any
217
+ size: Shape
218
+ The size of the noise.
219
+ num_vars: int
220
+ The number of variables.
221
+ noise_idx: int
222
+ The index of the current noise among all noise variables.
223
+
224
+ Returns
225
+ -------
226
+ noise_func: function, None
227
+ The noise function.
228
+
229
+ See Also
230
+ --------
231
+ variable_, parameter, delay
232
+
233
+ """
234
+ if callable(noises):
235
+ return noises
236
+ elif noises is None:
237
+ return None
238
+ else:
239
+ noises = param(noises, size, allow_none=False)
240
+ if num_vars > 1:
241
+ noises_ = [None] * num_vars
242
+ noises_[noise_idx] = noises
243
+ noises = tuple(noises_)
244
+ return lambda *args, **kwargs: noises